高三数学空间向量一轮复习

合集下载

高考数学一轮复习空间向量与线、面位置关系

高考数学一轮复习空间向量与线、面位置关系
6.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.
CONTENTS
01
知识·逐点夯实
02
考点·分类突破
03
课时·过关检测
/目录
01
目录

1.空间向量及其有关概念
概念
共线向量
(平行向量)
共面向量
语言描述
表示若干空间向量的有向线段所在的直线互相平行或重合
平行于
同一个平面
的向量

目录
续表

答案:(1)×
(2)若直线a的方向向量和平面α的法向量平行,则a∥α.


答案:(2)×
(3)若{a,b,c}是空间的一个基底,则a,b,c中至多有一个零向量.


答案:(3)×
(4)若a·b>0,则<a,b>是锐角. (

答案:(4)×
目录
2.(多选)下列各组向量中,是平行向量的是


A.a=(1,2,-2),b=(-2,-4,4)
目录
3.如图,在平行六面体ABCD-A1B1C1D1中,M为A1C1与B1D1的交点.若=a,
=b,1 =c,则下列向量中与相等的向量是
1
1
A.- a+ b+c
2
2
1
1
B. a+ b+c
2
2
1
1
C.- a- b+c
2
2
1
1
D. a- b+c
2
2
解析:A
1
2


1
1
由题意,得=1 +1 =1 + (-)=c+ (b-a)=
概念
共线向

高考数学一轮总复习教学课件第七章 立体几何与空间向量第7节 利用空间向量求空间距离

高考数学一轮总复习教学课件第七章 立体几何与空间向量第7节 利用空间向量求空间距离

|·|
||

=.
考点三 用空间向量求线线、线面、面面的距离
[例3] 在棱长为3的正方体ABCD-A1B1C1D1中,E,F分别是BB1,DD1的中
点,则平面ADE与平面B1C1F之间的距离为


.
解析:以点A为坐标原点,AB,AD,AA1所在直线分别为x轴、
y轴、z轴建立如图所示的空间直角坐标系,连接AB1,
||
=
|-|
+
=3 .
用向量法求点面距离的步骤
(1)建系:建立恰当的空间直角坐标系.
(2)求点坐标:写出(求出)相关点的坐标.

(3)求向量:求出相关向量的坐标( ,α内两个不共线向量,平面
α的法向量n).

|·|
(4)求距离:d=
.
||
[针对训练] 如图,在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°,D,
如图,已知平面α的法向量为 n,A 是平面α内的定点,P 是平面α外一
点.过点 P 作平面α的垂线 l,交平面α于点 Q,则 n 是直线 l 的方向向


量,且点 P 到平面α的距离就是在直线 l 上的投影向量 的长度,

因此 PQ=|·


·
||
|=|
||

|=
|·|
||
× )
)
2.平面α的法向量n=(1,-1,2),点B在α上且B(2,2,3),则P(-2,1,3)
到α的距离为


.


解析:因为 =(4,1,0),故 P(-2,1,3)到α的距离 d=
|(,,)·(,-,)|

高考数学一轮复习 第八章 立体几何与空间向量8

高考数学一轮复习 第八章 立体几何与空间向量8

高考数学一轮复习第八章立体几何与空间向量8.2球的切、接问题题型一特殊几何体的切、接问题例1(1)已知正方体的棱长为a,则它的外接球半径为________,与它各棱都相切的球的半径为________.答案32a22a解析∵正方体的外接球的直径为正方体的体对角线长,为3a,∴它的外接球的半径为32a,∵球与正方体的各棱都相切,则球的直径为面对角线,而正方体的面对角线长为2a,∴与它各棱都相切的球的半径为2 2a.(2)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.答案2 3π解析圆锥内半径最大的球即为圆锥的内切球,设其半径为r.作出圆锥的轴截面P AB,如图所示,则△P AB的内切圆为圆锥的内切球的大圆.在△P AB中,P A=PB=3,D为AB的中点,AB=2,E为切点,则PD=22,△PEO∽△PDB,故POPB=OEDB,即22-r3=r1,解得r=2 2,故内切球的体积为43π⎝⎛⎭⎫223=23π.思维升华 (1)正方体与球的切、接常用结论 正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)长方体的共顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. (3)正四面体的外接球的半径R =64a ,内切球的半径r =612a ,其半径R ∶r =3∶1(a 为该正四面体的棱长).跟踪训练1 (1)(2022·成都模拟)已知圆柱的两个底面的圆周在体积为32π3的球O 的球面上,则该圆柱的侧面积的最大值为( ) A .4π B .8π C .12π D .16π 答案 B解析 如图所示,设球O 的半径为R ,由球的体积公式得43πR 3=32π3,解得R =2. 设圆柱的上底面半径为r ,球的半径与上底面夹角为α,则r =2cos α, 圆柱的高为4sin α,∴圆柱的侧面积为4πcos α×4sin α=8πsin 2α, 当且仅当α=π4,sin 2α=1时,圆柱的侧面积最大,∴圆柱的侧面积的最大值为8π.(2)(2022·长沙检测)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是________. 答案9π2解析 易知AC =10.设△ABC 的内切圆的半径为r , 则12×6×8=12×(6+8+10)·r , 所以r =2. 因为2r =4>3,所以最大球的直径2R =3,即R =32,此时球的体积V =43πR 3=9π2.题型二 补形法例2 (1)在四面体ABCD 中,若AB =CD =3,AC =BD =2,AD =BC =5,则四面体ABCD 的外接球的表面积为( ) A .2π B .4π C .6π D .8π 答案 C解析 由题意可采用补形法,考虑到四面体ABCD 的对棱相等,所以将四面体放入一个长、宽、高分别为x ,y ,z 的长方体,并且x 2+y 2=3,x 2+z 2=5,y 2+z 2=4,则有(2R )2=x 2+y 2+z 2=6(R 为外接球的半径),得2R 2=3,所以外接球的表面积为S =4πR 2=6π.(2)(2022·重庆实验外国语学校月考)如图,在多面体中,四边形ABCD 为矩形,CE ⊥平面ABCD ,AB =2,BC =CE =1,通过添加一个三棱锥可以将该多面体补成一个直三棱柱,那么添加的三棱锥的体积为________,补形后的直三棱柱的外接球的表面积为________.答案 136π解析 如图添加的三棱锥为直三棱锥E -ADF ,可以将该多面体补成一个直三棱柱ADF -BCE , 因为CE ⊥平面ABCD ,AB =2,BC =CE =1, 所以S △CBE =12CE ×BC =12×1×1=12,直三棱柱ADF -BCE 的体积为 V =S △EBC ·DC =12×2=1,添加的三棱锥的体积为13V =13;如图,分别取AF ,BE 的中点M ,N ,连接MN ,与AE 交于点O ,因为四边形AFEB 为矩形,所以O 为AE ,MN 的中点,在直三棱柱ADF -BCE 中,CE ⊥平面ABCD ,FD ⊥平面ABCD ,即∠ECB =∠FDA =90°,所以上、下底面为等腰直角三角形,直三棱柱的外接球的球心即为点O ,连接DO ,DO 即为球的半径, 连接DM ,因为DM =12AF =22,MO =1,所以DO 2=DM 2+MO 2=12+1=32,所以外接球的表面积为4π·DO 2=6π. 思维升华 补形法的解题策略(1)侧面为直角三角形,或正四面体,或对棱均相等的模型,可以还原到正方体或长方体中去求解;(2)直三棱锥补成三棱柱求解.跟踪训练2 已知三棱锥P -ABC 中,P A ,PB ,PC 两两垂直,且P A =1,PB =2,PC =3,则三棱锥P -ABC 的外接球的表面积为( ) A.7143π B .14π C .56π D.14π答案 B解析 以线段P A ,PB ,PC 为相邻三条棱的长方体P AB ′B -CA ′P ′C ′被平面ABC 所截的三棱锥P -ABC 符合要求,如图,长方体P AB ′B -CA ′P ′C ′与三棱锥P -ABC 有相同的外接球,其外接球直径为长方体体对角线PP ′,设外接球的半径为R , 则(2R )2=PP ′2=P A 2+PB 2+PC 2 =12+22+32=14,则所求表面积S =4πR 2=π·(2R )2=14π. 题型三 定义法例3 (1)已知∠ABC =90°,P A ⊥平面ABC ,若P A =AB =BC =1,则四面体P ABC 的外接球(顶点都在球面上)的体积为( ) A .π B.3π C .2π D.3π2答案 D解析 如图,取PC 的中点O ,连接OA ,OB ,由题意得P A ⊥BC ,又因为AB ⊥BC ,P A ∩AB =A ,P A ,AB ⊂平面P AB , 所以BC ⊥平面P AB , 所以BC ⊥PB ,在Rt △PBC 中,OB =12PC ,同理OA =12PC ,所以OA =OB =OC =12PC ,因此P ,A ,B ,C 四点在以O 为球心的球面上, 在Rt △ABC 中,AC =AB 2+BC 2= 2. 在Rt △P AC 中,PC =P A 2+AC 2=3, 球O 的半径R =12PC =32,所以球的体积为43π⎝⎛⎭⎫323=3π2.延伸探究 本例(1)条件不变,则四面体P -ABC 的内切球的半径为________. 答案2-12解析 设四面体P -ABC 的内切球半径为r . 由本例(1)知,S△P AC=12P A·AC=12×1×2=22,S△P AB=12P A·AB=12×1×1=12,S△ABC=12AB·BC=12×1×1=12,S△PBC=12PB·BC=12×2×1=22,V P-ABC=13×12AB·BC·P A=13×12×1×1×1=16,V P-ABC=13(S△P AC+S△P AB+S△ABC+S△PBC)·r=13⎝⎛⎭⎫22+12+12+22·r=16,∴r=2-1 2.(2)在矩形ABCD中,BC=4,M为BC的中点,将△ABM和△DCM分别沿AM,DM翻折,使点B与点C重合于点P,若∠APD=150°,则三棱锥M-P AD的外接球的表面积为() A.12π B.34πC.68π D.126π答案 C解析如图,由题意可知,MP⊥P A,MP⊥PD.且P A∩PD=P,P A⊂平面P AD,PD⊂平面P AD,所以MP⊥平面P AD.设△ADP的外接圆的半径为r,则由正弦定理可得ADsin ∠APD =2r ,即4sin 150°=2r ,所以r =4.设三棱锥M -P AD 的外接球的半径为R , 则(2R )2=PM 2+(2r )2,即(2R )2=4+64=68,所以4R 2=68, 所以外接球的表面积为4πR 2=68π.思维升华 到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据到其他顶点距离也是半径,列关系式求解即可. 跟踪训练3 (1)一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为________.答案4π3解析 设正六棱柱的底面边长为x ,高为h , 则有⎩⎪⎨⎪⎧ 6x =3,98=6×34x 2h ,∴⎩⎪⎨⎪⎧x =12,h = 3. ∴正六棱柱的底面外接圆的半径r =12,球心到底面的距离d =32.∴外接球的半径R =r 2+d 2=1.∴V 球=4π3.(2)(2022·哈尔滨模拟)已知四棱锥P -ABCD 的底面ABCD 是矩形,其中AD =1,AB =2,平面P AD ⊥平面ABCD ,△P AD 为等边三角形,则四棱锥P -ABCD 的外接球表面积为( ) A.16π3 B.76π3 C.64π3 D.19π3 答案 A解析 如图所示,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,P A =PD ,取AD 的中点E ,则PE ⊥AD ,PE ⊥平面ABCD ,则PE ⊥AB ,由AD ⊥AB ,AD ∩PE =E ,AD ,PE ⊂平面P AD ,可知AB ⊥平面P AD , 由△P AD 为等边三角形,E 为AD 的中点知,PE 的三等分点F (距离E 较近的三等分点)是三角形的中心,过F 作平面P AD 的垂线,过矩形ABCD 的中心O 作平面ABCD 的垂线,两垂线交于点I ,则I 即外接球的球心. OI =EF =13PE =13×32=36,AO =12AC =52,设外接球半径为R , 则R 2=AI 2=AO 2+OI 2=⎝⎛⎭⎫522+⎝⎛⎭⎫362=43, 所以四棱锥P -ABCD 的外接球表面积为S =4πR 2=4π×43=16π3.课时精练1.正方体的外接球与内切球的表面积之比为( ) A. 3 B .3 3 C .3 D.13答案 C解析 设正方体的外接球的半径为R ,内切球的半径为r ,棱长为1,则正方体的外接球的直径为正方体的体对角线长,即2R =3,所以R =32,正方体内切球的直径为正方体的棱长,即2r =1,即r =12,所以R r =3,正方体的外接球与内切球的表面积之比为4πR 24πr 2=R 2r2=3.2.(2022·开封模拟)已知一个圆锥的母线长为26,侧面展开图是圆心角为23π3的扇形,则该圆锥的外接球的体积为( ) A .36π B .48π C .36 D .24 2答案 A解析 设圆锥的底面半径为r ,由侧面展开图是圆心角为23π3的扇形,得2πr =23π3×26,解得r =2 2.作出圆锥的轴截面如图所示.设圆锥的高为h , 则h =262-222=4.设该圆锥的外接球的球心为O ,半径为R ,则有R =h -R 2+r 2,即R =4-R2+222,解得R =3,所以该圆锥的外接球的体积为 4πR 33=4π×333=36π. 3.已知各顶点都在一个球面上的正四棱锥的高为3,体积为6,则这个球的表面积为( ) A .16π B .20π C .24π D .32π 答案 A解析 如图所示,在正四棱锥P -ABCD 中,O 1为底面对角线的交点,O 为外接球的球心.V P -ABCD =13×S 正方形ABCD ×3=6,所以S 正方形ABCD =6,即AB = 6. 因为O 1C =126+6= 3.设正四棱锥外接球的半径为R , 则OC =R ,OO 1=3-R ,所以(3-R )2+(3)2=R 2,解得R =2. 所以外接球的表面积为4π×22=16π.4.已知棱长为1的正四面体的四个顶点都在一个球面上,则这个球的体积为( ) A.68π B.64π C.38π D.34π 答案 A解析 如图将棱长为1的正四面体B 1-ACD 1放入正方体ABCD -A 1B 1C 1D 1中,且正方体的棱长为1×cos 45°=22, 所以正方体的体对角线 AC 1=⎝⎛⎭⎫222+⎝⎛⎭⎫222+⎝⎛⎭⎫222=62, 所以正方体外接球的直径2R =AC 1=62, 所以正方体外接球的体积为 43πR 3=43π×⎝⎛⎭⎫643=68π, 因为正四面体的外接球即为正方体的外接球,所以正四面体的外接球的体积为68π. 5.(2021·天津)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为32π3,两个圆锥的高之比为1∶3,则这两个圆锥的体积之和为( ) A .3π B .4π C .9π D .12π 答案 B解析 如图所示,设两个圆锥的底面圆圆心为点D ,设圆锥AD 和圆锥BD 的高之比为3∶1, 即AD =3BD ,设球的半径为R ,则4πR 33=32π3,可得R =2,所以AB =AD +BD =4BD =4, 所以BD =1,AD =3,因为CD ⊥AB ,AB 为球的直径, 所以△ACD ∽△CBD ,所以AD CD =CDBD ,所以CD =AD ·BD =3,因此,这两个圆锥的体积之和为 13π×CD 2·(AD +BD )=13π×3×4=4π. 6.(2022·蚌埠模拟)粽子,古时北方也称“角黍”,是由粽叶包裹糯米、泰米等馅料蒸煮制成的食品,是中国汉族传统节庆食物之一,端午食粽的风俗,千百年来在中国盛行不衰,粽子形状多样,馅料种类繁多,南北方风味各有不同,某四角蛋黄粽可近似看成一个正四面体,蛋黄近似看成一个球体,且每个粽子里仅包裹一个蛋黄,若粽子的棱长为9 cm ,则其内可包裹的蛋黄的最大体积约为(参考数据:6≈2.45,π≈3.14)( )A .20 cm 3B .22 cm 3C .26 cm 3D .30 cm 3答案 C解析 如图,正四面体ABCD ,其内切球O 与底面ABC 切于O 1,设正四面体棱长为a ,内切球半径为r ,连接BO 1并延长交AC 于F ,易知O 1为△ABC 的中心,点F 为边AC 的中点.易得BF =32a , 则S △ABC =34a 2,BO 1=23BF =33a , ∴DO 1=BD 2-BO 21=63a , ∴V D -ABC =13·S △ABC ·DO 1=212a 3,∵V D -ABC =V O -ABC +V O -BCD +V O -ABD +V O -ACD =4V O -ABC =4×13×34a 2·r =33a 2r ,∴33a 2r =212a 3⇒r =612a , ∴球O 的体积V =43π·⎝⎛⎭⎫612a 3=43π·⎝⎛⎭⎫612×93=2768π≈278×2.45×3.14≈26(cm 3). 7.已知三棱锥P -ABC 的四个顶点都在球O 的表面上,P A ⊥平面ABC ,P A =6,AB ⊥AC ,AB =2,AC =23,点D 为AB 的中点,过点D 作球的截面,则截面的面积不可以是( ) A.π2 B .π C .9π D .13π答案 A解析 三棱锥P -ABC 的外接球即为以AB ,AC ,AP 为邻边的长方体的外接球, ∴2R =62+22+232=213,∴R =13,取BC 的中点O 1,∴O 1为△ABC 的外接圆圆心,∴OO 1⊥平面ABC ,如图. 当OD ⊥截面时,截面的面积最小,∵OD =OO 21+O 1D 2=32+32=23,此时截面圆的半径为r =R 2-OD 2=1, ∴截面面积为πr 2=π,当截面过球心时,截面圆的面积最大为πR 2=13π, 故截面面积的取值范围是[π,13π].8.(2021·全国甲卷)已知A ,B ,C 是半径为1的球O 的球面上的三个点,且AC ⊥BC ,AC =BC =1,则三棱锥O -ABC 的体积为( ) A.212 B.312 C.24 D.34答案 A解析 如图所示,因为AC ⊥BC ,所以AB 为截面圆O 1的直径,且AB = 2.连接OO 1,则OO 1⊥平面ABC , OO 1=1-⎝⎛⎭⎫AB 22=1-⎝⎛⎭⎫222=22, 所以三棱锥O -ABC 的体积V =13S △ABC ×OO 1=13×12×1×1×22=212.9.已知三棱锥S -ABC 的三条侧棱两两垂直,且SA =1,SB =SC =2,则三棱锥S -ABC 的外接球的半径是________. 答案 32解析 如图所示,将三棱锥补为长方体,则该棱锥的外接球直径为长方体的体对角线,设外接球半径为R ,则(2R )2=12+22+22=9, ∴4R 2=9,R =32.即这个外接球的半径是32.10.已知正三棱锥的高为1,底面边长为23,内有一个球与四个面都相切,则正三棱锥的内切球的半径为________. 答案2-1解析 如图,过点P 作PD ⊥平面ABC 于点D ,连接AD 并延长交BC 于点E ,连接PE .因为△ABC 是正三角形,所以AE 是BC 边上的高和中线,D 为△ABC 的中心. 因为AB =BC =23,所以S △ABC =33,DE =1,PE = 2. 所以S 三棱锥表=3×12×23×2+3 3=36+3 3. 因为PD =1,所以三棱锥的体积V =13×33×1= 3.设球的半径为r ,以球心O 为顶点,三棱锥的四个面为底面,把正三棱锥分割为四个小三棱锥,由13S 三棱锥表·r =3, 得r =3336+33=2-1.11.等腰三角形ABC 的腰AB =AC =5,BC =6,将它沿高AD 翻折,使二面角B -AD -C 成60°,此时四面体ABCD 外接球的体积为________. 答案2873π 解析 由题意,设△BCD 所在的小圆为O 1,半径为r ,又因为二面角B -AD -C 为60°,即∠BDC =60°,所以△BCD 为边长为3的等边三角形,由正弦定理可得,2r =3sin 60°=23,即DE =23,设外接球的半径为R ,且AD =4,在Rt △ADE 中,(2R )2=AD 2+DE 2⇒4R 2=42+(23)2=28, 所以R =7, 所以外接球的体积为 V =43πR 3=43π×(7)3=2873π.12.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的表面上,若AB =AC =1,AA 1=23,∠BAC =2π3,则球O 的体积为________.答案32π3解析 设△ABC 的外接圆圆心为O 1,半径为r ,连接O 1O ,如图,易得O 1O ⊥平面ABC ,∵AB =AC =1,AA 1=23, ∠BAC =2π3,∴2r =AB sin ∠ACB =112=2,即O 1A =1,O 1O =12AA 1=3,∴OA =O 1O 2+O 1A 2=3+1=2,即直三棱柱ABC -A 1B 1C 1的外接球半径R =2, ∴V 球=43π×23=32π3.。

2023年高考数学一轮复习(新高考1) 第7章 §7.6 空间向量的概念与运算

2023年高考数学一轮复习(新高考1) 第7章 §7.6 空间向量的概念与运算

§7.6空间向量的概念与运算考试要求 1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示,掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直.3.理解直线的方向向量及平面的法向量,能用向量方法证明立体几何中有关线面位置关系的一些简单定理.知识梳理1.空间向量的有关概念名称定义空间向量在空间中,具有大小和方向的量相等向量方向相同且模相等的向量相反向量方向相反且模相等的向量共线向量表示若干空间向量的有向线段所在的直线互相平行或重合的向量(或平行向量)共面向量平行于同一个平面的向量2.空间向量的有关定理(1)共线向量定理:对任意两个空间向量a,b(b≠0),a∥b的充要条件是存在实数λ,使a=λb.(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=x a+y b.(3)空间向量基本定理如果三个向量a,b,c不共面,那么对任意一个空间向量p,存在唯一的有序实数组(x,y,z),使得p=x a+y b+z c,{a,b,c}叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积非零向量a,b的数量积a·b=|a||b|cos〈a,b〉.(2)空间向量的坐标表示及其应用设a=(a1,a2,a3),b=(b1,b2,b3).向量表示坐标表示数量积a·b a1b1+a2b2+a3b3共线a=λb a1=λb1,a2=λb2,(b ≠0,λ∈R )a 3=λb 3 垂直 a ·b =0 (a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模 |a |a 21+a 22+a 23夹角余弦值 cos 〈a ,b 〉=a ·b |a ||b |(a ≠0,b ≠0)cos 〈a ,b 〉= a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 234.空间位置关系的向量表示(1)直线的方向向量:如果表示非零向量a 的有向线段所在直线与直线l 平行或重合,则称此向量a 为直线l 的方向向量.(2)平面的法向量:直线l ⊥α,取直线l 的方向向量a ,则向量a 为平面α的法向量. (3)空间位置关系的向量表示位置关系向量表示 直线l 1,l 2的方向向量分别为n 1,n 2 l 1∥l 2 n 1∥n 2⇔n 1=λn 2(λ∈R ) l 1⊥l 2 n 1⊥n 2⇔n 1·n 2=0 直线l 的方向向量为n ,平面α的法向量为m ,l ⊄αl ∥α n ⊥m ⇔n ·m =0 l ⊥α n ∥m ⇔n =λm (λ∈R ) 平面α,β的法向量分别为n ,m α∥β n ∥m ⇔n =λm (λ∈R ) α⊥βn ⊥m ⇔n ·m =0常用结论1.在平面中,A ,B ,C 三点共线的充要条件是:OA →=xOB →+yOC →(其中x +y =1),O 为平面内任意一点.2.在空间中,P ,A ,B ,C 四点共面的充要条件是:OP →=xOA →+yOB →+zOC →(其中x +y +z =1),O 为空间中任意一点. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( × )(2)若直线a 的方向向量和平面α的法向量平行,则a ∥α.( × )(3)在空间直角坐标系中,在Oyz 平面上的点的坐标一定是(0,b ,c ).( √ ) (4)若a ·b <0,则〈a ,b 〉是钝角.( × )教材改编题1.若{a ,b ,c }为空间向量的一个基底,则下列各项中,能构成空间向量的一个基底的是( ) A .{a ,a +b ,a -b } B .{b ,a +b ,a -b } C .{c ,a +b ,a -b } D .{a +b ,a -b ,a +2b } 答案 C解析 ∵λa +μb (λ,μ∈R )与a ,b 共面. ∴A ,B ,D 不正确.2.如图,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1—→=c ,则下列向量中与BM →相等的向量是( )A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案 A解析 由题意,根据向量运算的几何运算法则, BM →=BB 1—→+B 1M —→=AA 1—→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.设直线l 1,l 2的方向向量分别为a =(-2,2,1),b =(3,-2,m ),若l 1⊥l 2,则m =________. 答案 10解析 ∵l 1⊥l 2,∴a ⊥b , ∴a ·b =-6-4+m =0,∴m =10.题型一 空间向量的线性运算例1 如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1—→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)A 1N —→;(3)MP →+NC 1—→. 解 (1)∵P 是C 1D 1的中点, ∴AP →=AA 1—→+A 1P —→=AA 1—→+A 1D 1—→+D 1P —→ =AA 1—→+AD →+12DC →=a +c +12AB →=a +c +12b .(2)∵N 是BC 的中点, ∴A 1N —→=A 1A —→+AB →+BN → =-a +b +12BC →=-a +b +12AD →=-a +b +12c .(3)∵M 是AA 1的中点, ∴MP →=MA →+AP →=12A 1A —→+AP →=-12a +(a +c +12b )=12a +12b +c . 又NC 1—→=NC →+CC 1—→=12BC →+AA 1—→=12AD →+AA 1—→=12c +a . ∴MP →+NC 1—→=⎝⎛⎭⎫12a +12b +c +⎝⎛⎭⎫12c +a=32a +12b +32c . 教师备选如图,在三棱锥O -ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC 的重心,用基向量OA →,OB →,OC →表示OG →,则下列表示正确的是( )A.14OA →+12OB →+13OC →B.12OA →+12OB →+12OC → C .-16OA →+13OB →+13OC →D.13OA →+13OB →+13OC → 答案 D解析 MG →=MA →+AG →=12OA →+23AN →=12OA →+23(ON →-OA →)=12OA →+23⎣⎡⎦⎤12(OB →+OC →)-OA →=-16OA →+13OB →+13OC →.OG →=OM →+MG →=12OA →-16OA →+13OB →+13OC →=13OA →+13OB →+13OC →.思维升华 用基向量表示指定向量的方法 (1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1 (1)(2022·宁波模拟)如图,在三棱锥O -ABC 中,点P ,Q 分别是OA ,BC 的中点,点D 为线段PQ 上一点,且PD →=2DQ →,若记OA →=a ,OB →=b ,OC →=c ,则OD →等于( )A.16a +13b +13cB.13a +13b +13cC.13a +16b +13cD.13a +13b +16c 答案 A解析 OD →=OP →+PD →=12OA →+23PQ →=12OA →+23(OQ →-OP →) =12OA →+23OQ →-23OP → =12OA →+23×12(OB →+OC →)-23×12OA → =16OA →+13OB →+13OC → =16a +13b +13c . (2)在正方体ABCD -A 1B 1C 1D 1中,点F 是侧面CDD 1C 1的中心,若AF →=xAD →+yAB →+zAA 1—→,则x -y +z 等于( )A.12 B .1 C.32 D .2 答案 B解析 AF →=AD →+DF →=AD →+12(DD 1—→+D 1C 1—→)=AD →+12(AA 1—→+A 1B 1—→)=AD →+12(AA 1—→+AB →)=AD →+12AB →+12AA 1—→,则x =1,y =12,z =12,则x -y +z =1.题型二 空间向量基本定理及其应用例2 已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. 解 (1)由题知OA →+OB →+OC →=3OM →, 所以OA →-OM →=(OM →-OB →)+(OM →-OC →), 即MA →=BM →+CM →=-MB →-MC →, 所以MA →,MB →,MC →共面.(2)方法一 由(1)知,MA →,MB →,MC →共面且基线过同一点M , 所以M ,A ,B ,C 四点共面,从而点M 在平面ABC 内. 方法二 因为OM →=13(OA →+OB →+OC →)=13OA →+13OB →+13OC →, 又因为13+13+13=1,所以M ,A ,B ,C 四点共面,从而M 在平面ABC 内. 教师备选如图所示,已知斜三棱柱ABC -A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1—→,BN →=kBC →(0≤k ≤1).判断向量MN →是否与向量AB →,AA 1—→共面.解 因为AM →=kAC 1—→,BN →=kBC →, 所以MN →=MA →+AB →+BN →=kC 1A —→+AB →+kBC →=k (C 1A —→+BC →)+AB →=k (C 1A —→+B 1C 1—→)+AB → =kB 1A —→+AB →=AB →-kAB 1—→=AB →-k (AA 1—→+AB →) =(1-k )AB →-kAA 1—→,所以由共面向量定理知向量MN →与向量AB →,AA 1—→共面. 思维升华 证明空间四点P ,M ,A ,B 共面的方法 (1)MP →=xMA →+yMB →;(2)对空间任一点O ,OP →=OM →+xMA →+yMB →;(3)对空间任一点O ,OP →=xOM →+yOA →+zOB →(x +y +z =1); (4)PM →∥AB →(或P A →∥MB →或PB →∥AM →).跟踪训练2 (1)(多选)(2022·武汉质检)下列说法中正确的是( ) A .|a |-|b |=|a +b |是a ,b 共线的充要条件 B .若AB →,CD →共线,则AB ∥CDC .A ,B ,C 三点不共线,对空间任意一点O ,若OP →=34OA →+18OB →+18OC →,则P ,A ,B ,C四点共面D .若P ,A ,B ,C 为空间四点,且有P A →=λPB →+μPC →(PB →,PC →不共线),则λ+μ=1是A ,B ,C 三点共线的充要条件 答案 CD解析 由|a |-|b |=|a +b |,可得向量a ,b 的方向相反,此时向量a ,b 共线,反之,当向量a ,b 同向时,不能得到|a |-|b |=|a +b |,所以A 不正确;若AB →,CD →共线,则AB ∥CD 或A ,B ,C ,D 四点共线,所以B 不正确; 由A ,B ,C 三点不共线,对空间任意一点O , 若OP →=34OA →+18OB →+18OC →,因为34+18+18=1,可得P ,A ,B ,C 四点共面,故C 正确; 若P ,A ,B ,C 为空间四点, 且有P A →=λPB →+μPC →(PB →,PC →不共线), 当λ+μ=1时,即μ=1-λ, 可得P A →-PC →=λ(PB →+CP →), 即CA →=λCB →,所以A ,B ,C 三点共线,反之也成立,即λ+μ=1是A ,B ,C 三点共线的充要条件,所以D 正确.(2)已知A ,B ,C 三点不共线,点O 为平面ABC 外任意一点,若点M 满足OM →=15OA →+45OB →+25BC →,则点M ________(填“属于”或“不属于”)平面ABC . 答案 属于解析 ∵OM →=15OA →+45OB →+25BC →=15OA →+45OB →+25(OC →-OB →)=15OA →+25OB →+25OC →,∵15+25+25=1, ∴M ,A ,B ,C 四点共面. 即点M ∈平面ABC .题型三 空间向量数量积及其应用例3 如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算:(1)EF →·BA →.(2)求异面直线AG 和CE 所成角的余弦值. 解 设AB →=a ,AC →=b ,AD →=c . 则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, (1)EF →=12BD →=12c -12a ,BA →=-a ,EF →·BA →=⎝⎛⎭⎫12c -12a ·(-a ) =12a 2-12a ·c =14. (2)AG →=12(AC →+AD →)=12b +12c ,CE →=CA →+AE →=-b +12a ,cos 〈AG →,CE →〉=AG →·CE →|AG →||CE →|=⎝⎛⎭⎫12b +12c ·⎝⎛⎭⎫-b +12a ⎝⎛⎭⎫12b +12c 2·⎝⎛⎭⎫12a -b 2=-1232×32=-23,由于异面直线所成角的范围是⎝⎛⎦⎤0,π2, 所以异面直线AG 与CE 所成角的余弦值为23.教师备选已知MN 是正方体内切球的一条直径,点P 在正方体表面上运动,正方体的棱长是2,则PM →·PN →的取值范围为( )A.[]0,4B.[]0,2C.[]1,4D.[]1,2 答案 B解析 设正方体内切球的球心为O , 则OM =ON =1,PM →·PN →=()PO →+OM →·()PO →+ON →=PO →2+PO →·()OM →+ON →+OM →·ON →, ∵MN 为球O 的直径,∴OM →+ON →=0,OM →·ON →=-1,∴PM →·PN →=PO →2-1, 又P 在正方体表面上移动,∴当P 为正方体顶点时,||PO →最大,最大值为3;当P 为内切球与正方体的切点时,||PO →最小,最小值为1, ∴PO →2-1∈[]0,2,即PM →·PN →的取值范围为[]0,2.思维升华 由向量数量积的定义知,要求a 与b 的数量积,需已知|a |,|b |和〈a ,b 〉,a 与b 的夹角与方向有关,一定要根据方向正确判定夹角的大小,才能使a·b 计算准确. 跟踪训练3 如图所示,在四棱柱ABCDA 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长; (2)求证:AC 1⊥BD ;(3)求BD 1与AC 夹角的余弦值. (1)解 记AB →=a ,AD →=b ,AA 1—→=c , 则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1—→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a ) =1+1+1+2×⎝⎛⎭⎫12+12+12=6, ∴|AC 1—→|=6,即AC 1的长为 6. (2)证明 ∵AC 1—→=a +b +c ,BD →=b -a ,∴AC 1—→·BD →=(a +b +c )·(b -a ) =a ·b +|b |2+b ·c -|a |2-a ·b -a ·c =0. ∴AC 1—→⊥BD →,∴AC 1⊥BD .(3)解 BD 1—→=b +c -a ,AC →=a +b , ∴|BD 1—→|=2,|AC →|=3, BD 1—→·AC →=(b +c -a )·(a +b ) =b 2-a 2+a ·c +b ·c =1.∴cos 〈BD 1—→,AC →〉=BD 1—→·AC →|BD 1—→||AC →|=66.∴AC 与BD 1夹角的余弦值为66.题型四 向量法证明平行、垂直例4 如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.证明:(1)BE ⊥DC ; (2)BE ∥平面P AD ; (3)平面PCD ⊥平面P AD .证明 依题意,以点A 为坐标原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).由E 为棱PC 的中点,得E (1,1,1).(1)BE →=(0,1,1), DC →=(2,0,0),故BE →·DC →=0, 所以BE ⊥DC .(2)因为AB ⊥AD ,又P A ⊥平面ABCD , AB ⊂平面ABCD ,所以AB ⊥P A ,P A ∩AD =A ,P A ,AD ⊂平面P AD , 所以AB ⊥平面P AD ,所以AB →=(1,0,0)为平面P AD 的一个法向量, 而BE →·AB →=(0,1,1)·(1,0,0)=0, 所以BE ⊥AB , 又BE ⊄平面P AD , 所以BE ∥平面P AD .(3)由(2)知平面P AD 的法向量AB →=(1,0,0), PD →=(0,2,-2), DC →=(2,0,0),设平面PCD 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PD →=0,n ·DC →=0,即⎩⎪⎨⎪⎧2y -2z =0,2x =0,令y =1,可得n =(0,1,1)为平面PCD 的一个法向量. 且n ·AB →=(0,1,1)·(1,0,0)=0, 所以n ⊥AB →.所以平面P AD ⊥平面PCD . 教师备选如图,已知AA 1⊥平面ABC ,BB 1∥AA 1,AB =AC =3,BC =25,AA 1=7,BB 1=27,点E 和F 分别为BC 和A 1C 的中点.(1)求证:EF ∥平面A 1B 1BA ; (2)求证:平面AEA 1⊥平面BCB 1.证明 因为AB =AC ,E 为BC 的中点,所以AE ⊥BC . 因为AA 1⊥平面ABC ,AA 1∥BB 1,所以以过E 作平行于BB 1的垂线为z 轴,EC ,EA 所在直线分别为x 轴、y 轴, 建立如图所示的空间直角坐标系.因为AB =3,BE =5, 所以AE =2,所以E (0,0,0),C (5,0,0), A (0,2,0),B (-5,0,0),B 1(-5,0,27). A 1(0,2,7),则F ⎝⎛⎭⎫52,1,72. (1)EF →=⎝⎛⎭⎫52,1,72,AB →=(-5,-2,0),AA 1→=(0,0,7).设平面AA 1B 1B 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AB →=0,n ·AA 1—→=0,所以⎩⎪⎨⎪⎧-5x -2y =0,7z =0,取⎩⎪⎨⎪⎧x =-2,y =5,z =0,所以n =(-2,5,0).因为EF →·n =52×(-2)+1×5+72×0=0,所以EF →⊥n .又EF ⊄平面A 1B 1BA , 所以EF ∥平面A 1B 1BA . (2)因为EC ⊥平面AEA 1,所以EC →=(5,0,0)为平面AEA 1的一个法向量. 又EA ⊥平面BCB 1,所以EA →=(0,2,0)为平面BCB 1的一个法向量. 因为EC →·EA →=0,所以EC →⊥EA →, 故平面AEA 1⊥平面BCB 1.思维升华 (1)利用向量法证明平行、垂直关系,关键是建立恰当的坐标系(尽可能利用垂直条件,准确写出相关点的坐标,进而用向量表示涉及到直线、平面的要素).(2)向量证明的核心是利用向量的数量积或数乘向量,但向量证明仍然离不开立体几何的有关定理.跟踪训练4 如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,侧面P AD ⊥底面ABCD ,且P A =PD =22AD ,设E ,F 分别为PC ,BD 的中点.求证:(1)EF ∥平面P AD ;(2)平面P AB ⊥平面PDC .证明 (1)如图,取AD 的中点O ,连接OP ,OF .因为P A =PD ,所以PO ⊥AD .又侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD , 所以PO ⊥平面ABCD .又O ,F 分别为AD ,BD 的中点, 所以OF ∥AB .又四边形ABCD 是正方形, 所以OF ⊥AD . 因为P A =PD =22AD , 所以P A ⊥PD ,OP =OA =a2.如图,以O 为坐标原点,OA ,OF ,OP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则A ⎝⎛⎭⎫a 2,0,0,F ⎝⎛⎭⎫0,a2,0, D ⎝⎛⎭⎫-a 2,0,0,P ⎝⎛⎭⎫0,0,a 2, B ⎝⎛⎭⎫a 2,a ,0,C ⎝⎛⎭⎫-a2,a ,0. 因为E 为PC 的中点, 所以E ⎝⎛⎭⎫-a 4,a 2,a4. 易知平面P AD 的一个法向量为 OF →=⎝⎛⎭⎫0,a 2,0, 因为EF →=⎝⎛⎭⎫a 4,0,-a 4,OF →·EF →=⎝⎛⎭⎫0,a 2,0·⎝⎛⎭⎫a4,0,-a 4=0.且EF ⊄平面P AD ,所以EF ∥平面P AD . (2)因为P A →=⎝⎛⎭⎫a2,0,-a 2, CD →=(0,-a ,0),所以P A →·CD →=⎝⎛⎭⎫a2,0,-a 2·(0,-a ,0)=0, 所以P A →⊥CD →, 所以P A ⊥CD .又P A ⊥PD ,PD ∩CD =D ,PD ,CD ⊂平面PDC ,所以P A ⊥平面PDC .又P A ⊂平面P AB ,所以平面P AB ⊥平面PDC .课时精练1.已知a =(2,1,-3),b =(0,-3,2),c =(-2,1,2),则a ·(b +c )等于( ) A .18 B .-18 C .3 2 D .-3 2 答案 B解析 因为b +c =(-2,-2,4), 所以a ·(b +c )=-4-2-12=-18.2.已知空间任意一点O 和不共线的三点A ,B ,C ,若OP →=xOA →+yOB →+zOC →(x ,y ,z ∈R ),则“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件 答案 B解析 由x +y +z =1,得P ,A ,B ,C 四点共面,当P ,A ,B ,C 四点共面时,x +y +z =1,显然不止2,-3,2.故“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的充分不必要条件. 3.已知空间向量a =(1,0,1),b =(1,1,n ),且a·b =3,则向量a 与b 的夹角为( )A.π6B.π3C.2π3D.5π6 答案 A解析 由题意,a ·b =1+0+n =3, 解得n =2, 又|a |=1+0+1=2,|b |=1+1+4=6,所以cos 〈a ,b 〉=a·b |a ||b |=32×6=32,又〈a ,b 〉∈[0,π], 所以a 与b 的夹角为π6.4.直线l 的一个方向向量为(2,1,1),平面α的一个法向量为(4,2,2),则( ) A .l ∥α B .l ⊥α C .l ∥α或l ⊂αD .l 与α的位置关系不能判断 答案 B解析 直线l 的一个方向向量为(2,1,1),平面α的一个法向量为(4,2,2), 显然它们共线,所以l ⊥α.5.(多选)已知空间三点A (1,0,3),B (-1,1,4),C (2,-1,3),若AP →∥BC →,且|AP →|=14,则点P 的坐标为( ) A .(4,-2,2) B .(-2,2,4) C .(-4,2,-2) D .(2,-2,4)答案 AB解析 因为B (-1,1,4),C (2,-1,3), 所以BC →=(3,-2,-1), 因为AP →∥BC →,所以可设AP →=λBC →=(3λ,-2λ,-λ), 因为|AP →|=(3λ)2+(-2λ)2+(-λ)2=14,解得λ=±1,所以AP →=(3,-2,-1)或AP →=(-3,2,1), 设点P (x ,y ,z ),则AP →=(x -1,y ,z -3), 所以⎩⎪⎨⎪⎧ x -1=3,y =-2,z -3=-1或⎩⎪⎨⎪⎧ x -1=-3,y =2,z -3=1,解得⎩⎪⎨⎪⎧ x =4,y =-2,z =2或⎩⎪⎨⎪⎧x =-2,y =2,z =4.所以点P 的坐标为(4,-2,2)或(-2,2,4).6.(多选)已知空间中三点A (0,1,0),B (2,2,0),C (-1,3,1),则下列结论正确的有( ) A.AB →与AC →是共线向量B .与AB →共线的单位向量是(1,1,0) C.AB →与BC →夹角的余弦值是-5511D .平面ABC 的一个法向量是(1,-2,5) 答案 CD解析 对于A ,AB →=(2,1,0),AC →=(-1,2,1),不存在实数λ,使得AB →=λAC →, 所以AB →与AC →不是共线向量,所以A 错误;对于B ,因为AB →=(2,1,0),所以与AB →共线的单位向量为⎝⎛⎭⎫255,55,0或⎝⎛⎭⎫-255,-55,0,所以B 错误;对于C ,向量AB →=(2,1,0),BC →=(-3,1,1), 所以cos 〈AB →,BC →〉=AB →·BC →|AB →||BC →|=-5511,所以C 正确;对于D ,设平面ABC 的法向量是n =(x ,y ,z ), 因为AB →=(2,1,0),AC →=(-1,2,1),所以⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,即⎩⎪⎨⎪⎧2x +y =0,-x +2y +z =0.令x =1,则n =(1,-2,5),所以D 正确.7.已知a =(x ,1,1),b =(-2,2,y ),a ·b =0,则2x -y =________. 答案 2解析 因为a =(x ,1,1),b =(-2,2,y ),a ·b =0,所以-2x +2+y =0,2x -y =2.8.已知点A (-1,1,0),B (1,2,0),C (-2,-1,0),D (3,4,0),则AB →在CD →上的投影向量为________. 答案 ⎝⎛⎭⎫32,32,0解析 由已知得AB →=(2,1,0),CD →=(5,5,0), ∴AB →·CD →=2×5+1×5+0=15, 又|CD →|=52,∴AB →在CD →上的投影向量为AB →·CD →|CD →|·CD →|CD →|=1552×CD →52=310CD →=⎝⎛⎭⎫32,32,0. 9.如图所示,在直三棱柱ABC -A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别是A 1B 1,A 1A 的中点.(1)求BN →的长;(2)求cos 〈BA 1—→,CB 1—→〉的值; (3)求证:A 1B ⊥C 1M .(1)解 以C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图.B (0,1,0),N (1,0,1), ∴BN →=(1,-1,1),∴|BN →|=12+(-1)2+12= 3.(2)解 ∵A 1(1,0,2),B (0,1,0),C (0,0,0), B 1(0,1,2),∴BA 1—→=(1,-1,2),CB 1—→=(0,1,2), ∴BA 1—→·CB 1—→=3,|BA 1—→|=6,|CB 1—→|= 5. ∴cos 〈BA 1—→,CB 1—→〉=BA 1—→·CB 1—→|BA 1—→||CB 1—→|=3010.(3)证明 ∵C 1(0,0,2),M ⎝⎛⎭⎫12,12,2, ∴A 1B —→=(-1,1,-2),C 1M —→=⎝⎛⎭⎫12,12,0, ∴A 1B —→·C 1M —→=-12+12+0=0.∴A 1B —→⊥C 1M —→, ∴A 1B ⊥C 1M .10.如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点.(1)求证:EF ⊥CD ;(2)在平面P AD 内求一点G ,使GF ⊥平面PCB .(1)证明 如图,以D 为坐标原点,分别以DA ,DC ,DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a ,0,0),B (a ,a ,0), C (0,a ,0),E ⎝⎛⎭⎫a ,a2,0,P (0,0,a ), F ⎝⎛⎭⎫a 2,a 2,a 2.EF →=⎝⎛⎭⎫-a 2,0,a 2,DC →=(0,a ,0). 因为EF →·DC →=0,所以EF →⊥DC →,即EF ⊥CD . (2)解 设G (x ,0,z ), 则FG →=⎝⎛⎭⎫x -a 2,-a 2,z -a 2, CB →=(a ,0,0),CP →=(0,-a ,a ), 若使GF ⊥平面PCB ,则需FG →·CB →=0, 且FG →·CP →=0,由FG →·CB →=⎝⎛⎭⎫x -a 2,-a 2,z -a 2·(a ,0,0) =a ⎝⎛⎭⎫x -a 2=0,得x =a2, 由FG →·CP →=⎝⎛⎭⎫x -a 2,-a 2,z -a 2·(0,-a ,a ) =a 22+a ⎝⎛⎭⎫z -a 2=0,得z =0. 所以G 点坐标为⎝⎛⎭⎫a2,0,0, 即G 为AD 的中点时,GF ⊥平面PCB .11.(多选)(2022·山东百师联盟大联考)下面四个结论正确的是( ) A .向量a ,b (a ≠0,b ≠0),若a ⊥b ,则a·b =0B .若空间四个点P ,A ,B ,C ,PC →=14P A →+34PB →,则A ,B ,C 三点共线C .已知向量a =(1,1,x ),b =(-3,x ,9),若x <310,则〈a ,b 〉为钝角D .任意向量a ,b ,c 满足(a·b )·c =a·(b·c ) 答案 AB解析 由向量垂直的充要条件可得A 正确; ∵PC →=14P A →+34PB →,∴14PC →-14P A →=34PB →-34PC →, 即AC →=3CB →,∴A ,B ,C 三点共线,故B 正确;当x =-3时,两个向量共线,夹角为π,故C 错误; 由于向量的数量积运算不满足结合律,故D 错误.12.(多选)(2022·重庆市第七中学月考)给出下列命题,其中为假命题的是( ) A .已知n 为平面α的一个法向量,m 为直线l 的一个方向向量,若n ⊥m ,则l ∥α B .已知n 为平面α的一个法向量,m 为直线l 的一个方向向量,若〈n ,m 〉=2π3,则l 与α所成角为π6C .若两个不同的平面α,β的法向量分别为u ,v ,且u =(1,2,-2),v =(-2,-4,4),则α∥βD .已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p ,总存在实数x ,y ,z 使得p =x a +y b +z c 答案 AD解析 对于A ,由题意可得l ∥α或l ⊂α,故A 错误; 对于B ,由图象可得,∠CAD =2π3,则∠DAB =π3,所以∠ADB =π6,根据线面角的定义可得,l 与α所成角为π6,故B 正确;对于C ,因为u =-12v =-12(-2,-4,4)=(1,2,-2),所以u ∥v ,故α∥β,故C 正确;对于D ,当空间的三个向量a ,b ,c 不共面时,对于空间的任意一个向量p ,总存在实数x ,y ,z 使得p =x a +y b +z c ,故D 错误.13.(2022·杭州模拟)在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为A 1D 1,BB 1的中点,则cos ∠EAF =________;EF =________.答案 25 62解析 如图,以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,∵正方体棱长为1,则E ⎝⎛⎭⎫0,12,1,F ⎝⎛⎭⎫1,0,12, ∴AE →=⎝⎛⎭⎫0,12,1,AF →=⎝⎛⎭⎫1,0,12, EF →=⎝⎛⎭⎫1,-12,-12,cos 〈AE →,AF →〉=AE →·AF →|AE →||AF →|=1252×52=25,∴cos ∠EAF =25,EF =|EF →|=12+⎝⎛⎭⎫-122+⎝⎛⎭⎫-122=62. 14.如图,已知四棱柱ABCD -A 1B 1C 1D 1的底面A 1B 1C 1D 1为平行四边形,E 为棱AB 的中点,AF →=13AD →,AG →=2GA 1—→,AC 1与平面EFG 交于点M ,则AM AC 1=________.答案213解析 由题图知,设AM →=λAC 1—→(0<λ<1),由已知AC 1—→=AB →+AD →+AA 1—→=2AE →+3AF →+32AG →,所以AM →=2λAE →+3λAF →+3λ2AG →,因为M ,E ,F ,G 四点共面,所以2λ+3λ+3λ2=1,解得λ=213.15.已知O 点为空间直角坐标系的原点,向量OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),且点Q 在直线OP 上运动,当QA →·QB →取得最小值时,OQ →的坐标是______. 答案 ⎝⎛⎭⎫43,43,83解析 因为点Q 在直线OP 上,所以设点Q (λ,λ,2λ), 则QA →=(1-λ,2-λ,3-2λ), QB →=(2-λ,1-λ,2-2λ),QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)·(2-2λ)=6λ2-16λ+10=6⎝⎛⎭⎫λ-432-23. 即当λ=43时,QA →·QB →取得最小值-23,此时OQ →=⎝⎛⎭⎫43,43,83.16.(2022·株州模拟)如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.(1)证明 设BD 与AC 交于点O , 则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,所以A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, 所以AO 2+A 1O 2=AA 21,所以A 1O ⊥AO . 由于平面AA 1C 1C ⊥平面ABCD , 且平面AA 1C 1C ∩平面ABCD =AC , A 1O ⊂平面AA 1C 1C ,所以A 1O ⊥平面ABCD .以O 为坐标原点,OB ,OC ,OA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3). 由于BD →=(-23,0,0),AA 1—→=(0,1,3), AA 1—→·BD →=0×(-23)+1×0+3×0=0, 所以BD →⊥AA 1—→,即BD ⊥AA 1. (2)解 假设在直线CC 1上存在点P , 使BP ∥平面DA 1C 1, 设CP →=λCC 1—→,P (x ,y ,z ), 则(x ,y -1,z )=λ(0,1,3).从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设平面DA 1C 1的一个法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·A 1C 1—→=0,n 1·DA 1—→=0,又A 1C 1—→=(0,2,0),DA 1—→=(3,0,3),则⎩⎪⎨⎪⎧2y 1=0,3x 1+3z 1=0,取n 1=(1,0,-1),因为BP ∥平面DA 1C 1,所以n 1⊥BP →, 即n 1·BP →=-3-3λ=0,解得λ=-1, 即点P 在C 1C 的延长线上,且|CP →|=|CC 1—→|.。

高考一轮复习 空间向量运算 知识点+例题+练习

高考一轮复习 空间向量运算 知识点+例题+练习

1.空间向量的有关概念及定理(1)空间向量:在空间中,具有________和________的量叫做空间向量.(2)相等向量:方向________且模________的向量.(3)共线向量定理对空间任意两个向量a ,b (a ≠0),b 与a 共线的充要条件是________________________.(4)共面向量定理如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在有序实数对(x ,y ),使得p =x a +y b ,推论的表达式为MP →=xMA →+yMB →或对空间任意一点O 有,OP →=________________或OP →=xOA →+yOB →+zOM →,其中x +y +z =____.(5)空间向量基本定理如果三个向量e 1,e 2,e 3不共面,那么对空间任一向量p ,存在惟一的有序实数组(x ,y ,z ),使得p =________________________,把{e 1,e 2,e 3}叫做空间的一个基底.2.空间向量的坐标表示及应用(1)数量积的坐标运算若a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a·b =__________________________________________________________________.(2)共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),若b ≠0,则a ∥b ⇔________⇔__________,________,______________,a ⊥b ⇔__________⇔________________________(a ,b 均为非零向量).(3)模、夹角和距离公式设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则|a |=a·a =________________________________,cos 〈a ,b 〉=a·b |a||b|=______________________________________________________. 若A (a 1,b 1,c 1),B (a 2,b 2,c 2),则|AB →|=______________________________.3.利用空间向量证明空间中的位置关系若直线l ,l 1,l 2的方向向量分别为v ,v 1,v 2,平面α,β的法向量分别为n 1,n 2,利用向量证明空间中平行关系与垂直关系的基本方法列表如下: 平行 垂直直线 与直线 l 1∥l 2⇔v 1∥v 2⇔v 1=λv 2(λ为非零实数)l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0 直线 与平面 ①l ∥α⇔v ⊥n 1⇔v ·n 1=0②l ∥α⇔v =x v 1+y v 2其中v 1,v 2为平面α内不共线向量,x , y 均为实数l ⊥α⇔v ∥n 1⇔v =λn 1(λ为非零实数)平面 与平面 α∥β⇔n 1∥n 2⇔n 1=λn 2(λ为非零实数)α⊥β⇔n 1⊥n 2⇔n 1·n 2=0自我检测1.若a =(2x,1,3),b =(1,-2y,9),且a ∥b ,则x =______________________,y =________.2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则B 1M →用a ,b ,c 表示为________.3.在平行六面体ABCD —A ′B ′C ′D ′中,已知∠BAD =∠A ′AB =∠A ′AD =60°,AB =3,AD =4,AA ′=5,则|AC ′→|=________.4.下列4个命题:①若p =x a +y b ,则p 与a 、b 共面;②若p 与a 、b 共面,则p =x a +y b ;③若MP →=xMA →+yMB →,则P 、M 、A 、B 共面;④若P 、M 、A 、B 共面,则MP →=xMA →+yMB →.其中真命题是________(填序号).5.A (1,0,1),B (4,4,6),C (2,2,3),D (10,14,17)这四个点________(填共面或不共面).探究点一 空间基向量的应用例1 已知空间四边形OABC 中,M 为BC 的中点,N 为AC 的中点,P 为OA 的中点,Q 为OB 的中点,若AB =OC ,求证:PM ⊥QN .变式迁移1如图,在正四面体ABCD中,E、F分别为棱AD、BC的中点,则异面直线AF和CE所成角的余弦值为________.探究点二利用向量法判断平行或垂直例2两个边长为1的正方形ABCD与正方形ABEF相交于AB,∠EBC=90°,点M、N分别在BD、AE上,且AN=DM.(1)求证:MN∥平面EBC;(2)求MN长度的最小值.变式迁移2如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.求证:(1)AM∥平面BDE;(2)AM⊥面BDF.探究点三利用向量法解探索性问题例3如图,平面P AC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,E,F,O分别为P A,PB,AC的中点,AC=16,P A=PC=10.(1)设G是OC的中点,证明FG∥平面BOE;(2)在△AOB内是否存在一点M,使FM⊥平面BOE?若存在,求出点M到OA,OB的距离;若不存在,说明理由.变式迁移3已知在直三棱柱ABC—A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D为A1C1的中点,E为B1C的中点.(1)求直线BE与A1C所成的角的余弦值;(2)在线段AA1上是否存在点F,使CF⊥平面B1DF?若存在,求出AF;若不存在,请说明理由.探究点三 利用向量法求二面角例3 如图,ABCD 是直角梯形,∠BAD =90°,SA ⊥平面ABCD ,SA =BC =BA =1,AD =12,求面SCD 与面SBA 所成角的余弦值大小.变式迁移3 如图,在三棱锥S —ABC 中,侧面SAB 与侧面SAC 均为等边三角形,∠BAC =90°,O 为BC 中点.(1)证明:SO ⊥平面ABC ;(2)求二面角A —SC —B 的余弦值.探究点四综合应用例4如图所示,在三棱锥A—BCD中,侧面ABD、ACD是全等的直角三角形,AD 是公共的斜边,且AD=3,BD=CD=1,另一个侧面ABC是正三角形.(1)求证:AD⊥BC;(2)求二面角B-AC-D的余弦值;(3)在线段AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定点E的位置;若不存在,说明理由.变式迁移4 (2011·山东,19)在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.(1)若M是线段AD的中点,求证:GM∥平面ABFE;(2)若AC=BC=2AE,求二面角A-BF-C的大小.1、如图所示,已知ABCD —A 1B 1C 1D 1是棱长为3的正方体,点E 在AA 1上,点F 在CC 1上,且AE =FC 1=1.(1)求证:E 、B 、F 、D 1四点共面;(2)若点G 在BC 上,BG =23,点M 在BB 1上,GM ⊥BF ,垂足为H ,求证:EM ⊥平面BCC 1B 1.2、如图,四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且MD =NB =1,E 为BC 的中点.(1)求异面直线NE 与AM 所成角的余弦值;(2)在线段AN 上是否存在点S ,使得ES ⊥平面AMN ?若存在,求线段AS 的长;若不存在,请说明理由.3、如图所示,已知空间四边形ABCD的各边和对角线的长都等于a,点M、N分别是AB、CD的中点.(1)求证:MN⊥AB,MN⊥CD;(2)求MN的长;(3)求异面直线AN与CM所成角的余弦值.4、如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD =8.BC是⊙O的直径,AB=AC=6,OE∥AD.(1)求二面角B-AD-F的大小;(2)求直线BD与EF所成的角的余弦值.。

2024届新高考一轮复习北师大版 38 空间向量及其运算 作业

2024届新高考一轮复习北师大版 38 空间向量及其运算 作业

课时规范练38 空间向量及其运算基础巩固组1.(2023·浙江宁波高三检测)已知向量a =(1,1,0),b =(-1,0,-2),且k a +b 与2a -b 互相垂直,则k 的值是( ) A.1 B.15C.35D.75答案:D解析:k a +b =k (1,1,0)+(-1,0,-2)=(k-1,k ,-2),2a -b =2(1,1,0)-(-1,0,-2)=(3,2,2),因为k a +b 与2a -b 互相垂直,所以(k-1,k ,-2)·(3,2,2)=0,所以5k-7=0,所以k=75.2.已知{a ,b ,c }是空间的一个组基,则下列向量中能与a+b ,a-b 构成一个组基的是( ) A.a B.b C.c D.a+2b答案:C解析:因为a=12(a+b )+12(a-b ),b=12(a+b )-12(a-b ),a+2b=32(a+b )-12(a-b ),所以a ,b ,a+2b 均与a+b ,a-b 共面,不能构成一个组基,,故A,B,D 错误;由题意可知c 与a ,b 不共面,则c 与a+b ,a-b 不共面,故c 与a+b ,a-b 能构成一个组基,,故C 正确.3.设A ,B ,C ,D 为空间中的四个点,则“AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ”是“A ,B ,C ,D 四点共面”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D .既不充分也不必要条件 答案:A解析:由AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ⇒AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ ⇒BD ⃗⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ ,所以直线BD ,AC 重合或互相平行,因此A ,B ,C ,D 四点共面;当四边形ABCD 是平行四边形时,A ,B ,C ,D 四点共面,AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ 显然不成立.4.如图,在三棱锥P-ABC 中,AP ,AB ,AC 两两垂直,AP=2,AB=AC=1,M 为PC 的中点,则AC ⃗⃗⃗⃗⃗ ·BM ⃗⃗⃗⃗⃗⃗ 的值为( )A.1 B .13 C .14D .12答案:D解析:由题意得BM ⃗⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AM ⃗⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +12(AP ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=BA ⃗⃗⃗⃗⃗ +12AP ⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ ,故AC ⃗⃗⃗⃗⃗ ·BM ⃗⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ ·BA ⃗⃗⃗⃗⃗ +12AP ⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ ·BA ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ·12AP ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ·12AC ⃗⃗⃗⃗⃗ =12|AC ⃗⃗⃗⃗⃗ |2=12. 5.已知向量a =(3,-1,2),b =(-1,3,-2),c =(6,2,λ),若a ,b ,c 三向量共面,则实数λ=( ) A.32 B.2C.52D.3答案:B解析:∵a ,b ,c 三向量共面,a ,b 不共线,∴存在实数m ,n ,使c =m a +n b ,即(6,2,λ)=(3m ,-m ,2m )+(-n ,3n ,-2n ),∴{3m -n =6,3n -m =2,2m -2n =λ,解得{m =52,n =32,λ=2.6.(多选)已知a =(1,0,1),b =(-1,2,-3),c =(2,-4,6),则下列结论正确的是( ) A.a ⊥b B.b ∥c C.<a ,c>为钝角D.c 在a 方向上的投影向量为(4,0,4) 答案:BD解析:因为1×(-1)+0×2+1×(-3)=-4≠0,所以a ,b 不垂直,故A 错误;因为c =-2b ,所以b ∥c ,故B 正确;因为a ·c =1×2+0×(-4)+1×6=8,所以cos <a ,c >>0,所以<a ,c >不是钝角,故C 错误;c 在a 方向上的投影向量为|c |cos <a ,c>·a|a |=a ·c |a |2a=82(1,0,1)=(4,0,4),故D 正确.故选BD .7.已知空间向量a ,b ,c 满足a+b+c=0,|a|=1,|b|=2,|c|=√7,则a 与b 的夹角为 . 答案:π3解析:因为a+b+c=0,所以c=-a-b ,所以c 2=(-a-b )2=a 2+2a ·b+b 2.因为|a|=1,|b|=2,|c|=√7,所以7=1+2×1×2cos <a ,b >+4,所以cos <a ,b>=12.因为<a ,b>∈[0,π],所以<a ,b>=π3.综合提升组8.(2023·四川绵阳诊断)如图,在空间四边形OABC 中,OA=OB=OC=2,∠AOC=∠BOC=π2,∠AOB=π3,点M ,N 分别在OA ,BC 上,且OM=2MA ,BN=CN ,则MN=( )A.√223B.√463C.√343D.√213答案:A解析:∵OM=2MA ,BN=CN ,∴MN ⃗⃗⃗⃗⃗⃗⃗ =ON ⃗⃗⃗⃗⃗⃗ −OM ⃗⃗⃗⃗⃗⃗ =12(OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )-23OA ⃗⃗⃗⃗⃗ =-23OA ⃗⃗⃗⃗⃗ +12OB ⃗⃗⃗⃗⃗ +12OC ⃗⃗⃗⃗⃗ .又OA=OB=OC=2,∠AOC=∠BOC=π2,∠AOB=π3,∴OA ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =0,OB ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =0,OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =|OA ⃗⃗⃗⃗⃗ |·|OB ⃗⃗⃗⃗⃗ |cos π3=2.∴MN ⃗⃗⃗⃗⃗⃗⃗ 2=-23OA ⃗⃗⃗⃗⃗ +12OB ⃗⃗⃗⃗⃗ +12OC ⃗⃗⃗⃗⃗ 2=49OA ⃗⃗⃗⃗⃗ 2+14OB ⃗⃗⃗⃗⃗ 2+14OC ⃗⃗⃗⃗⃗ 2−23OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ −23OA ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ +12OB ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =49|OA ⃗⃗⃗⃗⃗ |2+14|OB ⃗⃗⃗⃗⃗ |2+14|OC ⃗⃗⃗⃗⃗ |2-23OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =49×22+14×22+14×22-23×2=229,∴|MN ⃗⃗⃗⃗⃗⃗⃗ |=√223. 9.如图,在平行六面体ABCD-A 1B 1C 1D 1中,底面ABCD 是边长为2的菱形,AA 1=1,∠A 1AB=∠A 1AD=∠BAD=60°,M 为A 1C 1与B 1D 1的交点,设AB ⃗⃗⃗⃗⃗ =a ,AD ⃗⃗⃗⃗⃗ =b ,AA 1⃗⃗⃗⃗⃗⃗⃗ =c .(1)用a ,b ,c 表示BM ⃗⃗⃗⃗⃗⃗ 并求BM 的长; (2)求点A 到直线BM 的距离.解:(1)BM ⃗⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗ +A 1M ⃗⃗⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =AA 1⃗⃗⃗⃗⃗⃗⃗ +12(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )-AB ⃗⃗⃗⃗⃗ =-12AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗ =-12a+12b+c. 又|a|=|b|=2,|c|=1,<a ,b>=<a ,b>=<b ,c>=60°,∴|BM ⃗⃗⃗⃗⃗⃗ |2=-12a+12b+c 2=14a 2+14b 2+c 2-12a ·b-a ·c+b ·c =14×4+14×4+1-12×2×2×cos60°-2×1×cos60°+2×1×cos60°=2, 故BM 的长为√2.(2)由(1)知BM ⃗⃗⃗⃗⃗⃗ =-12a+12b+c ,AB ⃗⃗⃗⃗⃗ =a ,∴AB ⃗⃗⃗⃗⃗ ·BM ⃗⃗⃗⃗⃗⃗ =a ·-12a+12b+c =-12a 2+12a ·b+a ·c=-2+1+1=0,∴AB ⊥BM ,则AB 的长为点A 到直线BM 的距离.又AB=2,∴点A 到直线BM 的距离为2.创新应用组10.在四面体OABC 中,棱OA ,OB ,OC 两两垂直,且OA=1,OB=2,OC=3,G 为△ABC 的重心,则OG ⃗⃗⃗⃗⃗ ·(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )= .答案:143解析:如图所示,连接AG 并延长与BC 相交于点D.∵G 是△ABC 的重心,∴AG⃗⃗⃗⃗⃗ =23AD ⃗⃗⃗⃗⃗ =23×12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=13(OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ -2OA ⃗⃗⃗⃗⃗ ).又OG ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +AG ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +13(OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ -2OA ⃗⃗⃗⃗⃗ )=13(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ ),则OG ⃗⃗⃗⃗⃗ ·(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )=13(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )·(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )=13(OA⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )2=13(|OA ⃗⃗⃗⃗⃗ |2+|OB ⃗⃗⃗⃗⃗ |2+|OC ⃗⃗⃗⃗⃗ |2+2OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ +2OA ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ +2OB ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ )=13(1+4+9)=143.。

2025届高考数学一轮复习讲义立体几何与空间向量之 空间向量及空间位置关系

2025届高考数学一轮复习讲义立体几何与空间向量之 空间向量及空间位置关系
向量的是(
C )
A. (-1,1,1)
3
3
3
3
B. (1,-1,1)
3
3
C. (- ,- ,- )
3
3
3
3
3
3
D. ( , ,- )
3. 在空间直角坐标系中, A (1,1,-2), B (1,2,-3), C (-1,3,0), D ( x ,
y , z )( x , y , z ∈R),若 A , B , C , D 四点共面,则(
2,3)是平面α的法向量.若 l ∥α,则 a 与 b 的关系式为
则a+b=
5 a - b +3=0 ;若 l ⊥α,
6 .

[解析] 由题意可知,若 l ∥α,则 u ·n =0,即3+2( a + b )+3( a - b )=0,

a 1=λ b 1, a 2=λ b 2, a 3=λ b 3(λ∈R)

(4) a ∥ b ⇔ a =λ b ( b ≠0)⇔⑥
(5) a ⊥ b ⇔ a ·b =0⇔⑦ a 1 b 1+ a 2 b 2+ a 3 b 3=0


(6)| a |= · = 12 +22 +32 ;
(7) cos < a , b >=
4. 空间位置关系的向量表示
位置关系
向量表示
直线l1,l2的方向向量分别为
l1∥l2
n1∥n2⇔n1=λn2(λ∈R,λ≠0)
n1,n2.
l1⊥l2
n1⊥n2⇔n1·n2=0
直线l的方向向量为n,平面α
l∥α
的法向量为m.
l⊥α
n∥m⇔n=λm(λ∈R,λ≠0)
平面α,β的法向量分别为

2023年新高考数学一轮复习8-6 空间向量及其运算和空间位置关系(知识点讲解)含详解

2023年新高考数学一轮复习8-6 空间向量及其运算和空间位置关系(知识点讲解)含详解

专题8.6 空间向量及其运算和空间位置关系(知识点讲解)【知识框架】【核心素养】1.考查空间向量的概念及运算,凸显数学抽象、逻辑推理、数学运算、直观想象的核心素养.2.考查空间向量的应用,凸显逻辑推理、数学运算、直观想象的核心素养.【知识点展示】1.平行(共线)向量与共面向量2①a∥b时,θ=__0或π__,θ=__0__时,a与b同向;θ=__π__时,a与b反向.②a ⊥b ⇔θ=__π2__⇔a ·b =0.③θ为锐角时,a ·b __>__0,但a ·b >0时,θ可能为__0__;θ为钝角时,a ·b __<__0,但a ·b <0时,θ可能为__π__.④|a ·b |≤|a |·|b |,特别地,当θ=__0__时,a ·b =|a |·|b |,当θ=__π__时,a ·b =-|a |·|b |.⑤对于实数a 、b 、c ,若ab =ac ,a ≠0,则b =c ;对于向量a 、b 、c ,若a ·b =a ·c ,a ≠0,却推不出b =c ,只能得出__a ⊥(b -c )__.⑥a ·b =0⇒/ a =0或b =0,a =0时,一定有a ·b =__0__.⑦不为零的三个实数a 、b 、c ,有(ab )c =a (bc )成立,但对于三个向量a 、b 、c ,(a ·b )c __≠__a (b ·c ),因为a ·b 是一个实数,(a ·b )c 是与c 共线的向量,而a (b ·c )是与a 共线的向量,a 与c 却不一定共线. 3.空间向量基本定理(1)如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =__x a +y b +z c __.(2)如果三个向量a 、b 、c 不共面,那么所有空间向量组成的集合就是{p|p =x a +y b +z c ,x ,y ,z ∈R },这个集合可看作是由向量a 、b 、c 生成的,我们把{__a ,b ,c __}叫做空间的一个基底,a 、b 、c 都叫做__基向量__,空间任何三个__不共面__的向量都可构成空间的一个基底,同一(相等)向量在不同基底下的坐标__不同__,在同一基底下的坐标__相同__. 4.空间向量的正交分解及其坐标表示设e 1、e 2、e 3为有公共起点O 的三个两两垂直的单位向量(我们称它们为单位正交基底).以e 1、e 2、e 3的公共起点O 为原点,分别以__e 1,e 2,e 3__的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz .对于空间任意一个向量p 一定可以把它平移,使它的__起点__与原点O 重合,得到向量OP →=p ,由空间向量基本定理可知,存在有序实数组{x ,y ,z },使得p =x e 1+y e 2+z e 3.我们把x 、y 、z 称作向量p 在单位正交基底e 1、e 2、e 3下的坐标,记作p = (x ,y ,z ). 5.用向量描述空间平行关系设空间两条直线l 、m 的方向向量分别为a =(a 1,a 2,a 3)、b =(b 1,b 2,b 3),两个平面α,β的法向量分别为u =(u 1,u 2,u 3),v =(v 1,v 2,v 3),则有如下结论:6. 用向量证明空间中的垂直关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 7.共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R),a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量).【常考题型剖析】题型一:空间向量的运算例1.(2023·全国·高三专题练习)如图所示,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若AB a =,AD b =,1AA c =,则BM =( )A .1122a b c -+B .1122a b c ++C .1122a b c --+D .1122-++a b c例2. (2022·全国·高三专题练习)如图,OABC 是四面体,G 是ABC 的重心,1G 是OG 上一点,且14OG OG =,则( )A .1111666OG OA OB OC =++B .1OG =111121212OA OB OC ++ C .1OG =111181818OA OB OC ++ D .1OG =111888OA OB OC ++例3.(安徽·高考真题(理))在正四面体O -ABC 中,,,OA a OB b OC c ===,D 为BC 的中点,E 为AD 的中点,则OE =______________(用,,a b c 表示). 【方法技巧】用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来. 题型二:共线(共面)向量定理的应用例4.(2023·全国·高三专题练习)以下四组向量在同一平面的是( ) A .()1,1,0、()0,1,1、()1,0,1 B .()3,0,0、()1,1,2、()2,2,4 C .()1,2,3、()1,3,2、()2,3,1D .()1,0,0、()0,0,2、()0,3,0例5.(2022·广西桂林·模拟预测(文))如图,已知正方体ABCD -A 1B 1C 1D 1的中心为O ,则下列结论中①OA +OD 与OA 1+OD 1是一对相反向量;②OB -OC 1与OC -OB 1是一对相反向量;③OA 1+OB 1+OC 1+OD 1与OD +OC +OB +OA 是一对相反向量; ④OC -OA 与OC 1-OA 1是一对相反向量. 正确结论的个数为( ) A .1B .2C .3D .4例6.(2020·全国·高三专题练习)已知O 、A 、B 、C 、D 、E 、F 、G 、H 为空间的9个点(如图所示),并且OE kOA =,OF kOB =,OH kOD =,AC AD mAB =+,EG EH mEF =+.求证:(1)A 、B 、C 、D 四点共面,E 、F 、G 、H 四点共面; (2)//AC EG . 【总结提升】证明三点共线和空间四点共面的方法比较题型三:空间向量数量积及其应用例7.(广东·高考真题(理))已知向量()1,0,1a =-,则下列向量中与a 成60的是( ) A .()1,1,0-B .()1,1,0-C .()0,1,1-D .()1,0,1-例8.(2022·全国·高三专题练习)如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB a =,AD b =,c AP =.(1)试用a ,b ,c 表示向量BM ;(2)求BM 的长.例9. (2020·全国·高三专题练习)已知向量(2,1,2)a =-,(1,0,1)c =-,若向量b 同时满足下列三个条件:①1a b ⋅=-;①3b =;①b 与c 垂直.(1)求2a c +的模; (2)求向量b 的坐标. 【总结提升】空间向量数量积的应用题型四:利用空间向量证明平行例10.(2021·全国·高三专题练习)如图,在四面体ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证://BD 平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任意一点O ,有()14OM OA OB OC OD =+++. 例11.(2020·全国·高三专题练习(理))如图所示,平面P AD ①平面ABCD ,ABCD 为正方形,①P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:(1)PB //平面EFG ; (2)平面EFG //平面PBC . 【规律方法】利用空间向量证明平行的方法 1.线线平行:证明两直线的方向向量共线2.线面平行:①证明该直线的方向向量与平面的某一法向量垂直;②证明直线的方向向量与平面内某直线的方向向量平行3.面面平行:①证明两平面的法向量为共线向量;②转化为线面平行、线线平行问题 题型五:利用空间向量证明垂直例12.(2022·河南·宝丰县第一高级中学模拟预测(文))如图,O ,1O 是圆柱底面的圆心,1AA ,1BB ,1CC均为圆柱的母线,AB 是底面直径,E 为1AA 的中点.已知4AB =,BC =(1)证明:1AC BC ⊥;(2)若1AC BE ⊥,求该圆柱的体积.例13.(2022·全国·高三专题练习)已知正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1上的动点.(1)求证:A 1E ⊥BD ;(2)若平面A 1BD ⊥平面EBD ,试确定E 点的位置.例14.(2020·全国·高三专题练习)直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC ∠=︒,E 、F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证:(1)//EF 平面11AAC C ;(2)线段AC 上是否存在一点G ,使面EFG ⊥面11AAC C .若存在,求出AG 的长;若不存在,请说明理由. 【规律方法】利用空间向量证明垂直的方法1.线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零2.线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示3.面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示专题8.6 空间向量及其运算和空间位置关系(知识点讲解)【知识框架】【核心素养】1.考查空间向量的概念及运算,凸显数学抽象、逻辑推理、数学运算、直观想象的核心素养.2.考查空间向量的应用,凸显逻辑推理、数学运算、直观想象的核心素养.【知识点展示】1.平行(共线)向量与共面向量2①a∥b时,θ=__0或π__,θ=__0__时,a与b同向;θ=__π__时,a与b反向.②a ⊥b ⇔θ=__π2__⇔a ·b =0.③θ为锐角时,a ·b __>__0,但a ·b >0时,θ可能为__0__;θ为钝角时,a ·b __<__0,但a ·b <0时,θ可能为__π__.④|a ·b |≤|a |·|b |,特别地,当θ=__0__时,a ·b =|a |·|b |,当θ=__π__时,a ·b =-|a |·|b |.⑤对于实数a 、b 、c ,若ab =ac ,a ≠0,则b =c ;对于向量a 、b 、c ,若a ·b =a ·c ,a ≠0,却推不出b =c ,只能得出__a ⊥(b -c )__.⑥a ·b =0⇒/ a =0或b =0,a =0时,一定有a ·b =__0__.⑦不为零的三个实数a 、b 、c ,有(ab )c =a (bc )成立,但对于三个向量a 、b 、c ,(a ·b )c __≠__a (b ·c ),因为a ·b 是一个实数,(a ·b )c 是与c 共线的向量,而a (b ·c )是与a 共线的向量,a 与c 却不一定共线. 3.空间向量基本定理(1)如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =__x a +y b +z c __.(2)如果三个向量a 、b 、c 不共面,那么所有空间向量组成的集合就是{p|p =x a +y b +z c ,x ,y ,z ∈R },这个集合可看作是由向量a 、b 、c 生成的,我们把{__a ,b ,c __}叫做空间的一个基底,a 、b 、c 都叫做__基向量__,空间任何三个__不共面__的向量都可构成空间的一个基底,同一(相等)向量在不同基底下的坐标__不同__,在同一基底下的坐标__相同__. 4.空间向量的正交分解及其坐标表示设e 1、e 2、e 3为有公共起点O 的三个两两垂直的单位向量(我们称它们为单位正交基底).以e 1、e 2、e 3的公共起点O 为原点,分别以__e 1,e 2,e 3__的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz .对于空间任意一个向量p 一定可以把它平移,使它的__起点__与原点O 重合,得到向量OP →=p ,由空间向量基本定理可知,存在有序实数组{x ,y ,z },使得p =x e 1+y e 2+z e 3.我们把x 、y 、z 称作向量p 在单位正交基底e 1、e 2、e 3下的坐标,记作p = (x ,y ,z ). 5.用向量描述空间平行关系设空间两条直线l 、m 的方向向量分别为a =(a 1,a 2,a 3)、b =(b 1,b 2,b 3),两个平面α,β的法向量分别为u =(u 1,u 2,u 3),v =(v 1,v 2,v 3),则有如下结论:6. 用向量证明空间中的垂直关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 7.共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R),a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量).【常考题型剖析】题型一:空间向量的运算例1.(2023·全国·高三专题练习)如图所示,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若AB a =,AD b =,1AA c =,则BM =( )A .1122a b c -+B .1122a b c ++C .1122a b c --+D .1122-++a b c【答案】D 【解析】 【分析】根据空间向量的运算法则和空间向量基本定理相关知识求解即可. 【详解】由题意得,()()1111111111121222112BM BB B D AA A D A B AA AD A b c B a =+=+--+=+-=+.故选:D例2. (2022·全国·高三专题练习)如图,OABC 是四面体,G 是ABC 的重心,1G 是OG 上一点,且14OG OG =,则( )A .1111666OG OA OB OC =++B .1OG =111121212OA OB OC ++ C .1OG =111181818OA OB OC ++ D .1OG =111888OA OB OC ++【答案】B 【解析】 【分析】利用向量加法减法的几何意义并依据空间向量基本定理去求向量1OG 【详解】连接AG 并延长交BC 于N ,连接ON ,由G 是ABC 的重心,可得23AG AN =,()12ON OB OC =+ 则()()2221112=3332333AG AN ON OA OB OC OA OB OC OA ⎡⎤=-=+-=+-⎢⎥⎣⎦ 则()1111112444333OG OG OA AG OA OB OC OA ⎛⎫==+=++- ⎪⎝⎭111121212OA OB OC =++故选:B例3.(安徽·高考真题(理))在正四面体O -ABC 中,,,OA a OB b OC c ===,D 为BC 的中点,E 为AD 的中点,则OE =______________(用,,a b c 表示).【答案】111244a b c ++【解析】 【详解】因为在四面体O ABC -中,,,,OA a OB b OC c D ===为BC 的中点,E 为AD 的中点,()1222OA OD O OE A OD ∴=+=+()111222a OB OC =+⨯+()1111124244a b c a b c =++=++ ,故答案为111244a b c ++. 【方法技巧】用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来. 题型二:共线(共面)向量定理的应用例4.(2023·全国·高三专题练习)以下四组向量在同一平面的是( ) A .()1,1,0、()0,1,1、()1,0,1 B .()3,0,0、()1,1,2、()2,2,4 C .()1,2,3、()1,3,2、()2,3,1 D .()1,0,0、()0,0,2、()0,3,0【答案】B 【解析】 【分析】利用共面向量的基本定理逐项判断可得出合适的选项. 【详解】对于A 选项,设()()()1,1,00,1,11,0,1m n =+,所以,110n m m n =⎧⎪=⎨⎪+=⎩,无解;对于B 选项,因为()()()2,2,403,0,021,1,2=⋅+,故B 选项中的三个向量共面;对于C 选项,设()()()1,2,31,3,22,3,1x y =+,所以,2133223x y x y x y +=⎧⎪+=⎨⎪+=⎩,无解;对于D 选项,设()()()1,0,00,0,20,3,0a b =+,所以,013020b a =⎧⎪=⎨⎪=⎩,矛盾.故选:B.例5.(2022·广西桂林·模拟预测(文))如图,已知正方体ABCD -A 1B 1C 1D 1的中心为O ,则下列结论中①OA +OD 与OA 1+OD 1是一对相反向量;②OB -OC 1与OC -OB 1是一对相反向量;③OA 1+OB 1+OC 1+OD 1与OD +OC +OB +OA 是一对相反向量; ④OC -OA 与OC 1-OA 1是一对相反向量. 正确结论的个数为( ) A .1 B .2C .3D .4【答案】A 【解析】 【分析】由向量的加减运算对各个选项进行检验即可. 【详解】设E,F 分别为AD 和A 1D 1的中点,①OA +2OD OE =与1OA +12OD OF =不是一对相反向量,错误; ②OB -11OC C B =与OC -11OB B C =不是一对相反向量,错误;③OA 1+OB 1+OC 1+()1OD OC OD OA OB OC OD OA OB =----=-+++是一对相反向量,正确; ④OC -OA AC =与OC 1-111OA AC =不是一对相反向量,是相等向量,错误. 即正确结论的个数为1个故选:A例6.(2020·全国·高三专题练习)已知O 、A 、B 、C 、D 、E 、F 、G 、H 为空间的9个点(如图所示),并且OE kOA =,OF kOB =,OH kOD =,AC AD mAB =+,EG EH mEF =+.求证:(1)A、B、C、D四点共面,E、F、G、H四点共面;AC EG.(2)//【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)证明出AC、AB、AD为共面向量,结合AC、AB、AD有公共点可证得A、B、C、D四点共面,同理可证得E、F、G、H四点共面;AC EG.(2)证得EG k AC=,再由EG和AC无公共点可证得//【详解】(1)因为AC AD mAB=+,所以,AC、AB、AD为共面向量,因为AC、AB、AD有公共点A,故A、B、C、D四点共面,因为EG EH mEF=+,则EG、EH、EF为共面向量,因为EG、EH、EF有公共点E,故E、F、G、H四点共面;(2)OE kOA=,=,OF kOB=,OH kOD()EG EH mEF OH OE m OF OE=+=-+-()()()=-+-=+=+=,//k OD OA km OB OA k AD kmAB k AD mAB k AC∴,AC EGAC EG.因为AC、EG无公共点,故//【总结提升】证明三点共线和空间四点共面的方法比较题型三:空间向量数量积及其应用例7.(广东·高考真题(理))已知向量()1,0,1a =-,则下列向量中与a 成60的是( ) A .()1,1,0- B .()1,1,0- C .()0,1,1- D .()1,0,1-【答案】B 【解析】 【详解】试题分析:对于A 选项中的向量()11,0,1a =-,11111cos ,22a a a a a a ⋅-〈〉===-⋅⋅,则1,120a a 〈〉=;对于B 选项中的向量()21,1,0a =-,22211cos ,22a a a a a a ⋅〈〉===⋅,则2,60a a 〈〉=;对于C 选项中的向量()30,1,1a =-,2321cos ,22a a a a a a ⋅-〈〉===-⋅,则2,120a a 〈〉=;对于D 选项中的向量()41,0,1a =-,此时4a a =-,两向量的夹角为180.故选B.例8.(2022·全国·高三专题练习)如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB a =,AD b =,c AP=.(1)试用a ,b ,c 表示向量BM ; (2)求BM 的长.【答案】(1)111222a b c -++;(2)2【解析】 【分析】(1)将AD BC =,BP AP AB =-代入1()2BM BC BP =+中化简即可得到答案;(2)利用22||BM BM =,结合向量数量积运算律计算即可. 【详解】(1)M 是PC 的中点,1()2BM BC BP ∴=+.AD BC =,BP AP AB =-,1[()]2BM AD AP AB ∴=+-,结合AB a =,AD b =,c AP =,得1111[()]2222BM b c a a b c =+-=-++.(2)1AB AD ==,2PA =, ||||1a b ∴==,||2c =.AB AD ⊥,60PAB PAD ∠=∠=︒, 0a b ∴⋅=,21cos601a c b c ⋅=⋅=⨯⨯︒=.由(1)知111222BM a b c =-++,()2222211112222224BM a b c a b c a b a c b c ⎛⎫∴=-++=++-⋅-⋅+⋅⎪⎝⎭13(114022)42=⨯++--+=,6||2BM ∴=即BM 例9. (2020·全国·高三专题练习)已知向量(2,1,2)a =-,(1,0,1)c =-,若向量b 同时满足下列三个条件:①1a b ⋅=-;①3b =;①b 与c 垂直. (1)求2a c +的模;(2)求向量b 的坐标. 【答案】(1)1;(2)(2,1,2)b =-或(2,1,2)b =---. 【解析】 【分析】(1)求出2a c +的坐标,即可求出2a c +的模;(2)设(,,)b x y z =,则由题可知22222190x y z x y z x z +-=-⎧⎪++=⎨⎪-+=⎩,解出即可得出.【详解】解:(1)∵()2,1,2a =-,()1,0,1c =-, ∴()20,1,0a c +=, 所以21a c += ;(2)设(),,b x y z =,则由题可知222221,9,0,x y z x y z x z +-=-⎧⎪++=⎨⎪-+=⎩解得2,1,2,x y z =⎧⎪=-⎨⎪=⎩或2,1,2,x y z =-⎧⎪=-⎨⎪=-⎩ 所以()2,1,2b =-或()2,1,2b =---. 【总结提升】空间向量数量积的应用题型四:利用空间向量证明平行例10.(2021·全国·高三专题练习)如图,在四面体ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证://BD 平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任意一点O ,有()14OM OA OB OC OD =+++. 【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析 【解析】 【分析】(1)根据题意得出EF HG =可证;(2)通过证明//HE BD 可得;(3)可得四边形EFGH 为平行四边形,M 为EG 中点,即可证明. 【详解】(1)E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点, 12EF AC ∴=,12HG AC =,EF HG ∴=,又E ,F ,G ,H 四点不共线,故E ,F ,G ,H 四点共面; (2)E ,H 分别是AB ,AD 的中点, 12HE DB ∴=,//HE DB ∴,//HE BD ∴, HE ⊂平面EFGH ,BD ⊄平面EFGH ,∴//BD 平面EFGH ;(3)由(1)知四边形EFGH 为平行四边形,M ∴为EG 中点, E ,G 分别是AB ,CD 的中点, 11111()()()()22224OM OE OG OA OB OC OD OA OB OC OD ⎡⎤∴=+=+++=+++⎢⎥⎣⎦. 例11.(2020·全国·高三专题练习(理))如图所示,平面P AD ①平面ABCD ,ABCD 为正方形,①P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:(1)PB //平面EFG ;(2)平面EFG //平面PBC .【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)平面P AD ⊥平面ABCD ,且ABCD 为正方形,构建空间直角坐标系A -xyz ,并确定A ,B ,C ,D ,P ,E ,F ,G 的坐标,法一:求得(0,1,0),(1,2,1)EF EG ==-,即可确定平面EFG 的一个法向量n ,又0PB n ⋅=有n PB ⊥,则 PB //平面EFG 得证; 法二:由(2,0,2)PB =-,(0,1,0)FE =-,(1,1,1)FG =-,可知22PB FE FG =+,根据向量共面定理即有PB ,FE 与FG 共面,进而可证PB //平面EFG ;(2)由(1)有(0,1,0),(0,2,0)EF BC ==即2BC EF =,可得BC //EF ,根据线面平行的判定有EF //平面PBC ,GF //平面PBC ,结合面面平行的判定即可证平面EFG //平面PBC .【详解】(1)因为平面P AD ⊥平面ABCD ,且ABCD 为正方形,所以AB ,AP ,AD 两两垂直.以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0). 法一:(0,1,0),(1,2,1)EF EG ==- 设平面EFG 的法向量为(,,)n x y z =,则00n EF n EG ⎧⋅=⎨⋅=⎩,即020y x y z =⎧⎨+-=⎩,令z =1,则(1,0,1)n =为平面EFG 的一个法向量, ∵(2,0,2)PB =-,∴0PB n ⋅=,所以n PB ⊥, ∵PB ⊄平面EFG , ∴PB //平面EFG .法二:(2,0,2)PB =-,(0,1,0)FE =-,(1,1,1)FG =-. 设PB sFE tFG =+,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),所以202t t s t =⎧⎪-=⎨⎪-=-⎩解得s =t =2.∴22PB FE FG =+,又FE 与FG 不共线,所以PB ,FE 与FG 共面.∵PB ⊄平面EFG ,∴PB ∥平面EFG .(2)由(1)知:(0,1,0),(0,2,0)EF BC ==,∴2BC EF =,所以BC //EF .又EF ⊄平面PBC ,BC ⊂平面PBC ,所以EF //平面PBC ,同理可证GF //PC ,从而得出GF //平面PBC .又EF ∩GF =F ,EF ⊂平面EFG ,GF ⊂平面EFG ,∴平面EFG //平面PBC .【规律方法】利用空间向量证明平行的方法1.线线平行:证明两直线的方向向量共线2.线面平行:①证明该直线的方向向量与平面的某一法向量垂直;②证明直线的方向向量与平面内某直线的方向向量平行3.面面平行:①证明两平面的法向量为共线向量;②转化为线面平行、线线平行问题题型五:利用空间向量证明垂直例12.(2022·河南·宝丰县第一高级中学模拟预测(文))如图,O ,1O 是圆柱底面的圆心,1AA ,1BB ,1CC均为圆柱的母线,AB 是底面直径,E 为1AA 的中点.已知4AB =,BC =(1)证明:1AC BC ⊥;(2)若1AC BE ⊥,求该圆柱的体积.【答案】(1)见解析(2)【解析】【分析】(1)通过线面垂直证明线线垂直(2)建立空间直角坐标系,根据垂直条件解出圆柱的高(1)连结AC ,可知AC BC ⊥1CC ⊥平面ABC 1CC BC ∴⊥1CC AC C =BC ∴⊥平面1ACC1BC AC ∴⊥(2)如图,以C 为原点,1,,CA CB CC 所在直线分别为,,x y z 轴建立空间直角坐标系设圆柱的高为h可得1(2,0,0),(0,0,),(2,0,)2h A B C h E1(2,0,),(2,)2h AC h BE =-=-由题意得21402h AC BE ⋅=-+=,解得h =故圆柱的体积2V πr h ==例13.(2022·全国·高三专题练习)已知正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1上的动点.(1)求证:A 1E ⊥BD ;(2)若平面A 1BD ⊥平面EBD ,试确定E 点的位置.【答案】(1)证明见解析;(2)E 为CC 1的中点.【解析】【分析】以D 为原点,DA 、DC 、DD 1为x ,y ,z 轴,建立空间直角坐标系.(1)计算10A E BD →→⋅=即可证明;(2)求出面A 1BD 与面EBD 的法向量,根据法向量垂直计算即可.【详解】以D 为坐标原点,以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图,设正方体的棱长为a ,则A (a ,0,0),B (a ,a ,0),C (0,a ,0),A 1(a ,0,a ),C 1(0,a ,a ).设E (0,a ,e )(0≤e ≤a ).(1)1A E →=(-a ,a ,e -a ),BD →=(-a ,-a ,0),1A E BD →→⋅=a 2-a 2+(e -a )·0=0, ∴1A E BD →→⊥,即A 1E ⊥BD ;(2)设平面A 1BD ,平面EBD 的法向量分别为1n →=(x 1,y 1,z 1),2n →=(x 2,y 2,z 2).∵DB →=(a ,a ,0),1DA →=(a ,0,a ),DE →=(0,a ,e )∴10n DB →→⋅=, 110n DA →→⋅=, 20n DB →→⋅=,10n DE →→⋅=. ∴11110,0,ax ay ax az +=⎧⎨+=⎩, 22220,0.ax ay ay ez +=⎧⎨+=⎩ 取x 1=x 2=1,得1n →=(1,-1,-1),2n →=(1,-1,a e).由平面A 1BD ⊥平面EBD 得1n →⊥2n →. ∴2-a e=0,即e =2a . ∴当E 为CC 1的中点时,平面A 1BD ⊥平面EBD .例14.(2020·全国·高三专题练习)直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC ∠=︒,E 、F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证:(1)//EF 平面11AAC C ;(2)线段AC 上是否存在一点G ,使面EFG ⊥面11AAC C .若存在,求出AG 的长;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,AG =【解析】【分析】(1)以1A 为原点,11A D ,11A B ,1A A 分别为,,x y z 轴建立空间直角坐标系:根据向量的坐标可得11113EF A A AC =-+,由此可证//EF 平面11AAC C ; (2)将问题转化为线段AC 上是否存在一点G ,使EG AC ⊥,则问题不难求解.【详解】(1)如图所示:以1A 为原点,11A D ,11A B ,1A A 分别为,,x y z 轴建立空间直角坐标系:则1(0,0,0)A ,1(0,2,0)B ,1(2,2,0)C ,设(0,0,)A a ,则4(0,,)3E a ,2(,2,0)3F , 所以22(,,)33EF a =-,1(0,0,)A A a =,11(2,2,0)AC =, 因为11113EF A A AC =-+,所以EF ,1A A ,11AC 共面,又EF 不在平面11AAC C 内, 所以//EF 平面11AAC C(2)线段AC 上存在一点G ,使面EFG ⊥面11AAC C ,且3AG =,证明如下:在三角形AGE 中,由余弦定理得EG ===, 所以222AG EG AE +=,即EG AG ⊥,又1A A ⊥平面ABCD ,EG ⊂平面ABCD ,、所以1A A EG ⊥,而1AG A A A ⋂=,所以EG ⊥平面11AAC C ,因为EG ⊂平面EFG ,所以EFG ⊥面11AAC C ,【规律方法】利用空间向量证明垂直的方法1.线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零2.线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示3.面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示。

2025届高考数学一轮复习讲义立体几何与空间向量之 空间角和空间距离

2025届高考数学一轮复习讲义立体几何与空间向量之 空间角和空间距离

形,则在正四棱柱 ABCD - A 1 B 1 C 1 D 1中,异面直线 AK 和 LM 所成的角的大小为
(
D )
A. 30°
B. 45°
C. 60°
D. 90°
[解析] 根据题意还原正四棱柱的直观图,如图所示,取 AA 1的中点 G ,连接 KG ,
则有 KG ∥ LM ,所以∠ AKG 或其补角为异面直线 AK 和 LM 所成的角.由题知 AG =
A 1 C 1=5, BC 1=4 2 ,所以 cos
52 +52 −(4 2)2
9
1
∠ BA 1 C 1=
= < ,所以60°<
2×5×5
25
2
∠ BA 1 C 1<90°,则过点 D 1作直线 l ,与直线 A 1 B , AC 所成的角均为60°,即过一
点作直线,使之与同一平面上夹角大于60°的锐角的两边所在直线所成的角均成
2 z -1=0的交线,试写出直线 l 的一个方向向量 (2,2,1)
的余弦值为
65
9
.

,直线 l 与平面α所成角
[解析] 由平面α的方程为 x +2 y -2 z +1=0,可得平面α的一个法向量为 n =(1,
⑫ [0, ] ,二面角的
2
n1,n2>|.
范围是⑬

[0,π] .

易错警示
1. 线面角θ与向量夹角< a , n >的关系
π
2
π
2
如图1(1),θ=< a , n >- ;如图1(2),θ= -< a , n >.
图1
2. 二面角θ与两平面法向量夹角< n 1, n 2>的关系
图2(2)(4)中θ=π-< n 1, n 2>;图2(1)(3)中θ=< n 1, n 2>.

2023年高考数学一轮复习精讲精练(新高考专用)专题38:空间向量及其运算 (练习版)

2023年高考数学一轮复习精讲精练(新高考专用)专题38:空间向量及其运算  (练习版)

专题38:空间向量及其运算精讲温故知新1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。

(2)向量具有平移不变性 2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a +=+⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b a λλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则3. 共线向量。

(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a 平行于b ,记作b a //。

(2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a //b 存在实数λ,使a =λb 。

(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中(4)与a共线的单位向量为a±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。

(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP +=<=>)1(=++++=z y x OC z OB y OA x OP 其中5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。

若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。

2022届高考数学一轮复习(新高考版) 第7章 空间向量及其应用

2022届高考数学一轮复习(新高考版) 第7章  空间向量及其应用

师生共研
例 1 已知 A,B,C 三点不共线,对平面 ABC 外的任一点 O,若点 M 满 足O→M=13(O→A+O→B+O→C). (1)判断M→A,M→B,M→C三个向量是否共面;
解 由题知O→A+O→B+O→C=3O→M, 所以O→A-O→M=(O→M-O→B)+(O→M-O→C), 即M→A=B→M+C→M=-M→B-M→C, 所以M→A,M→B,M→C共面.
___a_21+__a_22_+__a_23__
夹角 余弦值
cos〈a,b〉= a·b (a≠0,b≠0) |a||b|
cos〈a,b〉= a1b1+a2b2+a3b3 __a_21_+__a_22_+__a_23·__b__21+__b_22_+__b_23 _
5.空间位置关系的向量表示 (1)直线的方向向量 直线的方向向量是指和这条直线平行(或在这条直线上)的有向线段所表 示的向量,一条直线的方向向量有无数个. (2)平面的法向量 直线l⊥平面α,取直线l的方向向量,则这个向量叫做平面α的法向量.显 然一个平面的法向量有无数个,它们是共线向量.
数量积 共线 垂直 模
向量表示 a·b
a=λb(b≠0,λ∈R) a·b=0(a≠0,b≠0)
|a|
坐标表示 __a_1b_1_+__a_2_b_2+__a_3_b_3_ _a_1_=__λ_b_1_,_a_2_=__λ_b_2_,__a_3=__λ_b_3_ __a_1b_1_+__a_2_b_2+__a_3_b_3_=__0_
表示 0
a=b a的相反向量为-a
共线向量 共面向量
表示空间向量的有向线段所在的直 线互相_平__行__或__重__合__的向量
平行于同一个_平__面__的向量

高考数学一轮复习---利用空间向量求空间角

高考数学一轮复习---利用空间向量求空间角

利用空间向量求空间角一、基础知识1.异面直线所成角设异面直线a ,b 所成的角为θ,则cos θ=|a ·b ||a ||b |❶, 其中a ,b 分别是直线a ,b 的方向向量. 2.直线与平面所成角如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n ||a ||n |❷.3.二面角(1)若AB ,CD 分别是二面角α­l ­β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→的夹角,如图(1).(2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α ­l ­β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|=|n 1·n 2||n 1||n 2|❸,如图(2)(3).二、常用结论解空间角最值问题时往往会用到最小角定理cos θ=cos θ1cos θ2.如图,若OA 为平面α的一条斜线,O 为斜足,OB 为OA 在平面α内的射影,OC 为平面α内的一条直线,其中θ为OA 与OC 所成的角,θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么cos θ=cos θ1cos θ2.三、考点解析考点一异面直线所成的角例、如图,在三棱锥P­ABC中,P A⊥底面ABC,∠BAC=90°.点D,E,N分别为棱P A,PC,BC的中点,M是线段AD的中点,P A=AC=4,AB=2.(1)求证:MN∥平面BDE;(2)已知点H在棱P A上,且直线NH与直线BE所成角的余弦值为721,求线段AH的长.[解题技法]用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦等于两向量夹角余弦值的绝对值.[跟踪训练1.如图所示,在三棱柱ABC­A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E,F分别是棱AB,BB1的中点,则直线EF和BC1所成的角是()A.30°B.45°C.60°D.90°2.如图,在四棱锥P­ABCD中,P A⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(1)求证:BD⊥平面P AC;(2)若P A=AB,求PB与AC所成角的余弦值.考点二 直线与平面所成的角例、如图,在多面体ABCDEF 中,四边形ABCD 是正方形,BF ⊥平面ABCD ,DE ⊥平面ABCD ,BF =DE ,M 为棱AE 的中点.(1)求证:平面BDM ∥平面EFC ;(2)若DE =2AB ,求直线AE 与平面BDM 所成角的正弦值.[解题技法]利用向量求线面角的2种方法(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线与平面所成的角.跟踪训练1.在长方体ABCD ­A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则D 1C 1与平面A 1BC 1所成角的正弦值为________.2.如图,在直三棱柱ABC ­A 1B 1C 1中,BA =BC =5,AC =8,D 为线段AC 的中点.(1)求证:BD ⊥A 1D ;(2)若直线A 1D 与平面BC 1D 所成角的正弦值为45,求AA 1的长.考点三 二面角例、如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE=CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 位置,OD ′=10. (1)证明:D ′H ⊥平面ABCD ;(2)求二面角B ­D ′A ­C 的余弦值.[解题技法](1)利用法向量求二面角的大小时,由于法向量的方向不同,两个法向量的夹角与二面角的大小可能相等,也可能互补.所以,两个法向量的夹角的余弦值与二面角的余弦值可能存在正负号的差异.(2)有时用观察法难以判定二面角是钝角还是锐角,为了保证解题结果准确无误,我们给出一种万无一失的方法:就是在两个半平面和二面角的棱上各取1个向量,要求这三个向量必须起点相同,在利用行列式计算法向量时,棱对应的向量必须排前面,即口诀“起点同,棱排前”,这样求出的两个法向量的夹角一定与二面角的大小相等.跟踪训练如图所示,四棱锥P ­ABCD 中,P A ⊥平面ABCD ,△DAB ≌△DCB ,E 为线段BD 上的一点,且EB =ED =EC =BC ,连接CE 并延长交AD 于F .(1)若G 为PD 的中点,求证:平面P AD ⊥平面CGF ;(2)若BC =2,P A =3,求二面角B ­CP ­D 的余弦值.课后作业1.如图所示,在正方体ABCD ­A 1B 1C 1D 1中,已知M ,N 分别是BD 和AD 的中点,则B 1M 与D 1N 所成角的余弦值为( ) A.3030 B.3015 C.3010 D.15152、已知长方体ABCD ­A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成角的正弦值为( )A.33535B.277C.33D.243.在直三棱柱ABC ­A 1B 1C 1中,AA 1=2,二面角B ­AA 1­C 1的大小为60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,则直线BC 1与直线AB 1所成角的正切值为( )A.7B.6C.5 D .2 4.如图,正三棱柱ABC ­A 1B 1C 1的所有棱长都相等,E ,F ,G 分别为AB ,AA 1,A 1C 1的中点,则B 1F 与平面GEF 所成角的正弦值为( )A.35B.56C.3310D.36105.在正方体ABCD ­A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.226.如图,菱形ABCD 中,∠ABC =60°,AC 与BD 相交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =2,CF =3.若直线OF 与平面BED 所成的角为45°,则AE =________.7.如图,已知四棱锥P ­ABCD 的底面ABCD 是等腰梯形,AB ∥CD ,且AC ⊥BD ,AC 与BD 交于O ,PO ⊥底面ABCD ,PO =2,AB =22,E ,F 分别是AB ,AP 的中点,则二面角F ­OE ­A 的余弦值为________.8.如图,边长为2的正方形ABCD 所在的平面与半圆弧C D 所在平面垂直,M 是C D 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ­ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值.9.如图,在三棱锥P ­ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M ­P A ­C 为30°,求PC 与平面P AM 所成角的正弦值提高练习1.如图,四棱柱ABCD­A1B1C1D1的底面ABCD是菱形,AC∩BD=O,A1O⊥底面ABCD,AB=2,AA1=3.(1)证明:平面A1CO⊥平面BB1D1D;(2)若∠BAD=60°,求二面角B­OB1­C的余弦值.2.如图,在四棱锥P­ABCD中,底面ABCD是直角梯形,∠ADC=90°,AB∥CD,AB=2CD.平面P AD⊥平面ABCD,P A=PD,点E在PC上,DE⊥平面P AC.(1)求证:P A⊥平面PCD;(2)设AD=2,若平面PBC与平面P AD所成的二面角为45°,求DE的长.3.如图,在三棱锥P­ABC中,平面P AB⊥平面ABC,AB=6,BC=23,AC=26,D,E分别为线段AB,BC上的点,且AD=2DB,CE=2EB,PD⊥AC.(1)求证:PD⊥平面ABC;(2)若直线P A与平面ABC所成的角为45°,求平面P AC与平面PDE所成的锐二面角大小.。

高三第一轮复习空间向量初步与法向量的求法

高三第一轮复习空间向量初步与法向量的求法

空间向量初步与法向量的求法主干知识归纳1.空间向量的有关概念、定理(1)空间向量:在空间中,具有大小和方向的量叫做空间向量,其大小叫做向量的长度或模.(2)相等向量:方向相同且模相等的向量.(3)共线向量:如果表示空间向量的有向线段所在的直线平行或重合,则这些向量叫做共线向量或平行向量,a平行于b记作a∥b.(4)共面向量:平行于同一平面的向量叫做共面向量.(5)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b⇔存在λ∈R,使a=λb.(6)共面向量定理:若两个向量a、b不共线,则向量p与向量a,b共面⇔存在唯一的有序实数对(x,y),使p=x a+y b.(7)空间向量基本定理:如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组{x,y,z}使得p=x a+y b+z c.3.两个向量的数量积(1)非零向量a,b的数量积a·b=|a||b|cos〈a,b〉.(2)空间向量数量积的运算律①结合律:(λa)·b=λ(a·b);②交换律:a·b=b·a;③分配律:a·(b+c)=a·b+a·c.4.直线的方向向量和平面的法向量(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量.(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量.方法规律总结1.利用空间向量解决立体几何问题,要选择不共面的三个向量作为基底,也可能通过建立适当的空间直角坐标系来进行向量运算;2、利用用向量判断位置关系命题真假的方法 (1)条件中的线面关系翻译成向量关系 (2)确定由条件能否得到结论(3)将结论翻译成线面关系,即可判断命题的真假 3.空间法向量的求法:(先设再求)设平面α的法向量为(),,nx y z =,若平面上所选两条直线的方向向量分别为()()111222,,,,,a x y z b x y z ==,则可列出方程组:1112220x y z x y x y z x y z z ++=⎧⎨++=⎩ 解出,,x y z 的比值即可【指点迷津】【类型一】空间向量的线性运算【例1】:已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三个向量共面,则实数λ等于( )A.627B.637C.647D.657【解析】存在实数x ,y 使得c =xa +yb ,即(7,5,λ)=x(2,-1,3)+y(-1,4,-2),由此得方程组⎩⎪⎨⎪⎧7=2x -y ,5=-x +4y ,λ=3x -2y ,解得⎩⎪⎨⎪⎧x =337,y =177,λ=657.答案:D【例2】:对于空间内任意一点O 和不共线的三点A ,B ,C ,有OP →=xOA →+yOB →+zOC →(x ,y ,z ∈R ),则x =2,y =-3,z =2是P ,A ,B ,C 四点共面的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件【解析】:当x =2,y =-3,z =2时,有OP →=2OA →-3OB →+2OC →,则AP →-AO →=2OA →-3(AB →-AO →)+2(AC →-AO →),即AP →=-3AB →+2AC →,根据共面向量定理,知P ,A ,B ,C 四点共面;反之,当P ,A ,B ,C 四点共面时,根据共面向量定理,有AP →=mAB →+nAC →,即OP →-OA →=m(OB →-OA →)+n(OC →-OA →),即OP →=(1-m -n)OA →+mOB →+nOC →,即x =1-m -n ,y =m ,z =n ,这组数显然不只2,-3,2. 答案:B.【例3】:如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量: (1)AP →;(2)A 1N →;(3)MP →+NC 1→.【解析】 (1)∵P 是C 1D 1的中点, ∴AP →=AA 1→+A 1D 1→+D 1P → =a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b.(2)∵N 是BC 的中点,∴A 1N →=A 1A →+AB →+BN →=-a +b +12BC →=-a +b +12AD →=-a +b +12c.(3)∵M 是AA 1的中点, ∴MP →=MA →+AP →=12A 1A →+AP →=-12a +(a +c +12b)=12a +12b +c ,又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a , ∴MP →+NC 1→=(12a +12b +c)+(a +12c)=32a +12b +32c.【类型二】空间向量的简单应用【例1】:如图7-6-8所示,在45°的二面角α-l -β的棱上有两点A 、B ,点C 、D 分别在α、β内,且AC ⊥AB ,∠ABD =45°,AC =BD =AB =1,则CD 的长度为________. 【解析】 由CD →=CA →+AB →+BD →,cos 〈AC →,BD →〉=cos 45°cos 45°=12,∴〈AC →,BD →〉=60°,∴|CD →|2=CA →2+AB →2+BD →2+2(CA →·AB →+AB →·BD →+CA →·BD →)=3+2×(0+1×1×cos 135°+1×1×cos 120°) =2-2, ∴|CD →|=2- 2. 答案:2- 2【例2】:如图所示,已知平行六面体ABCD —A 1B 1C 1D 1中,底面ABCD 是边长为1的正方形,AA 1=2,∠A 1AB =∠A 1AD =120°. (1)求线段AC 1的长;(2)求异面直线AC 1与A 1D 所成角的余弦值; (3)求证:AA 1⊥BD.【解析】 (1)设AB →=a ,AD →=b ,AA 1→=c ,则|a|=|b|=1,|c|=2,a·b=0,c·a=c·b=2×1×cos 120°=-1.∵AC 1→=AC →+CC 1→=AB →+AD →+AA 1→=a +b +c , ∴|AC 1→|=|a +b +c|=a +b +c2=|a|2+|b|2+|c|2+2a·b+b·c+c·a=12+12+22+20-1-1= 2.∴线段AC 1的长为 2.(2)设异面直线AC 1与A 1D 所成的角为θ. 则cos θ=|cos 〈AC 1→,A 1D →〉|=|AC 1→·A 1D→|AC 1→||A 1D →||.∵AC 1→=a +b +c ,A 1D →=b -c ,∴AC 1→·A 1D →=(a +b +c)·(b-c)=a·b-a·c+b 2-c 2=0+1+12-22=-2, |A 1D →|=b -c 2=|b|2-2b·c+|c|2=12-2×-1+22=7.∴cos θ=|AC 1→·A 1D →|AC 1→||A 1D →||=|-22×7|=147.故异面直线AC 1与A 1D 所成角的余弦值为147. (3)证明 ∵AA 1→=c ,BD →=b -a ,∴AA 1→·BD →=c·(b-a)=c·b-c·a=(-1)-(-1)=0. ∴AA 1→⊥BD →.∴AA 1⊥BD.【例3】:已知正方体ABCD­A 1B 1C 1D 1的棱长为3,点E 在AA 1上,点F 在CC 1上,且AE =FC 1=1.(1)求证:E ,B ,F ,D 1四点共面;(2)若点G 在BC 上,BG =23,点M 在BB 1上,GM ⊥BF ,垂足为H ,求证:EM ⊥平面BCC 1B 1.【解析】 (1)建立如图所示的空间直角坐标系,则B(0,0,0),E(3,0,1),F(0,3,2),D 1(3,3,3),则BE →=(3,0,1),BF →=(0,3,2),BD 1→=(3,3,3). 所以BD 1→=BE →+BF →. 故BD 1→,BE →,BF →共面.又它们有公共点B ,所以E ,B ,F ,D 1四点共面. (2)设M(0,0,z 0),G ⎝⎛⎭⎫0,23,0,则GM →=⎝⎛⎭⎫0,-23,z 0,而BF →=(0,3,2), 由题设得GM →·BF →=-23×3+z 0·2=0,得z 0=1.故M(0,0,1),有ME →=(3,0,0). 又BB 1→=(0,0,3),BC →=(0,3,0), 所以ME →·BB 1→=0,ME →·BC →=0, 从而ME ⊥BB 1,ME ⊥BC. 又BB 1∩BC=B , 故ME ⊥平面BCC 1B 1.【类型三】法向量的求法【例1】:在三角形ABC 中,A (1,﹣2,﹣1),B (0,﹣3,1),C (2,﹣2,1),若向量与平面ABC 垂直,且||=,则的坐标为 .答案:(2,﹣4,﹣1)或(﹣2,4,1)【例2】:如图,四棱柱ABCD ﹣A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB=AA 1=.平面OCB 1的法向量=(x ,y ,z )为( ) A .(0,1,1)B .(1,﹣1,1)C .(0,1,﹣1)D .(﹣1,﹣1,1) 【解析】:∵ABCD 是正方形,且AB=,∴AO=OC=1, ∴=(1,0,0),∵A (﹣1,0,0),B (0,1,0), ∴=(1,1,0),∴=(1,1,0),∵OA=1,AA1=,∴OA1==1,故=(0,0,1),故=+=(1,1,1),∵向量=(x,y,z)是平面OCB1的法向量,∴•=x=0,•=x+y+z=0,故x=0,y=﹣z,结合选项可知,当y=1时,z=﹣1,答案:C.【例3】:已知正三棱柱ABC﹣A1B1C1的各棱长均为1,D是BC上一点,AD⊥C1D,以A为坐标原点,平面ABC 内AC的垂线,AC,AA1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则点D的坐标为,平面ADC1的一个法向量为.【解析】:在空间直角坐标系A﹣xyz中,A(0,0,0),C(0,1,0),A1(0,0,1),C1(0,1,1);由AD⊥C1D,得出AD⊥侧面BCC1B1,∴AD⊥BC,D为BC的中点,∴点D的坐标为(cos60°,sin60°,0),即(,,0);设平面ADC1的一个法向量为=(x,y,z),则=(0,1,1),=(,,0),∴,即,令y=﹣1,得z=1,x=,∴法向量=(,﹣1,1).答案:(,,0),(,﹣1,1).【同步训练】【一级目标】基础巩固组一、选择题1.已知空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM =2MA ,N 为BC 中点,则MN →=( ) A.12a -23b +12c B .-23a +12b +12c C.12a +12b -12c D.23a +23b -12c 【解析】 如图所示, MN →=MA →+AB →+BN → =13OA →+(OB →-OA →)+12BC → =OB →-23OA →+12(OC →-OB →)=12OB →-23OA →+12OC → =-23a +12b +12c.答案: B2.已知a =(-2,1,3),b =(-1,2,1),若a ⊥(a -λb ),则实数λ的值为( ) A .-2B .-143C.145D .2【解析】 由题意知a·(a-λb)=0,即a 2-λa·b=0, ∴14-7λ=0,∴λ=2. 答案:D 3.有四个命题:①若p =x a +y b ,则p 与a 、b 共面; ②若p 与a 、b 共面,则p =x a +y b ; ③若MP →=xMA →+yMB →,则P 、M 、A 、B 共面; ④若P 、M 、A 、B 共面,则MP →=xMA →+yMB →. 其中真命题的个数是( ) A .1 B .2 C .3 D .4【解析】 ①正确,②中若a 、b 共线,p 与a 不共线,则p =xa +yb 就不成立;③正确,④中若M 、A 、B 共线,点P 不在此直线上,则MP →=xMA →+yMB →不正确,故选B. 答案: B4.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E 、F 分别是BC 、AD 的中点,则AE →·AF →的值为( )A .a 2B.12a 2C.14a 2D.34a 2【解析】 设AB →=a ,AC →=b ,AD →=c ,则|a|=|b|=|c|=a ,且a ,b ,c 三向量两两夹角为60°. AE →=12(a +b),AF →=12c ,∴AE →·AF →=12(a +b)·12c=14(a·c+b·c)=14(a 2cos 60°+a 2cos 60°)=14a 2. 答案: C5.已知点A (0,0,0),B (1,0,1),C (0,1,1),则平面ABC 的一个法向量是( ) A .(1,1,1) B .(1,1,﹣1) C .(﹣1,1,1)D .(1,﹣1,1)【解析】:=(1,0,1),=(0,1,1).设平面ABC 的一个法向量为=(x ,y ,z ).则,.∴,令z=1,解得x=﹣1,y=﹣1.∴=(﹣1.﹣1,1).∴﹣=(1,1,﹣1). 答案:B . 二、填空题6.平行六面体ABCD­A 1B 1C 1D 1中,向量AB →、AD →、AA 1→两两的夹角均为60°,且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于______【解析】:设AB →=a ,AD →=b ,AA 1→=c ,则AC 1→=a +b +c ,AC 1→2=a 2+b 2+c 2+2a·b+2b·c+2c·a=25,因此|AC 1→|=5。

空间向量的应用课件-2025届高三数学一轮基础专项复习

空间向量的应用课件-2025届高三数学一轮基础专项复习
(2)平面 平面 .
【答案】结合(1)知,,,, .设平面的法向量为 ,则即令,则,,得 .设平面的法向量为,则即 得,令,则,得 .因为,所以 ,故平面 平面 .
5.中等[苏教选必二P53复习题第13题变式]如图,在三棱柱中, 平面, ,且,,点是 的中点.
(1)求证:平面 .
【答案】第1步:建系由题意,以为坐标原点,,,的方向分别为轴,轴, 轴的正方向,建立如图所示的空间直角坐标系 ,则,,,,,, ,
教材知识萃取
2.利用空间向量证明垂直问题的方法
线线垂直
证明两直线的方向向量垂直,即证它们的数量积为零.
线面垂直
(1)证明直线的方向向量与平面的法向量共线;(2)证明直线的方向向量与平面内的两条相交直线的方向向量都垂直.
面面垂直
(1)其中一个平面与另一个平面的法向量平行;(2)两个平面的法向量垂直.
4.[人A选必一P33练习第3题变式]如图,已知 平面,四边形 为矩形,,,分别为, 的中点,求证:
(1)平面 ;
【答案】第1步:建系由题意,以为坐标原点,,,所在的直线分别为轴、轴、 轴建立如图所示的空间直角坐标系.设,,则有,,,, .第2步:求出,, ,利用向量知识证明因为,分别为,的中点,所以,,所以 ,又,,所以 .又 平面,所以平面 .
利用空间向量求线线角

教材知识萃取
已知a,b为两异面直线,A,C与B,D分别是a,b上的任意两点,设a,b所成的角为θ,则cos θ=. Nhomakorabea易错提醒
利用空间向量求异面直线所成的角时,注意角的范围是(0,].
教材知识萃取
方法技巧求异面直线所成角的方法
几何法
将两直线平移到同一平面内,构造三角形,利用勾股定理或解三角形求两异面直线的夹角或其余弦值.

高考数学一轮复习全程复习构想数学(理)第2课时 空间向量的综合应用(课件)

高考数学一轮复习全程复习构想数学(理)第2课时 空间向量的综合应用(课件)

反思感悟 探索性问题的求解策略
空间向量最适合于解决这类立体几何中的探索性问题,它无须进行 复杂的作图、论证、推理,只需通过坐标运算进行判断.
(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当 作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐 标是否有解,是否有规定范围内的解”等.
(1)求证:A1D⊥平面BCED;
(2) 在 线 段 BC 上 是 否 存 在 点 P , 使 直 线 PA1 与 平 面 A1BD 所 成 的 角 为 60°,若存在,求出PB的长;若不存在,请说明理由.
反思感悟 翻折问题的2个解题策略
确定翻折前 后变与不变
的关系
确定翻折后 关键点的位

(2)求直线BC1与平面AC1D所成角的正弦值.
(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结 论列出等式,解出参数.
【对点训练】
如图,四边形ABCD是正方形,四边形 BDEF为矩形,AC⊥BF,G为EF的中点. (1)求证:BF⊥平面ABCD;
解 析 : (1) 证 明 : 因 为 四 边 形 ABCD 是 正 方 形 , 四 边 形 BDEF 为 矩 形 , 所 以 BF⊥BD,又因为AC⊥BF,AC,BD为平面ABCD内两条相交直线,所以BF⊥平 面ABCD.
画好翻折前后的平面图形与立体图形,分清翻折前后图 形的位置和数量关系的变与不变.一般地,位于“折痕 ”同侧的点、线、面之间的位置和数量关系不变,而位 于“折痕”两侧的点、线、面之间的位置关系会发生变 化;对于不变的关系应在平面图形中处理,而对于变化 的关系则要在立体图形中解决. 所谓的关键点,是指翻折过程中运动变化的点.因为这 些点的位置移动,会带动与其相关的其他的点、线、面 的关系变化,以及其他点、线、面之间位置关系与数量 关系的变化.只有分析清楚关键点的准确位置,才能以 此为参照点,确定其他点、线、面的位置,进而进行有 关的证明与计算.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三章空间向量1.理解空间向量的概念;掌握空间向量的加法、减法和数乘.2.了解空间向量的基本定理;理解空间向量坐标的概念;掌握空间向量的坐标运算.3.掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间的距离公式.理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直第1课时 空间向量及其运算空间向量是平面向量的推广.在空间,任意两个向量都可以通过平移转化为平面向量.因此,空间向量的加减、数乘向量运算也是平面向量对应运算的推广. 本节知识点是:1.空间向量的概念,空间向量的加法、减法、数乘运算和数量积; (1) 向量:具有和的量. (2) 向量相等:方向且长度. (3) 向量加法法则:. (4) 向量减法法则:. (5) 数乘向量法则:. 2.线性运算律(1) 加法交换律:a +b =.(2) 加法结合律:(a +b )+c =. (3) 数乘分配律:λ(a +b )=. 3.共线向量(1)共线向量:表示空间向量的有向线段所在的直线互相或.(2) 共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 等价于存在实数λ,使.基础过关知识网络考纲导读高考导航 空间向量定义、加法、减法、数乘运算数量积坐标表示:夹角和距离公式求距离求空间角证明平行与垂直(3) 直线的向量参数方程:设直线l 过定点A 且平行于非零向量a ,则对于空间中任意一点O ,点P 在l 上等价于存在R t ∈,使. 4.共面向量(1) 共面向量:平行于的向量.(2) 共面向量定理:两个向量a 、b 不共线,则向量P 与向量a 、b 共面的充要条件是存在实数对(y x ,),使P .共面向量定理的推论:. 5.空间向量基本定理(1) 空间向量的基底:的三个向量.(2) 空间向量基本定理:如果a ,b ,c 三个向量不共面,那么对空间中任意一个向量p ,存在一个唯一的有序实数组z y x ,,,使.空间向量基本定理的推论:设O ,A ,B ,C 是不共面的的四点,则对空间中任意一点P ,都存在唯一的有序实数组z y x ,,,使.6.空间向量的数量积 (1) 空间向量的夹角:. (2) 空间向量的长度或模:.(3) 空间向量的数量积:已知空间中任意两个向量a 、b ,则a ·b =. 空间向量的数量积的常用结论: (a) cos 〈a 、b 〉=; (b) ⎪a ⎪2=; (c) a ⊥b ⇔.(4) 空间向量的数量积的运算律: (a ) 交换律a ·b =; (b ) 分配律a ·(b +c )=.ABCD —A 1B 1C 1D 1中,点F 是侧面CDD 1C 1的中心,若1AA y x ++=,求x -y 的值.解:易求得0,21=-∴==y x y x变式训练1.在平行六面体1111D C B A ABCD -中,M 为AC 与BD 的交点,若=11B A a ,=11D A b ,=A 1c ,则下列向量中与B 1相等的向量是( )A .-21a +21b +cB .21a +21b +cC .21a -21b +cD .-21a -21b +c解:A例2.底面为正三角形的斜棱柱ABC -A 1B 1C 1中,D 为AC 的中点, 求证:AB 1∥平面C 1BD. 证明:记,,,1c AA b AC a AB ===则ABCD A1B 1CC DC AB +=+=-=-=+=21,21,111∴11AB DC =+=+,∴11,,DC AB 共面.∵B 1∉平面C 1BD, AB 1//平面C 1BD.变式训练2:正方体ABCD -EFGH 中,M 、N 分别是对角线AC 和BE 上的点,且AM =EN . (1) 求证:MN ∥平面FC ; (2) 求证:MN ⊥AB ;(3) 当MA 为何值时,MN 取最小值,最小值是多少? 解:(1) 设.)1(,BF k BC k MN k ACMCEB NB +-===则 (2) .0)1(=⋅-⋅-=⋅AB BF k AB BC k AB MN (3) 设正方体的边长为a,,21,)122(22=+-=k a k k 即当 也即时AC AM21=a 22= 例3.已知四面体ABCD 中,AB ⊥CD ,AC ⊥BD , G 、H 分别是△ABC 和△ACD 的重心.求证:(1) AD ⊥BC ; (2) GH ∥BD .证明:(1) AD ⊥BC ⇔0=⋅BC AD .因为AB ⊥CD 0=⋅⇔,0=⋅⇔⊥BD AC BD AC ,而0)()(=+⋅+=⋅. 所以AD ⊥BC .(2) 设E 、F 各为BC 和CD 的中点.欲证GH ∥BD ,只需证GH ∥EF ,+==32(+)=32. 变式训练3:已知平行六面体1111D C B A ABCD -,E 、F 、G 、H 分别为棱AB C C C D D A 和11111,,的中点.求证:E 、F 、G 、H 四点共面. 解:CG HC HG +==1GC HC +=1FC ++=FC A ++11=+2, 所以,,共面,即点E 、F 、G 、H 共面.例4.如图,平行六面体AC 1中,AE =3EA 1,AF =FD ,AG =GB 21,过E 、F 、G 的平面与对角线AC 1交于点P ,求AP:PC 1的值.解:设1m =1B AC 234311111++=++=++=∴m m m 2343++=又∵E 、F 、G 、P 四点共面,∴12343=++m m m ∴193=m ∴AP ︰PC 1=3︰16 变式训练4:已知空间四边形OABC 中,M 为BC 的中点,N 为AC 的中点,P 为OA 的中点,Q 为OB 的中点,若AB =OC ,求证QN PM ⊥. 证明:法一:)(21+=)(21+=)(21OC AB OM PO PM +=+=∴ )(21AB OC ON QO QN -=+=0)41==⋅∴QN PM故QN PM ⊥法二:·QN =(PQ +QM )·(QM +MN )=)(21+·)(21+ =)(4122-=0a ⊥b ⇔a ·b =0进行证明.对于平行,一般是利用共线向量和共面向量定理进行证明.2.运用向量求解距离问题,其一般方法是找出代表相应距离的线段所对向量,然后计算这个向量对应的模.而计算过程中只要运用好加法法则,就总能利用一个一个的向量三角形,将所求向量用有模和夹角的已知向量表示出来,从而求得结果.3.利用向量求夹角(线线夹角、线面夹角、面面夹角)有时也很方便.其一般方法是将所求的角转化为求两个向量的夹角,而求两个向量的夹角则可以利用公式c osθ.4.异面直线间的距离的向量求法:已知异面直线l 1、l 2,AB 为其公垂线段,C 、D 分别为l 1、l 2上的任意一点,为与共线的向量,则|||n .5.设平面α的一个法向量为n ,点P 是平面α外一点,且P o ∈α,则点P 到平面α的距离是d||n .第2课时 空间向量的坐标运算设a =),,(321a a a ,b =),,(321b b b (1) a ±b = (2) λa =. (3) a ·b =.(4) a ∥b ⇔;a ⊥b ⇔.(5) 设),,(),,,(222111z y x B z y x A == 则=,=.AB 的中点M 的坐标为.-1),=(-2,3,5)(1)若(k a +b )∥(a -3b ),求实数k 的值; (2)若(k +)⊥(-3),求实数k 的值; (3)若k k 的值. 解:(1)31-=k ; (2)3106=k ; (3)278-=k 变式训练1.已知O 为原点,向量()()3,0,1,1,1,2,,OA OB OC OA BC ==-⊥∥OA ,求AC . 解:设()(),,,1,1,2OC x y z BC x y z ==+--,∵,OC OA BC ⊥∥OA ,∴0OC OA ⋅=,()BC OA R λλ=∈,∴()()30,1,1,23,0,1x z x y z λ+=⎧⎪⎨+--=⎪⎩,即30,13,10,2.x z x y z λλ+=⎧⎪+=⎪⎨-=⎪⎪-=⎩解此方程组,得7211,1,,101010x y z λ=-===。

∴721,1,1010OC ⎛⎫=-⎪⎝⎭,3711,1,1010AC OC OA ⎛⎫=-=- ⎪⎝⎭。

例2. 如图,直三棱柱111C B A ABC -,底面ABC ∆中,CA =CB =1, 90=∠BCA ,棱21=AA ,M 、N 分别A 1B 1、A 1A 是的中点. (1) 求BM 的长; (2) 求〉〈11,cos CB BA 的值; (3) 求证:.3)01()10()01(222=-+-+-=.C (0,0,0),B 1(0,1,2). =(3) 证明:依题意得C 1(0,0,2),N )0,21,21(),2,1,1(),2,21,21(11=--=∴C A .N C B A N C B A 1111,002121⊥∴=++-=⋅∴变式训练2.在四棱锥P -ABCD 中,底面ABCD 为矩形,侧棱PA ⊥底面ABCD ,AB =3,BC =1,PA =2,E 为PD 的中点.(1) 在侧面PAB 内找一点N ,使NE ⊥面PAC ,并求出N 点到AB 和AP 的距离; (2) 求(1) 中的点N 到平面PAC 的距离. 解:(1) 建立空间直角坐标系A -BDP ,则A 、B 、C 、D 、P 、E 的坐标分别是A(0, 0, 0)、B(3,0, 0)、C(3, 1, 0)、D(0, 1, 0)、P(0, 0, 2)、E(0, 21, 1),依题设N(x , 0, z ),则=(-x , 21, 1-z ),由于NE ⊥平面PAC , ∴⎪⎩⎪⎨⎧=⋅=⋅0即⎪⎩⎪⎨⎧=+-=-⇒⎪⎪⎩⎪⎪⎨⎧=⋅--=⋅--0213010)0,1,3()1,21,(0)2,0,0()1,21,(x z z x z x ⎪⎩⎪⎨⎧==⇒163z x ,即点N 的坐标为(63, 0, 1),从而N 到AB 、AP 的距离分别为1,63.(2) 设N 到平面PAC 的距离为d ,则d ||NEyP ED ·=1233121|)0,21,63(||)0,21,63()1,0,63(|=⨯=--⋅.例3. 如图,在底面是棱形的四棱锥ABCD P -中,,,60a AC PA ABC ===∠ a PD PB 2==,点E在PD 上,且PE :ED =2:1. (1) 证明⊥PA 平面ABCD ;(2) 求以AC 为棱,EAC 与DAC 为面的二面角θ的大小;(3) 在棱PC 上是否存在一点F ,使BF ∥平面AEC解:(1)证明略;(2)易解得 30=θ; (3)解以A 为坐标原点,直线AP AD ,分别为y 轴、z 轴,过A 点垂直于平面PAD 的直线为x 轴,建立空间直角坐标系(如图).由题设条件,相关各点的坐标为)0,21,23(),0,21,23(),0,0,0(a a C a a B A - )31,32,0(),,0,0(),0,,0(a a E a P a D所以=AE )31,32,0(a a ,=AC )0,21,23(a a , =AP ),,0,0(a =PC ),21,23(a a a - =BP ),21,23(a a a -,设点F 是棱PC 上的点,==λ),21,23(a a a λλλ-,其中10<<λ,则))1(),1(21),1(23(λλλ-+-=+=a a a PF BP BF .令AE AC BF 21λλ+=得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+=+=-221131)1(3221)1(2123)1(23λλλλλλλa a a a a a a解得23,21,2121=-==λλλ,即21=λ时,AE AC BF 2321+-=.亦即,F 是PC 的中点时,AE AC BF ,,共面,又⊄BF 平面AEC ,所以当F 是PC 的中点时,BF ∥平面AEC .例4. 如图,多面体是由底面为ABCD 的长方体被截面AEFG 所截而得,其中AB =4,BC =1,BE =3,CF =4.(1) 求和点G 的坐标;(2) 求GE 与平面ABCD 所成的角; (3) 求点C 到截面AEFG 的距离.解:(1) 由图可知:A(1,0,0),B(1,4,0),E(1,4,3),F(0,4,4) ∴)1,0,1(-= 又∵=,设G(0,0,z),则(-1,0,z) =(-1,0,1) ∴z =1 ∴G(0,0,1) (2)平面ABCD 的法向量).1,0,0(=y)2,4,1(=GE ,设GE 与平面ABCD 成角为θ,则21212||||)2cos(=⋅=-GE DG GE DG θπ∴21212arcsin=θ (3)设0n ⊥面AEFG ,0n =(x 0,y 0,z 0)∵0n ⊥AG ,0n ⊥AE ,而AG =(-1,0,1),AE =(0,4,3)∴),43,(430340000000000000z z z n z y z x z y z x -=∴⎪⎩⎪⎨⎧-==⇒⎩⎨⎧=+=+- 取z 0=4,则0n =(4,-3,4) ∵414116||),4,0,0(00==∴=n n CF d CF 即点C 到截面AEFG 的距离为414116. 变式训练4.如图四棱锥P —ABCD 中,底面ABCD 是平行四边形,PG ⊥平面ABCD ,垂足为G ,G 在AD 上,且PG =4,GD AG 31=,BG ⊥GC ,GB =GC =2,E 是BC 的中点. (1)求异面直线GE 与PC 所成的角的余弦值; (2)求点D 到平面PBG 的距离;(3)若F 点是棱PC 上一点,且DF ⊥GC ,求FCPF的值. 解:(1)以G 点为原点,GP GC GB 、、为x 轴、y 轴、 z 轴建立空间直角坐标系,则B (2,0,0),C (0,2,0), P (0,0,4),故E (1,1,0),GE =(1,1,0),PC =(0,2,4)。

相关文档
最新文档