(完整)几何图形解题方法

合集下载

初中数学几何题解题技巧

初中数学几何题解题技巧

初中数学几何题解题技巧立体几何是初中数学中的重要内容,也是学习的难点,而且在中考中立体几何属于必考点,通常在一个题目中会包含多个立体几何的考查点,掌握立体几何解题技巧至关重要。

那么接下来给大家分享一些关于初中数学几何题解题技巧,希望对大家有所帮助。

一.添辅助线有二种情况1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

初中最全几何解题模型总结

初中最全几何解题模型总结

初中几何题太吃力总丢分?你需要这分最全几何解题模型总结!01全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型:说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

02对称半角模型说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

03旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题04旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称06共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

通过“8”字模型可以证明。

07模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。

当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。

证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。

数学立体几何解题技巧必看

数学立体几何解题技巧必看

数学立体几何解题技巧必看各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,运用,数学作为最烧脑的科目之一,也是一样的。

下面是小编给大家整理的一些数学立体几何解题技巧的学习资料,希望对大家有所帮助。

高考数学答题技巧:立体几何解答立体几何篇高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。

选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。

随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。

从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

知识整合1、有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

2、判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。

3、两个平面平行的主要性质:(1)由定义知:“两平行平面没有公共点”。

(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。

(3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。

(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

(5)夹在两个平行平面间的平行线段相等。

2021七年级几何求证模型归纳总结及解题方法

2021七年级几何求证模型归纳总结及解题方法

【考点】 K 7 :三角形内角和定理 【解答】解:(1)A B AOB 180 , C D COD 180 , 又AOB COD , A B C D , 故答案为: A B C D .
(2)①图中,有 6 个“8 字形”. 故答案为 6.
② AP 平分 BAD , 1 2 , PC 平分 BCD , 3 4 , 1 B 3 P ①, 2 P 4 D ②, ① ②得, 2P B D 50 , P 25 .
【考点】 JA :平行线的性质 【解答】解: AB / /CD , C 55 , EFB C 55 , AEC 18 , A EFB AEC 37 , 故答案为:37.
2.(2020 春•太湖县期末)如图(1), AB / /CD ,试求 BPD 与 B 、 D 的数量关系,说 明理由.
2如图2延长ba与cp交于点qcq与am交于点h?an平分?pab??ban??pan??qap?180??2?ban??p?30???cqa??p??qap?30??180??2?ban?210?2?ban?mhc??nhp??nap??p??ban?30??abcd??ecq??cqa?210??2?ban?cm平分?pce11??mch??ecp??210??2?ban?105???ban22??amc?180???mhc??mch??amc?180???ban?30??105???ban?105?
数量关系. (3)如图③,延长线段 BP 、 QC 交于点 E , BQE 中,存在一个内角等于另一个内角的 3
倍,请直接写出 A 的度数.
【解答】(1)解:A 80 .
ABC ACB 100 ,
点 P 是 ABC 和 ACB 的平分线的交点,
P 180 1 (ABC ACB) 180 1 100 130 ,

初中几何题解题技巧(带例题)

初中几何题解题技巧(带例题)
S△ACD ,则 S 四边形 EFGO=S 阴影-S△ACD 。四边形 EFGO 的面积为:880 -1500÷2=130(平方厘米)。
练一练 7: 如图 19 所示,已知平行四边形 EFGH 的底是 8 厘米,高是 6 厘 米,阴影部分的面积是 16 平方厘米,求四边形 ABCD 的面积。
八、两次求差法 两次求差法是指根据图形之间相容相斥的原理,通过两次求差求出面积的方 法。 例 8 如图 20,长方形 ABCD 的长是 6 厘米,宽是 4 厘米,求阴影部分的面积。
分析与解:通过作辅助线,可以将三角形 ABC 平均分成 16 个完全一样的小 三角形(如图 11 所示),阴影部分为其中 3 个小三角形,即阴影部分的面积占 三角形 ABC 的面积的。阴影部分的面积为:48×=9(平方分米)。
练一练 4: 如图 12 所示,长方形 ABCD 的长是 10 厘米,宽是 6 厘米,E、F 分别是 AB 和 AD 的中点,求阴影部分的面积。
七、等量代换法 等量代换法是指根据题目中图形之间面积相等的关系,以此代彼,相互替换, 从而求出面积的方法。 例 7 如图 18,长方形 ABCD 的面积为 1500 平方厘米,阴影部分的面积为 880 平方厘米,求四边形 EFGO 的面积。
分析与解:在长方形 ABCD 中,△ABF 与△DBF 同底(即 BF 的长)、等高(即 长方形的宽),所以 S△ABF= S△DBF 。若从这两个三角形中同时减去△BEF, 则剩下的图形面积相等,即:S△ABE=S△DEF 。这样 S 阴影=S 四边形 EFGO+
分析与解:通过仔细观察图形,我们可以发现:在大圆中,与阴影Ⅰ、阴影 Ⅱ、阴影Ⅲ面积相等的图形均有 4 个,其中阴影 1 个,空白 3 个。要求阴影部分 的面积,就相当于把大圆的面积平均分成 4 份,求其中一份的面积,列式为: 3.ቤተ መጻሕፍቲ ባይዱ4×(20÷2)2÷4=78.5(平方厘米)。

七年级数学上册第四章几何图形初步题型总结及解题方法

七年级数学上册第四章几何图形初步题型总结及解题方法

(名师选题)七年级数学上册第四章几何图形初步题型总结及解题方法单选题1、如图,某正方体三组相对的两个面的颜色相同,分别为红,黄,蓝三色,其展开图不可能是()A.B.C.D.答案:C分析:利用正方体的展开图中,间隔是对面判断即可.解:根据正方体的展开图中,间隔是对面可知,选项A、B、D中都符合正方体三组相对的两个面的颜色相同,只有选项C中,蓝与蓝是相邻的面,故选:C.小提示:本题考查了正方体的展开图中间隔是对面的规律,理解掌握该规律是解题的关键.2、我们知道过平面上两点可以画一条直线,过平面上3点最多可以画3条直线,过平面上4点最多可以画6条直线,过平面上5点最多可以画10条直线.如果平面上有6个点,且任意3个点均不在同一直线上,那么最多可以画多少条直线?()A.15B.21C.30D.35答案:A分析:根据图示的规律用代数式表示即可.根据图形得:第①组最多可以画3条直线;第②组最多可以画6条直线;第③组最多可以画10条直线.条直线.如果平面上有n(n≥3)个点,且每3个点均不在1条直线上,那么最多可以画1+2+3+…+n-1=n(n−1)2当n=6时,6×5=15=15.2即:最多可以画15条直线.故选:A.小提示:本题考查了图形的变化类问题,解题的关键是仔细的观察图形并找到其中的规律.3、往返于甲、乙两地的火车,中途停靠三站,每两站间距离各不相等,需要准备()种不同的车票A.4B.8C.10D.20答案:D分析:把甲乙两地看作是一条线段,线段上有3个点,先求出线段条数,再乘以2即是车票的种类.解:把甲乙两地看作是一条线段,线段上有3个点,如图,∴线段一共有1+2+3+4=10(条),而10×2=20,∴需要准备20种不同的车票,故选D小提示:本题主要考查运用数学知识解决生活中的问题;关键是需要掌握正确数线段的方法.4、如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从左向右移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l 上会发出警报的点P有()A.3个B.4个C.5个D.6个答案:C分析:点P与A,B,C,D四点中的至少两个点距离相等时,也就是点P恰好是其中一条线段中点,而图中共有六条线段,由此可以得到出现报警的最多次数.解:根据题意可知:当点P经过任意一条线段中点时会发出报警,∵图中共有线段AB、AC、AD、BC、BD、CD,∵AD和BC的中点是同一个,∴直线l上会发出警报的点P有5个.故选:C.小提示:本题考查了两点间的距离,利用总体思想去思考线段的总条数是解决问题最巧妙的办法,可以减去不必要的讨论与分类.5、夜里将点燃的蚊香迅速绕一圈,可划出一个曲线,这是因为()A.面对成体B.线动成面C.点动成线D.面面相交成线答案:C分析:根据点动成线的知识点进行解答即可.解:夜里将点燃的蚊香迅速绕一圈,可划出一个曲线,是因为点动成线,故选:C.小提示:此题主要考查了点、线、面、体,从运动的观点来看:点动成线,线动成面,面动成体,掌握知识点是解题关键.6、如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.答案:B分析:根据圆锥体的立体图形判断即可.用平行底面的平面截圆锥体,截面是圆形,故选:B.小提示:本题考查了截面图形的判断,具有一定的空间想象力是解答本题的关键.7、下列图形属于平面图形的是()A.正方体B.圆柱体C.圆D.圆锥体答案:C分析:根据题意可知,正方体、圆柱体、圆锥体都是立体图形,圆是平面图形,据此即可求解.解:圆是平面图形,正方体、圆柱体、圆锥体都是立体图形故选C小提示:本题考查了平面图形与立体图形的认识,正确的区分是解题的关键.8、下列说法中正确的有().(1)线段有两个端点,直线有一个端点;(2)由两条射线组成的图形叫角(3)角的大小与我们画出的角的两边的长短无关;(4)线段上有无数个点;(5)两个锐角的和必定是直角或钝角;(6)若∠AOC与∠AOB有公共顶点,且∠AOC的一边落在∠AOB的内部,则∠AOB>∠AOC.A.1个B.2个C.3个D.4个答案:C分析:线段有两个端点,直线没有端点,由两条有公共端点的射线组成的图形叫角,角的大小与角两边的长短无关,根据线段、直线、角的定义等知识逐一进行判断.解:(1)线段有两个端点,直线没有端点,故(1)错误;(2)由两条有公共端点的射线组成的图形叫角,这两条射线叫做角的边,它们的公共端点叫做角的顶点,故(2)错误;(3)角的大小与我们画出的角的两边的长短无关,故(3)正确;(4)线段上有无数个点,故(4)正确;(5)两个锐角的和可能是锐角,故(5)错误;(6)若∠AOC与∠AOB有公共顶点,且∠AOC的一边落在∠AOB的内部,则∠AOB>∠AOC,故(6)正确,即正确的序号为(3)(4)(6),共3个,故选:C.小提示:本题考查线段、直线、角的定义等知识,是基础考点,掌握相关知识是解题关键.9、体育课上,蒋老师给同学们分发了篮球、足球、乒乓球和羽毛球,这些球类中的“球”不属于球体的是()A.篮球B.足球C.乒乓球D.羽毛球答案:D分析:根据球体的特征判断即可得到答案.半圆面以它的直径为旋转轴,旋转所成的空间物体就是球,球体的三视图都是圆,篮球、足球、乒乓球和羽毛球中,只有羽毛球不是球体,故选:D.小提示:本题考查了空间立体图形的识别,结合实际生活中球体的特征判断是解决问题的关键.10、在下面的几何体中:①长方体;②圆柱;③球;④五棱柱;⑤圆锥;⑥正方体,可以看成有两个底面的几何体是()A.①②④⑥B.②③④C.②④⑤⑥D.①②③⑥答案:A分析:根据每一个几何体的特征判断即可.解:在下面的几何体中:①长方体;②圆柱;③球;④五棱柱;⑤圆锥;⑥正方体,可以看成有两个底面的几何体是:长方体,圆柱,五棱柱,正方体,故选:A.小提示:本题考查了认识立体图形,解题的关键是熟练掌握每一个几何体的特征.填空题11、圆柱的侧面展开图是一个相邻的两边长分别为4,2π的长方形,则圆柱体的体积为_____.答案:4π或8##8或4π分析:分两种情况:①以2π为底面周长,4为高;②以4为圆柱体的底面周长,2π为高;分别求解即可.解:①以2π为底面周长,4为高,此时圆柱体的底面半径为2π2π=1,∴圆柱体的体积为π×12×4=4π,②以4为圆柱体的底面周长,2π为高,此时圆柱体的底面半径为42π=2π,∴圆柱体的体积为π×(2π)2×2π=8,所以答案是:4π或8.小提示:本题考查圆柱体的展开与折叠,理解圆柱体表面展开图与圆柱体之间的关系是解决问题的关键.12、若船A在灯塔B的正南方向上,那么灯塔B在船A的________方向上.答案:正北分析:船A在灯塔B的正南方向上这是以灯塔为基准的方位图,而要求灯塔B在船A的方位则是以船为基准,从而可得答案.解:船A在灯塔B的正南方向上,那么灯塔B在船A的正北方向上.所以答案是:正北.小提示:本题考查了方向角的知识,掌握以什么为基准是解本题的关键.13、如图,将一副直角三角尺的直角顶点C叠放在一起,若CE、CD分别平分∠ACD与∠ECB,则计算∠ECD=___________度.答案:45分析:由题意可知∠ACD=90°,根据角平分线的性质即可求解.解:由题意可知∠ACD=90°,又∵CE平分∠ACD∴∠ECD=1∠ACD=45°2故答案为45小提示:此题考查了角平分线的性质,熟练掌握角平分线的有关性质是解题的关键.14、点A和点B是数轴上的两点,点A表示的数为√2,点B表示的数为1,那么A、B两点间的距离为_____.答案:√2−1分析:数轴上两点之间的距离,用在数轴右边的点所对应的数减左边的点所对应的数或加绝对值符号即可.解:本题主要考查数轴上两点间的距离,点A和点B间的距离是|√2−1|=√2−1,故答案是:√2−1.小提示:本题考查了数轴上两点之间的距离,解题的关键是理解距离是非负数.15、已知∠A的补角是60°,则∠A=_________°.答案:120分析:如果两个角的和等于180°,就说这两个角互为补角.由此定义即可求解.解:∵∠A的补角是60°,∴∠A=180°-60°=120°,所以答案是:120.小提示:本题考查补角的定义,熟练掌握两个角互为补角的定义是解题的关键.解答题16、日常生活中,我们几乎每天都要看钟表,它的时针;和分针如同兄弟俩在赛跑,其中蕴涵着丰富的数学知识.(1)如图1,上午8:00这一时刻,时钟上分针与时针的夹角等于________;(2)请在图2中画出8:20这一时刻时针和分针的大致位置,思考并回答:从上午8:00到8:20,时钟的分针转过的度数是________,时钟的时针转过的度数是________;(3)“元旦”这一天,小明上午八点整出门买东西,回到家中时发现还没到九点,但是时针与分针重合了,那么小明从离开家到回到家的时间为多少分钟?答案:(1)120°;(2)120°,10°;(3)44分析:(1)根据8:00这一时刻时针在8上,分针在12上,之间共有4个大格,列式计算即可得解;(2)根据分针共转过4个大格子,每一个大格子是30°列式计算即可得解;时针在8到9之间转过20分钟,转完整个大格子需要60分钟,然后列式计算即可得解;(3)设8点x分钟时,时针与分针重合了,然后根据分针的速度是时针的速度的12倍,列出方程求解即可.解:(1)30°×4=120°;(2)分针转过4×30°=120°,×30°=10°;时针转过:2060故答案为(1)120°;(2)120°,10°;(3)设8点x分钟时,时针与分针重合了×30°=8×30°,则(12-1)×x60解得x=480≈44,11∴小明从离开家到回到家的时间为44分钟.小提示:本题考查了钟面角问题,求出时针与分针的夹角问题,通常需要考虑夹角中的大格子和小格子两个部分,也可以利用分针的转速是时针的转速的12倍考虑求解.17、点C 在线段AB 上,若BC =2AC 或AC =2BC ,则称点C 是线段AB 的“雅点”,线段AC 、BC 称作互为“雅点”伴侣线段.(1)如图①,若点C 为线段AB 的“雅点”,AC =6(AC <BC ),则AB =______;(2)如图②,数轴上有一点E 表示的数为1,向右平移5个单位到达点F ;若点G 在射线EF 上,且线段GF 与以E 、F 、G 中某两个点为端点的线段互为“雅点”伴侣线段,请写出点G 所表示的数.(写出必要的推理步骤) 答案:(1)18(2)133或83或8.5或16.分析:(1)由BC =2AC 即可得答案;(2)点G 在射线EF 上,且线段GF 与以E 、F 、G 中某两个点为端点的线段互为“雅点”伴侣线段,分种情况讨论即可.(1)∵点C 为线段AB 的“雅点”,AC =6(AC <BC ),∴BC =2AC ,∵AC =6,∴BC =12,∴AB =AC +BC =18,所以答案是:18;(2)点G 在射线EF 上,且线段GF 与以E 、F 、G 中某两个点为端点的线段互为“雅点”伴侣线段,分以下四种情况: ①G 在线段EF 上,EG =2FG ,如图1:∵EG =2FG ,EG +FG =5,∴EG =103, ∵E 表示的数为1,∴G 点表示的数为1+103=133,②G 在线段EF 上,且FG =2EG ,如图2:∵FG =2EG ,EG +FG =5,∴EG =53,∵E 表示的数为1,∴G 表示的数为1+53=83,③G 在线段EF 外,且EF =2FG ,如图3:∵EF =2FG ,EF =5,∴FG =2.5,∴G 表示的数是1+5+2.5=8.5,④G 在EF 外,且FG =2EF ,如图4:∵FG =2EF ,EF =5,∴FG =10,∴G 表示的数为1+5+10=16,总上所述,G 表示的数为:133或83或8.5或16. 小提示:本题考查数轴相关知识,解答需要分类,解题的关键是读懂“雅点”、“雅点”伴侣线段的定义.18、触类旁通:(1)如图,已知点C 在线段AB 上,且AC=6cm ,BC=4cm ,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AC=a ,BC=b ,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(用a 、b 的代数式表示)(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗?若有变化,求出结果.答案:(1)5cm ;(2)a+b 2;(3)会变化,a+b 2或a−b 2或b−a 2分析:(1)根据点M 、N 分别是AC 、BC 的中点,先求出CM 、CN 的长度,则MN =CM +CN ;(2)根据点M 、N 分别是AC 、BC 的中点,CM =12AC ,CN =12BC ,所以MN =12(AC +BC )=a+b 2;(3)长度会发生变化,分点C 在线段AB 上、点B 在A 、C 之间和点A 在B 、C 之间三种情况讨论. 解:(1)∵AC =6cm ,点M 是AC 的中点∴CM =12AC =3cm ∵BC =4cm ,点N 是BC 的中点∴CN =12BC =2cm∴MN =CM +CN =5cm∴线段MN 的长度为5cm .(2)同(1)可知: MN =a+b 2;(3)线段MN 的长度会变化.当点C 在线段AB 上时,由(2)知MN =a+b 2,当点C 在线段AB 的延长线时,如图:则AC =a >BC =b∵AC =a 点M 是AC 的中点∴CM =12AC =12a ,∵BC =b 点N 是BC 的中点∴CN =12BC =12b , ∴MN =CM -CN =a−b 2,当点C 在线段BA 的延长线时,如图:则AC =a <BC =b同理可求:CM =12AC =12a , CN =12BC =12b ,∴MN =CN -CM =b−a 2,∴综上所述,线段MN 的长度变化,MN =a+b 2,a−b 2,b−a 2.小提示:本题主要是线段中点的运用,分情况讨论是解题的难点,难度较大.。

几何图形解题方法

几何图形解题方法

几何图形解题方法在实际生产和生活中,几何形体往往不是以标准的形状出现,而是以比较复杂的组合图形出现,很难直接利用公式计算其面积或体积。

如果在保持图形的面积或体积不变的前提下,对图形进行适当的变换,就容易找出计算其面积或体积的方法。

(一)添辅助线法有些组合图形按一般的思考方法好像已知条件不足,很难解答。

如果在图形中添加适当的辅助线,就可能找到解题的途径。

辅助线一般用虚线表示。

*例1 求图40-1阴影部分的面积。

(单位:平方米)(适于三年级程度)解:图40-1中,右边两个部分的面积分别是20平方米和30平方米,所以可如图40-2那样添上三条辅助线,把整个长方形分成5等份。

这样图中右边的五个小长方形的面积相等。

同时,左边五个小长方形的面积也相等。

左边每个小长方形的面积是:25÷2=12.5(平方米)所以,阴影部分的面积是:12.5×3=37.5(平方米)答略。

*例2 如图40-3,一个平行四边形被分成两个部分,它们的面积差是10平方厘米,高是5厘米。

求EC的长。

(单位:厘米)(适于五年级程度)解:如图40-4,过E点作AB的平行线EF,则△AEF与△ABE是等底等高的三角形。

所以,△AEF的面积与△ABE的面积相等。

小平行四边形EFDC的面积就是10平方厘米。

因为它的高是5厘米,所以,EC=10÷5=2(厘米)答:EC长2厘米。

*例3 如图40-5,已知图中四边形两条边的长度和三个角的度数,求这个四边形的面积。

(单位:厘米)(适于五年级程度)解:这是一个不规则的四边形,无法直接计算它的面积。

如图40-6,把AD和BC两条线段分别延长,使它们相交于E点。

这样,四边形ABCD的面积就可以转化为△ABE的面积与△DCE的面积之差。

在△ABE中,∠A是直角,∠B=45°,所以∠E=45°,即△ABE是等腰直角三角形。

所以AB=AE=7(厘米),则△ABE的面积是:7×7÷2=24.5(平方厘米)在△DCE中,∠DCE是直角,∠E=45°,所以,∠CDE=45°,即△DCE是等腰直角三角形。

第五讲几何解题方法总结

第五讲几何解题方法总结

第五讲:几何解题方法总结知识点在这里:一、巧求面积平面图形涉及到两个内容:周长和面积。

在求面积中常用的方法有:平移,割补法,去空法,等积变换法,差不变法,利用线段关系求面积等方法。

二、等积变形 (1)直线AB 平行于CD ,可知S ACD ∆= S BCD ∆;反之,如果S ACD ∆= S BCD ∆,同样可得到直线AB 平行于CD 。

(图1)(2)两个三角形的高相等,面积比就等于它们的底之比;两个三角形的底相等,面积比就等于它们的高之比。

(图2)S ABD ∆: S ACD ∆=BD :CD(3)三角形等积变形中常用到的几个重要性质: ①平行线间的距离处处相等;②等底等高的两个三角形面积相等;③共底共顶点的三角形高必定相等;④两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形底(或高)的几倍,那么这个三角形的面积也是另一个三角形面积的几倍;⑤一个平行四边形和一个三角形二者面积相等,如果它们的底相等,那么三角形的高是平行四边形高的2倍,如果它们的高相等,那么三角形的底是平行四边形底的2倍。

(老师可讲“武当山众图形比赛面积大小的‘恐怖’故事”以加深学生记忆。

) 三、“群山模型”每个平行四边形中的阴影可以看做“山”不管几座山,每个平行四边形里“山”的总面积都等于其所在平行四边形面积的一半。

即S 阴影=21S 平行四边形。

四、对等模型一平行四边形或长方形内有任意一点,往四个顶点连线,分成如左图所示四个三角形,则有:S 1+S 2=S 3+S 4=21S 平行四边形。

五、共角问题(鸟头模型)ACDABE S S ∆∆=AD AC AEAB ⨯⨯(各线段的份数相乘)六、燕尾模型 S 1:S 2=DE :EA S 4:S 3= DE :EA 所以:S 1:S 2= S 4:S 3 即S 1:S 4= S 2:S 3=BD :DC你看右边的两幅图有相似之处吧。

总结:两翅膀的面积比等于尾部的宽度之比。

立体几何题型与解题方法

立体几何题型与解题方法
立体几何重点题型与解题方法
1.平面 平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 (1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 , 推出点在面内), 这样可根据公理 2 证明这些点都在这两个平面的公共直线上。 (2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的 公共点,这第三条直线是这两个平面的交线。 (3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证 明两平面重合 2. 空间直线. (1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没 有公共点;异面直线:不同在任一平面内,无公共点 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点 和直线等)
组成一个直角三角形.
c.特殊棱锥的顶点在底面的射影位置:
①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.
②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.
③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.
④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.
分线上。
4. 平面平行与平面垂直.
(1). 空间两个平面的位置关系:相交、平行.
(2). 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.
(“线面平行 面面平行”)
推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.
[注]:一平面内的任一直线平行于另一平面.

(完整版)几何图形折叠问题

(完整版)几何图形折叠问题

几何图形折叠问题【疑难点拨】1.折叠(翻折)问题常常出现在三角形、四边形、圆等平面几何问题中,其实质是轴对称性质的应用.解题的关键利用轴对称的性质找到折叠前后不变量与变量,运用三角形的全等、相似及方程等知识建立有关线段、角之间的联系.2.折叠(翻折)意味着轴对称,会生成相等的线段和角,这样便于将条件集中.如果题目中有直角,则通常将条件集中于较小的直角三角形,利用勾股定理求解.3.矩形中的一次折叠通常利用折叠性质和平行线性质求角的度数,或者利用折叠性质以及勾股定理求线段长度.矩形中的两次或多次折叠通常出现“一线三直角”的模型(如图),从而构造相似三角形,利用相似三角形求边或者角的度数.4.凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.1.常见的轴对称图形:等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【基础篇】一、选择题:1..(2018•四川凉州•3分)如图将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD于点E,则下到结论不一定成立的是()AD=BC′B.∠EBD=∠EDB C.△ABE∽△CBD D.sin∠ABE=A.2. (2017山东烟台)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB.已知OA=6,取OA的中点C,过点C作CD⊥OA交于点D,点F是上一点.若将扇形BOD沿OD翻折,点B恰好与点F重合,用剪刀沿着线段BD,DF,FA依次剪下,则剪下的纸片(形状同阴影图形)面积之和为().A.36π-108 B.108-32π C.2πD.π3. (2017浙江衢州)如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD 于点F,则DF的长等于()A.B.C.D.4.(2018·山东青岛·3分)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕现交于点F.已知EF=,则BC的长是()A.B.32C.3 D.335.(2017乌鲁木齐)如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4且∠AFG=60°,GE=2BG,则折痕EF的长为()A.1 B.C.2 D.二、填空题:6.(2018·辽宁省盘锦市)如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC.AB 上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为.7.(2018·山东威海·8分)如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C 与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,则BC的长.8.(2018·湖南省常德·3分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C落在点H处,已知∠DGH=30°,连接BG,则∠AGB= .三、解答与计算题:9.(2018·广东·7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.10.(2018•山东枣庄•10分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.【能力篇】一、选择题:11.(2018·辽宁省阜新市)如图,将等腰直角三角形ABC(∠B=90°)沿EF折叠,使点A落在BC边的中点A1处,BC=8,那么线段AE的长度为( ).A.4 B.5 C.6 D.712.(2018·四川省攀枝花·3分)如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,连结CP并延长CP交AD于Q点.给出以下结论:①四边形AECF为平行四边形;②∠PBA=∠APQ;③△FPC为等腰三角形;④△APB≌△EPC.其中正确结论的个数为()A.1 B.2 C.3 D.413.(2018·湖北省武汉·3分)如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是()A. B.C.D.二、填空题:14. (2018·辽宁省葫芦岛市) 如图,在矩形ABCD中,点E是CD的中点,将△BCE沿BE折叠后得到△BEF、且点F在矩形ABCD的内部,将BF延长交AD于点G.若=,则= .15.(2018·四川宜宾·3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE 折叠,使点B落在矩形内点F处,下列结论正确的是(写出所有正确结论的序号)①当E为线段AB中点时,AF∥CE;②当E为线段AB中点时,AF=95;③当A、F、C三点共线时,AE=;④当A、F、C三点共线时,△CEF≌△AEF.三、解答与计算题:16.(2018·湖北省宜昌·11分)在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B 的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求cos∠PCB的值;③当BP=9时,求BE•EF的值.17.(2018·广东·7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.18.(2018•江苏盐城•10分)如图,在以线段为直径的上取一点,连接、.将沿翻折后得到.(1)试说明点在上;(2)在线段的延长线上取一点,使.求证:为的切线;(3)在(2)的条件下,分别延长线段、相交于点,若,,求线段的长.【探究篇】19.(2018年江苏省泰州市•12分)对给定的一张矩形纸片ABCD进行如下操作:先沿CE折叠,使点B落在CD边上(如图①),再沿CH折叠,这时发现点E恰好与点D重合(如图②)(1)根据以上操作和发现,求的值;(2)将该矩形纸片展开.①如图③,折叠该矩形纸片,使点C与点H重合,折痕与AB相交于点P,再将该矩形纸片展开.求证:∠HPC=90°;②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的P点,要求只有一条折痕,且点P在折痕上,请简要说明折叠方法.(不需说明理由)20.(2018年江苏省宿迁)如图,在边长为1的正方形ABCD中,动点E、F分别在边AB、CD上,将正方形ABCD 沿直线EF折叠,使点B的对应点M始终落在边AD上(点M不与点A、D重合),点C落在点N处,MN与CD交于点P,设BE=x,(1)当AM= 时,求x的值;(2)随着点M在边AD上位置的变化,△PDM的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;(3)设四边形BEFC的面积为S,求S与x之间的函数表达式,并求出S的最小值.几何图形折叠问题【疑难点拨】1.折叠(翻折)问题常常出现在三角形、四边形、圆等平面几何问题中,其实质是轴对称性质的应用.解题的关键利用轴对称的性质找到折叠前后不变量与变量,运用三角形的全等、相似及方程等知识建立有关线段、角之间的联系.2.折叠(翻折)意味着轴对称,会生成相等的线段和角,这样便于将条件集中.如果题目中有直角,则通常将条件集中于较小的直角三角形,利用勾股定理求解.3.矩形中的一次折叠通常利用折叠性质和平行线性质求角的度数,或者利用折叠性质以及勾股定理求线段长度.矩形中的两次或多次折叠通常出现“一线三直角”的模型(如图),从而构造相似三角形,利用相似三角形求边或者角的度数.4.凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.1.常见的轴对称图形:等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【基础篇】一、选择题:1..(2018•四川凉州•3分)如图将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD于点E,则下到结论不一定成立的是()A.AD=BC′B.∠EBD=∠EDB C.△ABE∽△CBD D.sin∠ABE=【分析】主要根据折叠前后角和边相等找到相等的边之间的关系,即可选出正确答案.【解答】解:A、BC=BC′,AD=BC,∴AD=BC′,所以正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB正确.D、∵sin∠ABE=,∴∠EBD=∠EDB∴BE=DE∴sin∠ABE=.故选:C.【点评】本题主要用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.2. (2017山东烟台)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB.已知OA=6,取OA的中点C,过点C作CD⊥OA交于点D,点F是上一点.若将扇形BOD沿OD翻折,点B恰好与点F重合,用剪刀沿着线段BD,DF,FA依次剪下,则剪下的纸片(形状同阴影图形)面积之和为().A.36π-108 B.108-32π C.2πD.π【考点】MO:扇形面积的计算;P9:剪纸问题.【分析】先求出∠ODC=∠BOD=30°,作DE⊥OB可得DE=OD=3,先根据S弓形BD=S扇形BOD﹣S△BOD求得弓形的面积,再利用折叠的性质求得所有阴影部分面积.【解答】解:如图,∵CD⊥OA,∴∠DCO=∠AOB=90°,∵OA=OD=OB=6,OC=OA=OD,∴∠ODC=∠BOD=30°,作DE⊥OB于点E,则DE=OD=3,∴S弓形BD=S扇形BOD﹣S△BOD=﹣×6×3=3π﹣9,则剪下的纸片面积之和为12×(3π﹣9)=36π﹣108,故答案为:36π﹣108.故选A3. (2017浙江衢州)如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD 于点F,则DF的长等于()A.B.C.D.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】根据折叠的性质得到AE=AB,∠E=∠B=90°,易证Rt△AEF≌Rt△CDF,即可得到结论EF=DF;易得FC=FA,设FA=x,则FC=x,FD=6﹣x,在Rt△CDF中利用勾股定理得到关于x的方程x2=42+(6﹣x)2,解方程求出x.【解答】解:∵矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,∴AE=AB,∠E=∠B=90°,又∵四边形ABCD为矩形,∴AB=CD,∴AE=DC,而∠AFE=∠DFC,∵在△AEF与△CDF中,,∴△AEF≌△CDF(AAS),∴EF=DF;∵四边形ABCD为矩形,∴AD=BC=6,CD=AB=4,∵Rt△AEF≌Rt△CDF,∴FC=FA,设FA=x,则FC=x,FD=6﹣x,在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6﹣x)2,解得x=,则FD=6﹣x=.故选:B.4.(2018·山东青岛·3分)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕现交于点F.已知EF=,则BC的长是()A.B.32C.3 D.33【分析】由折叠的性质可知∠B=∠EAF=45°,所以可求出∠AFB=90°,再直角三角形的性质可知EF=AB,所以AB=AC的长可求,再利用勾股定理即可求出BC的长.【解答】解:∵沿过点E的直线折叠,使点B与点A重合,∴∠B=∠EAF=45°,∴∠AFB=90°,∵点E为AB中点,∴EF=12AB,EF=32,∴AB=AC=3,∵∠BAC=90°,∴BC=2,故选:B.【点评】本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出∠AFB=90°是解题的关键.5.(2017乌鲁木齐)如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4且∠AFG=60°,GE=2BG,则折痕EF的长为()A.1 B.C.2 D.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】由折叠的性质可知,DF=GF、HE=CE、GH=DC、∠DFE=∠GFE,结合∠AFG=60°即可得出∠GFE=60°,进而可得出△GEF为等边三角形,在Rt△GHE中,通过解含30度角的直角三角形及勾股定理即可得出GE=2EC、DC= EC,再由GE=2BG结合矩形面积为4,即可求出EC的长度,根据EF=GE=2EC即可求出结论.【解答】解:由折叠的性质可知,DF=GF,HE=CE,GH=DC,∠DFE=∠GFE.∵∠GFE+∠DFE=180°﹣∠AFG=120°,∴∠GFE=60°.∵AF∥GE,∠AFG=60°,∴∠FGE=∠AFG=60°,∴△GEF为等边三角形,∴EF=GE.∵∠FGE=60°,∠FGE+∠HGE=90°,∴∠HGE=30°.在Rt△GHE中,∠HGE=30°,∴GE=2HE=CE,∴GH==HE=CE.∵GE=2BG,∴BC=BG+GE+EC=4EC.∵矩形ABCD的面积为4,∴4EC•EC=4,∴EC=1,EF=GE=2.故选C.二、填空题:6.(2018·辽宁省盘锦市)如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC.AB 上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为.【解答】解:分两种情况:①如图,当∠CDM=90°时,△CDM是直角三角形,∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,∴∠C=30°,AB=AC=,由折叠可得:∠MDN=∠A=60°,∴∠BDN=30°,∴BN=DN=AN,∴BN=AB=,∴AN=2BN=.∵∠DNB=60°,∴∠ANM=∠DNM=60°,∴∠AMN=60°,∴AN=MN=;②如图,当∠CMD=90°时,△CDM是直角三角形,由题可得:∠CDM=60°,∠A=∠MDN=60°,∴∠BDN=60°,∠BND=30°,∴BD=DN=AN,BN=BD\1AB=,∴AN=2,BN=,过N作NH⊥AM于H,则∠ANH=30°,∴AH=AN=1,HN=,由折叠可得:∠AMN=∠DMN=45°,∴△MNH是等腰直角三角形,∴HM=HN=,∴MN=.故答案为:或.7.(2018·山东威海·8分)如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C 与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.【分析】由题意知∠3=180°﹣2∠1=45°、∠4=180°﹣2∠2=30°、BE=KE、KF=FC,作KM⊥BC,设KM=x,知EM=x、MF=x,根据EF的长求得x=1,再进一步求解可得.【解答】解:由题意,得:∠3=180°﹣2∠1=45°,∠4=180°﹣2∠2=30°,BE=KE、KF=FC,如图,过点K作KM⊥BC于点M,设KM=x,则EM=x、MF=x,∴x+x=+1,解得:x=1,∴EK=、KF=2,∴BC=BE+EF+FC=EK+EF+KF=3++,∴BC的长为3++.【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8.(2018·湖南省常德·3分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C落在点H处,已知∠DGH=30°,连接BG,则∠AGB= 75°.【分析】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案.【解答】解:由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,∴∠EBG=∠EGB.∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH.又∵AD∥BC,∴∠AGB=∠GBC.∴∠AGB=∠BGH.∵∠DGH=30°,∴∠AGH=150°,∴∠AGB=∠AGH=75°,故答案为:75°.【点评】本题主要考查翻折变换,解题的关键是熟练掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答与计算题:9.(2018·广东·7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE ≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.10.(2018•山东枣庄•10分)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.【分析】(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明DF2=FO•AF,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.【解答】解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.(2)EG2=GF•AF.理由:如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DFA,∴△DOF∽△ADF.∴,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.(3)如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△FAD.∴,即=.∴GH=.∴BE=AD﹣GH=4﹣=.【点评】本题主要考查的是四边形与三角形的综合应用,解答本题主要应用了矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到DF2=FO•AF是解题答问题(2)的关键,依据相似三角形的性质求得GH的长是解答问题(3)的关键.【能力篇】一、选择题:11.(2018·辽宁省阜新市)如图,将等腰直角三角形ABC(∠B=90°)沿EF折叠,使点A落在BC边的中点A1处,BC=8,那么线段AE的长度为( ).A.4 B.5 C.6 D.7【解答】解:由折叠的性质可得AE=A1E.∵△ABC为等腰直角三角形,BC=8,∴AB=8.∵A1为BC的中点,∴A1B=4,设AE=A1E=x,则BE=8﹣x.在Rt△A1BE中,由勾股定理可得42+(8﹣x)2=x2,解得x=5.故答案为:5.故选B12.(2018·四川省攀枝花·3分)如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,连结CP并延长CP交AD于Q点.给出以下结论:①四边形AECF为平行四边形;②∠PBA=∠APQ;③△FPC为等腰三角形;④△APB≌△EPC.其中正确结论的个数为()A.1 B.2 C.3 D.4解:①如图,EC,BP交于点G;∵点P是点B关于直线EC的对称点,∴EC垂直平分BP,∴EP=EB,∴∠EBP=∠EPB.∵点E为AB中点,∴AE=EB,∴AE=EP,∴∠PAB=∠PBA.∵∠PAB+∠PBA+∠APB=180°,即∠PAB+∠PBA+∠APE+∠BPE=2(∠PAB+∠PBA)=180°,∴∠PAB+∠PBA=90°,∴AP⊥BP,∴AF∥EC;∵AE∥CF,∴四边形AECF是平行四边形,故①正确;②∵∠APB=90°,∴∠APQ+∠BPC=90°,由折叠得:BC=PC,∴∠BPC=∠PBC.∵四边形ABCD是正方形,∴∠ABC=∠ABP+∠PBC=90°,∴∠ABP=∠APQ,故②正确;③∵AF∥EC,∴∠FPC=∠PCE=∠BCE.∵∠PFC是钝角,当△BPC是等边三角形,即∠BCE=30°时,才有∠FPC=∠FCP,如右图,△PCF不一定是等腰三角形,故③不正确;④∵AF=EC,AD=BC=PC,∠ADF=∠EPC=90°,∴Rt△EPC≌△FDA(HL).∵∠ADF=∠APB=90°,∠FAD=∠ABP,当BP=AD或△BPC是等边三角形时,△APB≌△FDA,∴△APB≌△EPC,故④不正确;其中正确结论有①②,2个.故选B.13. (2018·湖北省武汉·3分)如图,在⊙O 中,点C 在优弧上,将弧沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为,AB=4,则BC 的长是( )A .B .C .D .【分析】连接OD 、AC 、DC 、OB 、OC ,作CE ⊥AB 于E ,OF ⊥CE 于F ,如图,利用垂径定理得到OD ⊥AB ,则AD=BD=AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC 和弧CD 所在的圆为等圆,则根据圆周角定理得到=,所以AC=DC ,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF 为正方形得到OF=EF=1,然后计算出CF 后得到CE=BE=3,于是得到BC=3 2.【解答】解:连接OD 、AC 、DC 、OB 、OC ,作CE ⊥AB 于E ,OF ⊥CE 于F ,如图, ∵D 为AB 的中点, ∴OD ⊥AB , ∴AD=BD=AB=2,在Rt △OBD 中,OD=22(5)2 =1, ∵将弧沿BC 折叠后刚好经过AB 的中点D .∴弧AC 和弧CD 所在的圆为等圆, ∴=,∴AC=DC , ∴AE=DE=1,易得四边形ODEF 为正方形, ∴OF=EF=1,在Rt △OCF 中,CF=22(5)1 , ∴CE=CF+EF=2+1=3, 而BE=BD+DE=2+1=3, ∴BC=3.故选:B .【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理. 二、填空题:14. (2018·辽宁省葫芦岛市) 如图,在矩形ABCD 中,点E 是CD 的中点,将△BCE 沿BE 折叠后得到△BEF 、且点F 在矩形ABCD 的内部,将BF 延长交AD 于点G .若=,则= .【解答】解:连接GE .∵点E 是CD 的中点,∴EC=DE .∵将△BCE 沿BE 折叠后得到△BEF 、且点F 在矩形ABCD 的内部,∴EF=DE ,∠BFE=90°.在Rt △EDG 和Rt △EFG 中,∴Rt △EDG ≌Rt △EFG (HL ),∴FG=DG .∵=,∴设DG=FG=a,则AG=7a,故AD=BC=8a,则BG=BF+FG=9a,∴AB==4a,故==.故答案为:.15.(2018·四川宜宾·3分)如图,在矩形ABCD中,AB=3,CB=2,点E为线段AB上的动点,将△CBE沿CE 折叠,使点B落在矩形内点F处,下列结论正确的是①②③(写出所有正确结论的序号)①当E为线段AB中点时,AF∥CE;②当E为线段AB中点时,AF=95;③当A、F、C三点共线时,AE=;④当A、F、C三点共线时,△CEF≌△AEF.【考点】PB:翻折变换(折叠问题);KB:全等三角形的判定;LB:矩形的性质.【分析】分两种情形分别求解即可解决问题;【解答】解:如图1中,当AE=EB时,∵AE=EB=EF,∴∠EAF=∠EFA,∵∠CEF=∠CEB,∠BEF=∠EAF+∠EFA,∴∠BEC=∠EAF,∴AF∥EC,故①正确,作EM⊥AF,则AM=FM,在Rt△ECB中,EC==,,∵∠AME=∠B=90°,∠EAM=∠CEB,∴△CEB∽△EAM,∴=,∴=,∴AM=,∴AF=2AM=95,故②正确,如图2中,当A、F、C共线时,设AE=x.则EB=EF=3﹣x,AF=13﹣2,在Rt△AEF中,∵AE2=AF2+EF2,∴x2=(﹣2)2+(3﹣x)2,∴x=,,∴AE=,故③正确,如果,△CEF≌△AEF,则∠EAF=∠ECF=∠ECB=30°,显然不符合题意,故④错误,故答案为①②③.【点评】本题考查翻折变换、全等三角形的性质、勾股定理、矩形的性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.三、解答与计算题:16.(2018·湖北省宜昌·11分)在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B 的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求cos∠PCB的值;③当BP=9时,求BE•EF的值.【分析】(1)先判断出∠A=∠D=90°,AB=DC再判断出AE=DE,即可得出结论;(2)①利用折叠的性质,得出∠PGC=∠PBC=90°,∠BPC=∠GPC,进而判断出∠GPF=∠PFB即可得出结论;②判断出△ABE∽△DEC,得出比例式建立方程求解即可得出AE=9,DE=16,再判断出△ECF∽△GCP,进而求出PC,即可得出结论;③判断出△GEF∽△EAB,即可得出结论.【解答】解:(1)在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中点,∴AE=DE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);(2)①在矩形ABCD,∠ABC=90°,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;②当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,设AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16,∴CE=20,BE=15,由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴,设BP=BF=PG=y,∴,∴y=,∴BP=,在Rt△PBC中,PC=,cos∠PCB==;③如图,连接FG,∵∠GEF=∠BAE=90°,∵BF∥PG,BF=PG,∴▱BPGF是菱形,∴BP∥GF,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE•EF=AB•GF=12×9=108.【点评】此题是四边形综合题,主要考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,折叠的性质,利用方程的思想解决问题是解本题的关键.17.(2018·广东·7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE ≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.18.(2018•江苏盐城•10分)如图,在以线段为直径的上取一点,连接、.将沿翻折后得到.(1)试说明点在上;(2)在线段的延长线上取一点,使.求证:为的切线;(3)在(2)的条件下,分别延长线段、相交于点,若,,求线段的长. 【答案】(1)解:连接OC,OD,由翻折可得OD=OC,∵OC是⊙O的半径,∴点D在⊙O上。

小学数学难题解法大全 第四部分 常用解题技巧(四~三)解几何题技巧

小学数学难题解法大全 第四部分 常用解题技巧(四~三)解几何题技巧

小学数学难题解法大全第四部分常用解题技巧(四之三)解几何题技巧(三)解几何题技巧1.等分图形【均分整体】有些几何问题,只要把大图形均分为若干个小图形,就能找到问题的答案。

例如,下面两图中的正方形分别内接于同一个等腰直角三角形(内接指四个顶点全在三角形的边上)。

已知左图(图4.11)中正方形面积为72平方厘米,求右图(4.12)中正方形的面积。

由于左右两个三角形完全相同,我们不妨把这两个图形进行等分,看看这两个正方形分别与同一个等腰直角三角形有什么样的关系。

等分后的情况见图4.13和图4.14。

积是图4.12的正方形面积是【均分局部】有些几何问题,整体的均分不太方便,或不能够办到,这时可以考虑把它的局部去均分,然后从整体上去观察,往往也能使问题获得解决。

例如图4.15,在正方形ABCD中,画有甲、乙、丙三个小正方形。

问:乙、丙面积之和与甲相比,哪一个大些?大家由前面的“均分整体”已经知道,像甲、乙这样的两个正方形,面积不是相等的。

如图4.16,经过等分,正方形甲的面积等于△ABC面积的一半;正方形丙的面积等于△EDF的一半,正方形乙的面积等于梯形ACFE面积的一半。

这样,一个大正方形ABCD,就划分成了三个局部:等腰直角△ABC;等腰梯形ACFE;等腰直角△EDF。

其中甲、乙、丙的面积分别为各自所在图形的一半,而△EDF的面积加梯形ACFE的面积等于△ADC的面积,即等于△ABC的面积。

所以,乙、丙面积之和等于甲的面积。

2.平移变换【平移线段】有些几何问题,通过线段的上、下、左、右平移以后,能使问题很快地得到正确的解答。

例如,下面的两个图形(图4.17和图4.18)的周长是否相等?单凭眼睛观察,似乎图4.18的周长比图4.17的要长一些。

但把有关线段平移以后,图4.18就变成了图4.19,其中的线段,有的上移,有的左移,有的右移,它可移成一个正方形。

于是,不难发现两图周长是相等的。

【平移空白或阴影部分】有些求阴影部分或空白部分面积的几何题,采用平移空白部分或平移阴影部分的办法,往往能化难为易,很快使问题求得解答。

初中数学几何题解题技巧

初中数学几何题解题技巧

初中数学几何题解题技巧1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。

当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线(7)相似三角形:相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。

高考数学中的立体几何问题及解题方法

高考数学中的立体几何问题及解题方法

高考数学中的立体几何问题及解题方法高考数学中,立体几何是一项重要的考试题型。

相比于平面几何、代数和概率统计等内容,立体几何更为抽象,对学生的空间想象力和逻辑能力要求更高。

本文旨在探讨高考数学中的立体几何问题及其解题方法。

一、立体几何常考题型常见的立体几何问题包括立体几何图形的性质、体积、表面积等问题。

下面列举一些高考中经常出现的立体几何考点。

1. 立体图形的名字和性质高考中经常出现的立体图形包括正方体、长方体、棱柱、棱锥、圆柱、圆锥、球等。

学生需要掌握这些图形的属性,比如正方体的六个面都是正方形、长方体的所有面都是矩形等等,只要掌握了它们的基本属性,在解决题目时就能做到心中有数。

2. 体积求立体图形的体积是立体几何中比较基础和常见的题型。

学生需要清楚掌握各种常见图形的体积公式,例如:①正方体的体积公式:V=a³②长方体的体积公式:V=lxwxh③棱柱的体积公式:V=Ah④圆柱的体积公式:V=πr²h⑤球的体积公式:V=4/3πr³⑥棱锥的体积公式:V=1/3Ah注意,这些公式必须要掌握,不要在考试中还在纠结于公式的推导方法。

3. 表面积求立体图形的表面积也是数学中的一大题型。

常见的几何图形表面积的计算方式有如下几种公式:①正方体的表面积公式:S=6a²②长方体的表面积公式:S=2(lw+lh+wh)③棱柱的表面积公式:S=2B+Ph④圆柱的表面积公式:S=2πr²+2πrh⑤球的表面积公式:S=4πr²⑥棱锥的表面积公式:S=B+1/2Pl其中B表示底面积,P表示底面外接多边形的周长,l表示斜几何。

上面列举的是一些常见的立体几何题目,还有一些特殊题目需要学生掌握,例如“平行四边形体积定理”、“曲面半径定理”等等。

二、举例分析解题方法1. 体积题例题:某学校花坛为正方形,长和宽之和为25米,现在将花坛增加5个方块,每个方块边长为2米,求增加的花坛的体积。

数学立体几何解题技巧

数学立体几何解题技巧

数学立体几何解题技巧数学立体几何解题技巧我们把不同于一般解法的巧妙解题方法称为解题技巧,它来源于对数学问题中矛盾特殊性的认识。

下面是店铺精心整理的数学立体几何解题技巧,欢迎阅读与收藏。

数学立体几何解题技巧篇11平行、垂直位置关系的论证的策略:(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。

2空间角的计算方法与技巧:主要步骤:一作、二证、三算;若用向量,那就是一证、二算。

(1)两条异面直线所成的角:①平移法:②补形法:③向量法:(2)直线和平面所成的角①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。

②用公式计算.(3)二面角:①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。

②平面角的计算法:(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式.3空间距离的计算方法与技巧:(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。

(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。

在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。

(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。

求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。

4熟记一些常用的小结论诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。

苏教版初三数学教材几何题解题技巧

苏教版初三数学教材几何题解题技巧

苏教版初三数学教材几何题解题技巧几何是初中数学中的重要内容之一,对于初三学生来说,掌握几何解题技巧是必不可少的。

本文将为大家介绍几种解题技巧,帮助大家更好地应对苏教版初三数学教材中的几何题。

一、图形的性质和定理在几何题中,我们常常需要利用图形的性质和定理来推导出结论。

因此,熟练掌握各种图形的性质和定理是解题的关键。

1. 三角形的性质对于三角形来说,熟练掌握其性质是解题的基础。

我们常用的三角形性质有:(1) 任意两边之和大于第三边:a + b > c(2) 任意两边之差小于第三边:|a - b| < c(3) 三角形内角和为180°:∠A + ∠B + ∠C = 180°(4) 等腰三角形的底角相等:∠A = ∠B(5) 等边三角形的三个内角均为60°掌握这些性质,能够帮助我们更好地理解和解决与三角形相关的题目。

2. 圆的性质对于圆的性质,我们需要掌握以下几点:(1) 圆的周长公式:C = 2πr(2) 圆的面积公式:S = πr²(3) 直径和半径的关系:d = 2r(4) 弧度制和角度制的转化关系:360° = 2π弧度掌握这些性质有助于我们解决与圆相关的计算和推导题。

二、几何题解题步骤解决几何题时,我们需要按照一定的步骤进行推导和计算。

下面是解题的一般步骤:1. 阅读题目阅读题目是解题的第一步,我们需要仔细理解题目,明确题目要求和给出的条件。

2. 绘制图形根据题目给出的条件,我们需要在纸上绘制相应的几何图形,以便更好地理解和分析题目。

3. 利用性质和定理根据题目所给的条件,我们可以利用图形的性质和定理进行推导和计算。

通过运用正确的定理和性质,可以简化题目,减少计算量。

4. 运用计算方法在解决几何题时,我们常常需要运用计算方法,如计算面积、周长等。

根据题目的要求,我们选择合适的计算方法进行推导和计算。

5. 给出解答在解决几何题后,我们需要给出解答,明确题目的要求,并清晰地写出推导和计算过程。

专题28 求几何图形面积及面积法解题的问题(解析版)

专题28 求几何图形面积及面积法解题的问题(解析版)

专题28 求几何图形面积及面积法解题的问题一、几何图形面积公式1.三角形的面积:设三角形底边长为a ,底边对应的高为h ,则面积S=ah/22.平行四边形的面积:设平行四边形的底边长为a ,高为h ,则面积S=ah3.矩形的面积:设矩形的长为a ,宽为b ,则面积S=ab4.正方形的面积:设正方形边长为a ,对角线长为b ,则面积S=222b a = 5.菱形的面积:设菱形的底边长为a ,高为h ,则面积S=ah若菱形的两条对角线长分别为m 、n ,则面积S=mn/2也就是说菱形的面积等于两条对角线乘积的一半。

6.梯形的面积:设梯形的上底长为a,下底长为b ,高为h ,则面积S=(a+b )h/27.圆的面积:设圆的半径为r,则面积S=πr 28.扇形面积计算公式9.圆柱侧面积和表面积公式(1)圆柱的侧面积公式S 侧=2πrh2360r n s π⋅=lr s 21=或(2)圆柱的表面积公式:S 表=2S 底+S 侧=2πr 2+2πrh10.圆锥侧面积公式从右图中可以看出,圆锥的母线L 即为扇形的半径,而圆锥底面的周长是扇形的弧长2πr ,这样,圆锥侧面积计算公式:S 圆锥侧=S 扇形=πrL注意:有时中考题还经常考查圆的周长、扇形的弧长的公式的应用。

(1)圆的周长计算公式为:C=2πr(2)扇形弧长的计算公式为:(3)其他几何图形周长容易计算,不直接给出。

二、用面积法解题的理论知识1.面积方法:运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。

2.面积法解题的特点:把已知量和未知量用面积公式联系起来,通过运算达到求证的结果。

所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

三、面积方法问题主要涉及以下两部分内容1.证明面积相等的理论依据(1)三角形的中线把三角形分成两个面积相等的部分。

数学习题解析:几何题解题技巧

数学习题解析:几何题解题技巧

数学习题解析:几何题解题技巧起初,几何题可能令人感到棘手和令人沮丧。

然而,通过掌握一些基本的几何题解题技巧,您将能够更轻松地应对这些挑战。

本文将探讨一些常见的几何题解题技巧,为您提供解决几何问题的方法和思路。

1. 几何基础知识在开始讨论解题技巧之前,我们先回顾一些几何基础知识。

几何是研究空间、形状和运动的数学分支。

几何题通常涉及到平面图形、角度、线段、圆和三角形等概念。

2. 问题分析和图形绘制解决几何问题的关键是良好的问题分析和图形绘制能力。

在解题之前,仔细阅读题目,理解问题要求。

然后,绘制出几何图形,以便更好地理解问题。

Tips:•记得使用尺子和直尺来确保图形的准确性。

•如果是三角形题,可以使用量角器来测量角度。

•如果是圆的题,使用圆规绘制圆形。

3. 利用几何定理和性质几何定理和性质是解决几何问题的重要工具。

熟悉并灵活运用这些定理和性质将有助于您更高效地解题。

一些常见的几何定理和性质包括:•勾股定理:在直角三角形中,直角边的平方和等于斜边的平方。

•正弦定理:在任意三角形ABC中,有a/sin(A) = b/sin(B) = c/sin(C)。

•余弦定理:在任意三角形ABC中,有c² = a² + b² - 2abcos(C)。

•相似三角形性质:具有相同形状但可能不同尺寸的三角形具有相似的性质。

•平行线和对应角性质:平行线之间的对应角相等。

当遇到几何题时,查看是否可以应用这些定理和性质,以便更快地解决问题。

4. 角度关系的应用角度关系在解决几何问题时起着重要的作用。

掌握以下常见的角度关系和性质可以帮助您更好地解决几何题。

•相同角度:如果两条直线被一条直线截断,那么对应的角度是相等的。

•同位角和内错角:平行线之间的同位角相等,内错角互补。

•垂直角:相互垂直的两条线之间的角度为90度。

•同中弧和同弦角:位于同一个圆弧上的两个角或两个弦对应的角度相等。

通过运用这些角度关系,我们可以更好地理解和解决几何问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何图形解题方法在实际生产和生活中,几何形体往往不是以标准的形状出现,而是以比较复杂的组合图形出现,很难直接利用公式计算其面积或体积.如果在保持图形的面积或体积不变的前提下,对图形进行适当的变换,就容易找出计算其面积或体积的方法。

(一)添辅助线法有些组合图形按一般的思考方法好像已知条件不足,很难解答。

如果在图形中添加适当的辅助线,就可能找到解题的途径。

辅助线一般用虚线表示。

*例1 求图40-1阴影部分的面积。

(单位:平方米)(适于三年级程度)解:图40-1中,右边两个部分的面积分别是20平方米和30平方米,所以可如图40—2那样添上三条辅助线,把整个长方形分成5等份。

这样图中右边的五个小长方形的面积相等。

同时,左边五个小长方形的面积也相等.左边每个小长方形的面积是:25÷2=12。

5(平方米)所以,阴影部分的面积是:12。

5×3=37.5(平方米)答略。

*例2 如图40—3,一个平行四边形被分成两个部分,它们的面积差是10平方厘米,高是5厘米.求EC的长.(单位:厘米)(适于五年级程度)解:如图40—4,过E点作AB的平行线EF,则△AEF与△ABE是等底等高的三角形。

所以,△AEF的面积与△ABE的面积相等.小平行四边形EFDC的面积就是10平方厘米。

因为它的高是5厘米,所以,EC=10÷5=2(厘米)答:EC长2厘米。

*例3 如图40-5,已知图中四边形两条边的长度和三个角的度数,求这个四边形的面积.(单位:厘米)(适于五年级程度)解:这是一个不规则的四边形,无法直接计算它的面积。

如图40—6,把AD和BC两条线段分别延长,使它们相交于E点.这样,四边形ABCD的面积就可以转化为△ABE的面积与△DCE的面积之差。

在△ABE中,∠A是直角,∠B=45°,所以∠E=45°,即△ABE是等腰直角三角形。

所以AB=AE=7(厘米),则△ABE的面积是:7×7÷2=24。

5(平方厘米)在△DCE中,∠DCE是直角,∠E=45°,所以,∠CDE=45°,即△DCE是等腰直角三角形。

所以,CD=CE=3厘米,则△DCE的面积是:3×3÷2=4。

5(平方厘米)所以,四边形ABCD的面积是:24。

5—4.5=20(平方厘米)答略.(二)分割法分割法是在一个复杂的几何图形中,添上一条或几条辅助线,把图形分割成若干个已学过的基本图形,然后分别计算出各图形的面积或体积,再将所得结果相加的解题方法。

例1 计算图40-7的面积。

(单位:厘米)(适于五年级程度)解:如图40—8,在图中添上一条辅助线,把图形分割为一个梯形和一个长方形,分别计算出它们的面积,再把两个面积相加。

[2+(8-4)]×(6—4)÷2+4×8=6+32=38(平方厘米)答:图形的面积是38平方厘米。

例2 图40-9中,ABCD是长方形,AB=40厘米,BC=60厘米,E、F、G、H是各边的中点。

求图中阴影部分的面积。

(适于五年级程度)解:如图40-10,在图中添加辅助线EG,使阴影部分被分割成为两个面积相等的三角形。

先计算出一个三角形的面积,再把它的面积乘以2。

三角形的底是长方形的长,高是长方形的宽的一半。

60×(40÷2)÷2×2=60×20=1200(平方厘米)答:阴影部分的面积是1200平方厘米。

*例3 求图40—11中各组合体的体积.(单位:厘米)(适于六年级程度)解:如图40-12,把各组合体分割为几个基本形体,然后分别求出每个基本形体的体积,再用加法、减法算出各组合体的体积。

(三)割补法在计算一些不规则的几何图形的面积时,把图形中凸出来的部分割下来,填补到相应的凹陷处,或较适当的位置,使图形组合成一个或几个规则的形状,再计算面积的解题方法叫做割补法.例1 求图40-13阴影部分的面积。

(单位:厘米)(适于六年级程度)成了一个梯形如图40-14,这个梯形的面积就是图40—13中的阴影部分的面积.答:阴影部分的面积是45平方厘米。

*例2 求图40-15中阴影部分的面积。

(单位:米)(适于六年级程度)16×16×2=512(平方米)答:阴影部分的面积是512平方米。

*例3 图40—17中,ABCD是正方形,ED=DA=AF=2厘米。

求图中阴影部分的面积。

(适于六年级程度)解:经割补,把图40-17组合成图40—18。

很容易看出,只要从正方形的面积中减去空白扇形的面积,便得到阴影部分的面积。

答:图中阴影部分的面积是2.43平方厘米。

(四)平移法在看不出几何图形面积的计算方法时,通过把图形的某一部分向某一方向平行移动一定的距离,使图形重新组合成可以看出计算方法的图形,从而计算出图形面积的解题方法叫做平移法.例1 计算图40—19中阴影部分的周长.(单位:厘米)(适于六年级程度)解:把图40—19中右边正方形中的阴影部分向左平移5厘米,图40—19中的阴影部分便转化为图40—20中的正方形。

图40-20中阴影正方形的面积就是图40-19阴影部分的面积。

5×5=25(平方厘米)答略。

*例2 求图40—21中阴影部分的周长。

(单位:厘米)(适于三年级程度)解:按图40—22箭头指示,把两条横向的线段向上平移到虚线处,再按图40-23箭头指示把垂直线段的一部分向右平移到虚线处,求图40-21阴影部分的周长便转化为求图40—24的周长和两条竖线长之和的问题了。

(5+4)×2+2×2=9×2+4=22(厘米)答略。

*例3 求图40-25S形水泥弯路面的面积。

(单位:米)(适于三年级程度)解:把图40—25中水泥弯路面左边的甲部分向右平移2米,使S形水泥路面的两条边重合,图40—25便转化为图40—26,S形水泥路面的面积转化为图40-26中的阴影部分的面积。

S形水泥路的面积是:30×2=60(平方米)答略。

(五)旋转法将看不出计算方法的图形的一部分以某一点为中心旋转适当角度,使图形重新组合成能看出计算方法的形状,从而计算出图形面积的解题方法叫旋转法。

*例1 计算图40—27阴影部分的面积。

(单位:分米)(适于六年级程度)图40-27便转化为图40—28。

图40-28中梯形的面积就是图40-27中的阴影面积.答略。

例2 图40—29中,小圆的半径是10厘米,中圆的半径是20厘米,大圆的半径是30厘米。

求图中阴影部分的面积。

(适于六年级程度)解:把图40—29中的小圆向逆时针方向旋转90度,把中环向顺时针方向旋转90度,图40-29便转化为图40-30。

很明显,图40-29阴影部分的面积就是整个大圆面积的四分之一。

答略。

*例3 计算图40—31的阴影面积.(单位:厘米)(适于六年级程度)解:把图40-31右边的半圆以两个半圆的公共点为中心,顺时针方向旋转180度,与左边的半圆组成一个圆(图40-32)。

此时,两个空白的三角形组成一个等腰直角三角形。

这个等腰直角三角形的底边等于圆的直径10厘米,高等于圆的半径5厘米,三角形的面积可求,接着也就可以求出图中阴影部分的面积了.答略。

【旋转成定角】例如下面的题目:“在图4。

23中,半径为8厘米的圆的内外各有一个正方形,圆内正方形顶点都在圆周上,圆外正方形四条边与圆都只有一个接触点。

问:“大正方形的面积比小正方形的面积大多少?”按一般方法,先求大、小正方形的面积,再求它们的差,显然是有难度的。

若将小正方形围绕圆心旋转45°,使原图变成图4。

24,容易发现,小正方形的面积为大正方形面积的一半。

所以,大正方形面积比小正方形的面积大(8×2)×(8×2)÷2=16×16÷2=128(平方厘米)又如,如图4.25,求正方形内阴影部分的面积。

(单位:厘米)表面上看,题目也是很难解答的。

但只要将两个卵叶片形的阴影部分绕正方形的中心,分别按顺时针和逆时针方向旋转90°,就得到了一个由阴影部分组成的半圆(如图4。

26),于是,阴影部分的面积就很容易解答出来了.(解答略)【开扇式旋转】有些图形相互交错,增加了解答的难度。

若像打开折扇一样,绕着某个定点作“开扇式”旋转,往往会使人顿开茅塞,使问题很快获得解决。

例如,求图4.27的阴影部分的面积(单位:厘米)。

若采用正方形面积减空白部分面积的求法,计算量是很大的.由于它是由两个形状相同的扇形交叉重叠而成的,我们不妨把右下部的扇形打开,顺时针方向旋转90°,得到图4。

28;再继续旋转,得到图4.29.在图4.29中,阴影部分面积便是半圆面积减三角形面积的差。

所以,阴影部分面积是42×3.14÷2—(4+4)×4×2=25.12—16=9。

12(平方厘米)又如,求图4.30阴影部分的面积(单位:厘米)。

将这个图从中间剪开,以o为旋转中心,将右半部分按顺时针方向转到左半部下方,便变成了图4。

31.于是,阴影部分的面积便是半圆面积减去两直角边均为2厘米的一个空白等腰直角三角形面积的差。

即(4÷2)2×3。

14÷2—2×2÷2=6。

28-2=4。

28(平方厘米)(六)扩倍法扩倍法就是把组合图形扩大几倍后,先求扩大倍数后的面积或体积,然后再求原来的面积或体积。

*例1 求图40-33的面积。

(单位:厘米)(适于三年级程度)解:此题用分割法计算比较麻烦,而用扩倍法解答就容易多了.如图40—34那样把图40—33扩大为原来的2倍,就会看出图40-33的面积是:(30+40)×30÷2=1050(平方厘米)答略。

例2 计算图40-35木块的体积。

(单位:分米)(适于五年级程度)解:在图40-35的木块上再扣上同形状、同体积的木块,如图40—36。

图40-35木块的体积就是图40—36长方体木块体积的一半儿.3×10×(3+2)÷2=150÷2=75(立方分米)答略。

(七)缩倍法缩倍法与扩倍法正好相反,它是先将图形的面积缩小若干倍,计算出面积,再把面积扩大为原来那么大。

例1 图40-37中,每个小正方形的面积都是2平方厘米,求图中阴影部分的面积。

(适于五年级程度)解:将图40-37中小正方形的面积先缩小2倍,则每个小正方形的面积都是1平方厘米,边长都是1厘米。

从大长方形面积减去三个空白三角形的面积(即①、②、③三个部分的面积),得阴影部分面积。

3×5—3×3÷2—2×1÷2—5×2÷2=15-4.5-1-5=4.5(平方厘米)把4。

相关文档
最新文档