佛山科学技术学院 概率论与数理统计(99级本)A、B卷
《概率论与数理统计》考试试题B(答案)
广东白云学院2007—2008学年第二学期期末考试《概率论与数理统计》B卷参考答案及评分标准适用专业及方向: 经济管理类各专业、土木工程层次: 本科年级: 07级限时: 120分钟考试形式: 闭卷考场要求: 笔试考试形式:闭卷考场要求:笔试.(×)2. 设、为两事件, 则.(×)3. 设, 则其一定是某连续型随机变量的密度函数.(√)4. 设随机变量~N(1, 9), 则.(√)5.设, , 与相互独立, 则.二、填空题(请将正确答案填写在括号内。
每空3分,共30分), 则( 0.6 ).7.设随机变量和都服从[0,2]上的均匀分布, 则( 2 ).8. 设为两个随机事件,且已知, , ,则条件概率(0.6).则常数c=(0.1),}5.15.0{<<-XP=(0.5).10. 已知~,函数值,则=(0.9772).11. 服从参数的泊松分布, 令, 则(13), (75).12. 设三次独立试验中, 事件出现的概率相等, 若已知至少出现一次的概率等1/3 ).,则下列关系成立的是( C )A. B.C. D.15.同时抛掷3枚均匀的硬币, 则恰好有两枚正面朝上的概率为( D )A. 0.5B. 0.125C. 0.25D. 0.37516. 10张奖券中含有3张中奖的奖券,每人购买一张,则第3个购买者中奖的概率为( B )A. B. 0.3 C. D.17. 设连续型随机变量服从参数为的指数分布,若方差,则数学期望( B )A. B. C. D.18. 如果离散型随机变量相互独立,且服从参数为的泊松分布,则当充分大时,离散型随机变量( D )近似服从标准正态分布.A. B. C. D.19. 设连续型随机变量的概率密度为,则( A )A. B. C.D.四、计算题(每小题8分,共32分)(1)若事件BA,互不相容,求α; (2)若事件BA,相互独立,求α.解 (1)因为BA,互不相容,所以φ=AB, (1分)所以)()()()(BPABPBPBAP=-= (2分)而)(1)()()()(APBAPBPAPBAP-=-+=(3分)所以α=0.3 (4分)(2)因为BA,相互独立,则A与B也相互独立, (5分))())(1)(()()()()()(BPBPAPBPAPBPAPBAP+-=-+=(7分)所以α=73(8分)21. 某产品主要由三个厂家供货.甲、乙、丙三个厂家的产品分别占总数的15%,80%,5%,其次品率分别为0.02,0.01,0.03,试计算(1)从这批产品中任取一件是不合格品的概率;(2)已知从这批产品中随机地取出的一件是不合格品,问这件产品由哪个厂家生产的可能性最大?解记=A{所取一件产品是不合格品},321,,BBB分别表示”产品来自甲、乙、丙厂” (1分) 依题意有:15.0)(1=BP, 80.0)(2=BP,05.0)(3=BP02.0)(1=BAP,01.0)(2=BAP,03.0)(3=BAP (2分) (1)由全概率公式0125.0)()()(31==∑=iiiBPBAPAP (5分) (2)由贝叶斯公式24.00125.002.015.0)()()()(111=⨯==APBAPBPABP, (6分)64.00125.001.080.0)()()()(222=⨯==APBAPBPABP, (7分)12.00125.003.005.0)()()()(333=⨯==A PB A P B P A B P (8分) 22.设连续型随机变量X 的密度函数⎩⎨⎧<<=其他020)(2x Ax x ϕ,求(1)常数A ;(2))(),(X D X E .解 因为138)(202===⎰⎰∞+∞-A dx Ax dx x ϕ (2分) 所以 83=A (3分)所以 ⎪⎩⎪⎨⎧<<=其他2083)(2x xx ϕ2383)()(203===⎰⎰∞+∞-dx x dx x x X E ϕ (5分) 51283)()(20422===⎰⎰∞+∞-dx x dx x x X E ϕ (7分) 20323512)]([)()(222=⎪⎭⎫ ⎝⎛-=-=X E X E X D (8分) 23. 已知电站供电网有10000盏电灯, 夜晚每一盏灯开灯的概率都是0.7, 而假定开、关时间彼此独立, 试用切贝谢夫不等式估计夜晚同时开着的灯数在6800与7200之间的概率。
概率论与数理统计试题及评分标准11
的上侧分位数 0.025 1.96 , 2 2
4.484 4.55
0.108
9
1.8333 ...........................................................8
8
共 3页
第1页
二、 (10 分)解:从 10 个不同数码中,任取 3 个的结果与顺序无关,所以基本事件 总数
3 n C10
10 9 8 120 。........................................ 2 3 2 1
A 事件中不能有 1 和 5,所以只能从其余 8 个数码中任取 3 个,所以 A 中的基本事件
arcsin x
1 2
1 2
1 ............................................................................10 3
六
E( X )
1 2 xf ( x)dx = x 2 xdx = , 0 3
2
1 2 1 而 D( X ) = E ( X ) [ E ( X )] = = . 2 3 18
2
.....................................10
七、解
7
X 近似服从正态分布 N(100,50)
P 80 X 120 .................................................................2 P X 100 20...........................................................6
佛山科学技术学院 20022003学年第一学期概率与数理统计试卷(a卷)
佛山科学技术学院2002-2003学年第一学期期末考试试题课程: 概率论与数理统计( A 卷)专业、班级: 姓名: 学号:一、单选题:把所选答案前面的字母填在括号内(每小题2分,共10分)1、若,1)()(>+B P A P 则事件A 与B 必定()A 互斥B 相容C 对立D 独立2、已知随机变量ξ的方差为D ξ,若a ,b 为常数,则b a +ξ的方差为()AD ξB a 2D ξC(a D ξ)2D03、若随机变量ξ与η相互独立,则它们的相关系数等于()A1B-1C ±1D 04、设产品的废品率为0.03,用切贝谢夫不等式估计1000个产品中废品多于20个且少于40个的概率为()A0.802B0.786C0.709D0.8135、从一副去掉大小王的52张扑克牌中任意抽5张,其中没有K 字牌的概率为()A 5248B 552548C C C 554852CD 555248 二、填空题:(1、2、3小题各2分,4,5小题各3分,6,8小题各4分,7小题6分,共26分)1、设[][]⎪⎩⎪⎨⎧∉∈+=1,001,0 1)(2x x x c x φ为随机变量ξ的概率密度,则常数c =_____________.2、假设检验是由部分来推断整体,它不可能绝对准确,而可能犯的错误有和3、设相互独立的随机变量ξ,η的方差分别为0.1,0.09,则=-)(ηξD .4、已知)(A P =0.3,P (B )=0.4,(P A ∣B )=0.32,则=)(B A P _________.5、评价估计量优劣的标准有 , , .6、设连续型随机变量ξ具有分布函数⎩⎨⎧≤>-=-000 1)(x x e x F x λ,则==ξξD E _,_________________________.7、设),,,(21n x x x 为总体ξ中取出的一组样本观察值,若⎩⎨⎧><<=-其它当 00)( 10 )(1θθφθx x x ,则用最大似然法估计ξ的概率密度)(x φ中的未知参数θ时,得到似然函数为 ,似然方程为 估计量=θˆ 8、已知灯泡寿命的标准差σ=50小时,抽出25个灯泡检验,得平均寿命500=x 小时,试以95%的可靠性对灯泡的平均寿命进行区间估计,则置信区间为 (假设灯泡寿命服从正态分布)。
佛山科学技术学院 概率统计试题
命题方式:自主命题
佛山科学技术学院2009—2010学年第二学期
《概率与数理统计》课程期末考试试题(A)
专业、班级姓名:学号:
共6页第1页
13,)X 取自正态总体
)=____ ____
是非题(4分,每题.在古典概型的随机试验中,.抽样分布就是指样本,)n X 的函数,)n X 的分布.在假设检验中,显著性水平α是指)0为假H P .小概率事件在一次试验中绝对不会发生 分)某工厂有甲、乙、丙3个车间生产同一种产品,产量各占并且在各自的产品里,不合格品各占4%5%,现从待出厂的产品中任取一只恰是不合格品,求这批产品中各车间的次品率是多少?这件产品由哪个车间生产的可能性大? 共 6页第2页
共6页第3页
共6页第4页
共6页第5页
共6页第6页。
大学《概率论与数理统计》期末考试试卷含答案
大学《概率论与数理统计》期末考试试卷含答案一、填空题(每空 3 分,共 30分)在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加 样本容量 .设随机变量具有数学期望与方差,则有切比雪夫不等式 .设为连续型随机变量,为实常数,则概率= 0 . 设的分布律为,,若绝对收敛(为正整数),则=.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为. 设服从参数为的分布,则=. 设,则数学期望= 7 .为二维随机变量, 概率密度为, 与的协方差的积分表达式为 .设为总体中抽取的样本的均值,则= . (计算结果用标准正态分布的分布函数表X ()E X μ=2()D X σ={}2P X μσ-≥≤14X a {}P X a =X ,{}1,2,k k P X x p k ===2Y X =1n k k k x p ∞=∑n()E Y 21k k k x p ∞=∑17X λpoisson (2)E X 2λ(2,3)YN 2()E Y (,)X Y (,)f x y X Y (,)Cov X Y (())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰X N (3,4)14,,X X {}15P X ≤≤2(2)1Φ-()x Φ示)10. 随机变量,为总体的一个样本,,则常数=.A 卷第1页共4页 概率论试题(45分) 1、(8分)题略解:用,分别表示三人译出该份密码,所求概率为 (2分)由概率公式 (4分)(2分) 2、(8分) 设随机变量,求数学期望与方差.解:(1) = (3分) (2) (3分) (2分)(8分) 某种电器元件的寿命服从均值为的指数分布,现随机地取16只,它们的寿命相互独立,记,用中心极限定理计算的近似值(计算结果用标准正态分布的分布函数表示).2(0,)XN σn X X X ,,,21 X221()(1)ni i Y k X χ==∑k 21n σA B C 、、P A B C ()P A B C P ABC P A P B P C ()=1-()=1-()()()1-1-1-p q r =1-()()()()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====()E X Y +(23)D X Y -()E X Y +E X E Y ()+()=1+3=4(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-8361244XYρ=+-=-100h i T 161ii T T ==∑{1920}P T ≥()x Φ解: (3分) (5分)(4分)(10分)设随机变量具有概率密度,.(1)求的概率密度; (2) 求概率.解: (1) (1分)A 卷第2页共4页(2分)(2分)概率密度函数 (2分)(2) . (3分) (11分) 设随机变量具有概率分布如下,且.i i ET D T E T D T 2()=100,()=100,()=1600,()=160000{1920}0.8}1P T P ≥=≥≈-Φ(0.8)X 11()0x x f x ⎧-≤≤=⎨⎩,,其它21Y X =+Y ()Y f y 312P Y ⎧⎫-<<⎨⎬⎩⎭12Y Y y F y y F y≤>时()=0,时()=1212,{}{1}()d Y y F yP Y y P X y f x x <≤≤=+≤=()=02d 1x y ==-2()=Y Y y f y F y≤⎧'⎨⎩1,1<()=0,其它3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222(,)X Y {}110P X Y X +===(1)求常数; (2)求与的协方差,并问与是否独立?解: (1) (2分)由(2分) 可得 (1分)(2), , (3分) (2分) 由可知与不独立 (1分) 三、数理统计试题(25分)1、(8分) 题略. A 卷第3页共4页 证明:,相互独立(4分) ,(4分),p q X Y (,)Cov X Y X Y 1111134123p q p q ++++=+=,即{}{}{}{}{}101011010033P X Y X P Y X p P X Y X P X P X p +====+========+,,1p q ==EX 1()=2E Y 1()=-3E XY 1()=-6,-CovX Y E XY E X E Y ()=()()()=0..ij i j P P P ≠X Y 222(1)(0,1),(1)X n S N n χσ--22(1)X n S σ-2(1)X t n -(1)X t n -(10分) 题略解:似然函数 (4分)由 可得为的最大似然估计 (2分)由可知为的无偏估计量,为的有偏估计量 (4分) 、(7分) 题略 解: (2分)检验统计量,拒绝域 (2分)而 (1分)因而拒绝域,即不认为总体的均值仍为4.55 (2分)A 卷第4页共4页2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑2,μσ221ˆˆ(),()n nE E μμσσ-==11ˆn i i x n μ==∑μ2211ˆ()ni i x n σμ==-∑2σ01: 4.55: 4.55H H μμ=≠x z =0.025 1.96z z ≥=0.185 1.960.036z ==>0H。
概率论与数理统计(A)期末复习资料
《概率论与数理统计(A )》期末复习资料一、选择题:1.设A ,B 为两个任意事件,那么与事件B A B A B A ++相等的事件是().(A) AB (B) B A + (C) A (D) B2.设B A ,为两个随机事件,若0)(=AB P ,则( ).(A)A 和B 两事件互不相容(互斥); (B)AB 是不可能事件; (C)AB 未必是不可能事件; (D)0)(=A P 或0)(=B P . 3.如果0)(=AB P ,则( ).(A))()(A P B A P =-; (B)A 与B 不相容; (C)A 与B 不相容; (D))()()(B P A P B A P -=-. 4.如果1)()(=+B P A P ,则( ).(A)1)(=⋃B A P ; (B)0)(=⋂B A P ; (C))()(B A P B A P ⋂=⋂; (D))()(B A P B A P ⋃=⋂. 5.设A 和B 相互独立,则下列结论错误的是( ).(A)B ,A 独立; (B)B ,A 独立; (C))()()(B P A P B A P =; (D)φ=AB .6.设B A ⊂且相互独立,则( ).(A)0)(=A P ; (B)1)(0)(==B P A P 或; (C)1)(=A P ; (D)上述都不对. 7.设随机变量~(2,)X B p ,若()159X P ≥=,则p =( ). (A)32; (B)21; (C)31; (D)2719.8.设随机变量X 概率分布为,,2,1)1()( =+==k k k ak X P ,则a 为( ).(A)0; (B)1; (C)2; (D)3.9.设随机变量X 服从泊松分布,且(1)(2)P X P X ===,则λ=( ). (A)2; (B)1; (C)4; (D)0.5.10.若)(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成立.(A) X a P <(≤⎰∞+∞-=x x F b d )() (B) X a P <(≤⎰=bax x F b d )()(C) X a P <(≤⎰=b ax x f b d )() (D) X a P <(≤⎰∞+∞-=x x f b d )()11.设随机变量),(~2σμN X ,且022=++X x x 无实根的概率为0.5,=μ( ). (A)-1; (B)0; (C)1; (D)2.12.随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<<=其他,0,20,20,),(y x cx y x f ,则c 为( ).(A)0.25; (B)1; (C)2; (D)4.13.设随机变量Y X ,相互独立,它们的密度函数分别为⎩⎨⎧≤>=-000x ,;x ,e )x (f x X ,⎩⎨⎧≤>=-00022y ,;y ,e )y (f y Y ,则=>)Y X (P ( ).(A)31; (B)21; (C)32; (D)43.14.设X ~)4,2(N 且b aX +~)1,0(N ,则( ). (A)22-==b a ,; (B)12-=-=b a ,; (C)121==b a ,; (D)121-==b a ,.15.设)1(~P X ,)2(~P Y ,且X 与Y 相互独立,则~Y X +( ). (A) (1,2)b (B) (3)P (C) (1.5)P(D) (2,1)b16.设随机变量)6.0,20(~b X ,)6.0,10(~b Y ,且X 与Y 相互独立,则~Y X +( ). (A) (10,0.6)b (B) (20,0.6)b (C) b(30,0.6) (D) (18)P17.设),(~p n b X 且6 3.6EX DX ==,,则有()(A) 100.6n p ==, (B) 200.3n p ==,(C) 150.4n p ==, (D) 120.5n p ==, 18.设12,,n X X X 是取自正态总体X ~)1,0(N 的样本,2,S X 分别是样本均值和样本方差,则下列结论正确的是( ).(A)X ~)1,0(N ; (B)X n ~)1,0(N ; (C)S X /~)1(-n t ; (D)∑=ni i X 12~)(2n χ.19.设n X X X 21,是取自正态总体X ~),(2σμN 的样本(2>n ), 2,S X 分别是样本均值和样本方差,则下列结论正确的是( ).(A)1--n SX μ~)1(-n t ; (B)22)(S X n μ-~)1,1(-n F ; (C)22σS ~)1(2-n χ; (D)122X X -~),(2σμN .20.设12,,,n X X X 为来自正态总体2(,)N μσ的一个样本,2211(())1ni i S X X n ==--∑ X 分别为样本方差和样本均值,则下面结论中不正确的是( ). (A)2~(,)X N n σμ ;(B)22()E S σ=; (C)22()1nE S n σ=-; (D)222(1)/~(1)n S n σχ--. 21.已知随机变量X 与Y 相互独立,且2~(40)X χ,2~(80)Y χ,则~/2Y X ().(A)2(40)χ (B) (20,40)F (C) (40,80)F (D) 2(80)χ22.设n X X X ,,,21 是来自正态总体N (,)μσ2的样本,则( )是μ无偏估计.(A) 321X X X ++ (B) 321525252X X X ++ (C) 321515151X X X ++ (D) 321535151X X X ++23.对正态总体),(2σμN 的假设检验问题中,Z 检验解决的问题是( ). (A) 已知方差,检验均值 (B) 未知方差,检验均值(C) 已知均值,检验方差 (D) 未知均值,检验方差24.对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,则下列各式中( )不是统计量.(A)1X (B) μ+X(C)221σX (D)1X μ25.设n X X X ,,,21 是正态总体),(~2σμN X (2σ已知)的一个样本,按给定的显著性水平α检验0H :0μμ=(已知);1H :0μμ≠时,判断是否接受0H 与( )有关.(A) 样本值,显著水平α (B) 样本值,样本容量(C) 样本容量n ,显著水平α (D) 样本值,样本容量n ,显著水平α 26.在对单正态总体N (,)μσ2的假设检验问题中,T 检验法解决的问题是( ). (A) 已知方差,检验均值 (B) 未知方差,检验均值 (C) 已知均值,检验方差 (D) 未知均值,检验方差 27.假设检验时,若增大样本容量,则犯两类错误的概率( ). (A) 有可能都增大 (B) 有可能都减小(C) 有可能都不变 (D) 一定一个增大,一个减小二、填空题:1.设B A ,是两个事件,且=)(B A P 1,则=-)(A B P .2.设()0.7P A =,()0.3P A B -=,则()AB P = ,()B A P = .3.设事件B A ,和B A ⋃的概率分别为0.2,0.3和0.4,则=)(A B P _______.4.设B A ,是两个随机事件,()0.4()0.3P A P B ==,,若B A ,相互独立,则()P A B ⋃= ,则()P B A = .5.三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为 .6.设甲、乙两人投篮命中率分别为0.7和0.8,每人投篮3次,则有人投中的概率为 .7.从0,1,2,,9这10个数字中任意选出3个不同的数字,则3个数字中不含0或5的概率为 .8.某工厂一个班组共有男工9人,女工5人,现在要选出3个代表,则选的3 个代表中至少有1个女工的概率为 .9.设随机变量X 服从参数为λ的泊松分布,且()2D X =,则(1)p X ==________. 10.设随机变量),(N ~X 42,则~X Y 22-=. 11.设随机变量Y 在]5,0[上服从均匀分布,则关于x 的一元二次方程02442=+++Y xY x 有实根的概率为 .12.设)(1x F 与)(2x F 分别是任意两个随机变量分布函数,令=)(x F)()(21x bF x aF +,则下列各组数中使)(x F 为某随机变量的分布函数的有 =a , =b .13.已知连续随机变量X 的分布函数为1,0()0,0x e x F x x λ--≥=<⎧⎨⎩,0λ>,则其密度函数为 ,(2)P x ≤= ;已知随机变量X 的密度函数⎩⎨⎧≤≤=其它 , 010,2)(x x x f 则:)5.15.0(<<X p = .14.设随机变量X 分布律为令,12+=X Y 则随机变量X 分布律为 ;=)(Y E _________.15.若二维随机变量(,)X Y 具有分布律:则(21)P Y X ===________. 16.设随机变量X 分布列如下表则E (X )=________,D (X )=________.17.两独立随机变量X Y 和都服从正态分布,且()()~3,4~2,9X N Y N ,,则()D X Y +=________;又两个相互独立的随机变量~(3),V ~P(2)U E ,则(22)D U V ++=________.18.设X 服从[-1,2]上的均匀分布,令⎩⎨⎧<-≥=,01,01X X Y ,,则=)(Y E ,=)(Y D .19.设相互独立的随机变量X ,Y 均服从参数为5的指数分布,则当0,0x y >>时,(,)X Y 的概率密度(,)f x y =________.20.设总体)1,0(~N X ,1210,,,X X X 是来自总体X 的样本,则~X .21.设总体2~(0,)X N σ,921,X X X 为总体的一个样本,则)(9196521X X X X X X ++++++= 分布为 .22.设),(21n X X X 是取自参数为λ泊松分布的样本,则统计量i ni X Y ∑==1服从分布.23.设12n X X X ,,,为来自总体X 的样本,且~(0,1)X N ,则统计量21~nii X=∑ .24.设12,,,n X X X 是来自总体)1,0(~N X 的简单随机样本,则21()ni i X X =-∑服从的分布为 .25.设n X X X 21,是来自正态总体X ~N (μ,2σ)的样本,即它们是独立同分布,则~X ,~)1(22σS n - .26.在单边假设检验中,原假设为0H :μ≤0μ,则其备择假设为1H :_______________.27.设总体X 服从正态分布2(,)N μσ,其中2σ未知,12,,n X X X 为其样本.若假设检验问题为0010:,:,H H μμμμ=≠则采用的检验统计量表达式应为_______________.三、计算题1.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率.2.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求: (1)两粒都发芽的概率;(2)至少有一粒发芽的概率;(3)恰有一粒发芽的概率.3.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求: (1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率.4.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).5.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.6.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?8.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1)保险公司亏本的概率;(2)保险公司获利分别不少于10000元、20000元的概率.9.设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为f (x )=⎪⎩⎪⎨⎧<≥.100,0,100,1002x x x求:(1)在开始150小时内没有电子管损坏的概率;(2)在这段时间内有一只电子管损坏的概率; (3)F (x ).10.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.11.由某机器生产的螺栓长度(cm )~(10.05,0.062)X N ,规定长度在10.050.12±内为合格品,求一螺栓为不合格品的概率..12.设一工厂生产的电子管寿命X (小时)服从正态分布),160(2δN ,若要求{}8.0200120≥≤<X P ,允许δ最大不超过多少?13.设X ~N (3,22),(1)求P {2<X ≤5},P {4<X ≤10},P {|X |>2},P {X >3}; (2)确定c 使P {X >c }=P {X ≤c }.14.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.(2)求(X ,Y )的边缘分布律; (3)求W =X +Y 的分布律.16.设随机变量(X ,Y )的概率密度为()⎩⎨⎧<<<<--=.,0,42,20),6(,其他y x y x k y x f (1)确定常数k ;(2)求P {X <1,Y <3}; (3)求P {X <1.5}; (4)求P {X +Y ≤4}.17.设二维随机变量(X ,Y )的联合分布函数为()⎩⎨⎧>>--=--.,0,0,0),e 1)(e 1(,24其他y x y x F y x求(X ,Y )的联合分布密度.18.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤≤-<≤-+=.,0,10 ,1,01 ,1其他x x x x x f求)()(X D X E ,.19.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤≤-<≤=.,0,21,2,10,其他x x x x x f求)()(X D X E ,.20.设随机变量(X ,Y )的概率密度为()⎩⎨⎧<<<<=.,0,0,10,,其他x y x k y x f 试确定常数k ,并求)(XY E .21.设X ,Y 是相互独立的随机变量,其概率密度分别为()⎩⎨⎧≤≤=;,0,10,2其他x x x f X ()(5)e ,5,0,.y Y y f y --⎧>=⎨⎩其他 求E (XY ).22.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩估计.23.设总体X 的密度函数()2(x )2,,f x e x R μμ--=∈X 1,X 2,…,X n 为其样本,试求参数μ的矩估计. 24.设12,,,n x x x 为来自正态总体2~N(,)X μδ的一个样本的X1,X2, (X)观测值,试求总体未知参数2,μδ的极大似然估计.25.设总体X 的密度函数为⎩⎨⎧<<=-.,0,10,),(1其他x x x f θθθn X X X 21,为其样本,求θ 的极大似然估计.26.某车间生产的螺钉,其直径2~N(,)X μδ,由过去的经验知道2δ=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 求μ的置信概率为0.95的置信区间.27.来自正态总体2~N(,)X μδ的一个样本为X 1,X 2,…,X n ,并且2μδ未知,已知,求μ的置信概率为1α-的置信区间.28.在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差2s =0.1(2g ).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).。
概率论与数理统计的期末考试试卷答案详解
《概率论与数理统计》试卷A一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则A B =U ()A 、AB B 、A BC 、A BD 、A B U 2、设A ,B ,C 表示三个事件,则A B C 表示()A 、A ,B ,C 中有一个发生 B 、A ,B ,C 中恰有两个发生C 、A ,B ,C 中不多于一个发生D 、A ,B ,C 都不发生3、A 、B 为两事件,若()0.8P A B =U ,()0.2P A =,()0.4P B =,则()成立A 、()0.32P AB = B 、()0.2P A B =C 、()0.4P B A -=D 、()0.48P B A = 4、设A ,B 为任二事件,则()A 、()()()P AB P A P B -=- B 、()()()P A B P A P B =+UC 、()()()P AB P A P B =D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是()A 、A 与B 独立 B 、A 与B 独立C 、()()()P AB P A P B =D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为其分布函数为()F x ,则(3)F =()A 、0B 、0.3C 、0.8D 、17、设离散型随机变量X 的密度函数为4,[0,1]()0,cx x f x ⎧∈=⎨⎩其它 ,则常数c =()A 、15 B 、14C 、4D 、58、设X ~)1,0(N,密度函数22()x x ϕ-=,则()x ϕ的最大值是()A 、0B 、1 CD、9、设随机变量X 可取无穷多个值0,1,2,…,其概率分布为33(;3),0,1,2,!k p k e k k -==L ,则下式成立的是()A 、3EX DX ==B 、13EX DX == C 、13,3EX DX == D 、1,93EX DX ==10、设X 服从二项分布B(n,p),则有()A 、(21)2E X np -=B 、(21)4(1)1D X np p +=-+C 、(21)41E X np +=+D 、(21)4(1)D X np p -=-11、独立随机变量,X Y ,若X ~N(1,4),Y ~N(3,16),下式中不成立的是()A 、()4E X Y +=B 、()3E XY =C 、()12D X Y -= D 、()216E Y += 12、设随机变量X 的分布列为:则常数c=()A 、0B 、1C 、14D 、14-13、设X ~)1,0(N ,又常数c 满足{}{}P X c P X c ≥=<,则c 等于()A 、1B 、0C 、12 D 、-1 14、已知1,3EX DX =-=,则()232E X ⎡⎤-⎣⎦=()A 、9B 、6C 、30D 、36 15、当X 服从( )分布时,EX DX =。
《概率论与数理统计》期末考试(B)卷答案与评分标准
海南师范大学物理、电子、自动化、地理、城规、计算机专业《概率论与数理统计》 2009—2010学年度第一学期期末考试(B )卷答案与评分标准注意事项:1. 考前请将密封线内填写清楚 2. 所有答案请直接答在试卷上3.考试形式:闭卷4. 本试卷共五大题,满分100分, 考试时间100分钟一、单项选择题(本题共六小题,每小题3分,共18分。
在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分)1、将3个不同的球随机地放入4个不同的杯中, 有一个杯子放入2个球的概率是( B ).. A :324234C C ⋅; B :324234P C ⋅ ; C :424233P C ⋅; D :424233C C ⋅.2、下列函数中,可看作某一随机变量X 的概率分布密度函数的是( C ) A :;,1)(2+∞<<-∞+=x x x f B :;,11)(2+∞<<-∞+=x xx fC :;,)1(1)(2+∞<<-∞+=x x x f π; D :.,)1(2)(2+∞<<-∞+=x x x f π3、己知随机变量Y X ,相互独立且都服从正态分布)4 ,2(N , 则( B ) . A :)4 ,4(~N Y X +; B :)8 ,4(~N Y X + ; C :)4 ,0(~N Y X -; D :Y X -不服从正态分布.4、己知随机变量X 服从二项分布)2.0 ,10(B , 则方差=)(X D ( D ). A :1; B :0.5; C :0.8; D :1.6.5、己知随机变量X 的期望5)(=X E , 方差4)(=X D , 则( A ). A :98}65-X {≥<P ; B :98}65-X {≤<P ; C :98}65-X {≥≥P ; D :98}65-X {≤≥P .6、设4321,,,X X X X 是来自正态总体) ,(2σμN 的简单随机样本,下列四个μ的无偏估计量中,最有效的是( D ). A :)(313211X X X ++=μ; B :)2(413214X X X ++=μ; C :)32(613213X X X ++=μ; D :)(4143212X X X X +++=μ.二、填空题(将答案直接填入栝号内,本题共六小题,每小题3分,共18分)1、设B A 与为随机事件,3.0)(,5.0)(==AB P A P ,则条件概率=)(A B P ( 0.6 )2、已知随机变量X 服从区间,10]2[内的均匀分布,X 的概率分布函数为),(x F 则=)4(F ( 0.25 )。
大学概率论考试必备试题及答案详细解答
x
f
(x)
A
x
0
0 x 1 1 x 2 试求:(1)常数 A . (2) X 的分布函数。
其它
四、 (10) 设随机变量 X 在[1, 2] 上服从均匀分布,试求随机变量Y e2X 的密度函数。
一等品的概率为___________
4、 2008 年北京奥运会召开前,某射击队有甲、乙两个射手,他们的射击技术由下表给出。其中 X 表示
甲射击环数,Y 表示乙射击环数,派遣__________射手参赛比较合理。
X
8
9
10
p
Y
8
9
10
p
5、已知 D(X ) 1 , D(Y ) 25 , XY 0.4 ,则 D(X Y ) ___________
规定选择正确得1分选择错误得0分假设无知者对于每一个题都是从4个备选答案中随机地选答并且没有不选的情况问他的得分x服从何种分布
大学概率论考试必备试题及答案 详细解答(总 3 页)
--本页仅作为文档封面,使用时请直接删除即可---内页可以根据需求调整合适字体及大小--
试试题纸 (A 卷)
课程名称 《概率论与数理统计》 专业班级 全校 07 级本科
九、 E(W 2 ) D(W ) E2 (W ) 1 e e2
4
规定选择正确得1分,选择错误得 0 分,假设无知者对于每一个题都是从 4 个备选答案中
随机地选答,并且没有不选的情况,问他的得分 X 服从何种分布?用中心极限定理计算
他得分能够超过18 分的概率。
七、 (10)
设总体
大学概率论与数理统计试题库及答案a
A) 50
B
) 100 C
17. 设 X 1, X 2 , X 3 相互独立同服从参数
A ) 1.
B
) 9.
C
) 120
D
) 150
3的泊松分布,令 Y 1 (X 1 X 2 X 3) ,则 3
) 10.
D
) 6.
18.对于任意两个随机变量 X 和 Y ,若 E ( XY ) E ( X ) E (Y ) ,则
3.若事件 A 和事件 B 相互独立 , P(A)= , P(B)=0.3 , P(A U B)=0.7, 则
4. 将 C,C,E,E,I,N,S 等 7 个字母随机的排成一行,那末恰好排成英文单词
SCIENCE的概率为
5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为 射中的概率为
0.6 和 0.5 ,现已知目标被命中,则它是甲
9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为 _________
80
,则该射手的命中率为
81
10. 若随机变量 在( 1, 6)上服从均匀分布,则方程 x 2+ x+1=0 有实根的概率是
3
4
11. 设 P{ X 0, Y 0} , P{ X 0} P{ Y 0} ,则 P{max{ X ,Y } 0}
则第二人取到黄球的概率是
( A) 1/5
( B) 2/5
( C) 3/5
( D) 4/5
4. 对于事件 A, B,下列命题正确的是
( A)若 A, B 互不相容,则 A 与 B 也互不相容。
( B)若 A, B 相容,那么 A 与 B 也相容。
( C)若 A, B 互不相容,且概率都大于零,则
概率论与数理统计考试试卷(附答案)
概率论与数理统计考试试卷(附答案)一、选择题(共6小题,每小题5分,满分30分) 1. 事件表达式B A -的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生(D) 事件A 与事件B 至少有一件发生2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1(D) 是必然事件3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布(D) 自由度为2的F 分布4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( )(A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计6. 随机变量X 服从在区间(2,5)上的均匀分布,则X 的方差D (X )的值为( ) (A) 0.25(B) 3.5(C) 0.75(D) 0.5二、填空题(共6小题,每小题5分,满分30分。
把答案填在题中横线上) 1. 已知P (A )=0.6, P (B |A )=0.3, 则P (AB )= __________2. 三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为__________3. 一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为_____4. 已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=_______.5. 假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (2X +Y )=__________6. 一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=_____________________ _______三、有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。
概率论与数理统计》期末考试试题及解答
七、(8分)设二维随机变量 的联合密度函数为
求:(1) ;(2)ຫໍສະໝຸດ 的边缘密度。解:(1) …………..2分
=
=[ ] ………….4分
(2) …………..6分
……………..8分
八、(6分)一工厂生产的某种设备的寿命 (以年计)服从参数为 的指数分布。工厂规定,出售的设备在售出一年之内损坏可予以调换。若工厂售出一台设备盈利100元,调换一台设备厂方需花费300元,求工厂出售一台设备净盈利的期望。
解:因为 得 ………….2分
用 表示出售一台设备的净盈利
…………3分
则
………..4分
所以
(元)………..6分
九、(8分)设随机变量 与 的数学期望分别为 和2,方差分别为1和4,而相关系数为 ,求 。
解:已知
则 ……….4分
……….5分
……….6分
=12…………..8分
十、(7分)设供电站供应某地区1 000户居民用电,各户用电情况相互独立。已知每户每日用电量(单位:度)服从[0,20]上的均匀分布,利用中心极限定理求这1 000户居民每日用电量超过10 100度的概率。(所求概率用标准正态分布函数 的值表示).
答案:
解答:设 的分布函数为 的分布函数为 ,密度为 则
因为 ,所以 ,即
故
另解在 上函数 严格单调,反函数为
所以
4.设随机变量 相互独立,且均服从参数为 的指数分布, ,则 _________, =_________.
答案: ,
解答:
,故
.
5.设总体 的概率密度为
.
是来自 的样本,则未知参数 的极大似然估计量为_________.
(4) 设总体 和 相互独立,且都服从 , 是来自总体 的
(完整版)概率论与数理统计试题及答案.doc
2008- 2009 学年第1学期概率论与数理统计(46 学时 ) A一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分)。
1、 A、 B 为两个随机事件,若P( AB)0 ,则( A) A、 B 一定是互不相容的;(B)AB一定是不可能事件;(C) AB 不一定是不可能事件;(D)P( A)0或 P(B)0 .Y 0 1 22、二维离散型随机变量( X ,Y)的分布律为X1 1/6 1/3 02 1/4 1/6 1/12F ( x, y) 为 ( X ,Y) 的联合分布函数,则F (1.5,1.5)等于(A)1/6 ;(B)1/2 ;(C)1/3 ;( D)1/4.3、 X、 Y 是两个随机变量,下列结果正确的是(A)若E( XY)EXEY ,则X、Y独立;(B)若 X、Y 不独立 , 则 X、Y 一定相关;(C)若 X、Y 相关, 则 X、Y 一定不独立;(D)若D(X Y) DX DY ,则X、Y独立.4、总体 X ~ N ( , 2 ), , 2均未知, X 1, X 2 ,L , X n 为来自 X 的一个简单样本,X 为样本 均值, S 2 为样本方差。
若 的置信度为 0.98的置信区间为 (X c S n , X c S n ) ,则常数 c 为( A )t 0.01 (n 1) ;( ) 0.01 (n) ;B t( C )t0.02(n 1) ;( )(n) .D t 0.025、随机变量 X 1, X 2 ,L , X n 独立且都服从 N (2,4)__1 n分布,则 XX i 服从n i1(A ) N (0,1) ;(B ) N (2,4 n) ;(C ) N (2 n, 4n) ;(D ) N(2, 4) .n二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)。
6、已知 A 、 B 为两个随机事件 ,若 P( A) 0.6, P( AB) 0.1,则 P( A | AB) =1.7、已知随机变量 X 服从区间 (0, 2) 上的均匀分布,则 E(2X) =( ).8、已知连续型随机变量 X 的概率密度函数为 f (x)2 x,0 x 1,则概率 P(| X | 1 2) =0,其它( ) .9、随机变量 X : b(3, 1 ), Y : b(3, 2 ) ,且 X ,Y 独立,则 D(X Y) =() .3310 、 已 知 随 机 变 量 X i , i 1,2,3 相互独立,且都服从 N(0,9)分布,若随机变量Y a( X 12X 22 X 32) :2(3) ,则常数 a =( ).三、解答题(本大题共 6 小题,每小题 10 分,共 60 分)。
佛山科学技术学院 2010-2011学年第二学期《 概率论与数理统计》(B卷)
Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999
六、(8分)某超市为增加销售,对营销方式、管理人员等进行了一系列调整,调整后随机抽查了9天的日销售额(单位:万元),经计算知 。据统计调整前的日平均销售额为 万元,假定日销售额服从正态分布。试问调整措施的效果是否显著?( )
附表: 。
七、(8分)设 的概率密度为
求(1)边缘概率密度 ;问 是否独立?
A.2B.3
C.4D.5
9.设x1,x2,…,x5是来自正态总体N( )的样本,其样本均值和样本方差分别为 和 ,则 服从( )
A.t(4)B.t(5)
C. D.
10.设总体X~N( ), 未知,x1,x2,…,xn为样本, ,检验假设H0∶ = 时采用的统计量是( )
A. B.
C. D.
二、填空题(每小空2分,共12分)
八、(12分)设随机变量服从几何分布,其分布列为
,
求 与
九、(8分)在一天中进入某超市的顾客人数服从参数为 的泊松分布,而进入
超市的每一个人购买 种商品的概率为 ,若顾客购买商品是相互独立的,
求一天中恰有 个顾客购买 种商品的概率。
十、(8分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求 .
A. B.
C. D.
4.设随机变量X的概率分布为( )
X
0
1
2
3
P
0.2
0.3
k
0.1
则k=
A.0.1B.0.2
C.0.3D.0.4
5.设随机变量X的概率密度为f(x),且f(-x)=f(x),F(x)是X的分布函数,则对任意的实数a,有( )
概率论与数理统计模拟试题5套带答案
06-07-1《概率论与数理统计》试题A一、填空题(每题3分,共15分)1. 设A ,B 相互独立,且2.0)(,8.0)(==A P B A P ,则=)(B P __________.2. 已知),2(~2σN X,且3.0}42{=<<X P ,则=<}0{X P __________.3. 设X 与Y 相互独立,且2)(=X E ,()3E Y =,()()1D X D Y ==,则=-])[(2Y X E ___4.设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()n i i X μσ=-∑服从__________分布.5. 设),3(~),,2(~p B Y p B X,且95}1{=≥X P ,则=≥}1{Y P __________. 二、选择题(每题3分,共15分)1. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】 (A)11a a b -+-;(B) (1)()(1)a a a b a b -++-;(C) a a b +;(D) 2a ab ⎛⎫ ⎪+⎝⎭.2. 设随机变量X 的概率密度为()130, 其他c x p x <<⎧=⎨⎩则方差D(X)= 【 】(A) 2; (B)12; (C) 3; (D)13.3. 设A 、B 为两个互不相容的随机事件,且()0>B P ,则下列选项必然正确的是【 】()A ()()B P A P -=1;()B ()0=B A P ;()C ()1=B A P ;()D ()0=AB P .4. 设()x x f sin =是某个连续型随机变量X 的概率密度函数,则X 的取值范围是【 】()A ⎥⎦⎤⎢⎣⎡2,0π;()B []π,0; ()C ⎥⎦⎤⎢⎣⎡-2,2ππ;()D ⎥⎦⎤⎢⎣⎡23,ππ. 5. 设()2,~σμN X ,b aX Y -=,其中a 、b 为常数,且0≠a ,则~Y 【 】()A ()222,b a b a N +-σμ; ()B ()222,b a b a N -+σμ;()C ()22,σμa b a N +; ()D ()22,σμa b a N -.三、(本题满分8分) 甲乙两人独立地对同一目标射击一次,其命中率分别为0.5和0.4,现已知目标被命中,求它是乙命中的概率.四、(本题满分12分)设随机变量X 的密度函数为xx ee Ax f -+=)(,求: (1)常数A ; (2)}3ln 210{<<X P ; (3)分布函数)(x F .五、(本题满分10分)设随机变量X 的概率密度为()⎩⎨⎧<<-=其他,010),1(6x x x x f 求12+=X Y的概率密度.六、(本题满分10分)将一枚硬币连掷三次,X 表示三次中出现正面的次数,Y 表示三次中出现正面次数与出现反面次数之差的绝对值,求:(1)(X ,Y )的联合概率分布;(2){}X Y P>.七、(本题满分10分)二维随机变量(X ,Y )的概率密度为⎩⎨⎧>>=+-其他,00,0,),()2(y x Ae y x f y x求:(1)系数A ;(2)X ,Y 的边缘密度函数;(3)问X ,Y 是否独立。
概率论与数理统计考试试题及答案
)0.6B =2.015.0121武汉理工大学教务处试题标准答案及评分标准用纸课程名称概率论与数理统计(A 卷)一、选择题(每小题3分,总计15分)1.D ;2.C ;3.C ;4.B ;5.B二、填空题(每小题3分,总计15分)6.;7.;8.;9.;10.三、计算题(共52分)11.解:设A i 分别表示所取产品是由甲、乙、丙车间生产(i=1,2,3);B 表示所取产品为不合格品.由题设有,%25)(,%35)(,%40)(321===A P A P A P.05.0)(,04.0)(,02.0)(321===A B P A B P A B P ---------4分1)由全概率公式,得345.0)|()()(31==∑=i i iA B P AP B P ---------3分2)4058.06928345.004.035.0)()()|()()()|(2222≈=⨯===B P A P A B P B P B A P B A P --------3分 12.解:1)1210)(02==+=⎰⎰⎰+∞∞-∞-+∞-A dx Ae dx dx x f x ,故A =2 --------- 3分2).3679.02)5.0(15.02≈==>-+∞-⎰e dx e X P x ----------- 3分3)对100,12<<>-=-y x e y x 时有当. 所以当0≤y 或1≥y 时,0)(=y f Y ; 当10<<y 时,分布函数{}⎪⎭⎫⎝⎛--=⎭⎬⎫⎩⎨⎧--≤=≤-=-)1ln(21)1ln(211)(2y F y X P y e P y F XX Y ; 11121)1ln(21)()(=⎪⎪⎭⎫⎝⎛-⋅⎪⎭⎫ ⎝⎛--==∴y y f dy y dF y f X Y Y . ⎩⎨⎧<<=∴其他,,0101)(y y f Y . ―――― 6分 13.解:(,)X Y 的联合分布律和边缘分布律为————8分由上表可看到,j i ij p p p ..∙≠,所以X 和Y 不相互独立. --------2分14.解:设i X 表示第i 次射击时命中目标的炮弹数,则由题设有:)100,,2,1(5.1)(,2)(2 ===i X D X E i i 。
概率论与数理统计考核试卷
1. ______
2. ______
3. ______
4. ______
5. ______
6. ______
7. ______
8. ______
9. ______
10. ______
11. ______
12. ______
13. ______
14. ______
15. ______
9. ABC
10. ABC
11. ABC
12. BD
13. AC
14. ABC
15. ABCD
16. ABC
17. AB
18. AD
19. ABCD
20. ABC
三、填空题
1. [0, 1]
2. ∫f(x)dx = 1
3.均方根
4. t检验
5.完全正相关
6.样本量
7. χ²分布
8.拒绝了正确的原假设
C.数据存在异常值
D. A、B和C
20.以下哪些是时间序列分析中常用的统计方法?()
A.移动平均
B.指数平滑
C.自相关函数
D. A、B和C
(以下为答题纸):
考生姓名:答题日期:得分:判卷人:
二、多选题(20×1.5分)
1. ______
2. ______
3. ______
4. ______
5. ______
16.以下哪个选项描述的是相关系数的性质?()
A.相关系数的取值范围为-1到1
B.相关系数表示两个随机变量之间的线性关系
C.相关系数可以为负值,表示负相关
D. A、B和C都是
17.在回归分析中,以下哪个选项表示解释变量与被解释变量之间的关系?()
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 设随机变量ξ 服从参数为λ 的普哇松分布,其概率函数为 P(ξ =m)=
m
m!
e -
(m= 0 ,1 ,….)
(λ >0 ) (10 分)
试求普哇松分布中参量λ 的最大似然估计。
7
3. 从大批发芽率为 0.9 的种子中随意抽取 1000 粒,试估计这 1000 粒种子发芽率不低 于 0.88 的概率。 (12 分) (给定Ф 0 (2 .11 )=0.98257 )
8
5. 一批零件共 100 个,其中次品 5 个,每次从中任取一个,取后不放回,求下列事件 的概率。 (1) 第 2 次取得正品。 (2) 检查 3 个零件至少有一个是次品。 ( 8 分)
9
( a )任何实数 ( c )1 3.ξ 的分布函数为 ( b )正数 ( d )任何非零实数
0 3 F(x)= x 1
则 Eξ =(
x 0 0 x 1 x 1
)
( c )
( a )
0 1
0
x 4 dx
3x 2 dx
( c )
( b )1 0 1x 4 dx + 3x 3 dx
3.设总体ξ 的分布密度ф (x,θ )为 φ (x,θ )=
e x
0
x 0 x 0
( 0 )
今从中抽取 10 个个体,得数据如下: 1150 1060 1340 1150 1250 1050 1100 1080 1300 1200 试用最大似然法估计θ 。 (15 分)
2
为 (已知 U 0.05 1.96)
三. 计算题
1.甲、乙、丙三人向同一飞机射击,击中的概率依次为 0.4 ,0.5 ,0.7 .如果只有一 人击中,则飞机被击落的概率为 0.2;如果二人击中,则飞机被击落的概率为 0.6; 如果三人都击中,则飞机一定被击落,求飞机被击落的概率。 (11 分) 2.袋装奶粉规定每袋净重 1000 克,标准差为 30 克,每箱装有 100 袋,计算一箱奶粉 净 重 不 足 99400 克 的 概 率 。 ( ф ( 2 ) =0.97725 ) (11 分)
1 +ξ
2
)= (
)
2.ξ 与η 独立,其方差分别为 6 和 3,则 D(2ξ -η )= ( ( a ) 9 ( b ) 15 ( c ) 21 ( d ) 27 3. ξ ∽Ф (x),而Ф (x)= (a )
)
(1 x )
2
1
,则 2ξ 的概率密度为( (c )
) ( d )
1 (1 x 2 )
。
4 .已知随机变量 ξ ∽ B ( n,P )且 E ξ =2.4 , D ξ =1.44 , 则二项分布中的参数 n = , P = 5. 已知灯泡寿命的标准差 = 50 小时,抽出 25 个灯泡检验,得平均寿命 x = 500 小 时。则以 95%的可靠性 对灯泡平均寿命进行区间估计,其置信区间为 ( 已知 U 0.05 1.96 )
三.计算题: 1. 测得 20 个毛坯重量(单位:g),列成简单表如下: 毛坯重量 185 187 192 195 200 202 205 1 1 1 1 1 2 1 频数
206 1
207 2
208 1
210 1
214 1
215 2
216 1
将其按区间 [ 183.5 , 192.5 ) … ,[219.5 , 228.5 )分为 5 组,列出分组统计表,画出频率直方图,并按分 单公式计算样本平均数和样本方差。 (15 分)
3
4. 已知某一试验,其温度服从正态分布,即ξ ∽Ν ( ,σ 值为: 1250 1265 1245 1260 1275 问是否可以认为 =1277 (α =0.05) ( 给定 t 0.05 (5 ) 2.571 , t
0.05
2
),现在测得温度的 5 个
(4) 2.776)
(11 分)
四. 证明题: 设( x1 , x 2 ,, x n ) 为样本的 n 个观察值,试证明:对于任意常数 a 及非零常数 c , 记 Z i ( xi a) / c (i=1, , n) 则有 (8 分)
x cz a ,
2 s c 2 sz 2 x
4
佛山科学技术学院
5
2000—2001 学年第一学期期终考试试题
a )ξ 与η 不独立 b )ξ 与η 独立 c)ξ 与η 不相关 d )ξ 与η 相关。
二. 填空题(1—4 小题每题 4 分,5 小题占 8 分,共 24 分) 1. 若事件 A 与 B 独立,且 P(A)=P, P(B)= q ,则 P( A U B)= 2. 设随机变量ξ 的概率密度为 Φ (x)=
4. 某商店为了解居民对某种商品的需要,调查了 100 家住户,得出每户每月平均需要 量为 10kg,方差为 9, 如果这个商店供应 10000 户,试就居民对该种商品的平均需求量进行区间估计。 (α =0.01) 。并依此考 虑最少要准备多少这种商品才能以 0.99 的概率保证供应? (10 分) (已知 U 0.05 1.96 , U0.01 2.58 )
五 六 七 八 九 十 十 一 十 二 总成绩
一
二
三
四
(a) (1-P) 3
(c) 3(1-P) 2.如果常数 C 为(
2
(b)1-P
3
(d)(1-P) P(1 P) P (1 P)
3 2 2
) ,则函数Φ (x)可以成为一个随机变量的概率密度,其中
1 X X 0 2C Φ (x)= C xe 其它 0
佛山科学技术学院 2000—2001 学年第一学期期终考试试题
课程:概率论与数理统计 (A 卷) 专业、班级:99 级
题号 得分
一. 多选题(每小题 4 分,共 20 分) 1.每次试验的成功率为 P (0〈 p〈1 ) ,则在 3 次重复试验中至少失败一次的概率为 ( )
姓名_________学号:
x
(t )dt
。
二.填空题 (每小题 5 分,共 25 分) 1.如果ξ 和η 满足 D(ξ +η )=D(ξ -η )则必有
2.在 10 只元件中有 2 只次品,从中取两次,每次随机地取一只,作不放回抽样,则两 只都取到正品的概率为
6
3. 设随机变量 X 的数学期望 EX= , 方差 DX 2 则由切贝谢夫不等式有 P x 4
( b )
2 (4 x 2 )
1
(1
x ) 4
2
1 (1 4 x 2 )
)
4.同时抛掷 3 枚均匀的硬币,则恰好有两枚正面向上的概率为( ( a ) 0.5 ( b ) 0.25 ( c ) 0.375 ( d ) 0.125 5. 设ξ ∽Ф (x),对任何实数 x 有( ( a ) P(ξ =x)>0 ( b )F (x)= Ф (x) ) ( c ) Ф (x)=0 ( d )P{ξ x)
某灯泡厂某天生产一大批 40 W 的灯泡,今从中随意抽取了 10 个进行寿命测试, 得数据如下(单位:小时) 1250 1040 1130 1300 1200 1200 1120 1080 1100 1050 ˆ= (1) 用矩法估计总体期望值 ,得 (2) 若灯泡寿命服从正态分布,即ξ ∽N( , 16)则其平均寿命的置信度为 95%的置信区间
1
e x
2
6 x 9
, - x , 方差 Dξ = 。
则ξ 的数学期望 Eξ =
3.用切贝谢夫不等式估计,在 300 个新生婴儿中,男婴多于 130 个而少于 170 个的概 率为 (假设生男孩和生女孩的概率均为 0.5). 4. (1) 5. 任何一个连续型随机变量的概率密度Φ (x)一定满足 (2) 。
课程:概率论与数理统计 (B 卷) 专业、班级:_____________姓名_________学号:
题号 得分
一. 单选题 (每小题 4 分,共 20 分) 1.ξ 1 ,ξ ( a ) 1
2
一
二
三
四
五
六
七
八
九
十
十 一
十 二
总成绩
都服从区间[ 0 ,2 ]上的均匀分布,则 E(ξ ( b ) 2 ( c ) 4 ( d ) 无法计算
1
x 4 dx
0
1
4.如果ξ 与η 独立,则 ( (a)CoV(ξ ,η )=0 (c)D(ξ η )= Dξ .Dη
) (b)D(ξ η )= Dξ +Dη . (c)D(ξ -η )= Dξ -Dη . ) 2 0.25 0.2 0
5.已知ξ 和η 的联合分布如表所示,则有( η ξ 0 1 2 ( ( ( ( 0 0.1 0 0.2 0.05 0.1 0.1 1