重庆大学网络教育入学考试高等数学试题

合集下载

重庆大学高等数学习题3-2

重庆大学高等数学习题3-2

A 组1.用洛必达法则求下列极限:(1)02lim 1cos xxx e e x -→+-- (2)arctan 2lim 1x x xπ→+∞-(3)0cos lim sin x x e x x x →- (4)011limcot ()sin x x x x→- (5)10(1)lim xx x ex→+- (6)210sin lim ()x x x x +→ (7)011lim()sin x x x→- (8)sin 0lim xx x +→(9)lim(1)xx a x→∞+ (10)n 其中n 为正整数解析:考查洛必达法则的应用,洛必达法则主要应用于00,∞∞型极限的求解,当然对于一些能够化简为00,∞∞型极限的同样适用,例如00010⋅∞==∞等等,在求解的过程中,同样可以利用前面已经学到的极限的求解方法,例如等价无穷小、两个重要极限 解:(1)本题为型极限的求解,利用洛必达法则求解得 0002lim lim lim 21cos sin cos x x x x x x x x x e e e e e e x x x---→→→+--+===- (2)本题为型极限的求解,利用洛必达法则求解得 22221arctan 12lim lim lim 1111x x x x x x x x x π→+∞→+∞→+∞--+===+-(3)本题为0型极限的求解,利用洛必达法则求解得000cos sin 1lim lim lim sin sin cos 0x x x x x e x e x x xx x x →→→-+===∞+ (4)先化简,得2300011cos sin sin sin limcot ()lim lim lim sin sin sin sin x x x x x x x x x x xx x x x x x x x x →→→→----=⋅==型极限的求解,利用洛必达法则求解得23220001sin 1cos 12lim lim lim 336x x x xx x x x x x →→→--=== (5)化简1ln(1)00(1)lim limx x xx x x e eexx+→→+--=型极限的求解,利用洛必达法则求解得 0ln(1)ln(1)ln(1)lim 220002000ln(1)(1)ln(1)1lim lim lim(1)(1)ln(1)1ln(1)1ln(1)lim lim lim 222x x x x xxx x x x x x x xx e e x x x x e e x x x x x x x x x e e e e x x x →+++→→→→→→-+--+++=⋅=+-++-+--+====-(6)1∞型极限的求解,首先利用lne ,然后利用洛必达法则求解得222220002322000sin sin sin sin ln ln 11ln 11lim lim lim 001sin cos 112limlimlim 336sin lim ()lim x x x x x x x x x xxx x x x x x x x x x x x x x xxxx e eeexeeee+++→→→+++++→→→⎛⎫⎛⎫⎛⎫+-- ⎪⎪⎪⎝⎭⎝⎭⎝⎭→→----========(7)∞-∞型极限的求解,先化简再利用洛必达法则求解得2200000111sin sin 1cos 2lim()lim lim lim lim 0sin sin 22x x x x x xx x x x x x x x x x x x→→→→→----==== (8)00型极限的求解,先利用lne 化简,再利用洛必达法则求解得22002001ln lim limsin cos 1limlimsin ln sin cos sin sin 0lim lim 1x x x x xx xx x x x xx x x xxx x x e e eee++→→++→→++---→→======(9)1∞型极限的求解,先利用重要极限二化简lim(1)lim(1)lim(1)x x a a x a a ax x x a a a e x x x⋅⋅→∞→∞→∞+=+=+= 当然也可以先化简,再利用洛必达法则求解222ln()ln lim1[ln()ln ]1111limlim112limlim()2lim(1)lim()lim x x x x x x a xx x x x a x x x x x x a x x a x ax axax x a xxx aa x a e e x x eeeee →∞→∞→∞→∞→∞+-+-→∞→∞→∞--++--++++========(10)0∞型极限的求解,先化简,利用洛必达法则求解1ln212lim(2)lim lim1nn n nn n n nn e e→∞→∞→∞====2.已知21lim5sinxx bx cxπ→++=,求b,c的值解析:考查洛必达法则的应用,已知1limsin0xxπ→=,要使极限存在,则21lim()0xx bx c→++=同时可以利用洛必达法则求解解:根据上述分析得10b c++=21122lim limsin cosx xx bx c x b bx xππππ→→++++==-则25bπ+=-,解得52bπ=--则51cπ=+B组1.求下列极限(1)2222lim(1)(1cos)x x x xxxxe xe e ee x→+-+--(2)2lim(arctan)xxxπ→+∞⋅(3)1lnlim(cot)xxx+→(4)1111lim()x x xxxa b ca b c+++→++++(5)1limln1xxx xx x→--+(6)11112limnxx x xnxa a an→∞⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦L,其中12,,,0na a a>L解析:考查极限的求解,求解极限的方法包括洛必达法则、等价无穷小、两个重要极限还可以利用换元求解,下面结合实例说明解:(1)型极限的求解,先化简再利用洛必达法则求解222200023220022(2)(2)(23)(3)lim lim lim11(1)(1cos)22(44)(4)(84)(5)1lim lim333x x x x x x x xxx x xx x x xx xxe xe e e x e x e x e x ee x x x xx e x e x e x ex→→→→→+-+-++-++==--⋅-++-++===(2)1∞型极限的求解,先化简为型极限,再利用洛必达法则求解222221221arctan ln arctan lim lim121ln arctan 12limarctan 12lim (arctan )lim x x x xx x x xx xx x x x x x x eeeeeππππππ→+∞→+∞→+∞⋅+⋅⋅-⋅→+∞→+∞-⋅-+⋅=====(3)0∞型极限的求解,先化简为型极限,再利用洛必达法则求解00csc cot cot lim 1ln cot 1lim 1sin ln ln 0lim(cot )lim x x x x x x xxxxxx x x e ee e +→+→++---→→====(4)1∞型极限的求解,先化简为型极限,再利用洛必达法则求解 1111111110ln(ln ln ln )1111limln ln ln 1lim()lim ()x x x x x x x x x x a b c a b ca ab bc c x x x a b c a b cxxab cx x a a b b c ca b c a b ca b cab c ee a b cea b c +++++++++→+++++++++++⋅++++→→++++++++==++==(5)型极限的求解,直接利用洛必达法则求解 ln 2ln ln 111121[(ln 1)](ln 1)1limlim limlim211ln 1ln 11x x xx xx xx x x x e x x x e x ex x x x x x x x →→→→++--+-====---+-+- (6)1∞型极限的求解,先化简为型极限,再利用洛必达法则求解 1111111122222121111221112111ln ln ln ln 111lim1112lim ln lim lim x x x n n xxxn x x xn x x x a a a a a a n x x x a a a n n a a a nxx x x n nxnx x x a a a a a a eene→∞→∞⎛⎫---⎛⎫ ⎪⋅⋅+⋅⋅++⋅⋅⎛⎫⎪ ⎪⎪+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+++ ⎪⎝⎭⎪⎪⎝⎭⎝⎭-→∞→∞⋅+⎡⎤+++⎢⎥==⎢⎥⎢⎥⎣⎦=L L L L 112ln ln 12x x n n a a a na a a ⎛⎫ ⎪⋅++⋅ ⎪⎝⎭=L L 2.评论函数1(1),0()0,0xx x f x e x ⎧⎡⎤+⎪⎢⎥>⎪⎢⎥=⎨⎢⎥⎣⎦⎪⎪≤⎩在点0x =处的连续性解析:考查函数的连续性,只需证明0(0)lim ()x f f x →=解:已知(0)0f =01ln(1)lim00(1)1lim ()lim 1x x xxx x x f x e e e+→+++→→+==⋅=则函数在点0x =处不连续性。

重庆大学高等数学习题1-5

重庆大学高等数学习题1-5

习题1-5 A 组1.求参数a 的值,使得函数24,2()2,2x x f x x a x ⎧-≠⎪=-⎨⎪=⎩在点2x =处连续解析:考查分段函数的连续性,函数在某一点连续的充要条件可以总结为00lim ()()x x f x f x →=解:本题中22224lim ()limlim(2)42x x x x f x x x →→→-==+=- 则4a =2.若函数(sin cos ),0()2,0x e x x x f x x a x ⎧+>=⎨+≤⎩是(,)-∞+∞上的连续函数,求a解析:考查函数在定义域内的连续性,本题中,当0x >和0x ≤时,函数()f x 都是初等函数的复合,因此都在连续的,则判断函数在上连续只需判断函数在点0x =处连续,即使00lim ()lim ()(0)x x f x f x f -+→→== 解:已知(0)f a =lim ()lim(2)x x f x x a a --→→=+=,00lim ()lim (sin cos )1x x x f x e x x ++→→=+= 则1a =3.若函数2,0()sin 0a bx x f x bx x x⎧+≤⎪=⎨>⎪⎩在0x =点处连续,求a 与b 的关系解析:考查分段函数在某点上的连续性,和上题类似,只需使0lim ()lim ()(0)x x f x f x f -+→→== 解:已知(0)f a =20lim ()lim()x x f x a bx a --→→=+=,00sin sin lim ()lim lim x x x bx bxf x b b x bx+++→→→===则a b =4.求下列函数的间断点,并指出其类型 (1)2sin ()1x f x x =-(2)1()1x f x x -=-(3)2tan ()1x f x x =+ (4)20,0,01()42,134,3x x x f x x x x x x <⎧⎪≤<⎪=⎨-+-≤<⎪⎪≥⎩ 解析:考查间断点的类型,首先要找出间断点,一般为无定义点、无极限点和函数值不等于该点的极限值的点。

重庆大学高数(工学下)期末试题一(含答案)

重庆大学高数(工学下)期末试题一(含答案)

重庆大学《高等数学(工学类)》课程试卷 第1页 共1页重庆大学《高等数学(工学类)》课程试卷20 — 20 学年 第 学期开课学院: 数统学院 课程号: 考试日期:考试方式:考试时间: 120 分一、选择题(每小题3分,共18分) 1. 向量a b ⨯与,a b 的位置关系是().(A) 共面 (B) 垂直 (C) 共线 (D) 斜交知识点:向量间的位置关系,难度等级:1. 答案:(B).分析:,a b 的向量积a b ⨯是一个向量,其方向垂直,a b 所确定的平面.2. 微分方程633xy dye e y x y dx=+- 的一个解为().(A)6y = (B)6y x =- (C)y x =- (D)y x =知识点:微分方程的解,难度等级:1. 答案: (D).分析:将(A),(B),(C),(D)所给函数代入所给方程,易知只有y x =满足方程,故应选(D).3. 累次积分⎰⎰=-2022x y dy e dx ().(A))1(212--e (B))1(314--e (C))1(214--e (D))1(312--e 知识点:二重积分交换次序并计算,难度等级:2. 答案:(C).分析: 直接无法计算,交换积分限,可计算得)1(214--e ,只能选(C). 4.设曲线积分⎰--L x ydy x f ydx e x f cos )(sin ])([与路径无关,其中)(x f 具有一阶连续偏导数,且(0)0,f =则=)(x f ().(A)2x x e e -- (B)2xx e e --(C) 12-+-x x e e (D)21xx e e +-- 知识点:积分与路径无关的条件,微分方程,求解,难度等级:3.答案:(B).分析: 由积分与路径无关条件,有[()]cos ()cos x f x e y f x y '-=-命题人:组题人:审题人:命题时间:教务处制学院 专业、班 年级 学号 姓名 考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密()().x f x f x e '⇒-=-由结构看,C,D 不满足方程,代入,B 满足,A 不满足,选B.5. 设直线方程为1111220,0A x B y C z D B y D +++=⎧⎨+=⎩且111122,,,,,0,A B C D B D ≠则直线().(A) 过原点 (B) 平行于z 轴 (C) 垂直于x 轴 (D) 垂直于y 轴 知识点:直线与坐标轴的位置关系,难度等级:1. 答案:(D).分析:方程2220,0B y D D +=≠表示垂直于y 轴且不过原点的平面,11112200A x B y C z D B y D +++=⎧⎨+=⎩表示的直线位于垂直于y 轴且不过原点的平面上,不平行于z 轴,不垂直于x 轴.6. 设∑为球面2224(0)x y z z ++=≥的外侧,则2yzdzdx dxdy∑+⎰⎰().=(A)354(B)354π (C)12 (D)12π知识点:对坐标的曲面积分,高斯公式,难度等级:2. 答案:(D).分析: 添有向平面221:0(4)z x y ∑=+≤取下侧,则124,yzdzdx dxdy zdV π∑+∑Ω+==⎰⎰⎰⎰⎰1228.Dyzdzdx dxdy dxdy π∑+=-=-⎰⎰⎰⎰故有结果为D.二、填空题(每小题3分,共18分)7.121lim(1)sin x y x y →→⎛⎫- ⎪⎝⎭__________.= 知识点:二重极限,难度等级:1. 答案:0. 证明:1(1)sin01x x y--≤- 0,ε∴∀>取,δε=只要0,δ<必有1(1)sin0.x yε--<121lim(1)sin 0.x y x y →→⎛⎫∴-= ⎪⎝⎭ 8. 已知lim6,n n a →∞=则11()n n n a a ∞+=-=∑__________. 知识点:级数和,定义,难度等级:1. 答案:1 6.a - 分析: 部分和数列12231111()()() 6.n n n n s a a a a a a a a a ++=-+-++-=-→-9.2221___________,ds x y z Γ=++⎰其中Γ为曲线cos ,sin ,tttx e t y e t z e ===上相应于t 从0变到2的这段弧.知识点:对弧长的曲线积分,难度等级:2. 答案21).e- 解:弧长的微分为tds dt ==,22222.tx y z e ++=于是2222011).ds x y z e Γ=-++⎰⎰10. 平面3x y z a ++=被球面2222x y z R ++=(0)R <所截得一个圆,则该圆的半径为__________.=知识点:平面,球面,半径,难度等级:1. 答案分析:该圆的中心在平面3x y z a ++=上,且三个坐标相等,中心坐标为(,,),a a a,11.设曲线积分 ,4 L 22⎰++-=yx xdyydx I 其中L 为椭圆,1422=+y x 并取正向,则__________.I =知识点:对坐标的曲线积分,难度等级:2. 答案:.π分析: 可取椭圆的参数方程计算.12. 设∑是球面222x y z R ++=在第一卦限部分,则2__________.x dS ∑=⎰⎰知识点:对面积的曲面积分,对称性,难度等级2. 答案:4.6R π分析:222x dS y dS z dS ∑∑∑==⎰⎰⎰⎰⎰⎰ ()22213x y z dS ∑=++⎰⎰ 224114.386R R R ππ=⋅⋅=三、计算题(每小题6分,共24分) 13. 求微分方程()0y xxe d y x xdy -=+的通解. 知识点:齐次微分方程,通解,难度等级1. 分析:齐次微分方程,作变量代换yu x=化为可分离变量的微分方程.解: 方程两端同除以,x 得()0.y xye dx dy x+-=令,y vx =则.dy vdx xdv =+ 代入上式,得0,ve dx xdv -= 即 0.vdx e dv x--= 积分之,得ln .v x e C -+=故原方程的通解为ln .y xx e C -+=14. 计算2(2)(3),y L x y dx x ye dy -++⎰其中L 由从)0,2(A 到)1,0(B 的直线段22=+y x 及从)1,0(B 到)0,1(-C 的圆弧21y x --=所构成.知识点:对坐标的曲线积分,格林公式,难度等级:2. 分析:补充线段构成闭曲线用格林公式.解 :如图,添加一段定向直线,CA 这样L 与CA 构成闭路.设所围的区域为,D 于是根据格林公式得:2211(2)(3)55(211)24y L CA Dx y dx x ye dy dxdy π+-++==⋅⋅+⋅⎰⎰⎰15(1).4π=+ 则L⎰=.L CACA→+-⎰⎰又2221(2)(3) 3.y CAx y dx x ye dy x dx --++==⎰⎰故25(2)(3)5(1)32.44y L x y dx x ye dy ππ-++=+-=+⎰ 15. 计算22(),x y dS ∑+⎰⎰其中∑为抛物面222z x y =--在xoy 面上方的部分.知识点:对面积的曲面积分,难度等级:2.分析:直接将曲面积分化为二重积分,用极坐标计算二重积分. 解:∑在xoy 的投影为22:2,xy D x y +≤且= 于是22()x y dS ∑+⎰⎰22(xyD x y =+⎰⎰20220112(14(14)84149.30d r r πθππ==⋅+-+=⎰ 16. 计算333,x dydz y dzdxz dxdy ∑++⎰⎰其中∑为球面2222x y z a ++=的外侧.知识点:对坐标的曲面积分,高斯公式,球面坐标,难度等级:2 分析:题设曲面为封闭曲面,高斯公式,再用球面坐标化为三次积分.解:333x dydz y dzdx z dxdy ∑++⎰⎰ 2223()x y z dxdydz Ω=++⎰⎰⎰222053sin 12.5ad d r r dra ππθϕϕπ=⋅=⎰⎰⎰四、解答题(每小题6分,共12分)17.设(,)z f x u =具有连续的二阶偏导数,而,u xy =求22.zx∂∂难度等级:1;知识点:复合函数的偏导数.分析: 按复合函数的偏导数的求法两次对x 求偏导数,即可求出22.z x∂∂ 解:x x u z f y f '''=+ 22.xx xx xu uu z f yf y f ''''''''⇒=++18.利用斯托克斯公式计算222222()()(),y z dx z x dy x y dz Γ-+-+-⎰其中Γ是用平面23=++z y x 截立方体[]⨯1,0[]⨯1,0[]1,0的表面所得的截痕,若从z 轴正向看去,Γ取逆时针方向.知识点:对坐标的曲线积分,斯托克斯公式,难度等级:3 分析: 通过斯托克斯公式将曲线积分转化为对面积的曲面积分,注意积分技巧:可将方程代入被积函数.解: 如图,我们将平面23=++z y x 的上侧被Γ所围的部分取为,∑于是∑的单位法向量.n e =由斯托克斯公式得:dS y x x z z y z y x I ⎰⎰∑---∂∂∂∂∂∂=222222cos coscos γβα ().x y z dS ∑=++ 观察上述积分,由于在∑上有3,2x y z ++=根据第二型曲面积分的计算公式,故396(6)().42xyxyD D I dS S ∑=-=-=-=-=-其中xy D 是∑在xOy 坐标平面的投影区域,而xyD S 为xy D 的面积.五、 证明题(每小题6分,共12分)19.试证:,)(0,0)(,)0, (,)(0,0)x y f x y x y ⎧≠⎪=⎨⎪=⎩在点(0,0)处偏导数存在,但是不可微.知识点:二元函数偏导数、可微,难度等级:1分析:先求出(0,0),(0,0)x y f f 然后说明(0,0)(0,0)x y z f x f y ∆-∆-∆不是比ρ更高阶的无穷小量就可以了.证明 : 0(,0)(0,0)lim 0(0,0);x x f x f f x∆→∆-==∆同理, (0,0)0.y f =则2200limlim.()()x x y y zx yx y ρρ→∆→∆→∆→∆→∆∆∆==∆+∆ 但是此极限不存在,故(,)f x y 在(0,0)处不可微.20. 证明:级数2(!)nn x y n ∞==∑满足方程0.xy y y '''+-= 知识点:幂级数,微分方程,难度等级:2. 分析:直接用幂数代入微分方程验证.证明: 因为20,(!)n n x y n ∞==∑所以122212(1),.(!)(!)n n n n nx n n x y y n n --∞∞==-'''==∑∑ 212222101122222111221(1)(!)(!)(!)(1)11(!)(!)(!)!(2)!!(1)!!!n n n n n n n nn n n n n nn n n n n x nx x xy y y x n n n n n x nx x n n n x x x n n n n n n --∞∞∞===--∞∞∞===--∞∞∞===''-'''+-=+--=++--=+---∑∑∑∑∑∑∑∑∑ 21111(1)!(1)!(1)!!(!)(1)(1)(1)!!0n n nn n n nn x x x n n n n n n n xn n ∞∞∞===∞==+-+-++-+=+=∑∑∑∑∴方程0xy y y '''+-=成立.六、应用题 (每小题8分,共16分)21. 设球在动点(),,P x y z 处的密度与该点到球心距离成正比,求质量为m 的非均匀球体2222x y z R ++≤对于其直径的转动惯量. 知识点:立体的转动惯量,难度等级:2. 分析:利用转动惯量公式,球坐标计算三重积分.解:设球体方程为2222:,x y z R Ω++≤密度函数ρ=则球体的质量为:234(,,)sin Rm x y z dxdydz k k d d r dr k R ππρθϕϕπΩΩ====⎰⎰⎰⎰⎰⎰所以,密度函数为ρ=计算该球体绕z 轴转动的转动惯量:22224235232240()(,,)(24sin sin 39Rm I x y x y z dxdydz xy R m d d r dr mR d mR R πππρπθϕϕϕϕπΩΩ=+=+===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰22.将质量为m 的物体垂直上抛,假设初始速度为0,v 空气阻力与速度成正比(比例系数为k ),试求在物体上升过程中速度与时间的函数关系.知识点:微分方程的初值问题,难度等级:1 分析: 只需将二阶导数表示出来就可证之.解: 根据条件,空气阻力为.kv 于是物体上升过程中受力为()kv mg -+(其中负号表示力与运动方向相反),而运动加速度为.dva dt=因而得微分方程 .dv m kv mg dt=-- 又知初始速度为0v ,故得初值问题0,(0).dv kv g dt mv v ⎧+=-⎪⎨⎪=⎩ 因此000000(1.)()()ttkkkk k k dtdtt t t t tm m mm m mgm mg v egedt v ee v e v e k m k kg -----⎰⎰=-+=+-+=+⎰。

重庆大学高数(下)期末试题六(含答案) (自动保存的)

重庆大学高数(下)期末试题六(含答案) (自动保存的)

重庆大学《高等数学(工学类)》课程试卷 第1页 共1页重庆大学《高等数学(工学类)》课程试卷20 — 20 学年 第 学期开课学院: 数统学院 课程号: 考试日期:考试方式:考试时间: 120 分一、选择题(每小题3分,共18分)1. 设函数),(y x f 在曲线弧L上有定义且连续,L 的参数方程为⎩⎨⎧==)()(t y t x ψϕ (),t αβ≤≤其中)(),(t t ψϕ在],[βα上具有一阶连续导数,且22()()0,t t ϕψ''+≠则曲线积分(,)().L f x y ds =⎰(A)⎰βαψϕdt t t f ))(),(( (B)⎰'+'αβψϕψϕdt t t t t f )()())(),((22(C) ⎰αβψϕdt t t f ))(),(( (D) ⎰'+'βαψϕψϕdt t t t t f )()())(),((22知识点:对弧长曲线积分公式;难度等级:1 答案: D2. 设级数∑∞=1n n a 为一交错级数,则().(A)该级数必收敛 (B)该级数必发散(C)该级数可能收敛,也可能发散(D)若0(),n a n →→∞则必收敛知识点:级数收敛的判断;难度等级:1 答案: C3. 下列方程中,设21,y y 是它的解,可以推知21y y +也是它的解的方程是().(A)0)()(=++'x q y x p y (B) 0)()(=+'+''y x q y x p y(C) ()()()y p x y q x y f x '''++= (D) ()()0y p x y q x '''++=知识点:线性微分方程的解的性质;难度等级:1答案 答案: B微答4. 设函数(,)F x y 可微,如果曲线积分(,)()C F x y xdx ydy +⎰与路径无关,则(,)F x y 应满足().(A)(,)(,)y x yF x y xF x y ''= (B)(,)(,)y x F x y F x y ''=命题人:组题人:审题人:命题时间:教务处制学院 专业、班 年级 学号 姓名 考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密(C)(,)(,)yy xx yF x y xF x y ''''= (D)(,)(,)y x xF x y yF x y ''= 知识点:曲线积分与路径无关;难度等级:1;答案: D 分析: 由曲线积分与路径无关的条件,计算可得. 5. 设2222:,x y z R Ω++≤则⎰⎰⎰Ω+dxdydz y x )(22().=(A) 538R π (B) 534R π (C)5158R π (D) 51516R π 知识点:三重积分计算;难度等级:2;答案: C 6. 已知曲线)(x y y =经过原点且在原点处的切线与直线062=++y x平 行,而)(x y 满足微分方程250,y y y '''-+=则曲线的方程为=y().(A)x e x 2sin - (B) )2cos 2(sin x x e x -(C) )2sin 2(cos x x e x - (D)x e x 2sin知识点:二阶线性齐次微分方程的通解;难度等级:1;答案: A二、填空题(每小题3分,共18分)7. 设2,yzt xz u e dt =⎰则__________.uz ∂=∂知识点:多元函数的偏导数,变限函数求导;难度等级:1。

高等数学1-2答题上传(作业) 重庆大学练习库及答案

高等数学1-2答题上传(作业)  重庆大学练习库及答案

1、函数,若在处连续,则=______
正确答案是:0
2、设曲线过,且其上任意点的切线斜率为,则该曲线的方程是__________ 正确答案是:
3、设则 __________。

正确答案是:36
4、设,则______
正确答案是:
5、已知在区间上单调递减,则的单调递减区间是______ 。

正确答案是:
6、=______
正确答案是:1
四、计算题(共 2 题、0 / 16 分 )
1、利用基本积分公式及性质求积分。

正确答案是:原式=
2、求。

正确答案是:=ln 1-ln 2=-ln 2.
牛顿-莱布尼兹公式
1、验证拉格朗日定理对函数在区间[0,1]上的正确性.
正确答案是:
因为在[0,1]上连续,在(0,1)内可导,满足拉格朗日定理的条件. 由得
解得,即存在使得拉格朗日定理的结论成立.
六、证明题(共 1 题、0 / 20 分 )
1、利用极限存在准则证明:。

正确答案是:∵
且,,由夹逼定理知
用夹逼准则。

重庆大学网络教育高等数学考试试题

重庆大学网络教育高等数学考试试题

重庆大学网络教育高等数学考试试题一、单选题(共80题)1. 极限().A.1B.C.D.2. 函数的定义域为,则函数的定义域为().A.[0,1];B.;C.;D.3. 当时,与比较,则().A.是较高阶的无穷小;B.是与等价的无穷小;C.是与同阶但不等价的无穷小;D.是较低阶无穷小.4. ( )。

A.-1B.0C.1D.不存在5. 设, 则A.B.C.D.6. 当时,是().A.无穷小量;B.无穷大量;C.有界变量;D.无界变量.7. 函数是()函数.A.单调B.有界C.周期D.奇8. 设则常数( )。

A.0B.-1C.-2D.-39. 下列函数在区间上单调增加的是().A.B.C.D.10. 设函数,则的连续区间为()A.B.C.D.11. 当时,与比较,则().A.是较高阶的无穷小量;B.是较低阶的无穷小量;C.与是同阶无穷小量,但不是等价无穷小;D.与是等价无穷小量.12. 下列函数中()是奇函数A.B.C.D.13. 如果存在,则在处().A.一定有定义;B.一定无定义;C.可以有定义,也可以无定义;D.有定义且有14. ( )。

A.0B.1C.2D.不存在15. 极限 ( )。

A.1/2B.1C.0D.1/416. 设,则()A.B.C.D.17. 函数的复合过程为().A.B.C.D.18. ( ).A.1B.C.D.19. 存在是在连续的().A.充分条件,但不是必要条件;B.必要条件,但不是充分条件;C.充分必要条件;D.既不是充分条件也不是必要条件.20. 已知,求().A.3B.2C.1D.021. 函数是()函数.A.单调B.无界C.偶D.奇22. ( ).A.0B.1C.2D.23. 下面各组函数中表示同一个函数的是()。

A.;B.;C.D.24. 函数是()函数.A.单调B.有界C.周期D.奇25. ()A.B.C.D.26. 设求的值为 ( )A.B.C.D.27. 当时,与无穷小量等价的无穷小量是(). A.B.C.D.28. ( ).A.-1B.0C.1D.不存在29. 设,则( )A.B.C.D.30. 设,则( )A.B.C.D.31. 设,则A.B.C.D.132. 极限=()。

2020年春季学期课程作业高等数学(II-1)第2次13616540-重庆大学网络教育学院-参考资料

2020年春季学期课程作业高等数学(II-1)第2次13616540-重庆大学网络教育学院-参考资料

重庆大学网络教育学院-2020年春季学期课程作业高等数学(II-1)第2次-参考资料
请认真阅读一下说明然后下载:题库有可能会换,不保证全部都有!请仔细核对是不是您需要的题目再下载!!!!
本文档的说明:如果题目顺序和你的试卷不一样,按CTRL+F在题库中逐一搜索每一道题的答案,预祝您取得好成绩百!
一、单项选择题 (共 30 题、63 / 90 分 )
1、
若,则的取值范围是()。

A、
B、
C、
D、
参考答案是:A
2、
骆驼被称为“沙漠之舟”,其体温随时间的变化而变化,则下列量可以视为常量的是()。

A、
气温
B、
体温
C、
时间
D、
骆驼的体重
参考答案是:D
3、
在定义区间的最小值是()。

A、
B、
C、
1
D、
不存在
参考答案是:D
4、
曲线所围平面图形的面积为( )。

A、
B、。

2024年专升本高数试卷

2024年专升本高数试卷

2024年专升本高数试卷一、选择题(每题3分,共30分)1. 函数y = (1)/(ln(x - 1))的定义域为()A. (1,2)∪(2,+∞)B. (1,+∞)C. [1,2)∪(2,+∞)D. (2,+∞)2. 当x→0时,xsin(1)/(x)是()A. 无穷小量。

B. 无穷大量。

C. 有界变量,但不是无穷小量。

D. 无界变量,但不是无穷大量。

3. 设y = f(x)在点x = x_0处可导,则limlimits_Δ x→0frac{f(x_0-Δ x)-f(x_0)}{Δ x}=()A. f^′(x_0)B. -f^′(x_0)C. 0D. 不存在。

4. 设y = x^3ln x,则y^′=()A. 3x^2ln x + x^2B. 3x^2ln xC. x^2D. 3x^2ln x - x^25. 函数y = (1)/(3)x^3-x^2-3x + 1的单调递减区间是()A. (-1,3)B. (-∞,-1)∪(3,+∞)C. (-∞,-1)D. (3,+∞)6. ∫ xcos xdx=()A. xsin x + cos x + CB. xsin x-cos x + CC. -xsin x + cos x + CD. -xsin x-cos x + C7. 设f(x)在[a,b]上连续,则∫_a^bf(x)dx-∫_a^bf(t)dt=()A. 0B. 1C. f(b)-f(a)D. 无法确定。

8. 下列广义积分收敛的是()A. ∫_1^+∞(1)/(x)dxB. ∫_1^+∞(1)/(x^2)dxC. ∫_0^1(1)/(√(x))dxD. ∫_0^1(1)/(x^2)dx9. 由曲线y = x^2与y = √(x)所围成的图形的面积为()A. (1)/(3)B. (2)/(3)C. 1D. (1)/(6)10. 二阶线性齐次微分方程y^′′+p(x)y^′+q(x)y = 0的两个解y_1(x),y_2(x),且y_1(x)≠0,则frac{y_2(x)}{y_1(x)}为()A. 常数。

高等数学网络教育必考题库

高等数学网络教育必考题库

《高等数学》考试考前练习题一、单项选择题1.设2sin x y =,则y 为( ). A .偶函数 B .奇函数C .非奇非偶函数D .恒等于零的函数2.)(0x f 存在是)(lim 0x f x x →存在的( ). A .充分条件B .必要条件C .充分必要条件D .无关条件3.设函数)(x f 在),(b a 内可导,且0)(<'x f ,则)(x f 在),(b a 内( ).A .单调增加B .单调减少C .是常数D .依条件不能确定单调性 4.下列函数中,是微分方程0=-'y y x 的通解的是( ). A .x y 3= B .c x y += C .cx y = D .1+=cx y 5.x y =的定义域为( ).A .),(+∞-∞B .]0,(-∞C .]1,(-∞D .),0[+∞6.)(x f 在],[b a 上连续是)(x f 在],[b a 上可积的( ). A .充分条件 B .必要条件 C .充分必要条件 D .无关条件7.设函数)2ln()(x x f =,则=)(x df ( ). A .dx x2B .dx x1C .dx x21D .xdx 28.函数)2ln(2x y +=单调增加区间为( ).A .)1,1(-B .)0,(-∞C .),0(+∞D .),(+∞-∞9.若)(lim x f 存在,)(lim x g 不存在,则)]()(lim[x g x f +( ). A .不存在 B .存在C .可能存在可能不存在D .存在且极限为零10.当∞→x 时,下列变量中是无穷小量的是( ). A .xx 1sinB .x eC .x xsin 1D .2-x x 11.设)(x f 在),(+∞-∞有定义,则下列函数中为奇函数的是( ). A .)(x f xB .)(x f x -C .x x f sin )(D .)(23x f x12.下列微分方程中,是可分离变量方程的是( ). A .1='+y eyx B .1='y e xyC .1='y e x yD .1)(='-y e e y x二、填空题 附:参考答案1. )1ln(x y +=的定义域为_____. 解答: ()+∞-,12. 11lim 0=-+→x ax x ,则常数a =_____.解答: 1-3. =→xx x 2sin lim 0_____. 解答: 24. 设函数()x f 在1=x 处可导,且()11='f ,则()()=∆-∆+→∆xf x f x 11lim 0.解答: 15. 设函数()2ln f x x =,则()2f '=_____. 解答: 16.设x y sin 1+=,则=y d _____. 解答: x x d cos7.11cos d x x x -=⎰_____.解答: 08.极限2)1(lim x x +→=_____.解答: 19. xx x 10)1(lim +→=______.解答: e10. 函数322++=x x y 的间断点为x =_____.解答: -311. 设sin3y x =,则d y =_____. 解答: 3cos3d x x ⋅ 12.=⎰x x d e .解答: C x+e13.=-→x x x 1)21(lim _____.解答: 2-e14. 设xx x f 3)(⋅=,则='')0(f _____.解答: 3ln 2 15.=∞→nn n 2sin lim π_____.解答: 2π16. 若⎰+=Cx dx x f arcsin )(,则=⎰dx x xf )(sin cos _____.解答: C x + 17. 曲线xxey -=的拐点坐标是_____.解答:)2,2(2e18. 微分方程ydx dy =的通解是_____.解答: xe C y ⋅=三、解答题 附:参考答案1. 设函数 2ln x y =,求1d d =x xy .解:x x y ln 2ln 2==x x y 2d d = 2d d 1==x xy2. 已知曲线l :21y x x=+,求曲线l 与x 轴的交点()00,A x y 处的切线方程. 解:令0y =,得01x =-,故交点()00,A x y 为()1,0-212y x x '=-, 31y x '=-=-切线方程为()31y x =-+ (或330x y ++=)3. 设函数12+=x y ,求y 的最小值点和最小值. 解:x y 2=',令0='y 得驻点 0=x 当0<x 时,0<'y ;0>x 时,0>'y可知0=x 为y 的极小值点,由于驻点唯一,因此0=x 为y 的最小值点 最小值为10==x y .4. 求曲线1234+-=x x y 的凹凸区间及拐点.解:定义域为),(+∞-∞)1(121212,64223-=-=''-='x x x x y x x y 令0=''y ,有1,0==x x0)1(=y ,1)0(=y凹区间为),1()0,(+∞-∞ ,凸区间为)1,0(,拐点为)0,1(),1,0(5. 计算不定积分()x x x d 132⎰-. 解:()()x x x x x x xx x x d d d d 1252532⎰⎰⎰⎰-=-=-C x x +-=363161 6. 计算dxx21120+⎰.解:设tdt dx t x t x ===,21,22,且dx x 21120+⎰tdt t ⋅+=⎰1120dt t t +-+=⎰11120⎰⎪⎭⎫ ⎝⎛+-=dt t 11120[]201ln t t +-=3ln 2-=7. 求微分方程x y xye d d =-的通解.: 解:该方程为一阶线性微分方程,通解公式为()()()d d e e d p x x p x x y q x x C -⎛⎫⎰⎰=+ ⎪⎝⎭⎰其中()1-=x p ,()xx q e =,因此通解为⎪⎭⎫ ⎝⎛+⎰⎰=⎰-C x y xx x d e e e d d ()⎰+=C x xd e ()C x x+=e8. 求极限xx x ⎪⎭⎫ ⎝⎛+∞→31lim . 解:3331lim 31lim ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+∞→∞→xx xx x x 3e =9. 求x xe x xx sin 20lim -→. 解:⎪⎭⎫ ⎝⎛-→00sin lim20x xe x x x ⎪⎭⎫ ⎝⎛-+=→00cos 2lim 0x xe e x x x x x xe e e xx x x sin 2lim 0+++=→1=10. 计算不定积分x x d 131⎰-. 解:⎰⎰--=-13)13(d 3113d x x x x C x +-=|13|ln 3111. 设⎪⎩⎪⎨⎧-=k x x x x f 1ln )(1,10,=≠>x x x 且,求k 值,使)(x f 在),0(+∞连续.解:⎪⎭⎫ ⎝⎛-→001ln lim 1x x x x =11ln lim 1-+→x x =1- 依题意应满足()()1lim 1f x f x =→,所以1-=k12. 求由曲线22x y -=与直线22=-x y 所围图形面积.解:平面图形见图16-1()()[]d x x x S ⎰-+--=022222=()d x x x ⎰---0222=203123-⎥⎦⎤⎢⎣⎡--x x =⎪⎭⎫ ⎝⎛--438=34 13. 求2110ln limx tdtx x ⎰+→.解:⎪⎭⎫ ⎝⎛⎰+→00ln lim 211x tdt x x x x x 2)1ln(lim 0+=→x x x 10)1ln(lim 21+=→⎥⎥⎦⎤⎢⎢⎣⎡+=→x x x 10)1(lim ln 21e ln 21=21=。

重庆大学高等数学(工学类)课程试卷

重庆大学高等数学(工学类)课程试卷

2.若2lim ()x x a x x a xe dx x a
+∞-→+∞-=+⎰,求a 的值。

3、设函数()y y x =由方程322
2221y y xy x -+-=所确定,试求()y y x =的驻点,并判断它是否是极值点。

4. 计算
22(tan 1)x e x dx +⎰。

5. 设12
01()()1x f x xe f x dx x =-+⎰,求(),()f x f x '。

6. 已知1(2),(2)02
f f '==及20()1f x dx =⎰,求120(2)x f x dx ''⎰。

四、证明题(每小题9分,本题共18分)
1、证明方程0ln x x e π=
-⎰在区间(0,)+∞内有且仅有两个不同的实根。

2、设()f x 在[0,]π上连续,在(0,)π内可微,且0()sin 0f x xdx π
=⎰,0()cos 0f x xdx π
=⎰。

证明:在(0,)π内至少存在一点ξ,使得()0f ξ'=。

五、应用题(本题共10分)用自重200N 的抓斗将井深30米内开始时重2000N 的污泥提升到井口,已知铁链每米重50N ,提升速度为每秒3米,提升过程中污泥以每秒20N 的速度从抓斗的漏孔中漏掉,问克服重力作功多少焦耳?。

2020年春季学期课程作业高等数学(II-2)第2次13624872-重庆大学网络教育学院-参考资料

2020年春季学期课程作业高等数学(II-2)第2次13624872-重庆大学网络教育学院-参考资料

重庆大学网络教育学院-2020年春季学期课程作业高等数学(II-2)第2次-参考资料请认真阅读一下说明然后下载:题库有可能会换,不保证全部都有!请仔细核对是不是您需要的题目再下载!!!!本文档的说明:如果题目顺序和你的试卷不一样,按CTRL+F在题库中逐一搜索每一道题的答案,预祝您取得好成绩百!一、单项选择题 (共 30 题、0 / 90 分 )1、设,当a=()时。

A、1B、C、D、参考答案是:B2、微分方程的通解是()。

A、B、C、D、参考答案是:B3、曲面的一个法向量为()。

A、B、C、D、参考答案是:A4、下列一阶微分方程中哪个不是可分离变量的微分方程()。

A、B、C、D、参考答案是:C5、函数的定义域是()。

A、B、C、D、参考答案是:C6、下列方程中表示双叶双曲面的是()。

A、B、C、D、参考答案是:C7、求解微分方程使用变换降阶得到的方程是()。

A、B、C、D、参考答案是:A8、方程组所表示的圆的半径为()。

A、4B、3C、2D、1参考答案是:9、下列方程中表示柱面的是()。

A、B、C、D、参考答案是:C10、椭球面的中心坐标是( )。

A、(?1,3,3)B、(?1,3,?3)C、(1,3,3)D、(1,3,?3)参考答案是:B11、下列说法不正确的是()A、B、C、D、参考答案是:D12、总长度为2的一根铁丝,可以围成矩形的最大面积是()。

A、B、C、D、参考答案是:C13、积分),化为极坐标的二次积分为()。

A、B、C、D、参考答案是:A14、交错级数()A、一定发散B、一定条件收敛C、可收敛也可发散D、一定绝对收敛参考答案是:D15、幂级数的和函数为()。

A、B、C、D、参考答案是:B16、对于非齐次微分方程,其特解有()的形式。

A、B、C、D、参考答案是:C17、设,则=()。

A、B、C、D、参考答案是:A18、二平面,的夹角=( )。

A、B、C、D、参考答案是:D19、下面可以作为一条有向直线的方向角的是()。

重庆大学高等数学习题1-1

重庆大学高等数学习题1-1

习题1-1 A 组1.确定下列函数的定义域和值域 (1)y =(2)y =(3)1cos y x π=(4)ln(sin )y xπ=解析:本题考查函数定义域和值域的概念,定义域指的是自变量的取值范围,值域指的是函数的取值范围,一般定义域和值域可以用区间或描述法来表示,根据此可以求解 解:(1)因为303x x ->⇒>,则函数的定义域为(3,)+∞,值域为(0,)+∞ (2)因为232021x x x x -+≥⇒≥≤或,则函数的定义域为(,1][2,)-∞+∞U 值域为[0,)+∞(3)因为1cos 02x x n π≠⇒≠+(n 为整数),则函数的定义域为12{,}2nx x n z +≠∈ 值域为(,1][1,)-∞-+∞U(4)因为11sin02(21)1212n n x x xxxn nππππππ>⇒<<<+⇒><<+或或(n 是不为0 的整数) 则函数的定义域为11{,{0}}(1,)212xx n Z n n<<∈-+∞+U ,值域为(,1]-∞ 2.设函数()f x 的定义域为[2,3],求复合函数f 的定义域解析:考查复合函数定义域的求解,本题中可以令u 则本题就是求函数()f u 的定义域,也就是求函数u解:由已知可得[2,3]x ∈,则u =则复合函数f的定义域为3.设函数21,0()2,0x x x f x x ⎧+-∞<≤⎪=⎨<<+∞⎪⎩求(2)f -,(0)f ,(2)f解析:考查分段函数的函数值,注意找对变量所在的区间 解:2(2)1(2)5f -=+-=,2(0)101f =+=,2(2)24f ==4.求函数2,1(),142,4x x x f x x x x -∞<<⎧⎪=≤≤⎨⎪<<+∞⎩的反函数及其定义域解析:考查反函数的概念和性质,对于任意一个函数来说,其定义域就是反函数的值域,其值域就是反函数的定义域解:由已知可得,当1x -∞<<时,函数()f x 的值域为(,1)-∞当14x ≤<时,函数()f x 的值域为[1,16];当4x <<+∞时,函数()f x 的值域为[16,]+∞则函数的反函数为12,1()11616log ,y y x f y x x y --∞<<⎧==≤≤<<+∞⎩ 5.判断下列函数的奇偶性(1)235sin y x x =- (2)2233(1)(1)y x x =-++解析:考查函数奇偶性的概念,对于有对称定义域的函数,若()()f x f x -=,则称该函数为偶函数;若()()f x f x -=-,则称该函数为奇函数解:(1)因为2()35sin y x x x -=+,不满足奇、偶函数的定义,则为非奇非偶函数 (2)因为2233()(1)(1)()y x x x y x -=++-=,则原函数为偶函数 6.判断下列函数是由哪些基本函数复合而成: (1)y =2)3ln cos y x =解析:考查复合函数的概念,最常见的五种基本函数包括指数函数、对数函数、幂函数、三角函数、反三角函数,上述函数就是由基本函数复合而成解:(1)该函数是由反三角函数arctan y v =,指数函数12v u =和幂函数21u x =+组成 (2)该函数是由对数函数ln y v =,三角函数cos v u =和指数函数3u x =组成 7.指出下列函数是否为周期函数;若是,求其小正周期 (1)5sin 6y x = (2)2cos y x =解析:考查周期函数的概念,已知最简单的三角函数的周期,例如sin x ,cos x 的最小正周期为2π,根据函数定义域的概念,可以求上诉函数的最小正周期 解:(1)因为sin x 为周期函数,自然本函数为周期,623x x ππ=⇒=则函数的最小正周期为3π(2)同理,本函数也为周期函数,因为21cos 2cos 2xy x +==22x x ππ=⇒=,则函数的最小正周期为π8.设函数,1(),1x e x f x x x ⎧<=⎨≥⎩,22,0()1,1x x x x x ϕ+<⎧=⎨-≥⎩,求复合函数(())f x ϕ解析:考查复合函数的概念和性质,首先应确定函数()x ϕ的值域在函数()f x 哪个定义域内,然后求出复合函数(())f x ϕ的对应关系解:对于函数()x ϕ来说,当1x <-时,值域为(,1)-∞,此时2(())x f x e ϕ+=;当10x -≤<时,值域为(1,2),(())2f x x ϕ=+;当1x ≤<(0,1),21(())xf x e ϕ-=;x ≤时,值域为[1,)+∞,2(())1f x x ϕ=-综上可知2212,12,10(()),11,x x e x x x f x e x x x ϕ+-⎧<-⎪+-≤<⎪=⎨≤<⎪⎪-≥⎩B 组1.确定下列函数的定义域和值域 (1)2arccos1x y x =+ (2)211y x=-(3)y =(4)y =解析:考查定义域和值域的求解,函数的定义域一般利用函数的一些限制条件,例如:分母不为0、根号下大于等于0;根据定义域就可以求出函数值的取值情况 解:(1)因为2111113x x x -≤≤⇒-≤≤+,则函数的定义域为1[,1]3-,值域为(,)-∞+∞ (2)因为2102012x x x x -≠+≥⇒≠±≥-且且,则函数的定义域为[2,1)(1,1)(1,)---+∞U U ,因为函数211x -的值域为(,)-∞+∞,则原函数的值域也为(,)-∞+∞(3)sin 02(21)x n x n ππ≥⇒≤≤+(n 为整数),则函数的定义域为{2(21),}x n x n n Z ππ≤≤+∈,值域为[0,1](4)254015x x x +-≥⇒-≤≤,则函数的定义域为[1,5]-, 又因为极大值(2)3f =,(1)(5)0f f -==,则值域为[0,3] 2.设(1)cos f x x x +=+,求(8)f 与()f x解析:考查复合函数的概念,本题可以利用换元法或者配方法求解 解:换元法:令1x t +=,则1x t =-,(1)()1cos(1)f x f t t t +==-+-,也即()cos(1)1f x x x =+-- (8)7cos7f =+配方法:(8)(71)7cos7f f =+=+因为(+1)=11cos(11)f x x x +-++-,则()cos(1)1f x x x =+-- 注:熟悉后就可以直接利用配方法求解了 3.设函数()ln(2)f x x =-,求()f x 与(ln )f x 的定义域 解析:考查复合函数定义域的求解,本题可以先求出()f x 的定义域,然后求解函数(ln )f x 的定义域时,即已知lnx 的值域,求其定义域解:因为30x ->且20x ->,则函数()f x 的定义域为(2,3) 即函数lnx 的值域为(2,3),也即 2ln 3x <<,解得23e x e << 则函数(ln )f x 的定义域为23(,)e e4.讨论函数3()f x x =在(,)-∞+∞内的单调性 解析:本题考查函数单调性的定义解:对于函数3()f x x =来说,12,(,)x x ∀∈-∞+∞,当12x x <时12()()f x f x <则函数3()f x x =在(,)-∞+∞内是单调递增的 5.判断下列函数的奇偶性(1)cos(sin )y x = (2)1cosy x x=⋅ (3)11x x a y x a -=+其中0a >解析:考查奇偶性的定义,对于奇偶性的概念这里就不再赘述,本题都可以直接利用其概念求解解:(1)已知所求函数定义域为(,)-∞+∞且()cos[sin()]cos(sin )cos(sin )y x x x x -=-=-=,即()()y x y x -= 则原函数为偶函数(2)已知所求函数定义域为(,0)(0,)-∞+∞U且11()cos cos y x x x x x--=-⋅=-,即()()y x y x -=- 则原函数为奇函数(3)已知所求函数定义域为(,)-∞+∞且111()111x x x x x x a a a y x x x x a a a ------=-=-=+++,即()()y x y x -=则原函数为偶函数6.证明定义于(,)-∞+∞内的任何函数都可以表示为一个奇函数与一个偶函数之和解析:考查奇偶性的应用,本题比较抽象,但可以通过假设一个函数 ()f x ,其满足()()()()()22f x f x f x f x f x +---=+证明:设函数()()()2f x f x g x +-=,()()()2f x f x h x --=因为()()()()2f x f x g x g x -+-==,()()()()()()22f x f x f x f x h x h x -----==-=-则函数()g x 为偶函数,()h x 为奇函数即证结论7.判断下列函数是否为周期函数;若是,求其最小正周期(1)sin cos y x x =+ (2)y =解析:考查周期函数的概念,利用已知函数的周期来确定,例如函数sin x 、cos x 的周期都为2π,即满足sin sin(2)x x π=+,cos cos(2)x x π=+,根据此思路可以求解本题 解:(1)经过上述分析可知,对于函数sin cos y x x =+,满足()(2)y x y x π=+ 则为周期函数,其最小周期为2π(2)函数y =y =()tan 2u x x =组成的因为tan x 的周期为π,则函数()tan 2u x x =的周期为2π则()()2u x u x π=+,即()()2y x y x π=+ 则为周期函数,其最小周期为2π。

算法设计分析参考资料重庆大学网络教育

算法设计分析参考资料重庆大学网络教育

一、单项选择题(本大题共0 分,共60 小题,每小题0 分)算法的时间复杂度是指()C. 算法执行过程中所需要的基本运算次数衡量一个算法好坏的标准是( )。

C. 时间复杂度低在最长公共子序列问题中,如果定义c[i, j] 为X1..Xi 和Y1..Yj 的最长公共子序列的长度,则长度为m 的X 序列与长度为n 的Y 序列的最长公共子序列的长度为( )。

D. c[m,n]以下关于贪心算法,不正确的说法是 ( )。

D. 所需求解的问题可以不满足最优子结构性质合并排序法的基本思想是:将待排序元素分成大小大致相同的( )个子集合,分别对每一个子集合进行排序,最终将排好序的子集合合并成为所要求的排好序的集合。

C. 2对于n 个元素的排序问题,n=2 时, 只要作( )次比较即可排好序。

C. 1二分搜索算法的基本思想是将n 个元素分成个数大致相同的两半,取a[n/2]与x 进行比较:如果( ),则只要在数组 a 的左半部继续搜索x。

A. x<a[n/2]备忘录方法的递归方式是 ( )A. 自顶向下算法指的是( )。

C. 解决问题的方法和过程应用Johnson 法则的流水作业调度采用的算法是( )D. 动态规划算法算法分析中,记号O 表示( )A. 渐进上界在找零钱问题中,收银员算法中所应用的贪心规则的最恰当描述是( )。

B. 总是选择不超过剩余应找钱数的最大面值的硬币由边界条件出发,通过递推式求f(n)的值,从边界到求解的全过程十分清晰的是( ) B. 递推考虑最长公共子序列问题的下述递归表达式,如果全部子问题组织在一个c[i,j]的二维表格中,则c[i,j]不依赖于下述哪个子问题:( )。

D. 同一行的下一列活动选择问题就是在所给的活动集合中,选出( )的相容活动子集。

A. 当前可选活动中结束时间最早的活动一个长度为n 英寸的钢管的最优切割问题,总共有( )个不同的子问题。

A. n+1算法的每种运算必须要有切当的定义,不能有二义性, 以下符合算法确定性运算的是D. f(n)=f(n-1)+2,f(1)=10,n 为自然数实现快速排序算法如下:QuickSort (A, p, r)IF p < r THEN q ← Partition(A, p, r) ( ) QuickSort(A, q+1, r)A. QuickSort(A,q-1,r)找零钱问题中,定义C[j]为兑换j 所需要的硬币的至少数量,如果找出的第一个硬币为 5 分,则下述公式哪个是对的( )。

重庆高等数学试题及答案

重庆高等数学试题及答案

重庆高等数学试题及答案一、选择题(每题3分,共30分)1. 函数\( f(x) = x^2 - 4x + 4 \)的最小值是()。

A. 0B. 1C. 3D. 42. 极限\( \lim_{x \to 0} \frac{\sin x}{x} \)的值为()。

A. 0B. 1C. -1D. 23. 函数\( y = e^x \)的导数是()。

A. \( e^x \)B. \( -e^x \)C. \( \ln e^x \)D. \( \frac{1}{e^x} \)4. 曲线\( y = x^3 - 3x^2 + 2 \)的拐点坐标是()。

A. (0,2)B. (1,0)C. (2,-2)D. (3,6)5. 定积分\( \int_{0}^{1} x^2 dx \)的值为()。

A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( \frac{1}{4} \)D. \( \frac{1}{5} \)6. 微分方程\( y'' + 4y' + 4y = 0 \)的特征方程是()。

A. \( r^2 + 4r + 4 = 0 \)B. \( r^2 - 4r + 4 = 0 \)C. \( r^2 + 4r - 4 = 0 \)D. \( r^2 - 4r - 4 = 0 \)7. 函数\( f(x) = \ln(x+1) \)的不定积分是()。

A. \( x\ln(x+1) - x + C \)B. \( x\ln(x+1) + x + C \)C. \( x\ln(x+1) + \ln(x+1) + C \)D. \( x\ln(x+1) - \ln(x+1) + C \)8. 级数\( \sum_{n=1}^{\infty} \frac{1}{n^2} \)的和是()。

A. \( \frac{\pi^2}{6} \)B. \( \frac{\pi^2}{4} \)C. \( \frac{\pi^2}{3} \)D. \( \frac{\pi^2}{2} \)9. 矩阵\( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \)的行列式是()。

重庆大学网络教育2019年秋季学期课程作业高等数学(II-2)第123次

重庆大学网络教育2019年秋季学期课程作业高等数学(II-2)第123次

答案+我名字在为常数,则级数 ( )设,当a=()时。

∙∙正确!∙收藏该题展开该题4、已知某微分方程的通解和初始条件分别为和,则常数和分别等于()。

∙∙正确!∙收藏该题展开该题5、微分方程的通解是()。

∙∙正确!∙收藏该题展开该题6、与的大小关系为(),其中V是以点(1,1,1),(2,1,1),(1,2,1)和(1,1,2)为顶点的闭区域。

∙∙正确!∙收藏该题展开该题7、下列一阶微分方程中哪个不是可分离变量的微分方程()。

∙∙正确!∙收藏该题展开该题8、下列平面中,垂直于Z轴的是()。

∙∙正确!∙收藏该题展开该题9、求解微分方程的通解的Matlab命令为()。

∙∙正确!∙收藏该题展开该题10、函数的定义域是()。

∙∙正确!∙收藏该题展开该题11、求解微分方程使用变换降阶得到的方程是()。

∙∙正确!∙收藏该题展开该题12、级数的和为()。

∙∙正确!∙收藏该题展开该题13、方程组所表示的圆的半径为()。

∙∙正确!∙收藏该题展开该题14、方程表示的曲面是()。

∙∙正确!∙收藏该题展开该题15、椭球面的中心坐标是( )。

∙∙正确!∙收藏该题展开该题二、判断题(共 5 题、5 / 5 分 )1、级数收敛。

()∙∙正确!∙收藏该题展开该题2、幂级数的收敛区间为[-6,-4]。

()∙∙正确!∙收藏该题展开该题3、已知是的解,则微分方程的通解为。

∙∙正确!∙收藏该题展开该题4、微分方程的通解是。

()∙∙正确!∙收藏该题展开该题5、对于非齐次微分方程的通解的Matlab命令为y=dsolve ('D2y-2Dy=(x^2+2x)exp(x)','x')。

()∙∙正确!∙收藏该题展开该题三、填空题(共 6 题、0 / 12 分 )1、二阶齐次微分方程的通解为_________。

∙收藏该题2、如果和是某二阶常系数齐次线性微分方程的解,则该微分方程为________。

∙收藏该题3、设,则= ________________。

重庆大学高等数学II2第3次

重庆大学高等数学II2第3次

第3次作业一、填空题〔本大题共40分,共10 小题,每题 4 分〕1. 写出级数的通项为:______。

2. 级数的敛散性为______。

3. 函数的定义域为______。

设平面通过点〔1,3,-2〕,且垂直于向量,求该平面的方程。

5. 由曲线绕y轴一周所得的旋转面方程为______。

6. 设,且函数f可微,那么______7.D由及x轴围成,那么______。

8.过点(3,0,-1)且与平面平行的平面方程为______。

9.一平面通过两点和且垂直于平面,求它的方程。

10.设,其中具有连续的二阶偏导数,____________。

二、计算题〔本大题共40分,共8小题,每题5分〕2. 1.判断级数的敛散性。

3.利用二重积分的性质估计(其中是矩形区域)的值。

3.求曲面在点(1,1,2)处的切平面和法线方程。

4.求两平面,的夹角。

5.三角形ABC的顶点是A(1,2,3),B(3,4,5),C(2,4,7),求三角形的面积。

6.求微分方程满足的特解。

7.求的所有二阶偏导数。

把对坐标的曲线积分化成对弧长的曲线积分,其中L为(1)在xOy面内沿直线从点(0,0)到点(1,1);(2)沿抛物线从点(0,0)到点(1,1);(3)沿上半圆周从点(0,0)到点(1,1)。

三、证明题〔本大题共20分,共2小题,每题10分〕1.证明:假设数列收敛于a,那么级数。

2.设级数和收敛,证明级数收敛。

答案:一、填空题〔40分,共10题,每题4分〕1.参考答案:解题方案:评分标准:2.参考答案:发散解题方案:评分标准:3.参考答案:解题方案:评分标准:4.参考答案:解题方案:评分标准:5.参考答案:解题方案:评分标准:6.参考答案:解题方案:评分标准:7.参考答案:2解题方案:评分标准:8.参考答案:解题方案:评分标准:9.参考答案:解题方案:评分标准:10.参考答案:解题方案:评分标准:二、计算题〔40分,共8题,每题5分〕1.参考答案:该级数尽管是一个交错级数,但是容易验证,该级数的通项极限为1,根据级数收敛的必要条件可知,该级数是发散的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆大学网络教育入学考试高等数学试题1、题目Z1-2(2)()A.AB.BC.CD.D标准答案:A2、题目20-1:(2)()A.AB.BC.CD.D标准答案:A3、题目20-2:(2)()A.AB.BC.CD.D标准答案:B4、题目20-3:(2)()A.AB.BC.CD.D标准答案:A5、题目20-4:(2)()A.AB.BC.CD.D标准答案:D6、题目20-5:(2)()A.AB.BC.CD.D标准答案:D7、题目20-6:(2)()A.AB.BC.CD.D标准答案:A8、题目20-7:(2)()A.AB.BC.CD.D标准答案:D9、题目20-8:(2)()A.AB.BC.CD.D标准答案:C10、题目11-1(2)()A.AB.BC.CD.D标准答案:C11、题目11-2(2)()A.AB.BC.CD.D标准答案:B12、题目11-3(2)()A.AB.BC.CD.D标准答案:A13、题目20-9:(2)()A.AB.BC.CD.D标准答案:C14、题目11-4:(2)()A.AB.BC.CD.D标准答案:D15、题目11-5(2)()A.AB.BC.CD.D标准答案:C16、题目20-10:(2)()A.AB.BC.CD.D标准答案:B17、题目11-6(2)()A.AB.BC.CD.D标准答案:B18、题目11-7(2)()A.AB.BC.CD.D标准答案:C19、题目11-8(2)()A.AB.BC.CD.D标准答案:C20、题目11-9(2)()A.AB.BC.CD.D标准答案:D21、题目11-10(2)()A.AB.BC.CD.D标准答案:B22、题目19-1:(2)()A.AB.BC.CD.D标准答案:C23、题目19-2:(2)()A.AB.BC.CD.D标准答案:B24、题目19-3:(2)()A.AB.BC.CD.D标准答案:D25、题目12-1(2)()A.AB.BC.CD.D标准答案:D26、题目12-2(2)()A.AB.BC.CD.D标准答案:D27、题目19-4:(2)()A.AB.BC.CD.D标准答案:B28、题目12-3(2)()A.AB.BC.CD.D标准答案:B29、题目12-4(2)()A.AB.BC.CD.D标准答案:C30、题目12-5(2)()A.AB.BC.CD.D标准答案:A31、题目19-5:(2)()A.AB.BC.CD.D标准答案:C32、题目12-6(2)()A.AB.BC.CD.D标准答案:A33、题目12-7(2)()A.AB.BC.CD.D标准答案:B34、题目19-6:(2)()A.AB.BC.CD.D标准答案:B35、题目12-8(2)()A.AB.BC.CD.D标准答案:B36、题目19-7:(2)()A.AB.BC.CD.D标准答案:B37、题目12-9(2)()A.AB.BC.CD.D标准答案:A38、题目12-10(2)()A.AB.BC.CD.D标准答案:C39、题目19-8:(2)()A.AB.BC.CD.D标准答案:D40、题目19-9:(2)()A.AB.BC.CD.D标准答案:A41、题目19-10:(2)()A.AB.BC.CD.D标准答案:C42、题目18-1:(2)()A.AB.BC.CD.D标准答案:A43、题目18-2:(2)()A.AB.BC.CD.D标准答案:C44、题目18-3:(2)()A.AB.BC.CD.D标准答案:D45、题目13-1(2)()A.AB.BC.CD.D标准答案:D46、题目18-4:(2)()A.AB.BC.CD.D标准答案:A47、题目13-2(2)()A.AB.BC.CD.D标准答案:B48、题目13-3(2)()A.AB.BC.CD.D标准答案:D49、题目18-5:(2)()A.AB.BC.CD.D标准答案:D50、题目13-4(2)()A.AB.BC.CD.D标准答案:B51、题目13-5(2)()A.AB.BC.CD.D标准答案:D52、题目18-6:(2)()A.AB.BC.CD.D标准答案:B53、题目13-6(2)()A.AB.BC.CD.D标准答案:C54、题目13-7(2)()A.AB.BC.CD.D标准答案:C55、题目18-7:(2)()A.AB.BC.CD.D标准答案:B56、题目18-8:(2)()A.AB.BC.CD.D标准答案:B57、题目13-8(2)()A.AB.BC.CD.D标准答案:B58、题目13-9(2)()A.AB.BC.CD.D标准答案:C59、题目18-9:(2)()A.AB.BC.CD.D标准答案:B60、题目13-10(2)()A.AB.BC.CD.D标准答案:A61、题目18-10:(2)()A.AB.BC.CD.D标准答案:A62、题目17-1:(2)()A.AB.BC.CD.D标准答案:C63、题目17-2:(2)()A.AB.BC.CD.D标准答案:D64、题目17-3:(2)()A.AB.BC.CD.D标准答案:C65、题目17-4:(2)()A.AB.BC.CD.D标准答案:A66、题目17-5:(2)()A.AB.BC.CD.D标准答案:D67、题目14-1(2)()A.AB.BC.CD.D标准答案:D68、题目14-2(2)()A.AB.BC.CD.D标准答案:A69、题目17-6:(2)()A.AB.BC.CD.D标准答案:B70、题目14-3(2)()A.AB.BC.CD.D标准答案:D71、题目17-7:(2)()A.AB.BC.CD.D标准答案:B72、题目14-4(2)()A.AB.BC.CD.D标准答案:C73、题目14-5(2)()A.AB.BC.CD.D标准答案:C74、题目17-8:(2)()A.AB.BC.CD.D标准答案:D75、题目14-7(2)()A.AB.BC.CD.D标准答案:A76、题目14-8(2)()A.AB.BC.CD.D标准答案:D77、题目17-9:(2)()A.AB.BC.CD.D标准答案:B78、题目14-9(2)()A.AB.BC.CD.D标准答案:C79、题目14-10(2)()A.AB.BC.CD.D标准答案:A80、题目17-10:(2)()A.AB.BC.CD.D标准答案:C81、题目16-1:(2)()A.AB.BC.CD.D标准答案:D82、题目16-2:(2)()A.AB.BC.CD.D标准答案:B83、题目16-3:(2)()A.AB.BC.CD.D标准答案:C84、题目15-1(2)()A.AB.BC.CD.D标准答案:C85、题目15-2(2)()A.AB.BC.CD.D标准答案:C86、题目16-4:(2)()A.AB.BC.CD.D标准答案:D87、题目15-3(2)()A.AB.BC.CD.D标准答案:D88、题目15-4(2)()A.AB.BC.CD.D标准答案:B89、题目15-5(2)()A.AB.BC.CD.D标准答案:B90、题目15-6(2)()A.AB.BC.CD.D标准答案:A91、题目15-7(2)()A.AB.BC.CD.D标准答案:C92、题目15-8(2)()A.AB.BC.CD.D标准答案:C93、题目16-5:(2)()A.AB.BC.CD.D标准答案:A94、题目15-9(2)()A.AB.BC.CD.D标准答案:B95、题目15-10(2)()A.AB.BC.CD.D标准答案:D96、题目16-6:(2)()A.AB.BC.CD.D标准答案:B97、题目16-7:(2)()A.AB.BC.CD.D标准答案:C98、题目16-8:(2)()A.AB.BC.CD.D标准答案:B99、题目16-9:(2)()A.AB.BC.CD.D标准答案:A100、题目16-10:(2)()A.AB.BC.CD.D标准答案:D。

相关文档
最新文档