重庆大学高数(下)期末试题四(含答案)
2020年度大学高等数学(下)测试题及答案4

高等数学(下)试题四一、填空题(18分)1 设yxy x f arctan),(=,则=)1,1(df 。
2 曲面1222=++z y x 2在点(2,-2,2)处的切平面方程为 。
3 设{}2,20:),(≤≤≤≤=y x x y x D ,则=⎰⎰-Dy dxdy e 2。
4 如果Γ是从点(1,2,3)到点(0,0,0)的直线段,则=++⎰Γydz x dy y dx x 2233 。
5幂级数∑∞=--11212n n n x 的收敛区间为 。
6以xx e y xe y ==,为特解的二阶线性齐次微分方程为 。
二、选择题(18分)1 在点处),(y x f 可微的充分条件是( )(A )),(y x f 的所有二阶偏导数连续 (B )),(y x f 连续(C )),(y x f 的所有一阶偏导数连续 (D )),(y x f 连续且),(y x f 对y x ,的偏导数都存在。
2 已知222),,(z y x z y x u ++=,则=u ( )(A ){}z y x 2,2,2 (B )222444z y x ++ (C ){}z y x ,, (D ){}1,1,1。
3 设D :4122≤+≤y x ,则=+⎰⎰dxdy y x D22( )(A )dr r d ⎰⎰10220πθ (B )dr r d ⎰⎰41220πθ (C )dr r d ⎰⎰21220πθ (D )dr r d ⎰⎰2120πθ。
4 设L 是圆周:x y x 222-=+的正向,则=-+-⎰dy y x dx y x L)()(33( )(A )π2- (B )0 (C )π3 (D )π2。
5 将函数2)(x ex f -=展开成x 的幂级数得到( )(A )∑∞=02!n nn x (B )∑∞=-02!)1(n n n n x (C )∑∞=0!n n n x (D )∑∞=-0!)1(n n n n x6 函数xx ec e c y -+=21是微分方程( )的通解(A )0''=+y y (B )0''=-y y (C )0'''=+y y (D )0'''=-y y三、 计算与求解(49分)1 设方程z y x z y x 32)32sin(2-+=-+确定函数),(y x z z =,求yz x z ∂∂+∂∂。
2023-2024学年重庆市部分学校高一(下)期末数学试卷(含解析)

2023-2024学年重庆市部分学校高一(下)期末数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知复数z 满足(1+i)z =2i ,则|−z |=( )A.22B. 1C.2 D. 22.7.8,7.9,8.1,8.1,8.3,8.5,8.7,8.9,9.0,9.0,9.1,9.1,9.4的第60百分位数是( )A. 8.7B. 8.9C. 9.0D. 9.13.在△ABC 中,记内角A ,B ,C 所对的边分别为a ,b ,c.若c 2−ab =(a−b )2,则C =( )A. π6B. π4C. π3D. 2π34.下列说法正确的是( )A. 若空间四点共面,则其中必有三点共线B. 若空间四点中任意三点不共线,则此四点共面C. 若空间四点中任意三点不共线,则此四点不共面D. 若空间四点不共面,则任意三点不共线5.某航空公司销售一款盲盒机票,包含哈尔滨、西安、兰州、济南、延吉5个城市,甲乙两人计划“五一”小长假前分别购买上述盲盒机票一张,则两人恰好到达城市相同的概率为( )A. 15B. 25C. 35D. 456.记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若atanB =btanA ,cosA +cosB =1,则△ABC 是( )A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形7.在△ABC 中,AB =3,AC =4,∠BAC =60°,且AE =23AB ,AF =14AC ,则CE ⋅BF =( )A. −2B. −3C. −4D. −58.已知正方体ABCD−A 1B 1C 1D 1,F 为BB 1的中点,过A 1作平面α满足条件,D 1F ⊥α,则α截正方体ABCD−A 1B 1C 1D 1所得截面为( )A. 六边形B. 五边形C. 四边形D. 三角形二、多选题:本题共3小题,共18分。
重庆大学高数(工学下)期末试题一(含答案)

重庆大学《高等数学(工学类)》课程试卷 第1页 共1页重庆大学《高等数学(工学类)》课程试卷20 — 20 学年 第 学期开课学院: 数统学院 课程号: 考试日期:考试方式:考试时间: 120 分一、选择题(每小题3分,共18分) 1. 向量a b ⨯与,a b 的位置关系是().(A) 共面 (B) 垂直 (C) 共线 (D) 斜交知识点:向量间的位置关系,难度等级:1. 答案:(B).分析:,a b 的向量积a b ⨯是一个向量,其方向垂直,a b 所确定的平面.2. 微分方程633xy dye e y x y dx=+- 的一个解为().(A)6y = (B)6y x =- (C)y x =- (D)y x =知识点:微分方程的解,难度等级:1. 答案: (D).分析:将(A),(B),(C),(D)所给函数代入所给方程,易知只有y x =满足方程,故应选(D).3. 累次积分⎰⎰=-2022x y dy e dx ().(A))1(212--e (B))1(314--e (C))1(214--e (D))1(312--e 知识点:二重积分交换次序并计算,难度等级:2. 答案:(C).分析: 直接无法计算,交换积分限,可计算得)1(214--e ,只能选(C). 4.设曲线积分⎰--L x ydy x f ydx e x f cos )(sin ])([与路径无关,其中)(x f 具有一阶连续偏导数,且(0)0,f =则=)(x f ().(A)2x x e e -- (B)2xx e e --(C) 12-+-x x e e (D)21xx e e +-- 知识点:积分与路径无关的条件,微分方程,求解,难度等级:3.答案:(B).分析: 由积分与路径无关条件,有[()]cos ()cos x f x e y f x y '-=-命题人:组题人:审题人:命题时间:教务处制学院 专业、班 年级 学号 姓名 考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密()().x f x f x e '⇒-=-由结构看,C,D 不满足方程,代入,B 满足,A 不满足,选B.5. 设直线方程为1111220,0A x B y C z D B y D +++=⎧⎨+=⎩且111122,,,,,0,A B C D B D ≠则直线().(A) 过原点 (B) 平行于z 轴 (C) 垂直于x 轴 (D) 垂直于y 轴 知识点:直线与坐标轴的位置关系,难度等级:1. 答案:(D).分析:方程2220,0B y D D +=≠表示垂直于y 轴且不过原点的平面,11112200A x B y C z D B y D +++=⎧⎨+=⎩表示的直线位于垂直于y 轴且不过原点的平面上,不平行于z 轴,不垂直于x 轴.6. 设∑为球面2224(0)x y z z ++=≥的外侧,则2yzdzdx dxdy∑+⎰⎰().=(A)354(B)354π (C)12 (D)12π知识点:对坐标的曲面积分,高斯公式,难度等级:2. 答案:(D).分析: 添有向平面221:0(4)z x y ∑=+≤取下侧,则124,yzdzdx dxdy zdV π∑+∑Ω+==⎰⎰⎰⎰⎰1228.Dyzdzdx dxdy dxdy π∑+=-=-⎰⎰⎰⎰故有结果为D.二、填空题(每小题3分,共18分)7.121lim(1)sin x y x y →→⎛⎫- ⎪⎝⎭__________.= 知识点:二重极限,难度等级:1. 答案:0. 证明:1(1)sin01x x y--≤- 0,ε∴∀>取,δε=只要0,δ<必有1(1)sin0.x yε--<121lim(1)sin 0.x y x y →→⎛⎫∴-= ⎪⎝⎭ 8. 已知lim6,n n a →∞=则11()n n n a a ∞+=-=∑__________. 知识点:级数和,定义,难度等级:1. 答案:1 6.a - 分析: 部分和数列12231111()()() 6.n n n n s a a a a a a a a a ++=-+-++-=-→-9.2221___________,ds x y z Γ=++⎰其中Γ为曲线cos ,sin ,tttx e t y e t z e ===上相应于t 从0变到2的这段弧.知识点:对弧长的曲线积分,难度等级:2. 答案21).e- 解:弧长的微分为tds dt ==,22222.tx y z e ++=于是2222011).ds x y z e Γ=-++⎰⎰10. 平面3x y z a ++=被球面2222x y z R ++=(0)R <所截得一个圆,则该圆的半径为__________.=知识点:平面,球面,半径,难度等级:1. 答案分析:该圆的中心在平面3x y z a ++=上,且三个坐标相等,中心坐标为(,,),a a a,11.设曲线积分 ,4 L 22⎰++-=yx xdyydx I 其中L 为椭圆,1422=+y x 并取正向,则__________.I =知识点:对坐标的曲线积分,难度等级:2. 答案:.π分析: 可取椭圆的参数方程计算.12. 设∑是球面222x y z R ++=在第一卦限部分,则2__________.x dS ∑=⎰⎰知识点:对面积的曲面积分,对称性,难度等级2. 答案:4.6R π分析:222x dS y dS z dS ∑∑∑==⎰⎰⎰⎰⎰⎰ ()22213x y z dS ∑=++⎰⎰ 224114.386R R R ππ=⋅⋅=三、计算题(每小题6分,共24分) 13. 求微分方程()0y xxe d y x xdy -=+的通解. 知识点:齐次微分方程,通解,难度等级1. 分析:齐次微分方程,作变量代换yu x=化为可分离变量的微分方程.解: 方程两端同除以,x 得()0.y xye dx dy x+-=令,y vx =则.dy vdx xdv =+ 代入上式,得0,ve dx xdv -= 即 0.vdx e dv x--= 积分之,得ln .v x e C -+=故原方程的通解为ln .y xx e C -+=14. 计算2(2)(3),y L x y dx x ye dy -++⎰其中L 由从)0,2(A 到)1,0(B 的直线段22=+y x 及从)1,0(B 到)0,1(-C 的圆弧21y x --=所构成.知识点:对坐标的曲线积分,格林公式,难度等级:2. 分析:补充线段构成闭曲线用格林公式.解 :如图,添加一段定向直线,CA 这样L 与CA 构成闭路.设所围的区域为,D 于是根据格林公式得:2211(2)(3)55(211)24y L CA Dx y dx x ye dy dxdy π+-++==⋅⋅+⋅⎰⎰⎰15(1).4π=+ 则L⎰=.L CACA→+-⎰⎰又2221(2)(3) 3.y CAx y dx x ye dy x dx --++==⎰⎰故25(2)(3)5(1)32.44y L x y dx x ye dy ππ-++=+-=+⎰ 15. 计算22(),x y dS ∑+⎰⎰其中∑为抛物面222z x y =--在xoy 面上方的部分.知识点:对面积的曲面积分,难度等级:2.分析:直接将曲面积分化为二重积分,用极坐标计算二重积分. 解:∑在xoy 的投影为22:2,xy D x y +≤且= 于是22()x y dS ∑+⎰⎰22(xyD x y =+⎰⎰20220112(14(14)84149.30d r r πθππ==⋅+-+=⎰ 16. 计算333,x dydz y dzdxz dxdy ∑++⎰⎰其中∑为球面2222x y z a ++=的外侧.知识点:对坐标的曲面积分,高斯公式,球面坐标,难度等级:2 分析:题设曲面为封闭曲面,高斯公式,再用球面坐标化为三次积分.解:333x dydz y dzdx z dxdy ∑++⎰⎰ 2223()x y z dxdydz Ω=++⎰⎰⎰222053sin 12.5ad d r r dra ππθϕϕπ=⋅=⎰⎰⎰四、解答题(每小题6分,共12分)17.设(,)z f x u =具有连续的二阶偏导数,而,u xy =求22.zx∂∂难度等级:1;知识点:复合函数的偏导数.分析: 按复合函数的偏导数的求法两次对x 求偏导数,即可求出22.z x∂∂ 解:x x u z f y f '''=+ 22.xx xx xu uu z f yf y f ''''''''⇒=++18.利用斯托克斯公式计算222222()()(),y z dx z x dy x y dz Γ-+-+-⎰其中Γ是用平面23=++z y x 截立方体[]⨯1,0[]⨯1,0[]1,0的表面所得的截痕,若从z 轴正向看去,Γ取逆时针方向.知识点:对坐标的曲线积分,斯托克斯公式,难度等级:3 分析: 通过斯托克斯公式将曲线积分转化为对面积的曲面积分,注意积分技巧:可将方程代入被积函数.解: 如图,我们将平面23=++z y x 的上侧被Γ所围的部分取为,∑于是∑的单位法向量.n e =由斯托克斯公式得:dS y x x z z y z y x I ⎰⎰∑---∂∂∂∂∂∂=222222cos coscos γβα ().x y z dS ∑=++ 观察上述积分,由于在∑上有3,2x y z ++=根据第二型曲面积分的计算公式,故396(6)().42xyxyD D I dS S ∑=-=-=-=-=-其中xy D 是∑在xOy 坐标平面的投影区域,而xyD S 为xy D 的面积.五、 证明题(每小题6分,共12分)19.试证:,)(0,0)(,)0, (,)(0,0)x y f x y x y ⎧≠⎪=⎨⎪=⎩在点(0,0)处偏导数存在,但是不可微.知识点:二元函数偏导数、可微,难度等级:1分析:先求出(0,0),(0,0)x y f f 然后说明(0,0)(0,0)x y z f x f y ∆-∆-∆不是比ρ更高阶的无穷小量就可以了.证明 : 0(,0)(0,0)lim 0(0,0);x x f x f f x∆→∆-==∆同理, (0,0)0.y f =则2200limlim.()()x x y y zx yx y ρρ→∆→∆→∆→∆→∆∆∆==∆+∆ 但是此极限不存在,故(,)f x y 在(0,0)处不可微.20. 证明:级数2(!)nn x y n ∞==∑满足方程0.xy y y '''+-= 知识点:幂级数,微分方程,难度等级:2. 分析:直接用幂数代入微分方程验证.证明: 因为20,(!)n n x y n ∞==∑所以122212(1),.(!)(!)n n n n nx n n x y y n n --∞∞==-'''==∑∑ 212222101122222111221(1)(!)(!)(!)(1)11(!)(!)(!)!(2)!!(1)!!!n n n n n n n nn n n n n nn n n n n x nx x xy y y x n n n n n x nx x n n n x x x n n n n n n --∞∞∞===--∞∞∞===--∞∞∞===''-'''+-=+--=++--=+---∑∑∑∑∑∑∑∑∑ 21111(1)!(1)!(1)!!(!)(1)(1)(1)!!0n n nn n n nn x x x n n n n n n n xn n ∞∞∞===∞==+-+-++-+=+=∑∑∑∑∴方程0xy y y '''+-=成立.六、应用题 (每小题8分,共16分)21. 设球在动点(),,P x y z 处的密度与该点到球心距离成正比,求质量为m 的非均匀球体2222x y z R ++≤对于其直径的转动惯量. 知识点:立体的转动惯量,难度等级:2. 分析:利用转动惯量公式,球坐标计算三重积分.解:设球体方程为2222:,x y z R Ω++≤密度函数ρ=则球体的质量为:234(,,)sin Rm x y z dxdydz k k d d r dr k R ππρθϕϕπΩΩ====⎰⎰⎰⎰⎰⎰所以,密度函数为ρ=计算该球体绕z 轴转动的转动惯量:22224235232240()(,,)(24sin sin 39Rm I x y x y z dxdydz xy R m d d r dr mR d mR R πππρπθϕϕϕϕπΩΩ=+=+===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰22.将质量为m 的物体垂直上抛,假设初始速度为0,v 空气阻力与速度成正比(比例系数为k ),试求在物体上升过程中速度与时间的函数关系.知识点:微分方程的初值问题,难度等级:1 分析: 只需将二阶导数表示出来就可证之.解: 根据条件,空气阻力为.kv 于是物体上升过程中受力为()kv mg -+(其中负号表示力与运动方向相反),而运动加速度为.dva dt=因而得微分方程 .dv m kv mg dt=-- 又知初始速度为0v ,故得初值问题0,(0).dv kv g dt mv v ⎧+=-⎪⎨⎪=⎩ 因此000000(1.)()()ttkkkk k k dtdtt t t t tm m mm m mgm mg v egedt v ee v e v e k m k kg -----⎰⎰=-+=+-+=+⎰。
重庆大学高数工学下期末试题五含答案

-- -XX 大学《高等数学(工学类)》课程试卷A卷B卷20 — 20 学年第学期开课学院:数统学院课程号:考试日期:考试方式:开卷闭卷 其他考试时间: 120 分钟一、选择题(每小题3分,共18分)1. 如果,a b 为共线的单位向量,则它们的数量积().a b ⋅=(A)1 (B) 0 (C) 2- (D) cos(,)a b知识点:向量的数量积,难度等级:1. 答案:D分析:||||a b a b ⋅=cos(,)a b =cos(,).a b 2.微分方程21x y '=的通解是().(A) 1y C x =+(B) 1y C x=+ (C)1C y x =-+ (D) 1y xC =-+知识点:微分方程,难度等级:1. 答案:D分析:将方程改写为21,dy dx x =并积分,得通解1,y C x=-+故应选(D).3.设空间区域2222,x y z R Ω++≤:则().Ω=(A) 4R π(B)443R π;(C)4 32 R π(D)42 R π 知识点:三重积分计算,难度等级:2. 答案:A4.若L 是上半椭圆cos sin x a ty b t=⎧⎨=⎩取顺时针方向,则L ydx xdy -⎰的值为().(A)0 (B)2ab π(C)ab π (D)ab π-知识点:对坐标的曲线积分,难度等级:1. 答案: C分析:题中半椭圆面积为,2ab π要用格林公式,添有向线段1:0(:).L y x a a =-→112,0.DL L L dxdy ab π-+===⎰⎰⎰⎰故选C.命题人:组题人:审题人:命题时间:教务处制学院 专业、班 年级 学号 X X 考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密5.设函数(),0f x x >连续,并对0x >的任意闭曲线,L 有34()0,Lx ydx xf x dy +=⎰且(1)2,f =则()f x =().(A)242412423-+-x x x (B)324122424x x x -+- (C)31x +(D)xx 13+知识点:对坐标的曲线积分,积分与路径无关,微分方程.难度等级:3.答案:D分析:由条件知,积分与路径无关,有3(4)(()).x y xf x y x ∂∂=∂∂即34()().x f x xf x '=+A,B 选项显然不满足方程,而C 含常数,也不能满足方程,故选D.验证D 满足,或用一阶线性微分方程求出为D. 6.曲面z =包含在柱面222x y x +=内部那部分面积().=(A) π(C)知识点:曲面面积,难度等级:2. 答案:B分析:在xOy 投影区域22:2,D x y x +≤化为二重积分为D,选B.二、填空题(每小题3分,共18分)7.级数12(2)!nn n n ∞=∑的和为__________.知识点:级数的和.难度等级:2. 答案:e分析:11121.(2)!!(1)!n n n n n n e n n n ∞∞∞======-∑∑∑8. 222()__________,c x y z ds ++=⎰其中c 为螺线cos ,sin ,(02).x a t y a t t a bt π=⎧⎪=≤≤⎨⎪=⎩的一段.知识点:对弧长的曲线积分,难度等级:1. 答案:2222(343a b ππ+ 解:弧长的微分为,ds =于是222222222202()()(343cx y z ds a b t dt a b πππ++=+=+⎰9. 过已知点A )1,2,1(-和B )7,2,5(-作一平面,使该平面与x 轴平行,则该平面方程为__________.知识点:平面方程,难度等级:2.答案:20.y -=分析:平面的法向量n AB ⊥,且n i ⊥,取606(0,6,0),100i j kn AB i =⨯=-=过点A (1,2,1),-平面方程为0(1)6(2)0(0)0,x y z ⋅-+⋅-+⋅-=即20.y -= 10. 函数zy u x =在点(1,2,1)-处沿(1,2,2)a =-方向的方向导数为______.知识点:函数的方向导数.难度等级:1 答案:1.6解:(1,2,2)a =-⇒122cos ,cos ,cos .333αβγ-===1(1,2,1)(1,2,1)1(1,2,1)(1,2,1)1;2ln 0;z z z y y z uy x x ux x zy y ------∂=⋅=∂∂=⋅=∂(1,2,1)(1,2,1)ln ln 0.zy z u x x y y z --∂=⋅=∂111.236u a ∂⇒=⨯=∂ 11.设∑为平面326x y ++=在第一卦限的部分的上侧,将⎰⎰∑++Qdzdx Pdydz Rdxdy 化为对面积的曲面积分的结果为__________.知识点:两种曲面积分之间的转换.难度等级:2. 答案:32().555P Q R dS ∑++⎰⎰ 分析:第二型曲面化为第一型曲面积分,只需求出有向曲面侧的单位法向量,与被积向量函数作内积即可,平面法向量为{,长度为5故得结果.12.设∑是圆锥面z =被圆柱面ax y x 222=+所截的下部分,则()xy yz zx dS ∑++⎰⎰__________.=知识:对面积的曲面积分,对称性.难度等级:3. 答案4. 分析:曲面关于x 轴对称,xy yz +为关于y 的奇函数,故只需算zx的积分值,2cos 3422cos .xya D zxdS d dr θππθθ-∑===⎰⎰⎰⎰三、计算题(每小题6分,共24分)13. 计算积分(2),c a y dx xdy -+⎰其中c 为摆线(sin ),(1cos )(02)x a t t y a t t π=-=-≤≤的一拱.知识点:对坐标的曲线积分,难度等级:2分析:已知了积分路径的参数方程,直接代入计算积分. 解:由题设(1cos ),sin .dx a t dt dy a tdt =-=于是{}20(2)[(2(1cos )](1cos )(sin )sin ca y dx xdy a a t a t a t t a t dt π-+=---+-⎰⎰[]2202202sin cos sin 2.a t tdt a t t t a πππ==--=-⎰14. 求32sin (2cos cos )0x d x x dx θθθθ+-+=的通解.知识点:微分方程,变量代换,一阶线性微分方程.难度等级:2 分析:sin cos d d θθθ=,若令cos z θ=,原方程可化为一阶线性方程.解:将原方程改写为2sin cos 2cos .x d dx dx xdx x θθθθ+-+= 令cos ,y xθ=则2sin cos .x d dxdy xθθθ+=-于是方程化为 2.dyxy x dx+= 这是一阶线性非齐次方程.由通解公式2221().2x x x y e xe dx C Ce --=+=+⎰ 故21cos .2x x Cxe θ-=+15. 计算,2222⎰⎰∑+++z y x dxdy z xdydz 其中∑是由曲面222R y x =+及平面,(0)z R z R R ==->所围成立体表面外侧.知识点:对坐标的曲面积分,高斯公式.难度等级:3 分析:利用高斯公式并注意对称性.解:利用高斯公式,并注意对称性,知22222222222()0.()z dxdy z x y dV x y z x y z ∑Ω+==++++⎰⎰⎰⎰⎰ 又dydz z R y R dydz z R y R z y x xdydz⎰⎰⎰⎰⎰⎰∑∑∑+--++-=++212222222222222212yzD RR RdzR z --==+⎰⎰⎰⎰2212[arctan ]2.2R R z R R R R ππ-=⋅=22222.2xdydz z dxdy R x y z π∑+⇒=++⎰⎰ 16. 计算第二类曲线积分222,Ly dx z dy x dz ++⎰其中L 为球面2222R z y x =++与柱面对)0,0(22>≥=+R z Rx y x 的交线,其方向是面对着正x 轴看去是反时针的.知识点:对坐标的曲线积分,斯托克斯公式,对称性.难度等级:3 分析:利用斯托克斯公式,合一投影,并注意对称性的使用.解:222222L dydz dzdx dxdy y dx z dy x dz x y z y z x ∑∂∂∂++=∂∂∂⎰⎰⎰dxdyy yx R xy x ydxdyxdzdx zdydz xyD ⎰⎰⎰⎰+--+-=++-=∑)(222222xyD xdxdy =-⎰⎰(∵xy D 关于x 轴对称,(,)f x y y 是关于y 的奇函数)⎰⎰--=22cos 02cos 2ππθθθR dr r d342034cos 3.4R d R πθθπ=-=-⎰四、解答题(每小题6分,共12分)17.判断级数111(1)nn e n∞=--∑的敛散性.知识点:级数敛散性的判断.难度等级:2 分析:取211n n ∞=∑用比较判别法的极限形式. 解: 1200211111limlim lim .122nx xn x x e e x e n x x n →∞→→-----===由于211n n∞=∑收敛,故级数111(1)n n e n ∞=--∑收敛.18.求函数2232z x y x =+-在闭域22(,)|194x y D x y ⎧⎫=+≤⎨⎬⎩⎭上的最大值和最小值.知识点:二元函数在闭区域上的最值.难度等级:2分析:先求函数的驻点,得到在区域内部可能的最值点,然后求边界上可能的最值点.解:由22060x yz x z y =-=⎧⎨==⎩得D 内驻点(1,0),且(1,0) 1.z =-在边界22194x y +=上()21121233.3z x x x =--+-≤≤1220.3z x '=--< 11(3)15(3) 3.z z -==比较后可知函数z 在点(1,0)取最小值(1,0)1z =-在点(3,0)-取最大值(3,0)15.z -=五、 证明题(每小题6分,共12分)19.设函数(,,)F x y z 具有一阶连续偏导数,且对任意实数t 有(,,)(,,)(k F tx ty tz t F x y z k=是自然数),试证曲面(,,)0F x y z =上任一点的切平面都通过一定点(设在任一点处,有2220.x y z F F F ++≠).知识点:齐次函数,切平面.难度等级:2 分析:曲面(,,)0F x y z =在一点000(,,)x y z 的切平面方程为000()()()0,x y z F x x F y y F z z ⋅-+⋅-+⋅-=求出此方程,可以发现坐标原点(0,0,0)满足方程.证明:由已知条件可得.x y z xF yF zF kF ++=曲面上点000(,,)x y z 处的切平面方程为000()()()0.x y z F x x F y y F z z ⋅-+⋅-+⋅-=即000000(,,)0.x y z x y z xF yF zF x F y F z F kF x y z ++=++==易知0,0,0x y z ===满足上述平面方程,所以曲面的任意切平面都通过定点()000,,.20. 设0,n P >n P 单调增,且11n nP ∞=∑收敛.证明:(1)12n nn u P P P =+++单调减.(2)21n n u ∞=∑收敛.知识点:级数敛散性的判断.难度等级:2证:(1)1121121n n n nn nu u P P P P P P +++-=-++++++1212112121(1)()()()()n n n n n P P P n P P P P P P P P P ++++++-+++=++++++121121210()()n n n n P P P nP P P P P P P +++++-=<++++++12n nnu P P P ∴=+++单调减.(2)2122222,n n n n n n u P P P nP P =≤=+++而11n nP ∞=∑收敛,由比较判别法,21n n u ∞=∑收敛.六、 应用题(每小题8分,共16分)21. 设在xoy 面上有一质量为M 的匀质半圆形薄片,占有平面闭域222,,0{()|},D x y x y R y =+≤≥过圆心O 垂直于薄片的直线上有一质量为m 的质点,P .OP a =求半圆形薄片对质点P 的引力.知识点:平面薄片对质点的引力,难度等级:3 分析:由引力公式,建立二重积分计算 解:设P 点的坐标为(0,0,.)a 薄片的面密度为222.12M MRR μππ== 设所求引力为,,().x y z F F F F =由于薄片关于y 轴对称,所以引力在x 轴上的分量0,x F =而2223/2()y Dm yF G d x y a μσ=++⎰⎰2223/2sin ()Rm G d d a πρθμθρρ=+⎰⎰2223/22223/2sin ()2()RRm G d d a m G d a πρμθθρρρμρρ=+=+⎰⎰⎰24(ln GmM R R a π= 2223/2()z Dm aF G d x y a μσ=-++⎰⎰2223/2()Rm Ga d d a πρμθρρ=-+⎰⎰2223/22()2(1Rm Ga d a GmM R ρπμρρ=-+=-⎰22.一质量为m 的船以速度0v 沿直线航行,在0t =时,推进器停止工作(动力关闭). 假设水的阻力正比于,n v 其中n 为一常数,v 为瞬时速度,求速度与滑行距离的函数关系.知识点:微分方程模型.难度等级:2分析:据牛顿第二定律建立微分方程.解:船所受的力=向前推力-水的阻力=0,n kv -加速度为.dvdtα=于是,由题设有 00,|.n t dvmkv v v dt==-= 设距离为()x x t =,则上述方程化为.n dv dv dx dvmm mv kv dt dx dt dx=⋅=⋅=- 故有1.n mv dv kdx -=-当2n ≠时,两边积分得,22.2nmv kx c n-=-+- 代入000|,|0,t t v v x ====得20.2n mv c n-=-故220.(2)n n k n v x v m---=-+ 当2n =时,同理可解得0.k x mv v e-=。
【经典期末卷】大学高数(下)期末测试题及答案

第 1 页 (共 10 页)班级(学生填写): 姓名: 学号: 命题: 审题: 审批: ----------------------------------------------- 密 ---------------------------- 封 --------------------------- 线 ------------------------------------------------------- (答题不能超出密封线)LQdx Pdy +⎰=( )dxdy )P dxdy x 二重积分的积分区域D 是221≤+x y π C .2π+⎰L Pdx Qdy在A.∂∂-=∂∂P Qy x第 2 页(共10 页)第 3 页 (共 10 页)班级(学生填写): 姓名: 学号: ----------------------------------------------- 密 ---------------------------- 封 --------------------------- 线 ------------------------------------------------------- (答题不能超出密封线)()Lx y ds +⎰= ()Lx y ds +⎰= Lydx xdy +⎰= 2sin y t =上对应22xy De dxdy --⎰⎰= 2.第 4 页 (共 10 页)三. 计算题(一)(每小题6分,共36分)1.计算:22xy De d σ+⎰⎰,其中D 是由圆周224x y +=所围成的闭区域。
2.计算三重积分xdxdydz Ω⎰⎰⎰,其中Ω为三个坐标面及平面21x y z ++=所围成的闭区域。
3.计算xyzdxdydz Ω⎰⎰⎰,其中Ω是由曲面2221x y z ++=,0,0,0x y z ≥≥≥所围成.第 5 页 (共 10 页)班级(学生填写): 姓名: 学号: ----------------------------------------------- 密 ---------------------------- 封 --------------------------- 线 ------------------------------------------------------- (答题不能超出密封线)4.求2d d Dxx y y⎰⎰,其中D 为1xy =,y x =及2x =所围成的区域。
【经典期末卷】大学高数(下)期末单元测试卷及详细解答

学生填写): 姓名: 学号: 命题: 审题: 审批: ------------------------------------------------ 密 ---------------------------- 封 --------------------------- 线 ----------------------------------------------------------- (答题不能超出密封装订线)班级(学生填写): 姓名: 学号: ---------------------------------------------- 密 ---------------------------- 封--------------------------- 线 ------------------------------------------------ (答题不能超出密封线)4.求方程y y y y '='+''2)(的通解.(4分)5. 求微分方程 2d 22d x yxy xe x -+=的通解。
(4分)6. 求微分方程09422=+y dxyd 满足初始条件23,20====x x dxdy y的特解。
(4分)班级(学生填写): 姓名: 学号: ------------------------------------------- 密 ---------------------------- 封--------------------------- 线 ------------------------------------------------ (答题不能超出密封线))7. 求x e y dx dy-=+微分方程的通解。
(4分)8. 求微分方程的一条积分曲线,使其在原点处与直线相切. (4分)9. 求微分方程x y y x sin =+'满足0)(=πy 的特解.(4分)10. 求微分方程430,(0)6,(0)10y y yy y ''''-+===的特解.(4分)11. 求微分方程0)(22=-+xydy dx y x 的通解。
重庆大学高数(下)期末试题二(含答案)

重庆大学《高等数学(工学类)》课程试卷第1页共1页重庆大学《高等数学(工学类)》课程试卷A卷B卷20 —20 学年第学期开课学院: 数统学院课程号: 考试日期:考试方式:开卷闭卷 其他考试时间: 120 分题号一二三四五六七八九十总分得分一、选择题(每小题3分,共18分)1. 设向量a与三轴正向夹角依次为,,,αβγ则当cos0β=时有().(A) a⊥xoy面(B) a//xoz面(C) a⊥yoz面(D) a xoz⊥面知识点:向量与坐标的位置关系,难度等级:1.答案: (B)分析:cos0,β=,2πβ=a垂直于y轴,a//xoz面.2. 若某个三阶常系数线性齐次微分方程的通解为212323,y C C x C x=++其中123,,C C C为独立的任意常数,则该方程为().(A)0y y'''+=(B) 30yy'''+'=(C)0y y'''-=(D) 0y'''=知识点:通过微分方程的通解求微分方程,难度等级:2.答案: (D)分析:由通解中的三个独立解21,,x x知,方程对应的特征方程的特征根为1230.λλλ===因此对应的特征方程是30.λ=于是对应的微分方程应是0.y'''=故应选(D).3. 设D由14122≤+≤yx确定.若1221,DI dx yσ=+⎰⎰222(),DI x y dσ=+⎰⎰223ln(),DI x y dσ=+⎰⎰则1,I2,I3I之间的大小顺序为().(A)321III<<(B)231III<<(C)132III<<(D)123III<<知识点:二重积分比较大小,难度等级:1.答案:(D)分析:积分区域D由22114x y≤+≤确定.在D内,2222221ln(),x y x yx y+<+<+故321.I I I<<只有D符合.4.设曲线L是由(,0)A a到(0,0)O的上半圆周22,x y ax+=则曲线积分命题人:组题人:审题人:命题时间:教务处制学院专业、班年级学号姓名考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密考试提示1.严禁随身携带通讯工具等电子设备参加考试;2.考试作弊,留校察看,毕业当年不授学位;请人代考、替他人考试、两次及以上作弊等,属严重作弊,开除学籍.(sin )(cos )().xx Ley my dx e y m dy -+-=⎰(A)0 (B)22m a π (C)28m a π (D)24m a π知识点:对坐标的曲线积分,格林公式,难度等级:2. 答案:(B)分析:补充直线段1:0(:0),L y x a =→则1L L +为封闭曲线在上使用格林公式可得12,2L L Dm mdxdy a π+==⎰⎰⎰而10.L =⎰选B.5. 已知向量23,a m n =+则垂直于a 且同时垂直于y 轴的单位向量().e =(A))i j k ++ (B))i j k -+ (C))2i k ±- (D)()2i k ±+知识点:向量垂直,单位向量,难度等级:1. 答案:(C) 分析:向量111010i j ki k =-+垂直于a 且同时垂直于y 轴,其模为6. 设∑为球面2222,x y z R ++=则22()().84x y I dS ∑=+=⎰⎰(A)24R π (B)545R π (C)24R π (D)R π4知识点:对面积的曲面积分,对称性,难度等级:2. 答案:(C)分析: 由于积分曲面关于三个坐标面对称,且满足轮换,故有2222224114()4.333x dS x y z dS R R R ππ∑∑=++=⋅=⎰⎰⎰⎰利用上述结论所求I 为23.8x dS ∑⎰⎰故选C.二、填空题(每小题3分,共18分)7. 幂级数21!n nn n x n ∞=∑的收敛半径为__________.知识点:幂级数收敛半径,难度等级:1. 答案分析:1`22222(1)(1)(1)!lim lim 1!n n n n n n n n n xn n x ex x n n x n ++→∞→∞+++==<⇒< 8. 由原点向平面引垂线,垂足的坐标是),,(c b a ,此平面的方程为__________.知识点:平面方程,难度等级:1.答案:23120.x y z -+-=分析:该平面的法向量为22350,x y z -+-=且过点22350,x y z -+-=则其平面的方程23120.x y z -+-=9. 设L 为椭圆221,34x y +=其周长记为,a 则求22(243)Lxy x y ds ++⎰__________.=知识点:对坐标的曲线积分,难度等级:1. 答案:12.a10. 设区域D 为222,x y R +≤则()DR y dxdy +⎰⎰__________.=知识点:二重积分的计算,对称性,难度等级:2. 答案:3.R π分析:所求几何体为一圆柱体被一平面劈开剩下部分,由几何形状知其为圆柱体体积一半,可得结果.或直接由被积函数奇偶分开,及积分区域对称立得. 11.3222(2cos )(12sin 3)__________,Lxy y x dx y x x y dy -+-+=⎰其中为抛物线22x y π=上由到的一段弧.知识点:对坐标的曲线积分,积分与路径无关,难度等级:2答案:2.4π解: 322cos ,P xy y x =-2212sin 3,Q y x x y =-+262cos .Q P xy y x x y∂∂⇒=-=∂∂ 3222(2cos )(12sin 3)L xy y x dx y x x y dy ⇒-+-+⎰与积分路径无关.⇒取L 为由(0,0),(,0),(,1)22ππ组成的折线,则2132222203(2cos )(12sin 3)0(12).44L xy y x dx y x x y dy y y dy ππ-+-+=+-+=⎰⎰12. 设∑为曲面2221x y z ++=的外侧,则333I x dydz y dzdx z dxdy∑=++⎰⎰__________.=知识点:对坐标的曲面积分,球坐标,难度等级:3. 答案:12.5π分析: 由高斯公式,2122240123()3sin .5I x y z dV d d r dr ππθϕϕΩ=++==⎰⎰⎰⎰⎰⎰三、计算题(每小题6分,共24分)13. 求初值问题2(2)|1x ydy x y dxy ==+⎧⎨=⎩的解.知识点:齐次微分方程的初值问题,求解,难度等级:1. 分析:所给方程为齐次微分方程,作代换yu x=化为可分离变量的微分方程. 解:将方程改写为2.dy x y dx y+= 这是齐次方程.令,y xu =则.dy du u x dx dx=+ 代入上式得L (0,0))1,2(π21.du u xdx u+=+ 这是变量分离方程,且有(2)1(2).22y u ==积分得21ln |2|ln |1|0.33x u u C +-+++= 代入初值可解得32ln .2C =--故原方程的特解为213ln |2|ln |1|2ln 0.332y y x x x +-++--=14. 求级数11(4)!n n ∞=∑的和. 知识点:级数和,难度等级:3分析:利用级数之和,幂级数的逐项求导解: 0,.!nx n x e x R n ∞==∈∑(1),.!n nx n x e x R n ∞-=-⇒=∈∑20,.(2)!2n x xn x e e x R n -∞=+⇒=∈∑又 20(1)cos ,.(2)!n nn x x x R n ∞=-=∈∑ 40cos 2,.(4)!2x xn n e e x x x R n -∞=++⇒=∈∑ 111cos112.(4)!2n e e n -∞=++⇒=∑ 15. 计算222()L ydx xdy x y -+⎰,其中L 为圆周22(1)2,x y -+=L 的方向为逆时针方向.知识点:对坐标的曲线积分,积分与路径无关,取特殊路径;难度等级:3.分析:先注意积分与路径无关,后根据分母特点取特殊路径积分.解:当(,)(0,0)x y ≠时,22222.2()P x y Qy x y x∂-∂==∂+∂作小圆222:,C x y ε+=取逆时针方向,则222222222112.2()2()22L C Cx y ydx xdy ydx xdy ydx xdy dxdy x y x y επεε+≤--==-=-=-++⎰⎰⎰⎰⎰16. 求力(,,)F y z x =沿有向闭曲线L 所作的功,其中L 为平面1x y z ++=被三个坐标面所截成的三角形的整个边界,从z 轴正向看去,顺时针方向.知识点:变力没曲线作功,难度等级:2.分析: 曲线积分的边界已为闭,用斯克斯公式,或化为平面曲线积分用格林公式.解: 用斯托克斯公式,取∑为平面1x y z ++=的下侧被L 所围的部分,∑1,1,1).--- 力F 所做的功为LW ydx zdy xdz =++⎰x y y z ∑---=∂∂∂∂⎰⎰3.2===⎰⎰四、解答题(每小题6分,共12分)17.设(),u yxf z =其中()f z 二阶可导,(,)z z x y =由方程2ln 10x y z +-+=所确定,求22.ux∂∂知识点:方程组的二阶偏导数,难度等级:2. 分析:()u yxf z =对x 求二阶偏导数得22,ux ∂∂但其中会包含z 对x 的二阶偏导数22zx ∂∂.2ln 10x y z +-+=两边对x两次求偏导数,可求出22zx∂∂.解:()(),u z yf z xyf z x x∂∂'=+∂∂ 222222()()()(),u z z zyf z xyf z xyf z x x x x∂∂∂∂''''=++∂∂∂∂221,1,z z x zz zz x x∂==∂∂∂==∂∂2222()()().uyzf z xyz f z xyzf z x∂''''=++∂ 18. 计算曲面积分323232()()(),x az dydz y ax dzdx z ay dxdy ∑+++++⎰⎰其中∑为上半球面z =.知识点:高斯公式,球面坐标,极坐标,难度等级3. 分析: 补充辅助面用高斯公式,再用球面坐标.解: 设222:,0x y a S z ⎧+≤⎨=⎩取下侧,则∑与S 围成的区域为,ΩS 在xoy 面的投影区域为.D 于是323232()()()SI x az dydz y ax dzdx z ay dxdy ∑+=+++++⎰⎰323232()()()Sx az dydz y ax dzdx z ay dxdy -+++++⎰⎰22223()Dx y z dv ay dxdy Ω=+++⎰⎰⎰⎰⎰222222203sin sin a a d d r r dr a d r rdr πππθϕϕθθ=⋅+⋅⎰⎰⎰⎰⎰555615429.20a a a πππ=+=五、 证明题(每小题6分,共12分)19. 证明:()()0()()().ay am a x m a x dy e f x dx a x e f x dx --=-⎰⎰⎰知识点:二重积分交换积分次序,难度等级:1分析: 将二次积分化为定积分,注意到被积函数不含变量,y 先对y 积分,故将积分区域D 由y 型区域化为x 型区域计算可得证明结果证明: 积分区域为,0,{()0|},D x y y a x y =≤≤≤≤并且D 又可表示为,0,{(}.)|D x y x a x y a =≤≤≤≤ 所以()()()0()()()().ay a a am a x m a x m a x xdy e f x dx dx e f x dy a x e f x dx ---==-⎰⎰⎰⎰⎰20. 设在半平面0x >内有力3()kF xi yj ρ=-+构成力场,其中k 为常数,ρ=证明:在此力场中场力所作的功与所取路径无关. 知识点:变力沿曲线作功,难度等级:1 分析: 验证积分与路径无关. 证明 场力所作的功2232,()Lxdx ydyW k x y +=-+⎰其中L 为力场内任一闭曲线段.223222523;()()Q y xyx x x y x y ⎡⎤∂∂==-⎢⎥∂∂++⎣⎦ 223222523.()()P x xy y y x y x y ⎡⎤∂∂==-⎢⎥∂∂++⎣⎦ 可见,,P Qy x∂∂=∂∂且,P Q 在半平面0x >内有连续偏导数,所以0.W =即场力作用与路径无关.六、应用题 (每小题8分,共16分)21. 已知年复利为0.05,现存a 万元,第一年取出19万元,第二年取出28万元,…,第n 年取出109n +万元,问a 至少为多少时,可以一直取下去?知识点:幂级数的和函数,难度等级:2解:设n A 为用于第n 年提取(109)n +万元的贴现值,则(1)(109).n n A r n -=++ 故1111110919102009.(1)(1)(1)(1)n n n n nn n n n n n n nA A r r r r ∞∞∞∞∞=====+===+=+++++∑∑∑∑∑设1(),(1,1),n n S x nx x ∞==∈-∑ 则21()()(),(1,1).1(1)n n x x S x x x x x x x ∞=''===∈---∑所以11()()4201 1.05S S r ==+万元,故20094203980A =+⨯=万元,即至少应存入3980万元.22.按照牛顿冷却定律:物体在空气中冷却的速度与物体温度和空气温度之差成正比.已知空气温度为30,︒物体在15分钟内从100︒冷却到70︒时,求物体冷却到40︒时所需要的时间?知识点:微分方程数学模型,难度等级:2分析:根据冷却定律建立微分方程初值问题并求解. 解:设在时间t 时,物体的温度为.T C ︒ 根据冷却定律列出方程(30).dTk T dt=-- 分离变量,并积分得,30dTkdt T =-- ln(30)ln .T kt c -=-+故有0.3kt T ce -=+由初始条件:015|100,|70.t t T T ==== 代入可解得1770,ln ,154c k ==即有 17(ln )154.3070t T e-=+当40T =时,由上式可解得15ln 7527ln 4t ==(分).。
2019最新高等数学(下册)期末考试试题(含答案)ABC

2019最新高等数学(下册)期末考试试题(含答案)一、解答题1.将函数(,)x f x y y =在(1,1)点展到泰勒公式的二次项.解:(1,1)1,f =(1,1)(1,1)1(1,1)(1,1)ln 0,1,x x x y f y y f xy-====2(1,1)(1,1)1(1,1)(1,1)2(1,1)(1,1)2(ln )0,1ln 1,(1)0,(,)1(1)(1)(1)0().xxx x x xy x yyx f y y xy y y f y f xy x f x y y y x y ρ--==⎛⎫+⋅== ⎪⎝⎭=-===+-+--+2.求下列欧拉方程的通解:2(1)0x y xy y '''+-=解:作变换e t x =,即t =ln x ,原方程变为 (1)0D D y Dy y -+-=即 22d 0d yy t-=特征方程为 210r -=121,1r r =-=故 12121e e t ty c c c c x x-=+=+. 23(2)4x y xy y x '''+-=.解:设e tx =,则原方程化为3(1)4e t D D y Dy y -+-=232d 4e d ty y t-= ① 特征方程为 240r -=122,2r r =-=故①所对应齐次方程的通解为2212e e t t y c c -=+又设*3e t y A =为①的特解,代入①化简得941A A -= 15A =, *31e 5t y = 故 223223121211ee e .55tt t y c c c x c x x --=++=++3.求下列线性微分方程满足所给初始条件的特解:πd 11(1)sin ,1d x y y x y x x x=+== ; 解: 11d d 11sin e sin d [cos ]e d x x x x x y x x c c x x c x x x -⎡⎤⎰⎰⎡⎤==+=-+⎢⎥⎣⎦⎣⎦⎰⎰ 以π,1x y ==代入上式得π1c =-, 故所求特解为 1(π1cos )y x x=--. 2311(2)(23)1,0x y x y y x='+-== . 解:22323d 3ln x x x x c x--=--+⎰ 22223323d 23+3ln d 3ln ee e d e d x xx x x x x xxxy x c x c -------⎰⎡⎤⎰⎡⎤∴==++⎢⎥⎣⎦⎣⎦⎰⎰ 2223311e .e e 22x x x x x c c ----⎛⎫⎛⎫=⋅=++ ⎪ ⎪⎝⎭⎝⎭以x =1,y =0代入上式,得12ec =-. 故所求特解为 2311e 22e x y x -⎛⎫=-⎪⎝⎭.4.计算下列对坐标的曲面积分:(1)22d d x y z x y ∑⎰⎰,其中Σ是球面x 2+y 2+z 2=R 2的下半部分的下侧;(2)d d d d d d z x y x y z y z x ∑++⎰⎰,其中Σ是柱面x 2+y 2=1被平面z =0及z =3所截得的在第Ⅰ封限内的部分的前侧;(3)()()()d d 2d d d d ,,,,,,f x y z f y z x f z x y x y z x y z x y z ∑+++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰,其中f (x , y , z )为连续函数,Σ是平面x -y +z =1在第Ⅳ封限部分的上侧; (4)d d d d d d xz x y xy y z yz z x ∑++⎰⎰,其中Σ是平面x =0, y =0, z =0, x +y +z =1所围成的空间区域的整个边界曲面的外侧;(5)()()()d d d d d d y z z x x y y z x y z x ∑++---⎰⎰,其中Σ为曲面z =z = h (h >0)所围成的立体的整个边界曲面,取外侧为正向;(6)()()22d d d d d d +++-⎰⎰y y z x z x x y y xz x z ∑,其中Σ为x =y =z =0,x =y =z =a 所围成的正方体表面,取外侧为正向;解:(1)Σ:z =Σ在xOy 面上的投影区域D xy 为:x 2+y 2≤R 2.((()()()()()()22222π422002π2222222002π2200354*******d d d d d cos sin d 1sin 2d 81d d 1cos421612422π1635xyD RR R xy z x y x y x yr r rR R r r R R R R r R R R r R r ∑θθθθθθθ=-=-=-⎡⎤+--⎣⎦⎡=---⎣=-⋅-+--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰()72220772π105RR r R ⎡⎤-⎢⎥⎣⎦=(2)Σ如图11-8所示,Σ在xOy 面的投影为一段弧,图11-8故d d 0z x y ∑=⎰⎰,Σ在yOz 面上的投影D yz ={(y ,z )|0≤y ≤1,0≤z ≤3},此时Σ可表示为:x =(y ,z )∈D yz,故30d d d d 3yzD x y z y z z y y∑===⎰⎰⎰⎰⎰⎰⎰Σ在xOz 面上的投影为D xz ={(x ,z )|0≤x ≤1,0≤z ≤3},此时Σ可表示为: y =(x ,z )∈D xz,故3d d d d 3xzD y z x z x z x x∑===⎰⎰⎰⎰⎰⎰⎰因此:d d d d d d 236π643π2z x y x y z y z x x x∑++⎡⎤=⎢⎥⎣⎦==⋅=⎰⎰⎰⎰(3)Σ如图11-9所示,平面x -y +z =1上侧的法向量为 n ={1,-1,1},n 的方向余弦为cos α=,cos β=cos γ=图11-9由两类曲面积分之间的联系可得:()()()()()()()()()d d 2d d d d ,,,,,,cos d (2)cos d ()d d cos cos d d (2)d d ()d d cos cos (2)()d d d d 1d d xyD f x y z f y z x f z x y x y z x y z x y z s f y s f z x yf x x y f y x y f z x y f x f y f z x y f x x yx y z x yx y x y ∑∑∑∑∑αβαβγγ+++++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦=+++++=+++++=-+++⎡⎤+⎣⎦=-+=+-⎡⎤--⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰d d 111212xyD x y==⨯⨯=⎰⎰⎰⎰(4)如图11-10所示:图11-10Σ=Σ1+Σ2+Σ3+Σ4.其方程分别为Σ1:z =0,Σ2:x =0,Σ3:y =0,Σ4:x +y +z =1, 故()()12344110d d 000d d d d 11d d 124xyD xxz x yxz x yx x yx y x x y x y ∑∑∑∑∑∑-=+++=+++=--==--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰由积分变元的轮换对称性可知.1d d dzd 24xy y z yz x ∑∑==⎰⎰⎰⎰ 因此.d d dyd d d 113248xz x y xy z yz z x ∑++=⨯=⎰⎰(5)记Σ所围成的立体为Ω,由高斯公式有:()()()()()()d d d d d d d d d 0d d d 0y z z x x yy z x y z x y z x y z x x y z x y z x y z ∑ΩΩ++---∂∂⎛⎫--∂-=++ ⎪∂∂∂⎝⎭==⎰⎰⎰⎰⎰⎰⎰⎰(6)记Σ所围的立方体为Ω, P =y (x -z ),Q =x 2,R =y 2+xz . 由高斯公式有()()()()()220200204d d d d d d d d d d d d d d d d d d 2d 2a aaaaaaay y z x z x x yy xz x z P Q R x y z x y z x y zx y x y z x y x a yx y y a x xy a a x ax a ∑ΩΩ+++-∂∂∂⎛⎫++= ⎪∂∂∂⎝⎭=+=+=+⎡⎤=+⎢⎥⎣⎦⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰5.求下列齐次方程的通解:(1)0xy y'-=;解:d d y y x x =令 d d d d y y u u u x x x x=⇒=+ 原方程变为d xx=两端积分得ln(ln ln u x c =+u cxy cx x +==即通解为:2y cx =d (2)ln d y yxy x x =; 解:d ln d y y y x x x= 令y u x =, 则d d d d y uu x x x=+原方程变为d d (ln 1)u xu u x=-积分得 ln(ln 1)ln ln u x c -=+ln 1ln 1u cxycx x-=-= 即方程通解为 1ecx y x +=22(3)()d d 0x y x xy x +-=解:2221d d y y x y x y x xyx⎛⎫+ ⎪+⎝⎭==令y u x =, 则d d d d y uu x x x=+原方程变为 2d 1d u u u x x u++= 即 d 1d ,d d u x xu u x u x == 积分得211ln ln 2u x c =+ 2122ln 2ln y x c x=+故方程通解为 22221ln()()y x cx c c ==332(4)()d 3d 0x y x xy y +-=; 解: 333221d d 33y y x y x x xy y x ⎛⎫+ ⎪+⎝⎭==⎛⎫ ⎪⎝⎭令y u x =, 则d d d d y uu x x x=+原方程变为 32d 1d 3u u u x x u ++= 即 233d d 12u x u u x=- 积分得 311ln(21)ln ln 2u x c --=+ 以yx代替u ,并整理得方程通解为 332y x cx -=. d (5)d y x y x x y+=-; 解:1d d 1yy x yx x +=- 令y u x =, 则d d d d y uu x x x=+原方程变为 d 1d 1u uu x x u++=- 分离变量,得211d d 1u u x u x-=+ 积分得 211arctan ln(1)ln ln 2u u x c -+=+ 以y x 代替u ,并整理得方程通解为到 2arctan 22211e .()yxx y c c c +==(6)y '=解:d d y yx=即d d x x y y =令x v y =, 则d d ,d d x v x yv v y y y ==+, 原方程可变为d d vv yv y+=+即d d vyy=分离变量,得d y y= 积分得ln(ln ln v y c +=-.即y v c+=2222121y v v c y yv c c⎛⎫=+- ⎪⎝⎭-= 以yv x =代入上式,得 222c y c x ⎛⎫=+ ⎪⎝⎭即方程通解为 222y cx c =+.6.从下列各题中的曲线族里,找出满足所给的初始条件的曲线:220(1),5;x x y C y =-==解:当0x =时,y =5.故C =-25 故所求曲线为:2225y x -=21200(2)()e ,0, 1.x x x y C C x y y =='=+==解: 2212(22)e x y C C C x '=++ 当x =0时,y =0故有10C =. 又当x =0时,1y '=.故有21C =. 故所求曲线为:2e xy x =.7.利用斯托克斯公式,计算下列曲线积分: (1)d d d y x z y x z Γ++⎰,其中Γ为圆周x 2+y 2+z 2= a 2,x +y +z = 0,若从x 轴的正向看去,这圆周是取逆时针的方向;(2)()()()222222d d d x y z y z x y z x Γ++---⎰,其中Γ是用平面32x y z ++=截立方体:0≤x ≤1,0≤y ≤1,0≤z ≤1的表面所得的截痕,若从Ox 轴的正向看去,取逆时针方向; (3)23d d d y x xz y yz z Γ++⎰,其中Γ是圆周x 2+y 2 = 2z ,z =2,若从z 轴正向看去,这圆周是取逆时针方向; (4)22d 3d d +-⎰y x x y z z Γ,其中Γ是圆周x 2+y 2+z 2 = 9,z =0,若从z 轴正向看去,这圆周是取逆时针方向.解:(1)取Σ为平面x +y +z =0被Γ所围成部分的上侧,Σ的面积为πa 2(大圆面积),Σ的单位法向量为{}cos ,cos ,cos n αβγ==. 由斯托克斯公式22d d d cos cos cos d d πy x z y x zR Q Q P P R s y z x y z x ss a a Γ∑∑∑αβγ++⎡∂∂∂∂⎤⎛⎫⎛⎫∂∂⎛⎫--=++- ⎪⎢⎥ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭⎣⎦====⎰⎰⎰⎰⎰⎰⎰ (2)记为Σ为平面32x y z ++=被Γ所围成部分的上侧,可求得Σ(是一个边长为2的正六边形); Σ的单位法向量为{}cos ,cos ,cos αβγ==n . 由斯托克斯公式()()()(((()222222d d d2222d22d3d232492x y zy z x yz xy z x y sz xsx y zsΓ∑∑∑++---⎡++----=--⎢⎣=++==⋅=-⎰⎰⎰⎰⎰(3)取Σ:z=2,D xy:x2+y2≤4的上侧,由斯托克斯公式得:()()()2223d d dd d0d d d d3d d35d d5π220π-+=++--+=-+=-=-⨯⨯=-⎰⎰⎰⎰⎰⎰⎰xyDy x xz y yz zy z z x x yzz xx yzx yΓ∑∑(4)圆周x2+y2+z2=9,z=0实际就是xOy面上的圆x2+y2=9,z=0,取Σ:z=0,D xy:x2+y2≤9由斯托克斯公式得:()()()222d3d dd d d d d d000032d dd dπ39π+-=++---===⋅=⎰⎰⎰⎰⎰⎰⎰xyDy x x y z zy z z x x yx yx yΓ∑∑8.设均匀薄片(面密度为常数1)所占闭区域D如下,求指定的转动惯量:(1)D:22221x ya b+≤,求I y;(2)D由抛物线292y x=与直线x=2所围成,求I x和I y;(3)D为矩形闭区域:0≤x≤a, 0≤y≤b,求I x和I y.解:(1)令x=arcosθ ,y=br sinθ,则在此变换下D :22221x y a b+≤变化为D ':r ≤1,即 0≤r ≤1, 0≤θ≤2π, 且(,)(,)x y abr r θ∂=∂, 所以2π12222323032π30d d cos d d cos d d 1(1cos 2)d π.84y DD I x x y a r abr r a b r ra b a b θθθθθθ'====+=⎰⎰⎰⎰⎰⎰⎰(2) 闭区域D 如图10-35所示图10-353222220005222220272d d 2d d d ;3596d d 2d d .7x Dy DI y x y x y y x x I x x y x x y x x ========⎰⎰⎰⎰⎰⎰⎰⎰⎰(3)32220d d d d d ,3a bbx Dab I y x y x y y a y y ====⎰⎰⎰⎰⎰322200d d d d d .3abay Da bI x x y x x y bx x ====⎰⎰⎰⎰⎰9.求锥面z被柱面z 2 = 2x 所割下部分的曲面面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆大学《高等数学(工学类)》课程试卷 第1页 共1页重庆大学《高等数学(工学类)》课程试卷20 — 20 学年 第 学期开课学院: 数统学院 课程号: 考试日期:考试方式:考试时间: 120 分一、选择题(每小题3分,共18分)1. 设,,a b c 满足条件,a c b c ⋅=⋅则().(A) a c = (B) a b c =- (C) b c = (D) ()a b c ⊥- 知识点:向量的运算.难度等级:1. 答案:(D)分析:由a b a c ⋅=⋅得()0a b c ⋅-=,,,a b c 都非零,所以()a b c ⊥-. 2. 若某个二阶常系数线性齐次微分方程的通解为12,x x y C e C e -=+其中12,C C 为独立的任意常数.则该方程为().(A)xy y e ''-= (B) 20y y ''-=(C)0y y ''+= (D)0y y ''-= 知识点:微分方程通解,微分方程,难度等级:1. 答案: (D)分析:由通解中的两个独立解,x x e e -知.方程对应的特征方程的特征根为121, 1.λλ==-因此对应的特征方程是2(1)(1)10.λλλ-+=-= 于是对应的微分方程应是0.y y ''-=故应选(D).3. 设222: (1)1,x y z Ω++-≤则2[23]x xyz dV Ω+-⎰⎰⎰().=(A)0 (B)3π (C)3π- (D)4π- 知识点:三重积分,对称性,难度等级:2. 答案:(D)分析: 积分区域关于yoz 面对称.22x xyz +为关于x 的奇函数.积分值为0,余下为3-倍体积.球体体积为4/3,π故选D. 4.设有曲线积分22,4Lydx xdyI x y -+=+⎰其中L 为不过原点的光滑闭曲线,并取正向,则I 的值为().命题人:组题人:审题人:命题时间:教务处制学院 专业、班 年级 学号 姓名 考试教室公平竞争、诚实守信、严肃考纪、拒绝作弊封线密(A)0 (B)2π (C)2π- (D)π 知识点:对坐标的曲线积分,难度等级:2. 答案:(D)分析: 由于内部含有不连续点.不能直接用格林公式.设曲线L 到原点最小距离为2,a 取曲线222:4C x y a +=的顺时针方向.与曲线L 构成闭区域.在该闭区域上使用格林公式.结果为0.故22222222cos sin 22.4C a a ydx xdy I d x y aπθθθπ-+-+===+⎰⎰选D.5. 经过两平面4310,x y z -+-=520x y z +-+=的交线作平面,π并使π与y 轴平行的方程为(). (A) 142130x y --= (B) 211430x z -+= (C) 211430x z +-= (D) 211430x z ++= 知识点:平面方程,平面束.难度等级:2. 答案:(C)分析:设平面π的方程为52(431)x y z x y z λ+-++-+-=即(14)(5)(31)20.x y z λλλλ++-+-+-=当5λ=时211430x z +-=与y 轴平行.6. 设()f u 具有连续导数.∑是曲面22z x y +=与228z x y --=所围成立体表面之外侧.则zdxdy dzdx yxf x dydz yx f y++⎰⎰)(1)(1=().(A) 16π (B) 16π- (C) 8π- (D)因()f u 未知.故无法确定.知识点:对坐标的曲面积分,高斯公式.难度等级:2. 答案:(A)分析: 利用高斯公式可得积分为所围成立体体积.48416,yyD D V dy dxdz dy dxdz π=+=⎰⎰⎰⎰⎰⎰选A.二、填空题(每小题3分,共18分)7. 设函数10()0x f x x x ππ-<≤⎧=⎨<≤⎩在[],ππ-上的傅立叶级数的和函数为(),s x 则(4)s π=__________.知识点:傅里叶级数,和.难度等级:1. 答案:1.2分析:傅立叶级数的和函数为()s x 是以2π为周期的周期函数.(00)(00)1(4)(0).22f f s s π-++=== 8. 设∑为平面1x y z -+=在第四卦限的上侧.(,,)f x y z 为连续函数.则[(,,)]d d [2(,,)]d d [(,,)]d d ______.f x y z x y z f x y z y z x f x y z z x y ∑+++++=⎰⎰知识点:对坐标的曲面积分,难度等级:3. 答案:1.2分析:原积分{}}[(,,)],[2(,,)],[(,,)]1,1,1f x y z x f x y z y f x y z z dS ∑=+++-⎰⎰)1.2xyD x y z dS dxdy ∑=-+==⎰⎰9. 曲线z xyy ==⎧⎨⎩1在点(2,1,2)处的切线与x 轴正向所成的倾角为__________.知识点:曲线的切线,夹角.难度等级:2. 答案:.4π分析:曲线z xyy ==⎧⎨⎩1在点(2,1,2)处的切线与x 轴正向所成的倾角θ的正切为z xy =在点(2,1处关于x 的偏导数的值.即(2,1)(2,1)tan 1,z y x θ∂===∂所以.4πθ=10. 设L 是从点() 0, ,ππe e A -沿曲线cos , sin , t tt x e t y e t z e ===到点()1 , 0 , 1B 的弧段, 则第一类曲线积分()222 LI x y z ds =++⎰的值为__________.知识点:对弧长的曲线积分,难度等级:1. 答案:()31.3e π- 分析: ()22222 0 (t t t L I x y z ds e e dtπ=++=+⎰⎰)31.e π=- 11. 由曲线2,2y x y x ==+所围成的平面薄片其上各点的面密度为21,x μ=+则此薄片的质量M 为__________. 知识点:薄片的质量,难度等级:2. 答案:153.20分析:密度函数为被积函数.积分区域为曲线所围.故222221153(1)(1).20x Dx M x dxdy dx x dy +-=+=+=⎰⎰⎰⎰ 12. 设积分曲面∑是球面222:2,x y z az ++=则曲面积分222()_____.x y z d S ∑++=⎰⎰ 知识点:对面积的曲面积分,难度等级:2. 答案:48.a π分析:由于投影面有重叠.需将球面分为上下两个半球面计算.12,∑=∑+∑1:∑z a =2:z a ∑=在曲面上被积函数等于2,az 计算合并化简得二重积分2222448.x y a a a π+≤=⎰⎰三、计算题(每小题6分,共24分)13. 求初值问题00430,6,10x x y y y y y ==''''-+===的解.知识点:二阶线性常系数微分方程的初值问题,难度等级:1. 分析:求特征根,写出通解,再求特解.解: 特征方程为2430,λλ-+=其根121,3,λλ==故通解为123.x x y C e e C =+代入初值条件可解得124, 2.C C ==从而特解为342.x x y e e =+14. 求幂级数2211(!)(2)!n n n xn +∞=∑的收敛域.知识点:幂级数的收敛域,难度等级:2 分析:比值法.并讨论端点的敛散性.解: 2232221((1)!)(22)!lim lim 1(!)4(2)!n n n n n x x n n x n ++→∞→∞++=< 2.x ⇒<当2x =时,221221111(!)(!)2(2)!!2(2)!(2)!(21)!!n n n n n n x n n n n n ++∞∞∞=====-∑∑∑通项极限不为0故发散.幂级数2211(!)(2)!n n n x n +∞=∑的收敛域为 2.x <15.过两平面0134=-+-z y x 和025=+-+z y x 的交线作一平面π过点(1,1,1), 求该平面方程.难度等级:2;知识点:空间解析几何. 分析: 写出过已知直线的平面束方程. 解: 设所求的平面方程为 431(52)x y z x y z λ-+-++-+= (1) 将点)1,1,1(代入(1)得57λ=-.将57λ=-代入(1)得 所求的平面方程为233226170x y z -+-=.16. 计算2(),I z x dydz zdxdy ∑=+-⎰⎰其中∑是抛物面)(2122y x z +=介于0=z 及2=z 之间的部分的下侧.知识点:对坐标的曲面积分. 难度等级:3分析:直接计算,化曲面积分为 二重积分.解 : 首先,计算2(),z x dydz ∑+⎰⎰其中12,∑=∑+∑1:x ∑=前侧;2:x ∑=后侧.2()zx dydz ∑+⎰⎰2z =(-y12()z x dydz ∑=++⎰⎰⎰⎰∑+2)(2dydz x z ⎰⎰⎰⎰---+-+=yzyzD D dydz y z z dydz y z z))(2()2(222222222224.yz D y dyπ-===⎰⎰⎰⎰其次,2222211()()4.22xyD zdxdy x y dxdy d rrdr πθπ∑-=-+-=⋅=⎰⎰⎰⎰⎰⎰于是,8.I π=四、解答题(每小题6分,共12分)17.设曲线积分[]⎰-+L dy x x xf dx x yf 2)(2)(在右半平面)0(>x 内与路径无关,其中(),(1)1,().f x f f x =可导且求知识点:对坐标的曲线积分,积分与路径无关,微分方程. 难度等级:2分析: 利用积分与路径无关的条件得微分方程. 解:由积分与路径无关的条件知:[]2()2(),yf x xf x x y x∂∂⎡⎤=-⎣⎦∂∂ 即有1()() 1.2f x f x x'+=解上面的微分方程得()f x C =+将1)(=x f 代入上式得1.3C =所以1()2).3f x x =+18.设为不自交的光滑闭曲线.求[]sin().grad x y z dr Γ++⋅⎰知识点:梯度,曲线积分向量表示.难度等级:2分析: 斯托克斯公式解: .记是以为边界的任意光滑曲面,其正侧与的正向按右手法则确定.应用斯托克斯公式.可得.五、证明题(每小题6分,共12分)19.设函数z f x y =(,)在P x y 000(,)处有连续的偏导数.证明它在P 0处沿等值线的切线方向的方向导数为零. 知识点:等值线,方向导数,难度等级:2分析:等值线(,)f x y C =上一点000(,)P x y 处的法向量为(,),x y f f 所以切向量为(,).y x f f -由方向导数的计算公式0z z a a∂=∇⋅∂即可得到结Γ[sin()]cos()()grad x y z x y z i j k ++=++++∑ΓΓ[sin()]cos()()grad x y z dr x y z dx dy dz ΓΓ++⋅=++++⎰⎰0000dydz dzdx dxdy ∑=++=⎰⎰论.证明:函数z f x y =(,)的等值线(,)f x y C =上一点P x y 000(,)处的法向量为(,),x y f f 所以切向量为(,).y x a f f =-z f x y =(,)沿此方向的方向导数为(,)(,)0.y x x y f f z z a f f a a a∂=∇⋅=⋅-=∂ 20. 设)(x f 在点0=x 的某一邻域内具有二阶连续导数.且0()lim 0.x f x x →=证明级数∑∞=⎪⎭⎫ ⎝⎛11n n f 绝对收敛. 知识点:极限,泰勒中值定理,比较判别法.难度等级:3 分析:由已知0()lim0x f x x→=可得(0),(0)f f ',利用泰勒中值定理建立函数()f x 与零点间的关系.证明:1. 0()lim0x f x x→= 0()(0)lim ()lim0.x x f x f f x x x→→⇒==⋅= 00()(0)()(0)limlim 0.x x f x f f x f x x∆→→∆-'⇒===∆ ⇒由泰勒中值定理.存在1(0,),nξ∈使得2111()(0)(0)().2f f f f n n nξ'''=++ 211()().2f f n nξ''⇒≤2.又)(x f 在点0=x 的某一邻域内具有二阶连续导数.故存在0,M >使得().f x M ''≤2211().22Mf M n n n ⇒≤=⇒级数∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛.六、应用题(每小题8分,共16分)21. 在均匀的半径为R 的半圆形薄片的直径上, 要接上一个一边与直径等长的同样材料的均匀矩形薄片, 为了使整个均匀薄片的质心恰好落在圆心上, 问接上去的均匀矩形薄片另一边的长度应是多少?知识点:质心,难度等级:2分析:根据已知条件建立恰当坐标系.要求可得一方程.解方程可得结果解:设所求矩形另一边的长度为,H 建立坐标系, 使半圆的直径在x 轴上, 圆心在原点. 不妨设密度为31/.g cm ρ=由对称性及已知条件可知0,x y ==即0.Dydxdy =⎰⎰从而0.RRHdx ydy --=⎰即3221[()]0,2RR R x H dx ---=⎰亦即32210.3R R RH --=从而.H =因此,. 22.求原点到曲线221x y zx y z ⎧+=⎨++=⎩的最长和最短距离.知识点:条件极值.难度等级:3分析: 先写出目标函数.即曲线上的点(,,)x y z 到原点的距离.然后用拉格朗日乘数法可得条件极值点.解:原点到曲线上点(,,)x y z 的距离d =需要求出222x y z ++在221x y zx y z ⎧+=⎨++=⎩下的极值.令L =22222()(1),x y z x y z x y z λμ++++-+++-则由拉格朗日乘数法得2222022020.010x y z L x x L y y L z L x y z L x y z λμλμλμλμ⎧=++=⎪=++=⎪⎪=-+=⎨⎪=+-=⎪⎪=++-=⎩解方程组得驻点12x y ==-此时2z =d及驻点12x y ==-此时2z =.d。