三角函数高考解答题专题

合集下载

高考解答题专题:三角函数

高考解答题专题:三角函数

高考解答题专题:三角函数1.已知()cos()sin 3f x x k x π=+-,且3()62f π=.(1)求实数k 的值;(2)求函数()f x 的最大值和最小值.2.已知ABC ∆的三个内角A 、B 、C 所对的边分别为a b c 、、,向量(4,1),m =-2(cos ,cos 2)2An A = ,且72m n ⋅= .(1)求角A 的大小;(2)若3a =,试判断b c ⋅取得最大值时ABC ∆形状.3.已知)2sin(3)2cos()(x x x f -+-=ππ∈x (R ).(1)求函数)(x f 的最小正周期;(2)求函数)(x f 的最大值,并指出此时x 的值4.在ABC ∆中,三个内角C B A ,,所对的边分别为cb a ,,(ac >),A C A C sin sin cos cos -= ,31sin =B(1)求A sin 的值,(2)若边长6=b ,求ABC ∆的面积5.记ABC ∆的内角ABC 的对边分别为abc ,函数()23=sin sin 122Bf x B ++(1)求函数()f B 值域(2)若()3,2,232f B b c ===,求a 的值6.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间[,]122ππ-上的值域。

7.在ABC 中,C-A=, sinB=。

(I )求sinA 的值;(II)设AC=,求ABC 的面积。

8.设函数()sin cos 1 , 02f x x x x x π=-++<<,求函数()f x 的单调区间与极值9.在 ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a=3,b=2,12cos()0B C ++=,求边BC 上的高.。

高考解答题专项突破(二) 三角函数的综合问题--2025年高考数学复习讲义及练习解析

高考解答题专项突破(二)  三角函数的综合问题--2025年高考数学复习讲义及练习解析

[考情分析]以三角形、三角函数为载体,以三角函数的图象与性质、正弦定理、余弦定理为工具,以三角恒等变换为手段来考查三角函数的综合问题是高考的热点题型,主要考查内容有正、余弦定理、三角形面积的计算、三角恒等变换和三角函数的性质.解题时要充分利用三角函数的图象与性质,交替使用正弦定理、余弦定理,利用数形结合、函数与方程思想等进行求解.考点一三角函数图象与性质的综合例1已知函数f (x )=A sin(ωx +φ>0,ω>0,|φ(1)求f (x )=2的解集;(2)求函数g (x )=f 解(1)由图象可知,周期T =5π12+7π12=π,∴ω=2ππ=2,∵,∴A 2×5π12+0,∴0,解得5π6+φ=π+2k π,φ=2k π+π6,k ∈Z ,∵|φ|<π2,∴φ=π6,∵点(0,1)在函数图象上,∴A sin π6=1,A =2,∴函数f (x )的解析式为f (x )=x由f (x )=x 2,得x 1,即2x +π6=π2+2k π,k ∈Z ,解得x =π6+k π,k ∈Z ,∴f (x )=2|x =π6k π,k ∈(2)g (x )=由(1)知f (x )=xg (x )=2sin 2+π6-2sin 2+π6=2sin2x -2sinx =2sin2x -x +32cos2sin2x -3cos2x=x 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z ,∴函数g (x )=f k π-π12,k π+5π12,k ∈Z .解决三角函数图象与性质综合问题的方法利用图象讨论三角函数的性质,应先把函数化成y =A sin(ωx +φ)(ω>0)或y =A cos(ωx +φ)(ω>0)的形式,然后通过换元法令t =ωx +φ,转化为研究y =A sin t 或y =A cos t 的性质.1.已知函数f (x )=2sin ωx cos φ+2sin φ-4sin 2ωx 2sin φ(ω>0,|φ|<π),其图象的一条对称轴与相邻对称中心的横坐标相差π4,________,从以下两个条件中任选一个补充在空白横线中.①函数f (x )的图象向左平移π6个单位长度后得到的图象关于y 轴对称且f (0)<0;②函数f (x )的图象的一条对称轴为直线x =-π3且f (1).(1)求函数f (x )的解析式;(2)若x ∈π2,3π4,函数h (x )=f (x )-a 存在两个不同零点x 1,x 2,求x 1+x 2的值.解(1)f (x )=2sin ωx cos φ+2sin φ-2(1-cos ωx )sin φ=2sin(ωx +φ),又函数f (x )的最小正周期为T =4×π4=π,所以ω=2πT=2,若选条件①:将函数f (x )的图象向左平移π6个单位长度得到的图象关于y 轴对称,所得函数为y =2sin 2φ=x +π3+由函数y =2sin x +π3+y 轴对称,可得π3+φ=π2+k π(k ∈Z ),解得φ=π6+k π(k ∈Z ),因为|φ|<π,所以φ的可能取值为-5π6,π6,若φ=-5π6,则f (x )=xf (0)=1,符合题意;若φ=π6,则f (x )=x f (0)=2sin π6=1,不符合题意.所以f (x )=x若选条件②:因为函数f (x )图象的一条对称轴为直线x =-π3,所以φ=π2+k π(k ∈Z ),解得φ=7π6+k π(k ∈Z ),因为|φ|<π,所以φ的可能取值为-5π6,π6,若φ=-5π6,则f (x )=x则2<f (1),符合题意;若φ=π6,则f (x )=x则2sin π2=2>f (1),不符合题意.所以f (x )=x(2)令t =2x -5π6∈π6,2π3,此时函数h (x )=f (x )-a 存在两个不同零点x 1,x 2等价于直线y =a 与函数y =2sin t ,t ∈π6,2π3的图象有两个不同交点.当t =π2时,函数取到最大值,所以t 1+t 2=π,即2x 1-5π6+2x 2-5π6=π,所以x 1+x 2=4π3.考点二三角函数与解三角形的综合例2(2023·河北石家庄二中模拟)设函数f (x )=2sin(ωx +φ)(ω>0,0<φ<π),该函数图象上相邻两个最高点间的距离为4π,且f (x )为偶函数.(1)求ω和φ的值;(2)已知角A ,B ,C 为△ABC 的三个内角,若(2sin A -sin C )cos B =sin B cos C ,求[f (A )]2+[f (C )]2的取值范围.解(1)因为f (x )=2sin(ωx +φ)的图象上相邻两个最高点间的距离为4π,所以2πω=4π,解得ω=12,所以f (x )=2sin +又因为f (x )为偶函数,所以φ=k π+π2,k ∈Z .又因为0<φ<π,所以φ=π2.(2)因为(2sin A -sin C )cos B =sin B cos C ,所以2sin A cos B -sin C cos B =sin B cos C ,所以2sin A cos B =sin(B +C ),又因为A +B +C =π,且0<A <π,所以sin(B +C )=sin A ≠0,所以cos B =12,因为0<B <π,所以B =π3,则A +C =2π3,即C =2π3-A ,由(1)知,函数f (x )=2cos 12x ,所以[f (A )]2+[f (C )]2=2cos 212A +2cos 212C =cos A +cos C +2=cos A +2=cos A -12cos A +32sin A +2=32sin A +12cos A +2=2,因为0<A <2π3,所以π6<A +π6<5π6,所以1,则23,即[f (A )]2+[f (C )]23.解三角形与三角函数的综合应用主要体现在以下两个方面:(1)利用三角恒等变换化简三角函数式进行解三角形;(2)解三角形与三角函数图象和性质的综合应用.2.设f (x )=sin x cos x -cos x ∈[0,π].(1)求f (x )的单调递增区间;(2)在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若0,a =1,求△ABC面积的最大值.解(1)由题意,得f (x )=12sin2x -12cos x 1=sin2x -12,因为0≤x ≤π,所以0≤2x ≤2π,由正弦函数的单调性可知,当0≤2x ≤π2或3π2≤2x ≤2π,即0≤x ≤π4或3π4≤x ≤π时,函数f (x )=sin2x -12单调递增,所以f (x )的单调递增区间是0,π4和3π4,π.(2)由题意,得sin A -12=0,所以sin A =12,因为△ABC 为锐角三角形,所以A 故A =π6.由余弦定理,得b 2+c 2-2bc cos A =a 2,故b 2+c 2-3bc =1,由基本不等式,得b 2+c 2≥2bc ,故bc ≤2+3,当且仅当b =c 时,等号成立.因此S △ABC =12bc sin A ≤2+34,当且仅当b =c 时,△ABC 的面积取得最大值2+34.考点三三角函数与平面向量的综合例3已知向量a =(sin x ,3sin(π+x )),b =(cos x ,-sin x ),函数f (x )=a ·b -32.(1)求f (x )的最小正周期及f (x )图象的对称轴方程;(2)先将f (x )的图象上每个点的纵坐标不变,横坐标变为原来的2倍,再向左平移π3个单位长度得到函数g (x )的图象,若函数y =g (x )-m 在区间π6,5π6内有两个零点,求m 的取值范围.解(1)因为f (x )=a ·b -32sin x cos x +3sin 2x -32=12sin2x -32cos2x =x 故f (x )的最小正周期为T =2π2=π.由2x -π3=k π+π2,k ∈Z ,得x =k π2+5π12,k ∈Z ,所以f (x )的最小正周期为π,对称轴方程为x =k π2+5π12,k ∈Z .(2)由(1),知f (x )=x由题意,得g (x )=sin x .函数y =g (x )-m 在区间π6,5π6内有两个零点,转化为函数y =sin x ,x ∈π6,5π6的图象与直线y =m 有两个交点.由图象可得,m 的取值范围为12,当题目条件给出的向量坐标中含有三角函数的形式时,首先运用向量数量积的定义、向量共线、向量垂直等,得到三角函数的关系式,然后利用三角函数的图象、性质解决问题.3.已知向量a x b =(cos x ,-1).(1)当a ∥b 时,求2cos 2x -sin2x 的值;(2)求f (x )=(a +b )·b 在-π2,0上的单调递增区间.解(1)由a ∥b ,得(-1)sin x =32cos x ,所以tan x =-32,所以2cos 2x -sin2x =2cos 2x -2sin x cos x cos 2x +sin 2x =2-2tan x 1+tan 2x =2+31+94=2013.(2)f (x )=a ·b +b 2=sin x cos x -32+cos 2x +1=12sin2x +1+cos2x 2-12=22sin x 当x ∈-π2,0时,2x +π4∈-3π4,π4,令-π2≤2x +π4≤π4,得-3π8≤x ≤0.故函数f (x )在-π2,0上的单调递增区间为-3π8,0.考点四解三角形与平面向量的综合例4(2024·四川成都调研)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且m =(2b +c ,a ),n =(cos A ,cos C ),m ⊥n .(1)求角A 的大小;(2)D 是线段BC 上的点,且AD =BD =2,CD =3,求△ABD 的面积.解(1)因为m =(2b +c ,a ),n =(cos A ,cos C ),m ⊥n ,所以m ·n =(2b +c )cos A +a cos C =0,由正弦定理可得2sin B cos A +(sin A cos C +cos A sin C )=0,即2sin B cos A +sin(A +C )=0,又A +C =π-B ,所以2sin B cos A +sin B =0,又B ∈(0,π),则sin B >0,所以cos A =-12,又A ∈(0,π),因此A =2π3.(2)设B =θ,因为A =2π3,则C =π-2π3-θ=π3-θ,因为AD =BD =2,所以∠BAD =B =θ,∠ADC =2θ,∠DAC =2π3-θ,在△ACD 中,由正弦定理可知AD sin C =CD sin ∠DAC,即23即θ-12sin θ+12sin 化简可得5sin θ=3cos θ,即tan θ=35,所以sin2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=5314,所以S △ABD =12AD ·BD sin(π-2θ)=12AD ·BD sin2θ=12×22×5314=537.解决解三角形与平面向量综合问题的关键:准确利用向量的坐标运算化简已知条件,将其转化为三角函数的问题解决.4.(2023·广东广州天河区模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足b cos B +C 2=a sin B .(1)求A ;(2)若a =19,BA →·AC →=3,AD 是△ABC 的中线,求AD 的长.解(1)因为cos B +C 2=sin A 2,所以b sin A 2=a sin B .由正弦定理,得sin B sin A 2=sin A sin B .因为sin B ≠0,所以sin A 2=sin A .所以sin A 2=2sin A 2cos A 2.因为A ∈(0,π),A 2∈所以sin A 2≠0,所以cos A 2=12.所以A 2=π3.所以A =2π3.(2)因为BA →·AC →=3,所以bc cos(π-A )=3.又A =2π3,所以bc =6.由余弦定理,得b 2+c 2=a 2+2bc cos A =13.又AD →=12(AB →+AC →),所以|AD →|2=14(AB →+AC →)2=14(c 2+b 2+2bc cos A )=74.所以|AD →|=72,即AD 的长为72.课时作业1.(2023·广东佛山模拟)已知函数f (x )=cos 4x +23sin x cos x -sin 4x .(1)求f (x )的最小正周期和单调递减区间;(2)已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=1,BC 边的中线AD 的长为7,求△ABC 面积的最大值.解(1)∵f (x )=cos 4x +23sin x cos x -sin 4x =(cos 2x -sin 2x )(cos 2x +sin 2x )+3sin2x =cos2x +3sin2x =x 故f (x )的最小正周期T =π,由π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,得π6+k π≤x ≤2π3+k π,k ∈Z ,∴f (x )的单调递减区间为π6+k π,2π3+k π(k ∈Z ).(2)由(1)得,f (A )=A 1,即A =12,∵0<A <π,∴2A +π6=5π6,∴A =π3,又AD →=12(AB →+AC →),∴AD →2=14(AB →2+AC →2+2AB →·AC →),∴7=14(c 2+b 2+2bc cos A )=14(b 2+c 2+bc ),∵b 2+c 2≥2bc ,∴b 2+c 2+bc ≥3bc ,∴bc ≤283,当且仅当b =c =2213时取等号,∴S △ABC =12bc sin A =34bc ≤34×283=733,∴△ABC 面积的最大值为733.2.(2024·江西南昌模拟)如图为函数f (x )=A sin(ωx +φ>0,ω>0,|φ|<π2,x ∈(1)求函数f (x )的解析式和单调递增区间;(2)若将y =f (x )的图象向右平移π12个单位长度,然后再将横坐标缩短为原来的12得到y =g (x )的图象,求函数g (x )在区间-π4,π12上的最大值和最小值.解(1)由图象知,A =2,T 4=π3-π12=π4,T =π,又ω>0,则ω=2ππ=2,则f (x )=2sin(2x +φ),,2,得π6+φ=2k π+π2,k ∈Z ,解得φ=2k π+π3,k ∈Z ,因为|φ|<π2,所以φ=π3,所以f (x )=x 令-π2+2k π≤2x +π3≤π2+2k π,k ∈Z ,得-5π12+k π≤x ≤π12+k π,k ∈Z ,所以f (x )的单调递增区间为-5π12+k π,π12+k π(k ∈Z ).(2)将f (x )=2sin x 的图象向右平移π12个单位长度,得2sin 2+π3=2sin x ,然后再将横坐标缩短为原来的12,得g (x )=2sin x .因为x ∈-π4,π12,则4x +π6∈-5π6,π2,所以-1≤x 1.故当4x +π6=-π2,即x =-π6时,g (x )取得最小值,为-2;当4x +π6=π2,即x =π12时,g (x )取得最大值,为2.3.设函数f (x )=m ·n ,其中向量m =(2cos x ,1),n =(cos x ,3sin2x )(x ∈R ).(1)求f (x )的最小值;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,已知f (A )=2,b =1,△ABC 的面积为32,求b sin B的值.解(1)因为m =(2cos x ,1),n =(cos x ,3sin2x ),所以f (x )=2cos 2x +3sin2x =3sin2x +cos2x +1=x 1,所以当x 1,即2x +π6=-π2+2k π,k ∈Z ,即x =-π3+k π,k ∈Z 时,f (x )取得最小值,为-1.(2)由f (A )=2,得A 1=2,则A =12,又A ∈(0,π),所以2A +π6∈故2A +π6=5π6,则A =π3,由S △ABC =12bc sin A =12×1×c ×32=32,可得c =2,在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A =1+4-2×1×2×12=3,所以a =3,所以b sin B =a sin A =332=2.4.(2023·四川成都模拟)已知函数f (x )=2cos 2x +3sin2x .(1)求函数f (x )的单调递增区间;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且f (C )=3,c =1,ab =23,求△ABC 的周长.解(1)依题意,f (x )=2cos 2x +3sin2x =1+cos2x +3sin2x =x 1,由-π2+2k π≤2x +π6≤π2+2k π,k ∈Z ,得-π3+k π≤x ≤π6+k π,k ∈Z ,所以函数f (x )的单调递增区间是-π3+k π,π6+k π(k ∈Z ).(2)由(1)知,f (C )=C 1=3,即C 1,而C ∈(0,π),则2C +π6∈于是2C +π6=π2,解得C =π6,由余弦定理c 2=a 2+b 2-2ab cos C ,得1=(a +b )2-(2+3)ab =(a +b )2-23×(2+3),解得a +b =2+3,所以△ABC 的周长为3+ 3.5.(2023·福建福州模拟)已知向量m 23sin x 4,n cos x 4,cos(1)若m ·n =2,求cos (2)记f (x )=m ·n ,在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求f (A )的取值范围.解(1)m ·n =23sin x 4cos x 4+2cos 2x 4=3sin x 2+cos x 2+1= 1.因为m ·n =2,所以=12.所以1-2sin =12.(2)因为f (x )=m ·n =1,所以f (A )= 1.因为(2a -c )cos B =b cos C ,由正弦定理,得(2sin A -sin C )cos B =sin B cos C .所以2sin A cos B -sin C cos B =sin B cos C ,所以2sin A cos B =sin(B +C ).因为A +B +C =π,所以sin(B +C )=sin A ,且sin A ≠0.所以cos B =12.因为B ∈(0,π),所以B =π3.所以0<A <2π3.所以π6<A 2+π6<π2,12<sin ,故f (A )的取值范围是(2,3).6.(2024·湖北黄冈调研)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知向量m =(b ,a ),n =(sin A ,3cos(A +C )),且m ·n =0.(1)求角B 的大小;(2)若b =3,求3a +c 的最大值.解(1)在△ABC 中,因为m =(b ,a ),n =(sin A ,3cos(A +C )),m ·n =0,所以b sin A -3a cos B =0.由正弦定理,得sin A sin B =3sin A cos B ,又sin A >0,所以sin B =3cos B ,即tan B = 3.又0<B <π,所以B =π3.(2)由(1),知B =π3,b =3,由正弦定理,得a sin A =c sin C =b sin B=2,即a =2sin A ,c =2sin C .又C =2π3-A ,所以3a +c =6sin A +2sin C =6sin A +7sin A +3cos A =213sin(A +θ),其中锐角θ由tan θ=37确定,又0<A <2π3,所以θ<A +θ<2π3+θ.则当且仅当A +θ=π2,即tan A ==733时,sin(A +θ)取最大值1,所以3a +c 的最大值为213.7.已知函数f (x )=cos 4x -2sin x cos x -sin 4x .(1)求f (x )的最小正周期和单调递增区间;(2)求函数f (x )在区间0,π2上的值域;(3)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若0,a =2,求△ABC 面积的最大值.解(1)依题意,f (x )=(cos 2x +sin 2x )(cos 2x -sin 2x )-sin2x =cos2x -sin2x =2sinx 所以f (x )的最小正周期T =2π2=π;由2k π-π2≤2x +3π4≤2k π+π2,k ∈Z ,得k π-5π8≤x ≤k π-π8,k ∈Z ,所以f (x )的单调递增区间为k π-5π8,k π-π8(k ∈Z ).(2)由x ∈0,π2,得2x +3π4∈3π4,7π4,则-1≤x ≤22,即-2≤f (x )≤1,所以函数f (x )在区间0,π2上的值域为[-2,1].(3)由(1)知,=2sin 0,而0<A <π,即有3π4<A +3π4<7π4,则A +3π4=π,解得A =π4,由余弦定理a 2=b 2+c 2-2bc cos A ,得4=b 2+c 2-2bc ≥2bc -2bc ,于是bc ≤4+22,当且仅当b =c 时等号成立,因此S △ABC =12bc sin A =24bc ≤2+1,所以△ABC 面积的最大值为2+1.8.(2024·重庆永川北山中学模拟)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,cos(A-C )+cos B =32,设m =(b ,c ),n =(a ,b )且m ∥n .(1)求角B 的大小;(2)延长BC 至D ,使BD =5,若△ACD 的面积S =3,求AD 的长.解(1)由cos(A -C )+cos B =32,可知cos(A -C )-cos(A +C )=32,即cos A cos C +sin A sin C -cos A cos C +sin A sin C =32,可得sin A sin C =34.由m ∥n 可得b 2-ac =0,由正弦定理可知sin 2B =sin A sin C =34,因为B ∈(0,π),所以sin B =32,因此B =π3或2π3.分别代入cos(A -C )+cos B =32,可知当B =2π3时,cos(A -C )=2,不成立.因此B =π3.(2)由B =π3可知cos(A -C )=1,即A =C ,因此△ABC 为等边三角形,即a =b =c ,S △ACD =12AC ·CD sin ∠ACD =12b (5-a )sin 2π3=34a (5-a )=3,整理可得a (5-a )=4,即a 2-5a =-4,在△ABD 中,由余弦定理可知,AD 2=AB 2+BD 2-2AB ·BD cos π3=c 2+25-5c =a 2+25-5a =21,因此AD 的长为21.。

春季高考数学解答题专项练习:(三)三角函数

春季高考数学解答题专项练习:(三)三角函数

春季高考数学解答题专项练习三角函数1.已知()sin f x x x =.(1)求()f x 的周期,最大值和最小值.(2)把()f x 的图象向左平移π3后得到()y g x =的图象,求()y g x =的解析式.2.已知函数π()2sin 26f x x ⎛⎫=+ ⎪⎝⎭. (1)求函数()f x 的单调递减区间及其图象的对称中心;(2)已知函数()f x 的图象经过先平移后伸缩得到sin y x =的图象,试写出其变换过程.3.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象,如图所示.(1)求函数()f x 的解析式;(2)将函数()f x 的图象向右平移3π个单位长度,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()g x 的图象,当0,3x π⎡⎤∈⎢⎥⎣⎦时,求函数()g x 的值域.4.已知函数()()2sin (0,0)f x x ωϕωϕπ=+><<最小正周期为π,图象过点4π⎛ ⎝. (1)求函数()f x 解析式(2)求函数()f x 的单调递增区间.5.已知向量()2sin ,1a x =,()2cos ,1b x =,x R ∈.(1)当4x π=时,求向量a b +的坐标;(2)设函数()f x a b =⋅,将函数()f x 图象上所有点向左平移4π个单位长度得到()g x 的图象,当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()g x 的最小值.6.已知0ϕπ≤<,函数2())sin f x x x ϕ=++. (Ⅰ)若6πϕ=,求()f x 的单调递增区间;(Ⅱ)若()f x 的最大值是32,求ϕ的值.7.已知函数1π()sin()(0,R)23f x x x ωω=−>∈的最小正周期为π. (1)求()f x 的单调递减区间;(2)求()f x 在区间π3π,24⎡⎤⎢⎥⎣⎦上的最大值与最小值.8.某同学解答一道三角函数题:“已知函数()2sin(),06f x x ωωπ=+>,其最小正周期为π. (1)求(0)f 和ω的值;(2)求函数()f x 在区间[,]63ππ−上的最小值及相应x 的值.” 该同学解答过程如下:下表列出了某些数学知识:请写出该同学在解答过程中用到了此表中的哪些数学知识.9.已知函数()3sin 24f x x π⎛⎫=− ⎪⎝⎭. (1)写出()f x 的最小正周期;(2)求()f x 的最小值,并求取得最小值时自变量x 的集合.10.已知函数()π2sin 2,R 4f x x x ⎛⎫=−∈ ⎪⎝⎭ (1)求()f x 的最大值及对应的x 的集合;(2)求()f x 在[]0,π上的单调递增区间;11.已知函数()sin2f x x x =−.(1)求()f x 的最小正周期;(2)求()f x 的最大值以及取得最大值时x 的集合;(3)讨论()f x 在ππ,62⎡⎤−⎢⎥⎣⎦上的单调性.12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若c 1b =,120C =,求:(1)角B ;(2)△ABC 的面积S .13.已知△ABC 角,,A B C 所对的边分别为,,a b c ,△ABC 的周长为2,且sin sin A B C +.(1)求边c 的长;(2)若△ABC 的面积为23sin C ,求角C 的度数.14.在△ABC 中,内角,,A B C 的对边分别为,,a b c .已知π,4C a ==. (1)求sin A 的值;(2)若c ,求b 的值.15.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且sin cos 0a B A =.(1)求角A 的大小;(2)若4b =,△ABC 的面积S =△ABC 的周长.16.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2cos cos cos b A c A a C =+.(1)求A ;(2)若4a =,求△ABC 面积的最大值.17.在△ABC 中,有222a c b ab −+=.(1)求角C 的大小;(2)若3a b ==,求△ABC 的面积.18.已知函数cos sin ()()()s x x x x f x =∈R .(1)求()f x 的最小正周期和单调增区间;(2)在△ABC 中,角,,A B C 的对边分别为,,a b c .若2B f ⎛⎫= ⎪⎝⎭,6b =,求△ABC 的面积的最大值.19.在△ABC 中,角,,A B C 的对边分别为,,a b c ,sin 2sin C A =,a =(1)求c ;(2)若3b =,求sin A .20.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知222a b c −−.(1)求B ;(2)若5b =,cos C c .21.在△ABC 中,已知c =b =1,B =30°.(1)求角A ;(2)求△ABC 的面积.22.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,(sin ,sin ),(cos ,cos ),sin2==⋅=−m A B n B A m n C ,(1)求C 的大小;(2)已知6==C A π,求b 的值.23.在锐角△ABC 中,,,A B C 的对边分别为,,a b c 2sin c A =(1)确定角C 的大小;(2)若c 6ab =,求边,a b .24.设 △ABC 的内角 、、A B C 的对边分别为 a b c 、、, 且 sin cos a b C B c−=(1)求角 C 的大小:(2)若边 AC 上的高为4b , 求 cos B 的值.25.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且()()()b c b c a a c −+=+.(1)求角B ;(2)当1b =时,求△ABC 面积的最大值.26.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,sinsin 2B C b a B += (1)求角A ;(2)若6b =,BC c .27.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c )cos sin a C b c A −=.(1)求角A ;(2)若AD 为BC 边上中线,5AD AB ==,求△ABC 的面积.28.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知()22332a c b ac −=−(1)求cos B 的值;(2)若53a b =,求sin A 的值.29.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,角A ,B ,C 成等差数列,a =2.(1)若c =1,求b ;(2)若△ABCc .30.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若sin cos a C A =. (1)求角A .(2)若a =2c =求△ABC 的面积.31.在△ABC 中,内角,,A B C 对应的边分别为,,a b c ,已知cos sin a B A . (1)求B ;(2)若a 3c =,求b 的值.。

高考文科数学解答题专题训练(一)三角函数

高考文科数学解答题专题训练(一)三角函数

大题专项练(一)三角函数A组基础通关1.已知在△ABC中,角A,B,C的对边分别是a,b,c,且c cos B+(b-2a)cos C=0.(1)求角C的大小;(2)若c=2,求△ABC的面积S的最大值.因为c cos B+(b-2a)cos C=0,所以sin C cos B+(sin B-2sin A)cos C=0,所以sin C cos B+sin B cos C=2sin A cos C,所以sin(B+C)=2sin A cos C.又因为A+B+C=π,所以sin A=2sin A cos C.又因为A∈(0,π),所以sin A≠0,所以cos C=12.又C∈(0,π),所以C=π3.(2)由(1)知,C=π3,所以c2=a2+b2-2ab cos C=a2+b2-ab.又c=2,所以4=a2+b2-ab.又a2+b2≥2ab,当且仅当a=b时等号成立,所以ab≤4.所以△ABC面积的最大值(S△ABC)max=(12absinC)max=12×4×sinπ3=√3.2.如图,在梯形ABCD中,∠A=∠D=90°,M为AD上一点,AM=2MD=2,∠BMC=60°.(1)若∠AMB=60°,求BC ;(2)设∠DCM=θ,若MB=4MC ,求tan θ.由∠BMC=60°,∠AMB=60°,得∠CMD=60°.在Rt △ABM 中,MB=2AM=4;在Rt △CDM 中,MC=2MD=2.在△MBC 中,由余弦定理,得BC 2=BM 2+MC 2-2BM ·MC ·cos ∠BMC=12,BC=2√3. (2)因为∠DCM=θ,所以∠ABM=60°-θ,0°<θ<60°.在Rt △MCD 中,MC=1; 在Rt △MAB 中,MB=2sin (60°-θ),由MB=4MC ,得2sin(60°-θ)=sin θ, 所以√3cos θ-sin θ=sin θ, 即2sin θ=√3cos θ,整理可得tan θ=√32.3.已知向量m =(2a cos x ,sin x ),n =(cos x ,b cos x ),函数f (x )=m ·n -√32,函数f (x )在y 轴上的截距为√32,与y轴最近的最高点的坐标是(π12,1). (1)求函数f (x )的解析式;(2)将函数f (x )的图象向左平移φ(φ>0)个单位,再将图象上各点的纵坐标不变,横坐标伸长到原来的2倍,得到函数y=sin x 的图象,求φ的最小值.f (x )=m ·n -√32=2a cos 2x+b sin x cos x-√32,由f (0)=2a-√32=√32,得a=√32,此时,f (x )=√3cos 2x+bsin 2x ,由f (x )≤√34+b24=1,得b=1或b=-1,当b=1时,f (x )=sin (2x +π3),经检验(π12,1)为最高点;当b=-1时,f (x )=sin (2x +2π3),经检验(π12,1)不是最高点.故函数的解析式为f (x )=sin (2x +π3).(2)函数f (x )的图象向左平移φ个单位后得到函数y=sin 2x+2φ+π3的图象,横坐标伸长到原来的2倍后得到函数y=sin x+2φ+π3的图象,所以2φ+π3=2k π(k ∈Z ),φ=-π6+k π(k ∈Z ),因为φ>0,所以φ的最小值为5π6.4.函数f (x )=A sin (ωx +π6)(A>0,ω>0)的最大值为2,它的最小正周期为2π.(1)求函数f (x )的解析式;(2)若g (x )=cos x ·f (x ),求g (x )在区间[-π6,π4]上的最大值和最小值.由已知f (x )最小正周期为2π,所以2πω=2π,解得ω=1. 因为f (x )的最大值为2,所以A=2,所以f (x )的解析式为f (x )=2sin (x +π6).(2)因为f (x )=2sin (x +π6)=2sin x cos π6+2cos x sin π6=√3sin x+cos x ,所以g (x )=cos x ·f (x )=√3sin x cos x+cos 2x=√32sin 2x+1+cos2x2=sin (2x +π6)+12.因为-π6≤x ≤π4,所以-π6≤2x+π6≤2π3,于是,当2x+π6=π2,即x=π6时,g (x )取得最大值32;当2x+π6=-π6,即x=-π6时,g (x )取得最小值0. 5.已知函数f (x )=sin(ωx+φ)(ω>0,0<φ<π)的一系列对应值如表:(1)求f (x )的解析式;(2)若在△ABC 中,AC=2,BC=3,f (A )=-12(A 为锐角),求△ABC 的面积.由题中表格给出的信息可知,函数f (x )的周期为T=3π4−(-π4)=π,所以ω=2ππ=2.注意到sin(2×0+φ)=1,也即φ=π2+2k π(k ∈Z ), 由0<φ<π,所以φ=π.所以函数的解析式为f (x )=sin (2x +π2)=cos 2x.(2)∵f (A )=cos 2A=-12,且A 为锐角,∴A=π3.在△ABC 中,由正弦定理得,BC sinA=ACsinB, ∴sin B=AC ·sinABC=2×√323=√33,∵BC>AC ,∴B<A=π3,∴cos B=√63,∴sin C=sin(A+B )=sin A cos B+cos A sin B=√3×√6+1×√3=3√2+√3, ∴S △ABC =12·AC ·BC ·sin C=12×2×3×3√2+√36=3√2+√32. 6.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,C=π4,b=4,△ABC 的面积为6. (1)求c 的值; (2)求cos(B-C )的值.已知C=π4,b=4,因为S △ABC =1ab sin C ,即6=12×4a ×√22,解得a=3√2,由余弦定理,得c 2=b 2+a 2-2ab cos C=10,解得c=√10.(2)由(1)得cos B=a 2+c 2-b22ac=√55,由于B 是三角形的内角,得sin B=√1-cos 2B =2√55,所以cos(B-C )=cos B cos C+sin B sin C=√55×√22+2√55×√22=3√1010.B 组 能力提升7.如图,在凸四边形ABCD 中,C ,D 为定点,CD=√3,A ,B 为动点,满足AB=BC=DA=1.(1)写出cos C 与cos A 的关系式;(2)设△BCD 和△ABD 的面积分别为S 和T ,求S 2+T 2的最大值.在△BCD 中,由余弦定理,得BD 2=BC 2+CD 2-2·BC ·CD cos C=4-2√3cos C ,在△ABD 中,BD 2=2-2cos A ,所以4-2√3cos C=2-2cos A ,即cos A=√3cos C-1.(2)S=12·BC ·CD ·sin C=√3·sinC2,T=12AB ·AD sin A=12sin A ,所以S 2+T 2=34sin 2C+14sin 2A=34(1-cos 2C )+14(1-cos 2A )=-32cos 2C+√32cos C+34=-32(cosC -√36)2+78.由题意易知,C ∈(30°,90°),所以cos C ∈(0,√32),当cos C=√36时,S 2+T 2有最大值78.8.某城市在进行规划时,准备设计一个圆形的开放式公园.为达到社会和经济效益双丰收,园林公司进行如下设计,安排圆内接四边形ABCD 作为绿化区域,其余作为市民活动区域.其中△ABD 区域种植花木后出售,△BCD 区域种植草皮后出售,已知草皮每平方米售价为a 元,花木每平方米的售价是草皮每平方米售价的三倍.若BC=6 km,AD=CD=4 km .(1)若BD=2√7 km,求绿化区域的面积;(2)设∠BCD=θ,当θ取何值时,园林公司的总销售金额最大.在△BCD 中,BD=2√7,BC=6,CD=4,由余弦定理,得cos ∠BCD=BC 2+CD 2-BD 22BC ·CD=62+42-(2√7)22×6×4=12.因为∠BCD ∈(0°,180°),所以∠BCD=60°, 又因为A ,B ,C ,D 四点共圆, 所以∠BAD=120°.在△ABD 中,由余弦定理,得BD 2=AB 2+AD 2-2AB ·AD cos ∠BAD , 将AD=4,BD=2√7代入化简,得AB 2+4AB-12=0, 解得AB=2(AB=-6舍去).所以S 四边形ABCD =S △ABD +S △BCD =12×2×4sin 120°+12×4×6sin 60°=8√3(km 2), 即绿化空间的面积为8√3 km 2.(2)在△BCD 、△ABD 中分别利用余弦定理得 BD 2=62+42-2×6×4cos θ, ① BD 2=AB 2+42-2×4AB cos(π-θ),②联立①②消去BD ,得AB 2+8AB cos θ+48cos θ-36=0, 得(AB+6)(AB+8cos θ-6)=0, 解得AB=6-8cos θ(AB=-6舍去).因为AB>0,所以6-8cos θ>0,即cos θ<34.S △ABD =12AB ·AD sin(π-θ)=12(6-8cos θ)×4sin θ=12sin θ-16sin θcos θ,S △BCD =12BC ·CD sinθ=12×6×4sin θ=12sin θ.因为草皮每平方米售价为a 元,则花木每平方米售价为3a 元,设销售金额为y 百万元. y=f (θ)=3a (12sin θ-16sin θcos θ)+12a sin θ=48a (sin θ-sin θcos θ),f'(θ)=48a (cos θ-cos 2θ+sin 2θ)=48a (-2cos 2θ+cos θ+1)=-48a (2cos θ+1)(cos θ-1),令f'(θ)>0,解得-12<cos θ<1,又cos θ<34,不妨设cos θ0=34,则函数f (θ)在(θ0,2π3)上为增函数; 令f'(θ)<0,解得cos θ<-12,则函数f (θ)在(2π3,π)上为减函数,所以当θ=2π3时,f (θ)max =36√3a.答:(1)绿化区域的面积为8√3 km 2;(2)当θ=2π3时,园林公司的销售金额最大,最大为36√3a 百万元.。

(完整版)高考三角函数经典解答题及答案

(完整版)高考三角函数经典解答题及答案

(完整版)高考三角函数经典解答题及答案1. 在△ABC 中,角 A、B、C 所对的边分别是 a、b、c,且 a²+c²-b²=(1) 求 sin²(2A+C)+cos²B 的值;(2) 若 b=2,求△ABC 面积的最大值。

解:(1) 由余弦定理:cosB=(a²+ c²- b²)/(2ac)=4/√115,得sinB=√(1-cos²B)=3√(23)/23。

由正弦定理sin²(2A+C)+cos²B=4sin²B+cos²B=13/23。

2. 在△ABC 中,角 A、B、C 的对边分别为 a、b、c,且bcosC=3acosB-ccosB。

(I) 求 cosB 的值;(II) 若 BA·BC=2,且b=√2,求 a 和 c·b 的值。

解:(I) 由正弦定理得 a=2RsinA,b=2RsinB,c=2RsinC,则 2RsinBcosC=6RsinAcosB-2RsinCcosB,故sinBcosC=3sinAcosB-sinCcosB,可得sinBcosC+sinCcosB=3sinAcosB,即 sin(B+C)=3sinAcosB,可得 sinA=3sinAcosB/sinB。

又sinA≠0,因此 cosB=1/3。

3. 已知向量 m=(sinB,1-cosB),向量 n=(2,k),且 m 与 n 所成角为π/3,其中 A、B、C 是△ABC 的内角。

(1) 求角 B 的大小;(2) 求 sinA+sinC 的取值范围。

解:(1) ∠m与∠n所成角为π/3,且 m·n=2sinB+ k(1-cosB)=2√3/2cosB+k√(1-cos²B),又 m·n=2cosB+k(1-cosB),解得 k=4/3。

高考数学真题之“三角函数解答题30题”

高考数学真题之“三角函数解答题30题”

高考数学之“三角函数解答题”30题1.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且sinA−sinB sinC=a−c a+b.(1)求角B 的大小;(2)若b =6,且AC 边上的中线长为4,求△ABC 的面积. .解;(1)因为sinA−sinB sinC=a−c a+b=a−b c所以a 2+c 2﹣b 2=ac ,由余弦定理可得,cos B =a 2+c 2−b 22ac =12,所以B =13π;(2)设AC 的中点D ,由余弦定理可得,BD 2+AD 2−AB 22BD⋅AD=−BD 2+CD 2−BC 22BD⋅CD,即42+32−c 22×3×4=−42+32−a 22×3×4,整理可得,a 2+c 2=50, 因为a 2+c 2﹣b 2=ac ,b =6, 所以ac =14,所以S =12acsinB =12×14×√32=7√322.在△ABC 中,∠BAC =120°,sin ∠ABC =√217,D 是线段CA 延长线上一点,且AD =2AC =4.(1)求sin ∠ACB 的值; (2)求BD 的长. .解:(1)∵sin ∠ABC =√217,可得cos ∠ABC =1−(√217)2=2√77, ∴sin ∠ACB =sin (180°﹣∠BAC ﹣∠ABC )=sin (60°﹣∠ABC )=sin60°cos ∠ABC ﹣cos60°sin ∠ABC =√32×2√77−12×√217=√2114.(2)∵由正弦定理AB sin∠ACB =ACsin∠ABC,可得AB =AC⋅sin∠ACB sin∠ABC =2×√2114√217=1,∴由余弦定理可得:BD=√AB2+AD2−2AB⋅AD⋅cos∠BAD=√12+42−2×1×4×12=√13.3.在△ABC中,角A,B,C对边分别为a,a,a,若2aaaa A=aaaa B+aaaa A.(1)求角A;(2)若2a=a+a,且△ABC的外接圆半径为1,求△ABC的面积..解:(1)因为2c cos A=a cos B+b cos A.由正弦定理得2sin C cos A=sin A cos B+sin B cos A,从而可得2sin C cos A=sin C,又C为三角形的内角,所以sin C≠0,于是cosA=1 2,又A为三角形内角,因此A=π3;(2)设△ABC的外接圆半径为R,则R=1,a=2RsinA=√3,由余弦定理得a2=b2+c2−2bccos π3=(b+c)2−3bc,即3=12﹣3bc,所以bc=3.所以△ABC的面积为:S=12bcsinA=3√34.4.已知△ABC外接圆的半径为R,其内角A,B,C的对边长分别为a,b,c,若2R(sin2B ﹣sin2A)=(a+c)sin C.(Ⅰ)求角B;(Ⅱ)若b=√7,c=2,求sin A的值..解:(1)因为2R(sin2B﹣sin2A)=(a+c)sin C.所以2R•2R(sin2B﹣sin2A)=2R(a+c)sin C.集b2﹣a2=ac+c2,由余弦定理可得,cos B=a2+c2−b22ac=−12,∵0<B<π,∴B=2π3;(2)∵b=√7,c=2,由正弦定理可得,bsinB =c sinC,所以sin C=√21 7,因为b>c,故C为锐角,cos C=2√7 7,所以sin A=sin(B+C)=sin B cos C+sin C cos B=√32×2√77−12×√217=√21145.已知函数f(x)=2sin(x+π3)cos x,x∈R.(1)求函数f(x)的最小正周期;(2)当x∈[−π4,π4]时,求函数f(x)的最大值与最小值..(1)解:f(x)=2sin(x+π3)cos x=2(12sin x+√32cos x)cos x=sin x cos x+√3cos2x=12sin2x+√3•1+cos2x2=12sin2x+√32cos2x+√32=sin(2x+π3)+√32,故函数f(x)的最小正周期T=π.(2)当x∈[−π4,π4]时,−π2≤2x≤π2,−π6≤2x+π3≤5π6,即当2x+π3=π2时,函数取得最大值,f(x)max=1+√32,当2x+π3=−π6时,函数取得最小值,f(x)min=√3−12.6.在锐角△ABC中,角A、B、C所对的边分别是a,b,c,c=2.(1)若b=2,sin(A+B)=6sin2C2,求sin A;(2)若BC,AC边上的高之比为2:1,求△ABC面积的最大值..解:(1)sin(A+B)=6sin2C2=3(1﹣cos C),∴sin C=3﹣3cos C,∵sin2C+cos2C=1,∴cos C=45,cos C=1(舍去),∴sin C=35,∴b=c=2,∴B=C,∴sin A=sin(B+C)=sin2c=2sin C cos C=2×35×45=2425;(2)∵BC,AC边上的高之比为2:1,∴a:b=1:2,即b=2a,由余弦定理可得c2=a2+b2﹣2ab cos C,∴4=5a2﹣4a2cos C,∴cos C=5a2−4 4a2,∵C是锐角,。

专题4-4 三角函数与解三角形大题综合归类-(原卷 版)

专题4-4 三角函数与解三角形大题综合归类-(原卷 版)

专题4-4 三角函数与解三角形大题综合归类目录一、热点题型归纳【题型一】三角函数求解析式:“识图”................................................................................................. 1 【题型二】图像与性质1:单调性与值域................................................................................................ 3 【题型三】图像与性质2:恒等变形:结构不良型 ................................................................................ 4 【题型四】图像与性质3:恒成立(有解)求参数 ................................................................................ 5 【题型五】图像与性质4:零点与对称轴................................................................................................ 6 【题型六】解三角形1:面积与周长常规................................................................................................ 8 【题型七】解三角形2:计算角度与函数值 ............................................................................................ 9 【题型八】解三角形3:求面积范围(最值) ...................................................................................... 10 【题型九】解三角形4:周长最值 ......................................................................................................... 11 【题型十】解三角形5:巧用正弦定理求“非对称”型 ...................................................................... 11 【题型十一】解三角形6:最值范围综合.............................................................................................. 12 二、真题再现 ............................................................................................................................................ 12 三、模拟测试 .. (14)【题型一】三角函数求解析式:“识图”【典例分析】(2023·全国·高三专题练习)函数()sin(π),R f x A x x ϕ=+∈(其中π0,02A ϕ>≤≤)部分图象如图所示,1(,)3P A 是该图象的最高点,M ,N 是图象与x 轴的交点.(1)求()f x 的最小正周期及ϕ的值;(2)若π4PMN PNM ∠+∠=,求A 的值.1.(2023·全国·高三专题练习)已知函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将()f x 图象上所有点的横坐标缩短到原来的12(纵坐标不变),得到函数()y g x =的图象,求函数()g x ≥.2.(2022·四川·宜宾市教科所三模(理))已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示:(1)求()f x ;(2)若2f α⎛⎫= ⎪⎝⎭()0,πα∈,求cos2α的值.3.(2022·全国·高三专题练习)已知函数()()sin ,0,0,2f x A x x R A ωϕωϕπ⎛⎫=+∈>>< ⎪⎝⎭部分图象如图所示.(1)求()f x 的最小正周期及解析式; (2)将函数()y f x =的图象向右平移3π个单位长度得到函数()y g x =的图象,求函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【题型二】图像与性质1:单调性与值域【典例分析】(2022·浙江·高三开学考试)已知函数()21cos cos 2f x x x x =⋅-. (1)求函数()f x 的单调递增区间; (2)求()f x 在区间[0,2π]上的最值.【变式演练】1.(2022·湖北·高三开学考试)已知函数2()sin cos sin sin 44f x x x x x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭.(1)求()f x 的最小正周期;(2)若[0,]x π∈,求出()f x 的单调递减区间.2.(2022·黑龙江·双鸭山一中高三开学考试)已知函数()sin 2cos 22sin cos .36f x x x x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭(1)求函数()f x 的最小正周期及对称轴方程;(2)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的纵坐标不变、横坐标伸长为原来的2倍,得到函数()y g x =的图象,求()y g x =在[0,2π]上的单调递减区间.3.(2022·全国·高三专题练习)已知函数()()()2sin cos cos 04f x x x x ππωωωω⎛⎫=--+> ⎪⎝⎭的最小正周期为π.(1)求()f x 图象的对称轴方程;(2)将()f x 的图象向左平移6π个单位长度后,得到函数()g x 的图象,求函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的值域.【题型三】图像与性质2:恒等变形:结构不良型【典例分析】(2023·全国·高三专题练习)在①sin α=①2tan 40αα-=这两个条件中任选一个,补充到下面的问题中,并解答.已知角a 是第一象限角,且___________. (1)求tan α的值;(2)3)cos()cos(3)2πααπαπ+++-的值.注:如果选择多个条件分别解答,按第一个解答计分.【变式演练】1.(2022·北京·二模)已知函数2()cos cos (0,)ωωωω=++>∈R f x x x x m m .再从条件①、条件①、条件①这三个条件中选择能确定函数()f x 的解析式的两个作为已知. (1)求()f x 的解析式及最小值;(2)若函数()f x 在区间[]0,(0)t t >上有且仅有1个零点,求t 的取值范围. 条件①:函数()f x 的最小正周期为π;条件①:函数()f x 的图象经过点10,2⎛⎫⎪⎝⎭;条件①:函数()f x 的最大值为32.注:如果选择的条件不符合要求,得0分;如果选择多组符合要求的条件分别解答,按第一组解答计分.2.(2023·全国·高三专题练习)已知函数()()sin cos 0,0f x a x x a ωωω=>>.从下列四个条件中选择两个作为已知,使函数()f x 存在且唯一确定.条件①:π14f ⎛⎫= ⎪⎝⎭;条件①:()f x 为偶函数;条件①:()f x 的最大值为1;条件①:()f x 图象的相邻两条对称轴之间的距离为π2. 注:如果选择的条件不符合要求,第(1)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.(1)求()f x 的解析式;(2)设()()22cos 1g x f x x ω=-+,求函数()g x 在()0,π上的单调递增区间.3.(2023·全国·高三专题练习)已知函数()()2sin cos f x a x x x x =∈R ,若__________.条件①:0a >,且()f x 在x ∈R 时的最大值为1条件①:6f π⎛⎫= ⎪⎝⎭请写出你选择的条件,并求函数()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.注:如果选择条件①和条件①分别解答,按第一个解答计分.【题型四】图像与性质3:恒成立(有解)求参数【典例分析】(2023·全国·高三专题练习)已知函数()π2sin()3f x x =+.(1)若不等式()3f x m -≤对任意ππ[,]63x ∈-恒成立,求整数m 的最大值;(2)若函数()π()2g x f x =-,将函数()g x 的图象上各点的横坐标缩短到原来的12倍(纵坐标不变),再向右平移12π个单位,得到函数()y h x =的图象,若关于x 的方程()102h x k -=在π5π[,]1212x ∈-上有2个不同实数解,求实数k 的取值范围.【变式演练】1.(2023·全国·高三专题练习)已知平面向量2sin 2,26m x π⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,()21,sin n x =,()f x m n =⋅,其中0,2x π⎡⎤∈⎢⎥⎣⎦. (1)求函数()f x 的单调增区间; (2)将函数()f x 的图象所有的点向右平移12π个单位,再将所得图象上各点横坐标缩短为原来的12(纵坐标不变),再向下平移1个单位得到()g x 的图象,若()g x m =在5,824x ππ⎡⎤∈-⎢⎥⎣⎦上恰有2个解,求m 的取值范围.2.(2023·全国·高三专题练习)已知函数()sin()0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)先将函数()f x 的图象向右平移3π个单位长度,再将所得图象上各点的纵坐标不变,横坐标变为原来的2倍,得到()g x 的图象.(i )若0m >,当[0,]x m ∈时,()g x 的值域为[2],求实数m 的取值范围;(ii )若不等式2()(21)()10g x t g x t -+--≤对任意的,32x ππ⎡⎤∈⎢⎥⎣⎦恒成立,求实数t 的取值范围.3.(2022·全国·高三专题练习)已知:函数()2sin cos f x x x x =. (1)求()f x 的最小正周期; (2)求()f x 的单调递减区间;(3)若函数()()g x f x k =-在π0,4⎡⎤⎢⎥⎣⎦上有两个不同的零点,写出实数k 的取值范围.(只写结论)【题型五】图像与性质4:零点与对称轴【典例分析】(2022·全国·高三专题练习)已知函数()4cos cos 1(0)3f x x x πωωω⎛⎫=⋅-- ⎪>⎝⎭的部分图像如图所示,若288AB BC π⋅=-,B ,C 分别为最高点与最低点.(1)求函数()f x 的解析式;(2)若函数()y f x m =-在130,12π⎡⎤⎢⎥⎣⎦,上有且仅有三个不同的零点1x ,2x ,3x ,(123x x x <<),求实数m 的取值范围,并求出123 cos (2)x x x ++的值.【变式演练】1.(2023·全国·高三专题练习)已知函数()sin()0,0,||2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象上所有的点向右平移12π个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象.当130,6x π⎡⎤∈⎢⎥⎣⎦时,方程()0g x a -=恰有三个不相等的实数根()123123,,x x x x x x <<,求实数a 的取值范围和1232x x x ++的值.2.(2023·全国·高三专题练习)已知函数()sin()0,0,||2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象上所有的点向右平移12π个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象,若方程()0g x m -=在70,3π⎡⎤⎢⎥⎣⎦上有三个不相等的实数根()123123,,x x x x x x <<,求m 的取值范围及()123tan 2x x x ++的值.3.(2023·全国·高三专题练习)已知数2()2sin 1(0)6212x f x x πωπωω⎛⎫⎛⎫=+++-> ⎪ ⎪⎝⎭⎝⎭的相邻两对称轴间的距离为2π. (1)求()f x 的解析式;(2)将函数()f x 的图象向右平移6π个单位长度,再把各点的横坐标缩小为原来的12(纵坐标不变),得到函数()y g x =的图象,当,126x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()g x 的值域;(3)对于第(2)问中的函数()g x ,记方程4()3g x =在4,63x ππ⎡⎤∈⎢⎥⎣⎦上的根从小到大依次为12,,n x x x ,若m =1231222n n x x x x x -+++++,试求n 与m 的值.【题型六】解三角形1:面积与周长常规【典例分析】(2022·安徽·高三开学考试)在ABC 中,点,M N 分别在线段,BC BA 上,且,BM CM ACN BCN =∠=∠,3,22AB AM AC ===.(1)求BM 的长;(2)求BCN △的面积.【变式演练】1.(2022·北京·高三开学考试)在ABC 中,角A ,B ,C 的对边分别为,,,sin2sin =a b c C C . (1)求C ∠;(2)若1b =,且ABCABC 的周长.2.(2022·江苏·南京市金陵中学河西分校高三阶段练习)已知ABC 的三个内角,,A B C 所对的边分别为a ,b ,c ,)tan tan tan tan 1+=B C B C . (1)求角A 的大小;(2)若1a =,21)0c b -=,求ABC 的面积.3.(2022·云南昆明·高三开学考试)已知ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,sin cos 0B b A -=. (1)求A ;(2)若c =a =ABC 的面积.【题型七】解三角形2:计算角度与函数值【典例分析】(2022·全国·高三专题练习)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ==-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值.【变式演练】1.(2021·天津静海·高三阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足()()2sin 2sin 2sin a b A b a B c C -+-=. (1)求角C 的大小;(2)若c =4a b +=,求ABC 的面积.(3)若cos =A ,求()sin 2A C -的值.2.(2022·北京市第二十二中学高三开学考试)已知ABC 的内角,,A B C 所对的对边分别为,,a b c ,周长为1,且sin sin A B C +. (1)求c 的值;(2)若ABC 的面积为1sin 6C ,求角C 的大小.3.(2022·青海玉树·高三阶段练习(文))在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且ABC 的面积)222S a c b =+-. (1)求角B 的大小;(2)若2a c =,求sin C .【题型八】解三角形3:求面积范围(最值)【典例分析】(2022·云南·昆明一中高三开学考试)已知ABC 的内角,,A B C 所对边分别为,,a b c ,且222sin sin sin sin A B C B C -=. (1)求A ;(2)若a =ABC 面积的最大值.【变式演练】1.(2022·河南·高三开学考试(文))已知,,a b c 分别为ABC 的内角,,A B C 所对的边,且()()sin sin sin sin a c b A C B c B +--+=(1)求角A 的大小;(2)若a =ABC 面积的最大值.2.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .已知ABC 的外接圆半径R =tan tan B C +=.(1)求B 和b 的值;(2)求ABC 面积的最大值.3.(2021·江苏·矿大附中高三阶段练习)ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,设sin cos sin (2cos )A B B A =-.(1)若b c +,求A ;(2)若2a =,求ABC 的面积的最大值.【题型九】解三角形4:周长最值【典例分析】(2022·黑龙江·双鸭山一中高三开学考试)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且222sin sin sin sin sin A B C A B +-=. (1)求角C 的大小;(2)若ABCABC 周长的取值范围.【变式演练】1.(2022·广东·深圳外国语学校高三阶段练习)已知ABC 中,内角,,A B C 所对边分别为,,a b c ,若()2cos cos 0a c B b C --=.(1)求角B 的大小;(2)若2b =,求a c +的最大值.2.(2022·湖北·襄阳五中高三开学考试)在锐角ABC 中,角A ,B ,C ,的对边分别为a ,b ,c ,从条件①:3sin cos tan 4A A A =,条件①12=,条件①:2cos cos cos a A b C c B -=这三个条件中选择一个作为已知条件. (1)求角A 的大小;(2)若2a =,求ABC 周长的取值范围.3.(2022·广东·高三开学考试)已知锐角ABC 中,角A 、B 、C 所对边为a 、b 、c ,= (1)求角A ;(2)若4a =,求b c +的取值范围.【题型十】解三角形5:巧用正弦定理求“非对称”型【典例分析】(2022·四川成都·模拟预测(理))①ABC 中,角,,A B C 所对边分别是,,a b c ,tan tan 2tan tan A AB C bc,cos cos 1b C c B +=.(1)求角A 及边a ; (2)求2b c +的最大值.【变式演练】1.(2022·全国·南京外国语学校模拟预测)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且5sin sin 35cos cos cos2B C B C A -=+. (1)求角A 的大小;(2)若a =2b c +的最大值.2..(2022·辽宁·抚顺市第二中学三模)在①()()222sin 2sin B c a C b c a b -=+-,①23cos cos cos 24A C A C --=,tan tan A B =+这三个条件中,任选一个,补充在下面问题中,问题:在ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =_______. (1)求角B ﹔(2)求2a c -的范围.【题型十一】解三角形6:最值范围综合【典例分析】(2022·浙江·高三开学考试)记ABC 内角,,A B C 的对边分别是,,a b c ,已知tan tan 2tan tan tan B CB A A=-.(1)求证:2222b c a +=;(2)求2abc 的取值范围.【变式演练】1.(2022·辽宁·渤海大学附属高级中学模拟预测)ABC 的内角A 、B 、C 所对边的长分别为a 、b 、c ,已cos sin B b C =+. (1)求C 的大小;(2)若ABC 为锐角三角形且c =22a b +的取值范围.2.(2022·湖南湘潭·高三开学考试)设ABC 的内角,,A B C 的对边分别为,,a b c ,A 为钝角,且tan bB a =.(1)探究A 与B 的关系并证明你的结论; (2)求cos cos cos A B C ++的取值范围.1.(2022·天津·高考真题)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ===-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值. 2.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B -+==.(1)求ABC 的面积;(2)若sin sin A C =,求b . 3.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-. (1)若2A B =,求C ; (2)证明:2222a b c =+4.(·浙江·高考真题(理))已知ABC 的内角,,A B C 所对的对边分别为,,a b c 1,且sin sin A B C +. (1)求c 的值;(2)若ABC 的面积为1sin 6C ,求角C 的大小.5.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ;(2)求222a b c +的最小值.6.(2020·山东·高考真题)小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪⎝⎭在根据表中数据,求:(1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.7.(山东·高考真题)已知函数()2sin 2y x ϕ=+,x ∈R ,π02ϕ<<,函数的部分图象如下图,求(1)函数的最小正周期T 及ϕ的值: (2)函数的单调递增区间.8.(2021·天津·高考真题)在ABC ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 2A B C =b =(I )求a 的值; (II )求cos C 的值;(III )求sin 26C π⎛⎫- ⎪⎝⎭的值.9.(2021·全国·高考真题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+.. (1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.10.(2021·北京·高考真题)在ABC 中,2cos c b B =,23C π=.(1)求B ;(2)再从条件①、条件①、条件①这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长.条件①:c =;条件①:ABC 的周长为4+条件①:ABC11.(2023·全国·高三专题练习)在ABC 中.3sin cos 64A A π⎛⎫-= ⎪⎝⎭.(1)求角A ;(2)若8AC =,点D 是线段BC 的中点,DE AC ⊥于点E ,且DE =CE 的长.1.(2022·浙江省杭州学军中学模拟预测)已知函数()()sin y f x A x B ωϕ==++(其中A ,ω,ϕ,B 均为常数,且0A >,0>ω,ϕπ<)的部分图像如图所示.(1)求()f x 的解析式;(2)若5()126g x f x f x ππ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,,02x π⎛⎫∈- ⎪⎝⎭,求()g x 的值域.2.(2022·全国·高三专题练习)已知向量(sin a x =,(1,cos )b x =.(1)若a b ⊥,求sin 2x 的值;(2)令()f x a b =⋅,把函数()f x 的图像上每一点的横坐标都缩短为原来的一半(纵坐标不变),再把所得的图像沿x 轴向左平移6π个单位长度,得到函数()g x 的图像,求函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.3.(2023·全国·高三专题练习)已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,再从条件①、条件①、条件①这三个条件中选择两个作为一组已知条件,使()f x 的解析式唯一确定. (1)求()f x 的解析式;(2)设函数()()6g x f x f x π⎛⎫=++ ⎪⎝⎭,求()g x 在区间0,4⎡⎤⎢⎥⎣⎦π上的最大值.条件①:()f x 的最小正周期为π;条件①:()00f =;条件①:()f x 图象的一条对称轴为4x π=. 注:如果选择多组条件分别解答,按第一个解答计分.4.(2023·全国·高三专题练习)已知函数()()()3,sin 26f x x x a a a g x x π⎛⎫=--+∈=+ ⎪⎝⎭R .(1)若()f x 为奇函数,求实数a 的值;(2)若对任意[]10,1x ∈,总存在20,2x π⎡⎤∈⎢⎥⎣⎦,使()()12f x g x =成立,求实数a 的取值范围.5.(2023·全国·高三专题练习)已知函数()2sin 216f x x πω⎛⎫=++ ⎪⎝⎭.(1)若()()()12f x f x f x ≤≤,12min 2x x π-=,求()f x 的对称中心;(2)已知05ω<<,函数()f x 图象向右平移6π个单位得到函数()g x 的图象,3x π=是()g x 的一个零点,若函数()g x 在[],m n (m ,n R ∈且m n <)上恰好有10个零点,求n m -的最小值; 6、(2022·安徽·高三开学考试)记ABC 的内角,,A B C 的对边分别为,,a b c ,且23,2b c B C ==.(1)求cos C ;(2)若5a =,求c .7.(2022·广西·模拟预测(文))设ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且2cos 2sin c b A b A -=. (1)证明:()sin 2sin sin A B B A -=; (2)若3A B =,求B 的值.8.(2022·全国·高三专题练习)在①2cos cos c b B a A -=;①sin cos 2AA =;()sin a C C =,这三个条件中任选一个,补充在下面的横线上,并加以解答.在ABC 中,角,,A B C 的对边分别是,,a b c ,若__________.(填条件序号) (1)求角A 的大小;(2)若3a =,求ABC 面积的最大值.注:如果选择多个条件分别解答,按第一个解答计分.9.(2021·福建省华安县第一中学高三期中)在①π1cos cos 32B B ⎛⎫-=+ ⎪⎝⎭,①sin (sin sin )sin a A c C A b B +-=,tan tan A B =+这三个条件中,任选一个,补充在下面问题中.问题:在ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =______________. (1)求角B ;(2)求a c +的最大值.注:如果选择多个条件分别解答,按第一个解答计分. 10.(2022·山东烟台·三模)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且22cos cos 2cos b a A C c A =+. (1)求角A ;(2)若4a =,求2c b -的取值范围.11.(2023·全国·高三专题练习)在ABC 中,点D 在边BC 上,3AB =,2AC =. (1)若AD 是BAC ∠的角平分线,求:BD DC ;(2)若AD 是边BC 上的中线,且AD =,求BC .12.(2022·全国·模拟预测(文))在①3cos210cos 10A A +-=,①sin cos A A -=①tan 2A =三个条件中任选一个,补充在下面的问题中,并作答.如果多选,则按第一个解答给分. 已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且______ (1)求cos A ;(2)sin sin B C 的最大值.。

高中数学三角函数专题复习(内附类型题以及历年高考真题,含答案)

高中数学三角函数专题复习(内附类型题以及历年高考真题,含答案)

1.tan x =2,求sin x ,cos x 的值. 解:因为2cos sin tan ==xxx ,又sin 2x +cos 2x =1, 联立得⎩⎨⎧=+=,1cos sin cos 2sin 22x x xx 解这个方程组得.55cos 552sin ,55cos 552sin ⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==x x x x2.求)330cos()150sin()690tan()480sin()210cos()120tan(----的值.解:原式)30360cos()150sin()30720tan()120360sin()30180cos()180120tan(o--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=3.假设,2cos sin cos sin =+-xx xx ,求sin x cos x 的值.解:法一:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ),得到sin x =-3cos x ,又sin 2x +cos 2x =1,联立方程组,解得,,⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==1010cos 10103sin 1010cos 10103sin x x x x 所以⋅-=103cos sin x x 法二:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ), 所以(sin x -cos x )2=4(sin x +cos x )2, 所以1-2sin x cos x =4+8sin x cos x , 所以有⋅-=103cos sin x x 4.求证:tan 2x ·sin 2x =tan 2x -sin 2x .证明:法一:右边=tan 2x -sin 2x =tan 2x -(tan 2x ·cos 2x )=tan 2x (1-cos 2x )=tan 2x ·sin 2x ,问题得证. 法二:左边=tan 2x ·sin 2x =tan 2x (1-cos 2x )=tan 2x -tan 2x ·cos 2x =tan 2x -sin 2x ,问题得证.5.求函数)6π2sin(2+=x y 在区间[0,2π ]上的值域. 解:因为0≤x ≤2π,所以,6π76π26π,π20≤+≤≤≤x x 由正弦函数的图象, 得到],1,21[)6π2sin(-∈+x所以y ∈[-1,2]. 6.求以下函数的值域.(1)y =sin 2x -cos x +2; (2)y =2sin x cos x -(sin x +cos x ). 解:(1)y =sin 2x -cos x +2=1-cos 2x -cos x +2=-(cos 2x +cos x )+3,令t =cos x ,那么,413)21(413)21(3)(],1,1[222++-=++-=++-=-∈t t t t y t利用二次函数的图象得到].413,1[∈y (2)y =2sin x cos x -(sin x +cos x )=(sin x +cos x )2-1-(sin x +cos x ),令t =sin x +cos x 2=,)4πsin(+x ,那么]2,2[-∈t 那么,,12--=t t y 利用二次函数的图象得到].21,45[+-∈y 7.假设函数y =A sin(ωx +φ)(ω>0,φ>0)的图象的一个最高点为)2,2(,它到其相邻的最低点之间的图象与x 轴交于(6,0),求这个函数的一个解析式.解:由最高点为)2,2(,得到2=A ,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是41个周期,这样求得44=T ,T =16,所以⋅=8πω又由)28πsin(22ϕ+⨯=,得到可以取).4π8πsin(2.4π+=∴=x y ϕ8.函数f (x )=cos 4x -2sin x cos x -sin 4x .(Ⅰ)求f (x )的最小正周期; (Ⅱ)假设],2π,0[∈x 求f (x )的最大值、最小值. 数xxy cos 3sin 1--=的值域.解:(Ⅰ)因为f (x )=cos 4x -2sin x cos x -sin4x =(cos 2x -sin 2x )(cos 2x +sin 2x )-sin2x )4π2sin(2)24πsin(22sin 2cos 2sin )sin (cos 22--=-=-=--=x x x x x x x所以最小正周期为π.(Ⅱ)假设]2π,0[∈x ,那么]4π3,4π[)4π2(-∈-x ,所以当x =0时,f (x )取最大值为;1)4πsin(2=--当8π3=x 时,f (x )取最小值为.2-1. 2tan =θ,求〔1〕θθθθsin cos sin cos -+;〔2〕θθθθ22cos 2cos .sin sin +-的值.解:〔1〕2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=.说明:利用齐次式的结构特点〔如果不具备,通过构造的方法得到〕,进行弦、切互化,就会使解题过程简化。

高考三角函数经典解答题及答案

高考三角函数经典解答题及答案

31在△ ABC 中,角A 、B C 所对的边分别是 a, b, c,且a 2 + c 2 — b 2 =1ac. 2(1)求 sin 2——— + cos2 B 的值; 2 (2)若b=2,求△ ABC 面积的最大值.1解:(1)由余弦TE 理:conB=-41 +cos2B=- -4一, 1 1 (2)由 cosB = —,得 sin B48 ,S △AB =:acsinB & "15 (a=c 时取等号) 3 23故S AABC 的最大值为 ------32在^ABC 中,角 A, B, C 的对边分别为 a, b, c,且 bcosC = 3acosB -ccosB.(I)求cosB 的值;(II )若BA BC = 2 ,且b = 2/2 ,求a 和c b 的值.解:(I)由正弦定理得 a =2Rsin A,b =2Rsin B,c = 2RsinC , 贝U2Rsin BcosC = 6Rsin AcosB 一 2Rsin C cosB, 故sin B cosC = 3sin AcosB - sinC cosB, 可得 sin BcosC sinCcosB =3sin AcosB, 即sin(B C) =3sin AcosB,可得 sin A = 3sin AcosB.又 sin A = 0,…1因止匕cos B = —. 3(II )解:由 BA BC =2,可得acosB = 2,1 M 一又 cosB = 一,故 ac = 6,3由b 2=a 2c 2-2accosB, 可得 a 2c 2=12, 所以(a -c)2=0,即a =c,所以a= c= . 63已知向重m = (sin B, 1 - cosB ),向重n = ( 2, 0),且m 与n 所成角为—,sin2AB 21/口a 2 + c 2 =2ac+4 > 2ac,得4 已知向量 m=(1,2sinA), n =(sin A,1+cosA),满足 m//n,b+c = V3a. (I小;(II )求 sin( B +f)的值.解:(1)由 m//n 得 2 sin 2A -1 一 cos A = 0 ……2 分 即 2c os2A+8SA —1 =0, cos A 或 cos A = —12: A 是AABC 的内角,cosA=—1舍去. A 「3(2) : b +c =M 3a由正弦定理,sin B - sin C = 3sin A =32其中A 日C 是AABC 的内角。

2024年高考数学真题分类汇编05:三角函数与解三角形

2024年高考数学真题分类汇编05:三角函数与解三角形
一个交点,结合偶函数的对称性可知该交点只能在 y 轴上,即可得 a 2 ,并代入检验即可;
解法二:令 h x f (x) g x , x 1,1 ,可知 h x 为偶函数,根据偶函数的对称性可
知 h x 的零点只能为 0,即可得 a 2 ,并代入检验即可. 【解析】解法一:令 f (x) g x ,即 a(x 1)2 1 cos x 2ax ,可得 ax2 a 1 cos x , 令 F x ax2 a 1,G x cos x ,
三角函数与解三角形
一、单选题
1.(2024·全国)已知 cos( ) m, tan tan 2 ,则 cos( ) ( )
A. 3m
B. m 3
C.
m 3
D. 3m
2.(2024·全国)当

[0, 2 ] 时,曲线
y
sin
x

y
2
sin
3x
6
的交点个数为(

A.3
B.4
C.6
的最小正周期为
π
.则函数在
π 12
,
π 6
的最小值是( )
A. 3
2
B. 3 2
C.0
D. 3 2
9.(2024·上海)下列函数 f x 的最小正周期是 2π 的是( )
A. sinx cosx C. sin2x cos2x
B. sinxcosx D. sin2x cos2x
二、多选题
y
f
x 在 0,1 处的切线与两坐标轴围
成的三角形的面积为( )
A. 1 6
B.
1 3
C.
1 2
D.
2 3
7.(2024·北京)已知fxFra biblioteksinx

2023届高考数学《三角函数与解三角形》典型例题讲解

2023届高考数学《三角函数与解三角形》典型例题讲解

2023届高考数学《三角函数与解三角形》典型例题讲解【典型例题】例1.(2022·全国·高三校联考阶段练习)已知函数2()cos cos )sin f x x x x x =+−.(1)求函数f (x )的单调递增区间和最小正周期;(2)若当ππ,122x ⎡⎤∈⎢⎥⎣⎦时,关于x 的不等式. (),f x m ≥求实数m 的取值范围. 请选择①恒成立,②有解,两条件中的一个,补全问题(2),并求解.注意:如果选择①和②两个条件解答,以解答过程中书写在前面的情况计分.【解析】(1)222()cos cos )sin cos cos sin f x x x x x x x x x =+−=+−π2cos22sin(2)6x x x +=+. 所以函数()f x 的最小正周期πT =. 由πππ2π22π,Z 262k x k k −+++∈剟,解得ππππ,Z 36k x k k −++∈剟. 所以函数()f x 的单调增区间为ππ[π,π],Z 36k k k −++∈,(2)若选择①由题意可知,不等式()f x m …恒成立,即min ()m f x …. 因为ππ,122x ⎡⎤∈⎢⎥⎣⎦,所以ππ7π2366x +剟. 故当π7π266x +=,即π2x =时,()f x 取得最小值,且最小值为1π2f ⎛⎫=− ⎪⎝⎭. 所以1m −…,实数m 的取值范围为(],1−∞−.若选择②由题意可知,不等式()f x m …有解,即max ()m f x …. 因为ππ,122x ⎡⎤∈⎢⎥⎣⎦,所以ππ7π2366x +剟.故当ππ262x +=,即π6x =时,()f x 取得最大值,且最大值为π26f ⎛⎫= ⎪⎝⎭. 所以2m …,实数m 的取值范围(],2−∞.例2.(2022春·重庆渝中·高三重庆巴蜀中学校考阶段练习)已知,,a b c 分别为ABC 内角,,A B C 的对边,若ABC 同时满足下列四个条件中的三个:①a 2b =;③sin sin sin ++=−B C a c A b c ;④21cos sin sin 24−⎛⎫−= ⎪⎝⎭B C B C . (1)满足有解三角形的序号组合有哪些?(2)请在(1)所有组合中任选一组,求对应ABC 的面积.【解析】(1)对于③,()22212π,0,223b c a c a c b B B a b c ac π+++−=⇒=−∈∴=−; 对于④,()()1cos 11sin sin cos 2sin sin 242B C B C B C B C +−−=⇒−−=−, 即()1cos 2B C +=−,且π,0,,πA B C A B C ++=<<,则π3A =,故③,④不能同时存在,则满足有解三角形的序号组合为①②③,①②④.(2)选①②③:2π2,3a b B ===时, 由余弦定理:22221cos22a c b B ac +−=⇒−=整理得:210c −=且0c >,则c =,ABC ∴的面积为31sin 28ABC S ac B ==.选①②④:π2,3a b A ===时, 由余弦定理:2222143cos 224b c a c A bc c+−+−=⇒=, 整理得:2210c c −+=,则1c =,ABC ∴的面积1sin 2ABC S bc A ==. 例3.(2022春·浙江·高二期中)在①(sin sin )()(sin sin )c A C a b A B −=−+,②2cos 2b A a c +=,222sin B a c b =+−三个条件中任选一个,补充在下面问题中,并解答.(1)求角B 的大小; (2)如图所示,当sin sin A C +取得最大值时,若在ABC 所在平面内取一点D (D 与B 在AC 两侧),使得线段2,1DC DA ==,求BCD △面积的最大值.【解析】(1)若选①(sin sin )()(sin sin )c A C a b A B −=−+,由正弦定理得,()()()c a c a b a b −=−+,整理得222a c b ac +−=, 所以2221cos 222a cb ac B ac ac +−===,又0πB <<,所以π3B =; 若选②2cos 2b A a c +=, 由余弦定理得222222b c a b a c bc+−+=,化简得222a c b ac +−= 所以2221cos 222a cb ac B ac ac +−===,又0πB <<,所以π3B =;222sin B a c b =+−,sin 2cos B ac B =, 化简得tan B 0πB <<,所以π3B =;(2)由(1)得2π3A C +=,故2π03A <<,所以2π3πsin sin sin sin sin 326A C A A A A A ⎛⎫⎛⎫+=+−==+ ⎪ ⎪⎝⎭⎝⎭ 由ππ5π666A <+<,所以当ππ62A +=即π3A =时,sin sin A C + 令,ACD ADC θα∠=∠=,AB AC BC a ===, 在ACD 中由正弦定理可得,1sin sin a αθ=,所以sin sin a αθ=, 由余弦定理可得22221221cos 54cos a αα=+−⨯⨯⨯=−,所以()2222222cos 1sin sin a a a a θθθ=−=−()22254cos sin cos 4cos 42cos ααααα=−−=−+=−, 因为1,2DA DC ==,可得π02θ<<,所以cos 2cos a θα=−,1π12sin cos sin 232BCD S a a θθθ⎛⎫=⨯⨯⨯+=+ ⎪⎝⎭)1π2cos sin sin 23ααα⎛⎫=−+=− ⎪⎝⎭ 当且仅当ππ=32α−即5π=6α时,等号成立, 所以BCD △.本课结束。

高考数学复习专题训练—三角函数与解三角形解答题(含解析)

高考数学复习专题训练—三角函数与解三角形解答题(含解析)

高考数学复习专题训练—三角函数与解三角形解答题1.(2021·山东滨州期中)已知向量a=(cos x,sin x),b=(4√3sin x,4sin x),若f(x)=a·(a+b).(1)求f(x)的单调递减区间;]上的最值.(2)求f(x)在区间[0,π22.(2021·北京丰台区模拟)如图,△ABC中,∠B=45°,N是AC边的中点,点M在AB边上,且MN⊥AC,BC=√6,MN=√3.(1)求∠A;(2)求BM.3.(2021·山东潍坊二模)如图,D为△ABC中BC边上一点,∠B=60°,AB=4,AC=4√3.给出如下三种数值方案:①AD=√5;②AD=√15;③AD=2√7.判断上述三种方案所对应的△ABD的个数,并求△ABD唯一时,BD的长.4.(2021·海南海口月考)在△ABC中,已知a,b,c分别是角A,B,C的对边,b cos C+c cos B=4,B=π.请再在下4列三个条件:①(a+b+c)(sin A+sin B-sin C)=3a sin B;②b=4√2;③√3c sin B=b cos C中,任意选择一个,添加到题目的条件中,求△ABC的面积.5.(2021·辽宁大连一模)如图,有一底部不可到达的建筑物,A为建筑物的最高点.某学习小组准备了三种工具:测角仪(可测量仰角与俯角)、米尺(可测量长度)、量角器(可测量平面角度).(1)请你利用准备好的工具(可不全使用),设计一种测量建筑物高度AB的方法,并给出测量报告;注:测量报告中包括你使用的工具,测量方法的文字说明与图形说明,所使用的字母和符号均需要解释说明,并给出你最后的计算公式.(2)该学习小组利用你的测量方案进行了实地测量,并将计算结果汇报给老师,发现计算结果与该建筑物实际的高度有误差,请你针对误差情况进行说明.6.(2021·湖北武汉3月质检)在△ABC中,它的内角A,B,C的对边分别为a,b,c,且B=2π3,b=√6.(1)若cos A cos C=23,求△ABC的面积;(2)试问1a +1c=1能否成立?若能成立,求此时△ABC的周长;若不能成立,请说明理由.7.(2021·湖南长沙模拟)在△ABC中,内角A,B,C所对的边分别为a,b,c,且(b-c)sinCb+a=sin B-sin A.(1)求角A;(2)若a=2,求1tanB +1tanC的最小值.8.(2021·江苏南京期中)如图,某景区内有一半圆形花圃,其直径AB为6,O是圆心,且OC⊥AB.在OC上有一座观赏亭Q,其中∠AQC=2π3.计划在BC⏜上再建一座观赏亭P,记∠POB=θ(0<θ<π2).(1)当θ=π3时,求∠OPQ的大小;(2)当∠OPQ越大时,游客在观赏亭P处的观赏效果越佳,当游客在观赏亭P处的观赏效果最佳时,求sin θ的值.答案与解析1.解由于f(x)=a·(a+b)=|a|2+a·b=1+4√3sin x cos x+4sin2x=1+2√3sin 2x+4·1-cos2x2=2√3sin 2x-2cos 2x+3=4sin(2x-π6)+3.(1)由π2+2kπ≤2x-π6≤3π2+2kπ(k∈Z),解得π3+kπ≤x≤5π6+kπ(k∈Z),所以f(x)的单调递减区间是[π3+kπ,5π6+kπ](k∈Z).(2)由于x∈[0,π2],所以2x-π6∈[-π6,5π6],故当2x-π6=π2即x=π3时,函数f(x)取最大值7;当2x-π6=-π6即x=0时,函数f(x)取最小值1.2.解(1)如图,连接MC,因为N是AC边的中点,且MN⊥AC, 所以MC=MA.在Rt△AMN中,MA=MNsinA=√3sinA,所以MC=√3sinA.在△MBC中,由正弦定理可得MCsinB=BCsin∠BMC,而∠BMC=2∠A,所以√3sinA·sin45°=√6sin2A,即√3sinA·√22=√62sinAcosA,所以cos A=12,故∠A=60°.(2)由(1)知MC=MA=√3sin60°=2,∠BMC=2∠A=120°.在△BCM中,由余弦定理得BC2=BM2+MC2-2BM·MC·cos∠BMC,所以(√6)2=BM2+22-2BM·2·cos 120°,解得BM=√3-1(负值舍去).3.解过点A作AE⊥BC,垂足为点E(图略),则AE=4·sin 60°=2√3,当AD=√5时,AD<AE,所以方案①对应△ABD无解,当AD=√15时,AE<AD<AB<AC ,所以方案②对应△ABD 有两解, 当AD=2√7时,AB<AD<AC ,所以方案③对应△ABD 只有一解. 由方案③知AD=2√7,设BD=x (x>0),所以在△ABD 中由余弦定理得(2√7)2=42+x 2-2×4×x×cos 60°,即x 2-4x-12=0,解得x=6或x=-2(舍去).又因为在△ABC 中易得BC=8,BD=6<BC ,符合题意, 所以BD 的长为6.4.解 若选择条件①,则(a+b+c )(sin A+sin B-sin C )=3a sin B ,由正弦定理可得(a+b+c )(a+b-c )=3ab ,所以(a+b )2-c 2=3ab ,整理得a 2+b 2-c 2=ab ,所以cos C=12,故C=π3.又B=π4,所以A=π-π3−π4=5π12. 又因为b cos C+c cos B=4,所以b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac=4,即a=4.由正弦定理可得asinA =bsinB , 所以b=asinB sinA=4sin π4sin 5π12=4(√3-1), 故△ABC 的面积S=12ab sin C=12×4×4(√3-1)×sin π3=4(3-√3). 若选择条件②,则b=4√2. 又因为b cos C+c cos B=4,所以b ·a 2+b 2-c 22ab +c ·a 2+c 2-b22ac =4,即a=4.又B=π4,所以由正弦定理可得asinA =bsinB , 所以sin A=asinBb=4sin π44√2=12,所以A=π6或A=5π6.由于b>a ,所以B>A ,因此A=5π6不合题意舍去,故A=π6,从而C=π-π6−π4=7π12. 故△ABC 的面积S=12ab sin C=12×4×4√2×sin 7π12=4(√3+1). 若选择条件③,因为b cos C+c cos B=4, 所以b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac=4,所以a=4.因为√3c sin B=b cos C ,所以√3sin C sin B=sin B cos C ,所以tan C=√33,于是C=π6,从而A=π-π6−π4=7π12,所以由正弦定理可得a sinA =bsinB , 所以b=asinB sinA=4sin π4sin 7π12=4(√3-1), 故△ABC 的面积S=12ab sin C=12×4×4(√3-1)×sin π6=4(√3-1). 5.解 (1)选用测角仪和米尺,如图所示.①选择一条水平基线HG ,使H ,G ,B 三点在同一条直线上;②在H ,G 两点用测角仪测得A 的仰角分别为α,β,HG=a ,即CD=a.测得测角仪器的高是h ;③(方法一)在△ACD 中,由正弦定理,得ACsinα=CDsin (β-α), 所以AC=CDsinαsin (β-α)=asinαsin (β-α),在Rt △ACE 中,有AE=AC sin β=asinαsinβsin (β-α), 所以建筑物的高度AB=AE+h=asinαsinβsin (β-α)+h. (方法二)在Rt △ADE 中,DE=AEtanα, 在Rt △ACE 中,CE=AEtanβ, 所以CD=DE-CE=AEtanα−AEtanβ=AE (tanβ-tanα)tanαtanβ,所以AE=atanαtanβtanβ-tanα,所以建筑物的高度AB=AE+h=atanαtanβtanβ-tanα+h. (2)①测量工具问题;②两次测量时位置的间距差; ③用身高代替测角仪的高度.6.解 (1)由B=2π3,得A+C=π3,cos(A+C )=cos A cos C-sin A sin C ,即12=cos A cos C-sin A sin C.因为cos A cos C=23,所以sin A sin C=16.因为a sinA =c sinC =√6√32=2√2,所以a=2√2sin A ,c=2√2sin C.所以S △ABC =12·2√2sin A·2√2sin C·sin B=4sin A·sin B sin C=4×16×√32=√33. (2)假设1a +1c =1能成立,所以a+c=ac.由余弦定理,得b 2=a 2+c 2-2ac cos B ,所以6=a 2+c 2+ac.所以(a+c )2-ac=6,所以(ac )2-ac-6=0,所以ac=3或ac=-2(舍去),此时a+c=ac=3. 不满足a+c ≥2√ac ,所以1a +1c =1不成立.7.解 (1)由(b -c )sinCb+a =sin B-sin A ,可得(b-c )sin C=(sin B-sin A )(b+a ),由正弦定理得(b-c )c=(b-a )(b+a ),即b 2+c 2-a 2=bc , 由余弦定理,得cos A=b 2+c 2-a 22bc=12,因为0<A<π,可得A=π3.(2)由(1)知A=π3,设△ABC 的外接圆的半径为R (R>0),可得2R=asinA =4√33, 由余弦定理得a 2=b 2+c 2-2bc cos A=b 2+c 2-bc ≥bc , 即bc ≤a 2=4,当且仅当b=c=2时取等号, 又1tanB +1tanC =cosBsinB +cosCsinC =cosBsinC+sinBcosCsinBsinC =sin (B+C )sinBsinC =sinAsinBsinC =2R ·2RsinA 2RsinB ·2RsinC=2R ·abc =8√33bc ≥8√33×4=2√33,所以1tanB +1tanC 的最小值为2√33.8.解 (1)在△POQ 中,因为∠AQC=2π3,所以∠AQO=π3.又OA=OB=3,所以OQ=√3. 设∠OPQ=α,则∠PQO=π2-α+θ. 由正弦定理,得3sin (π2-α+θ)=√3sinα,即√3sin α=cos(α-θ), 整理得tan α=√3-sinθ,其中θ∈(0,π2).当θ=π3时,tan α=√33.因为α∈(0,π2),所以α=π6. 故当θ=π3时,∠OPQ=π6.(2)设f(θ)=√3-sinθ,θ∈(0,π2),则f'(θ)=-sinθ(√3-sinθ)+cos 2θ(√3-sinθ)2=1-√3sinθ(√3-sinθ)2.令f'(θ)=0,得sin θ=√33,记锐角θ0满足sin θ0=√33,当0<θ<θ0时,f'(θ)>0;当θ0<θ<π2时,f'(θ)<0, 所以f(θ)在θ=θ0处取得极大值亦即最大值.由(1)可知tan α=f(θ)>0,则α∈(0,π2),又y=tan α单调递增,则当tan α取最大值时,α也取得最大值.故游客在观赏亭P处的观赏效果最佳时,sin θ=√33 .。

三角函数解答题精选16道_带答案

三角函数解答题精选16道_带答案

期为
从而可得
;(2)根据同角的三角函数关系和三角恒等变换,
结合二倍角的余弦公式、二倍角的正弦公式可求出 .
详解:(1)∵函数 的图象的最高点的坐标为 ,

依题意,得 的周期为
(2)由(2)得

,且

...
.
点睛:三角函数求值有三类,(1)“给角求值”:一般所给出的角都是非特殊角,从表面上 来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关 系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出 某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相 同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值, 再求角的范围,确定角.
复合函数的单调性规律进行求解;(2) 图象法:画出三角函数图象,利用图象求函数的单调 区间.
2.(1) ;(2)当 时,
;当 时,
【解析】分析:1)化简

所以 的最小正周期是 ;(2)结合
求出
,进而利用正弦函数的单调
性可求出函数 在区间 上的最值及相应的 值.
详解:(1)

所以 的最小正周期是 .
(2)因为
...
.
(2)求 f(x)在区间
上的最大值和最小值.
12.已知函数 f x 2 3sin xcosx 2cos2x a 1.
(Ⅰ)求 f x 的最小正周期;
(Ⅱ)若
f
x 在区间
6
, 3
上的最大值与最小值的和为
2,求 a
的值.
13.设函数
f
x
tan

三角函数解答题2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)

三角函数解答题2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)
(1)若 ,求B;
(2)求 的最小值.
【答案】(1) ;
(2) .
解析:(1)因为 ,即 ,
而 ,所以 ;
(2)由(1)知, ,所以 ,
而 , 所以 ,即有 .
所以

当且仅当 时取等号,所以 的最小值为 .
【题目栏目】三角函数\三角函数的综合问题
【题目来源】2022新高考全国I卷·第18题
4.(2021年新高考全国Ⅱ卷·第18题)在 中,角 、 、 所对的边长分别为 、 、 , , ..
问题:是否存在 ,它的内角 的对边分别为 ,且 , ,________?
注:如果选择多个条件分别解答,按第一个解答计分.
【答案】解法一:
由 可得: ,
不妨设 ,
则: ,即 .
选择条件①的解析:
据此可得: , ,此时 .
选择条件②的解析:
据此可得: ,
则: ,此时: ,则: .
选择条件③的解析:
可得 , ,
【答案】(1)
(2)
解析:(1)由题意得 ,则 ,
即 ,由余弦定理得 ,整理得 ,则 ,又 ,
则 , ,则 ;
(2)由正弦定理得: ,则 ,则 , .
【题目栏目】三角函数\正弦定理和余弦定理\正、余弦定理的综合应用
【题目来源】2022新高考全国II卷·第18题
3.(2022新高考全国I卷·第18题)记 的内角A,B,C的对边分别为a,b,c,已知 .
则 ,
所以 ,
故 ,
所以 ,
所以 的周长为 .
【题目栏目】三角函数\三角函数的综合问题
【题目来源】2022年全国乙卷理科·第17题
2.(2022新高考全国II卷·第18题)记 的内角A,B,C的对边分别为a,b,c,分别以a,b,c为边长的三个正三角形的面积依次为 ,已知 .

高考数学解答题(新高考)三角函数的图象与性质(零点或根的问题)(典型例题+题型归类练)(解析版)

高考数学解答题(新高考)三角函数的图象与性质(零点或根的问题)(典型例题+题型归类练)(解析版)

专题03 三角函数的图象与性质(零点或根的问题)(典型例题+题型归类练)一、必备秘籍()()sin f x A x k ωϕ=+=实根问题,换元法令t x ωϕ=+将函数()f x 化简为sin y A t =,在利用正弦函数sin t 的图象来解决交点(根,零点)的问题.二、典型例题例题1.(2022·河南驻马店·高一期中(文))已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭在一个周期内的图像如图所示. (1)求函数()f x 的解析式; (2)设02x π<<,且方程()f x m =有两个不同的实数根,求实数m 的取值范围.第(2)问思路点拨:本小题要求时,方程有两个根,求的取值范围,可采用换元法解答过程:由(1)知,令,由,则,作出函数的图象,根据图象讨论的的个数.图象可知:与的图象在内有两个不同的交点时,,故实数的取值范围为.【答案】(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭(2)()1,2(1)显然2A =,又1121212T ππππω⎛⎫=--== ⎪⎝⎭,所以2ω=, 所以()()2sin 2f x x ϕ=+,又函数过点,012π⎛⎫- ⎪⎝⎭,所以2sin 06πϕ⎛⎫-+= ⎪⎝⎭,所以()Z 6k k πϕπ-+=∈,又2πϕ<,所以6π=ϕ, 所以所求的函数的解析式为()2sin 26f x x π⎛⎫=+ ⎪⎝⎭.(2)02x π<<,且方程()f x m =有两个不同的实数根,即()y f x =与y m =的图像在02x π<<内有两个不同的交点,令26t x π=+,则7,66t ππ⎛⎫∈ ⎪⎝⎭,作出函数2sin y t =的图像如下:由图像可知:2sin y t =与y m =的图像在7,66t ππ⎛⎫∈ ⎪⎝⎭内有两个不同的交点时,12m <<,故实数m 的取值范围为()1,2.例题2.(2022·山东德州·高一期中)已知()3sin ,sin cos a x x x ωωω=+,()1cos ,cos sin 2b x x x ωωω⎛⎫=- ⎪⎝⎭()01ω<≤,函数()1f x a b =⋅+,直线6x π=是函数()f x 图像的一条对称轴.(1)求函数()f x 的解析式;(2)当[]0,x π∈时,讨论方程()0f x m -=的根的情况.【答案】(1)()sin 216f x x π⎛⎫=++ ⎪⎝⎭(2)答案见解析(1)已知()3sin ,sin cos a x x x ωωω=+,()()1cos ,cos sin 012b x x x ωωωω⎛⎫=-<≤ ⎪⎝⎭,第(2)问思路点拨:本小题要求时,讨论方程的根的情况,可采用换元法解答过程:由(1)知,令,由,则,则讨论方程的根的情况,转化为的根的情况.作出的图象.1.当或,即或时,有0个根; 2.当或,即或时,有1个根;3.当或,即或时,有2个根;4.当,即时,有3个根由图象可知则()12cos 21sin 2126f x x x x πωωω⎛⎫++=++ ⎪⎝⎭, 由于直线6x π=是函数()f x 图像的一条对称轴.所以26f π⎛⎫= ⎪⎝⎭或0,所以2662k πππωπ⋅⋅+=+,()k ∈Z ,所以31k ω=+. 由于01ω<≤,所以,当0k =时,1ω=,所以()sin 216f x x π⎛⎫=++ ⎪⎝⎭(2)由题意得sin 216x m π⎛⎫+=- ⎪⎝⎭,因为[]0,x π∈,所以132,666x πππ⎡⎤+∈⎢⎥⎣⎦, 令26u x π=+,13,66u ππ⎡⎤∈⎢⎥⎣⎦, 则sin 1u m =-,如图.1.当11m ->或11m -<-,即0m <或2m >时,()f x 有0个根; 2.当11m -=或11m -=-,即0m =或2m =时,()f x 有1个根; 3.当1112m <-<或1112m -<-<,即322m <<或302m <<时,()f x 有2个根;4.当112m -=,即32m =时,()f x 有3个根 综上,当0m <或2m >时,()f x 有0个根; 当0m =或2m =时,()f x 有1个根; 当322m <<或302m <<时,()f x 有2个根;32m =时,()f x 有3个根.例题3.(2022·山东·日照青山学校高一期中)已知函数()2sin f x x =,将()f x的图象向右平移3π个单位长度,再把所有点的横坐标缩小为原来的12(纵坐标不变),得到函数()y g x =的图象. (1)求函数()g x 的解析式及单调递增区间; (2)方程()25g x =在17,612ππ⎛⎫ ⎪⎝⎭上的根从小到大依次为123,,x x x ,求1232x x x ++的值.第(2)问思路点拨:方程在上的根从小到大依次为,求的值.可采用换元法解答过程:由(1)知,令,由,则其中,;即,, ,,.根据图象作答转化为:方程在有个解,作出图象和问题转化作图象,找交点【答案】(1)()2sin 23g x x π⎛⎫=- ⎪⎝⎭,单调递增区间为()5,1212k k k ππππ-++⎡⎤∈⎢⎥⎣⎦Z (2)123823x x x π++= (1)2sin 33f x x ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,()2sin 23g x x π⎛⎫∴=- ⎪⎝⎭;令()222232k x k k πππππ-+≤-≤+∈Z ,解得:()51212k x k k ππππ-+≤≤+∈Z , ()f x ∴的单调递增区间为()5,1212k k k ππππ-++⎡⎤∈⎢⎥⎣⎦Z(2)令()22sin 235g x x π⎛⎫=-= ⎪⎝⎭,即1sin 235x π⎛⎫-= ⎪⎝⎭;17,612x ππ⎛⎫∈ ⎪⎝⎭,520,32x ππ⎡⎤∴-∈⎢⎥⎣⎦,设23x πθ=-,其中50,2πθ⎡⎤∈⎢⎥⎣⎦,即1sin 5θ=, 结合正弦函数5sin 02y x x π⎛⎫=≤≤⎪⎝⎭的图象可知:方程1sin 5θ=在50,2πθ⎡⎤∈⎢⎥⎣⎦有3个解123,,θθθ,其中12θθπ+=,233θθπ+=; 即122233x x πππ-+-=,2322333x x πππ-+-=,1256x x π∴+=,23116x x π+=,123823x x x π∴++=. 三、题型归类练1.(2022·河南驻马店·高一期中(理))已知点()()11,A x f x ,()()22,B x f x 是函数()()2sin 0,02f x x πωϕωϕ⎛⎫=+>-<< ⎪⎝⎭图象上的任意两点,且角ϕ的终边经过点(1,P ,()()124f x f x -=时,12x x -的最小值为3π. (1)求函数()f x 的解析式;(2)()y f x m =-在0,3x π⎛⎫∈ ⎪⎝⎭内有两个不同的零点,求实数m 的取值范围.【答案】(1)()2sin 33f x x π⎛⎫=- ⎪⎝⎭;2m <.(1)角ϕ的终边经过点(1,P ,∴tan ϕ=∵02πϕ-<<,∴3πϕ=-,由()()124f x f x -=时,12x x -的最小值为3π, 得23T π=,即223ππω=,∴3ω=,∴()2sin 33f x x π⎛⎫=- ⎪⎝⎭;(2)∵()y f x m =-在0,3x π⎛⎫∈ ⎪⎝⎭内有两个不同的零点,即()y f x =与y m =的图象在0,3x π⎛⎫∈ ⎪⎝⎭内有两个不同的交点,令33t x π=-,由0,3x π⎛⎫∈ ⎪⎝⎭,则2,33t ππ⎛⎫∈- ⎪⎝⎭, 即2sin y t =与y m =在2,33t ππ⎛⎫∈- ⎪⎝⎭上有两个交点,2m <.2.(2022·辽宁·大连市第一中学高一期中)已知函数()4cos cos 1(0)3f x x x πωωω⎛⎫=⋅-- ⎪>⎝⎭的部分图像如图所示,若288AB BC π⋅=-,B ,C 分别为最高点与最低点.(1)求函数()f x 的解析式;(2)若函数()y f x m =-在130,12π⎡⎤⎢⎥⎣⎦,上有且仅有三个不同的零点1x ,2x ,3x ,(123x x x <<),求实数m 的取值范围,并求出123 cos (2)x x x ++的值.【答案】(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭(2)m ⎡∈⎣,12(1)解:)()2cos cos 1f x xx x ωωω=+-,2cos 2cos 1x x x ωωω=⋅+-,2cos 2x x ωω=+,2sin 26x πω⎛⎫=+ ⎪⎝⎭,设函数()f x 的周期为T ,则,24T AB ⎛⎫= ⎪⎝⎭,,42T BC ⎛⎫=- ⎪⎝⎭,则228888T AB BC π⋅=-=-,所以T π=.故22T ππω==,故1ω=, 所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭.(2)由题意,函数()y f x m =-在130,12π⎡⎤⎢⎥⎣⎦上有且仅有三个不同的零点,1x ,2x ,3x ,即曲线()y f x =与y m =在130,12π⎡⎤⎢⎥⎣⎦上有且仅有三个不同的交点.设26t x π=+,当130,12x π⎡⎤∈⎢⎥⎣⎦时,7,63t ππ⎡⎤∈⎢⎥⎣⎦.则2sin y t =,7,63t ππ⎡⎤∈⎢⎥⎣⎦,则m ⎡∈⎣,12t t π+=,233t t π+=,所以12324t t t π++=,即12322224666x x x ππππ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即123523x x x π++=, 所以12351cos(2)cos32π++==x x x .3.(2022·四川省内江市第六中学高一期中(文))已知函数()()2sin cos 23f x x x x π=+. (1)求函数f (x )的最小正周期T 及()1003f π的值;(2)若关于x 的方程()12f x a π+=在20,3π⎡⎤⎢⎥⎣⎦上有2个解,求实数a 的取值范围.【答案】(1)最小正周期π,(2)1142a ⎡⎫∈⎪⎢⎣⎭,.(1)解:()2sin cos 3f x x x x π⎛⎫=+ ⎪⎝⎭12sin cos 2x x x x ⎛⎫= ⎪ ⎪⎝⎭2sin cos x x x x =1sin22x x =1sin22x =T π=,100133sin 233323f f f πππππ⎛⎫⎛⎫⎛⎫⎛⎫=+==⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)解:sin 22126f x a x a ππ⎛⎫⎛⎫+=⇒+= ⎪ ⎪⎝⎭⎝⎭. 23023662x x ππππ⎡⎤⎡⎤∈⇒+∈⎢⎥⎢⎥⎣⎦⎣⎦,,,设32,[,]662t x t πππ=+∈,所以sin 2t a =有两个解, 结合图像可知1212a ≤< 故1142a ⎡⎫∈⎪⎢⎣⎭,.4.(2022·山东潍坊·高一期中)已知函数()33sin 26sin sin 644f x x x x πππ⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求函数()f x 的最小正周期和单调递增区间;(2)若函数()y f x k =-在区间130,12π⎡⎤⎢⎥⎣⎦上有且仅有两个零点12,x x ,求k 的取值范围,并求12x x +的值.【答案】(1)最小正周期π,单调递增区间为(),63k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ;(2)k 的范围为()33,0,32⎛⎫--⋃ ⎪⎝⎭,12x x +为53π或23π.(1)因为()33sin 26sin sin 644f x x x x πππ⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()3cos 223sin cos sin cos 2x x x x x x =++-()22cos 223sin c 3s 2o x x x x =+-cos 223cos 223x x x =- 63sin 2x π⎛⎫=- ⎪⎝⎭,所以()f x 的最小正周期22T ππ==, 令222262k x k πππππ-≤-≤+,k ∈Z ,则()63k x k k ππππ-≤≤+∈Z ,所以()f x 的单调递增区间为(),63k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z .(2)由题意,()0f x k -=在130,12π⎡⎤⎢⎥⎣⎦上有且仅有两个解12,x x ,即()y f x =与y k =在130,12π⎡⎤⎢⎥⎣⎦上有且仅有两个交点,由130,12x π⎡⎤∈⎢⎥⎣⎦,则2,266x πππ⎡⎤-∈-⎢⎥⎣⎦,设26t x π=-,则3sin ,,26y t t ππ⎡⎤=∈-⎢⎥⎣⎦, 3sin ,,26y t t ππ⎡⎤=∈-⎢⎥⎣⎦的图象如下,由图知:k 的取值范围为()33,0,32⎛⎫--⋃ ⎪⎝⎭, 设3sin y t =与y k =在,26ππ⎡⎤-⎢⎥⎣⎦上的两个交点的横坐标分别为12,t t , 当33,2k ⎛⎫∈-- ⎪⎝⎭时12,t t 关于32t π=对称,即12,x x 关于56x π=对称,则1253x x π+=; 当()0,3k ∈时12,t t 关于2t π=对称,即12,x x 关于3x π=对称,则1223x x π+=; 综上,12x x +的值是53π或23π. 5.(2022·辽宁·鞍山一中高一期中)已知函数()()sin 22f x x πϕϕ⎛⎫=+< ⎪⎝⎭的图像向左平移6π个单位,得到函数()g x 的图像,且()g x 为偶函数.(1)求函数()f x 和()g x 的解析式;(2)若对a ∀,[]0,b m ∈.当a b <时,都有()()()()f b f a g a g b ->-成立,求m 的取值范围;(3)若关于x 的方程()()f x g x k +=在130,6π⎡⎤⎢⎥⎣⎦上恰有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<,求k 的取值范围和123422x x x x +++的值.【答案】(1)()sin 26f x x π⎛⎫+ ⎝=⎪⎭,()cos2g x x =(2)012m π<≤.(3)32<k ,132π (1)由题意()sin 263g x f x x ππϕ⎛⎫⎛⎫=+=++ ⎪ ⎪⎝⎭⎝⎭, 因为()g x 为偶函数,所以()()g x g x -=,即sin 2sin 233x x ππϕϕ⎛⎫⎛⎫-++=++ ⎪ ⎪⎝⎭⎝⎭,所以32k ππϕπ+=+,k Z ∈, 而2πϕ<,故0k =,6π=ϕ,()sin 26f x x π⎛⎫+ ⎝=⎪⎭,()sin 2cos 22π⎛⎫=+= ⎪⎝⎭g x x x . (2)对a ∀,[]0,b m ∈,a b <,都有()()()()f b f a g a g b ->-,()()()()f b g b f a g a +>+,设()()()h x f x g x =+,则()h x 在[]0,m 单调递增.又()()()3sin 2cos 22cos 22623h x f x g x x x x x x ππ⎛⎫⎛⎫=+=++=+=+ ⎪ ⎪⎝⎭⎝⎭,令23u x π=+,则,233u m ππ⎡⎤∈+⎢⎥⎣⎦,y u =在,233u m ππ⎡⎤∈+⎢⎥⎣⎦递增, 故232m ππ+≤,012m π<≤.(3)()()()23h x f x g x x π⎛⎫=+=+ ⎪⎝⎭,令23t x π=+,则14,33t ππ⎡⎤∈⎢⎥⎣⎦, 则sint =恰有4个不等实根1t ,2t ,3t ,4t ,则32<k ,不妨设1234t t t t <<<, 函数()sin t t ϕ=,14,33t ππ⎡⎤∈⎢⎥⎣⎦与函数y =4个交点,如图所示(略),()sin t t ϕ=在,32ππ⎡⎤⎢⎥⎣⎦,35,22ππ⎡⎤⎢⎥⎣⎦,79,22ππ⎡⎤⎢⎥⎣⎦递增,在3,22ππ⎡⎤⎢⎥⎣⎦,57,22ππ⎡⎤⎢⎥⎣⎦,914,22ππ⎡⎤⎢⎥⎣⎦递减,1433ππϕϕ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭591222πππϕϕϕ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,37122ππϕϕ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭, 12322t t π+=,23522t t π+=,34722t t π+=,12342215t t t t π+++=, ()1234222215x x x x ππ++++=,123413222x x x x π+++=. 6.(2022·陕西·西安建筑科技大学附属中学高一阶段练习)已知函数()()cos f x A x ωϕ=+(0A >,0>ω,2πϕ≤)的部分图象大致如图.(1)求()f x 的单调递增区间.(2)将函数()f x 的图象向右平移4π个单位长度得到曲线C ,把C 上各点的横坐标保持不变,纵坐标变为原来的2倍得到函数()g x 的图象.若关于x 的方程()0g x m -=在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的实数解,求实数m 的取值范围.【答案】(1)5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦,Z k ∈(2)[)1,2 (1)根据图象,可得1A =,由124312πππω⋅=-,得2ω=. 所以()()cos 2f x x φ=+,由2012πϕ⨯+=,得6πϕ=-, 所以()cos 26f x x π⎛⎫=- ⎪⎝⎭. 令2226k x k ππππ-≤-≤,Z k ∈,得51212k x k ππππ-+≤≤+,Z k ∈, 所以()f x 的单调递增区间为5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦,Z k ∈. (2)将函数()y f x =的图象向右平移4π个单位长度得到曲线C :cos 2sin 2466y x x πππ⎡⎤⎛⎫⎛⎫=--=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再把C 上各点的横坐标保持不变,纵坐标变为原来的2倍得到()2sin 26g x x π⎛⎫=- ⎪⎝⎭的图象. 由()0g x m -=在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的实数解,即2sin 26m x π⎛⎫=- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的实数解, 因为0,2x π⎡⎤∈⎢⎥⎣⎦,设26t x π=-,则5,66t ππ⎡⎤∈-⎢⎥⎣⎦,则需直线y m =与2sin y t =的图象在5,66t ππ⎡⎤∈-⎢⎥⎣⎦两个不同的公共点.画出2sin y t =在5,66t ππ⎡⎤∈-⎢⎥⎣⎦时的简图如下:1,2.所以实数m的取值范围为[)。

高考三角函数(含答案)

高考三角函数(含答案)

三角函数习题一、选择题1、以下四个命题中:(1)第一象限的角一定不是负角;(2)小于90°的角是锐角;(3)锐角是第一象限的角;(4)第二象限期角是钝角,其中正确命题个数是 ( )A 、1 ; B 、2; C 、3 ; D 、4。

2.下列角中终边与-300°的终边相同的角是 ( )A-60°; B 、300°; C 、60°; D 、630°。

3.终边在坐标轴上角的集合可以表示成 ( )。

A 、0{|90}2k k Z αα=⋅∈,; B 、 0{|180}k k Z αα=⋅∈,;C 、 0{|180}k k Z αα=⋅∈0+90,;D 、 {α| α=k ·360°+90°,k ∈Z }。

4.若α是第一象限的角,则2α所在的象限为( )。

A 、第一象限; B 、 第一或第二象限; C 、 第一或三象限; D 、 第一或四象限。

5.下列命题正确的是 ( )。

A 、 用弧度制表示的角都是正角;B 、1弧度角的大小与圆的半径无关;C 、大圆中1弧度角比小圆中1弧度角大;D 、圆心角为1弧度的扇形的弧长相等。

6、终边落在x 轴上的角的集合是( )。

A 、{α|α=2k π,k ∈Z};B 、{α|α=k π,k ∈Z};C 、{α|α=(2k+1)π,k ∈Z};D 、{α|α=2k π,k ∈Z}7、若α的终边在y 轴上,则在α的六种三角函数中,函数值不存在的是( )。

A 、sin α与cos α ;B 、t a n α与cot α;C 、t a n α与sec α;D 、cot α与csc α。

8、若角α的终边经过点P (-3,-2),则( )A 、sin α·t a n α>0 ;B 、cos α·t a n α>0;C 、sin α·cos α>0 ;D 、sin α·cot α>0。

2023高考数学复习专项训练《三角函数的应用》(含答案)

2023高考数学复习专项训练《三角函数的应用》(含答案)

2023高考数学复习专项训练《三角函数的应用》一、单选题(本大题共12小题,共60分)1.(5分)设函数f(x)=Acos(ωx+φ)(其中A>0,|ω|<;4,0<;φ<;π)的大致图象如图所示,则f(x)的最小正周期为()A. π2B. πC. 2πD. 4π2.(5分)数学必修二介绍了海伦−秦九韶公式:我国南宋时期著名的数学家秦九韶在其著作《数书九章》中,提出了已知三角形三边长求三角形的面积的公式,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.若把以上这段文字写成公式,即S=√14[a2c2−(a2+c2−b22)2],其中a、b、c分别为△ABC内角A、B、C的对边.若√3cosB√3sinB =1tanC,b=2,则△ABC面积S的最大值为()A. √3B. √5C. 3D. √23.(5分)某干燥塔的底面是半径为1的圆面O,圆面有一个内接正方形ABCD框架,在圆O的劣弧BC上有一点P,现在从点P出发,安装PA,PB,PC三根热管,则三根热管的长度和的最大值为()A、4B、2√3C、3√3D、2√6A. 4B. 2√3C. 3√3D. 2√64.(5分)现只有一把长为2m的尺子,为了求得某小区草坪坛边缘A,B两点的距离AB(AB大于2m),在草坪坛边缘找到点C与D,已知∠ACD=90∘,且tan∠ADB=−2√2,测得AC=1.2m,CD=0.9m,BD=1m,则AB=()A. √373m B. √5m C. √172m D. 3√22m5.(5分)已知函数f(x)=Asin(ωx+φ)(A>;0,ω>;0,|φ|<;π2)在一个周期内的图象如图所示.若方程f(x)=m在区间[0,π]上有两个不同的实数解x1,x2,则x1+x2的值为()A. π3B. 23π或43π C. 43π D. π3或43π6.(5分)设y=f(t)是某港口水的深度y(米)关于时间t(时)的函数,其中0⩽t⩽24.下表是该港口某一天从0时至24时记录的时间t与水深y的关系:经长期观观察,函数y=f(t)的图象可以近似地看成函数y=k+Asin(ωt+φ)的图象.在下面的函数中,最能近似表示表中数据间对应关系的函数是()A、y=12+3sinπ6t,t∈[0,24]B、y=12+3sin(π6t+π),t∈[0,24]C、y=12+3sinπ12t,t∈[0,24]D、y=12+3sin(π12t+π2),t∈[0,24]A. y=12+3sinπ6t,t∈[0,24]B. y=12+3sin(π6t+π),t∈[0,24]C. y=12+3sinπ12t,t∈[0,24]D. y=12+3sin(π12t+π2),t∈[0,24]7.(5分)泰山于1987年12月12日被列为世界文化与自然双重遗产,泰山及其周边坐落着许多古塔.某兴趣小组为了测量某古塔的高度,如图所示,在地面上一点A处测得塔顶B的仰角为60∘,在塔底C处测得A处的俯角为45∘.已知山岭高CD为256米,则塔高BC为()A. 256(√2−1)米B. 256(√3−1)米C. 256(√6−1)米D. 256(2√3−1)米8.(5分)为迎接校运动会的到来,学校决定在半径为20√2m,圆心角为π的扇形空地4OPQ内部修建一平行四边形观赛场地ABCD,如图所示,则观赛场地面积的最大值为( )A. 200m2B. 400(2−√2)m2C. 400(√3−1)m2D. 400(√2−1)m29.(5分)如图所示,单摆从某点开始来回摆动,离开平衡位置O的距离s(cm)和时),那么单摆摆动一个周期所需的时间为间t(s)的函数关系式为s=6sin(2πt+π6()A. 2πsB. πsC. 0.5sD. 1s10.(5分)小明在学完《解直角三角形》一章后,利用测角仪和校园旗杆的拉绳测量校园旗杆的高度,如图,旗杆PA的高度与拉绳PB的长度相等,小明先将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为()A. 11+sin α米 B. 11−cos α米 C. 11−sin α米D. 11+cos α米11.(5分)瀑布是庐山的一大奇观,为了测量某个瀑布的实际高度,某同学设计了如下测量方案:有一段水平山道,且山道与瀑布不在同一平面内,瀑布底端与山道在同一平面内,可粗略认为瀑布与该水平山道所在平面垂直,在水平山道上A 点位置测得瀑布顶端仰角的正切值为32,沿山道继续走20m ,抵达B 点位置测得瀑布顶端的仰角为π3.已知该同学沿山道行进的方向与他第一次望向瀑布底端的方向所成角为π3,则该瀑布的高度约为()A. 60mB. 90mC. 108mD. 120m12.(5分)设y =f(t)是某港口水的深度y (米)关于时间t (时)的函数,其中0⩽t ⩽24,表格中是该港口某一天从0时至24时记录的时间t 与水深y 的关系:经长期观察,函数y =f(t)的图象可以近似地看成函数y =k +Asin(ωt +φ)的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( )A. y =12+3sin π6t,t ∈[0,24] B. y =12+3sin(π6t +π2),t ∈[0,24] C. y =12+3sin π12t,t ∈[0,24] D. y =12+3sin(π12t +π2),t ∈[0,24] 二 、填空题(本大题共5小题,共25分)13.(5分)振动量函数y =√2sin(ωx +φ)(ω>;0)的初相和频率分别为-π和32,则它的运动周期为_______________,相位是_______________.14.(5分)如图,在平面直角坐标系中,点P 以每秒π2的角速度从点A 出发,沿半径为2的上半圆逆时针移动到B ,再以每秒π3的角速度从点B 沿半径为1的下半圆逆时针移动到坐标原点O,则上述过程中动点P的纵坐标y关于时间t的函数表达式为__________.15.(5分)函数f(x)=sin(ωx+φ)(其中ω>;0,|φ|<;π2)的图象如图所示,则函数f(x)=sin(ωx+φ)的最小正周期为_______________;为了得到g(x)=sinωx的图象,只需把y=f(x)的图象上所有的点向右平移_______________个单位长度.16.(5分)已知海湾内海浪的高度y(米)是时间t(0⩽t⩽24,单位:小时)的函数,记作y=f(t).某日各时刻记录的浪高数据如下表:经长期观测,y=f(t)可近似地看成是函数y=Acosωt+b.根据以上数据,可得函数y=Acosωt+b的表达式为__________.17.(5分)一个匀速旋转的摩天轮每12分钟转一周,最低点距地面2米,最高点距地面18米,P是摩天轮轮周上一定点,从P在最低点时开始计时,则16分钟后P点距地面的高度是____.三、解答题(本大题共6小题,共72分)18.(12分)某地为发展旅游业,在旅游手册中给出了当地一年每个月的月平均气温表,根据图中提供的数据,试用y=Asin(ωt+φ)+b近似地拟合出月平均气温y(单位:℃)与时间t(单位:月)的函数关系,并求出其周期和振幅,以及气温达到最大值和最小值的时间.(答案不唯一)19.(12分)某地种植大棚蔬菜,已知大棚内一天的温度(单位:℃)随时间t(单位:ℎ)的变化近似满足函数关系:f(t)=12−3sin(π12t+π3),t∈[0,24).(1)求实验室这一天的最大温差;(2)若某种蔬菜的生长要求温度不高于10.5℃,若种植这种蔬菜,则在哪段时间大棚需要降温?20.(12分)如图,有一块以点O为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD开辟为绿地,使其一边AD落在半圆的直径上,另两点B,C落在半圆的圆周上.已知半圆的半径长为20m.(1)如何选择关于点O对称的点A,D的位置,可以使矩形ABCD的面积最大,最大值是多少?(2)沿着AB,BC,CD修一条步行小路从A到D,如何选择A,D位置,使步行小路的距离最远?21.(12分)健康成年人的收缩压和舒张压一般为120~140mmHg和60~90mmHg.心脏跳动时,血压在增加或减小.血压的最大值、最小值分别称为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数120/80mmHg为标准值.记某人的血压满足函数式p(t)=25sin160πt+115,其中p(t)为血压(mmHg),t为时间(min),试回答下列问题:(1)求函数p(t)的周期;(2)求此人每分钟心跳的次数;(3)求出此人的血压在血压计上的读数,并与正常值比较.22.(12分)如果α为小于360°的正角,且这个角的7倍角的终边与这个角的终边重合,则这样的角α是否存在?23.(12分)某港口的水深y(米)是时间t(0≤t≤24,单位:小时)的函数,下面是每天时间与水深的关系表:(A>0,ω>0).(1)根据以上数据,求出y=f(t)的解析式;(2)若船舶航行时,水深至少要11.5米才是安全的,则船舶在一天中有几个小时可以安全进出该港?答案和解析1.【答案】C;【解析】略2.【答案】A;【解析】此题主要考查正弦定理在解三角形中的应用,两角和与差公式,考查二次函数求最值问题,考查转化思想,属于较难题.先利用两角和的正弦公式、三角形的内角和、诱导公式化简已知条件可得sinC=√3sinA,由正弦定理可得c=√3a代入面积公式结合二次函数的性质即可求解.解:因为√3cosB√3sinB =1tanC=cosCsinC,所以sinC=√3sinCcosB+√3cosCsinB=√3sin(B+C)=√3sinA,由正弦定理可得:c=√3a,代入面积公式可得:S=√14[a2⋅3a2−(a2+3a2−222)2]=√14[3a4−(2a2−2)2]=√14(−a4+8a2−4)=√14[−(a2−4)2+12]=√−14(a2−4)2+3,所以当a=2时,−14(a2−4)2+3取得最大值3,所以△ABC面积S的最大值为√3,故选:A.3.【答案】null;【解析】此题主要考查三角函数的实际应用,属于基础题.求出|PA|+|PB|+|PC|=2√3sin(θ+φ),利用三角函数的性质即可求解.解:如图,设∠PAC=θ,θ∈[0,π4],可得|PA|+|PB|+|PC|=2[cosθ+sin(π4−θ)+sinθ]=(2+√2)cosθ+(2−√2)sinθ=2√3sin(θ+φ),其中tanφ=3+2√2,φ∈(π4,π2 ),所以(|PA|+|PB|+|PC|)max=2√3,由的范围可以取到最大值.故选B.4.【答案】C;【解析】此题主要考查解三角形的实际应用,考查数学运算的核心素养与应用意识,属于中档题.由题意可得AD=1.5m,利用tan∠ADB,求出cos∠ADB,进一步进行求解即可.解:因为∠ACD=90∘,AC=1.2m,CD=0.9m,所以AD=√AC2+CD2=1.5m.因为tan∠ADB=−2√2,所以cos∠ADB=−13,所以AB=√1.52+12−2×1.5×1×(−13)=√172m.5.【答案】D;【解析】略6.【答案】null;【解析】此题主要考查由y=Asin(ωx+φ)的部分图象确定其解析式以及应用,通过对实际问题的分析,转化为解决三角函数问题,属基础题.通过排除法进行求解,由y=f(t)可以近似看成y=k+Asin(ωx+φ)的图象,故可以把已知数据代入y=k+Asin(ωx+φ)中,分别按照周期和函数值排除,即可求出答案.解:排除法:∵y=f(t)可以近似看成y=k+Asin(ωx+φ)的图象,∴由T=12可排除C、D,将(3,15)代入,排除B.故选A.7.【答案】B;此题主要考查了三角形的边角关系应用问题,也考查了数形结合思想和运算求解能力,属于基础题.根据题意结合图形,利用三角形的边角关系,即可求出塔高BC 的值.解:如图所示,在Rt △ACD 中,∠CAD =45°,CD =256, 所以AD =256,在Rt △ABD 中,∠BAD =60°, 所以BD =ADtan∠BAD =256√3, 所以BC =BD −CD =256√3−256, 即塔高BC 为256(√3−1)米. 故选:B.8.【答案】D;【解析】如图所示,连接OC ,设∠COA =θ,作DF ⊥OP ,CE ⊥OP ,垂足分别为F ,E .根据平面几何知识可知,AB =CD =EF ,DF =OF =CE ,∴CE =20√2sinθ,EF =OE −OF =20√2cosθ−20√2sinθ.故四边形ABCD 的面积S 等于四边形DFEC 的面积,即有S =20√2sinθ×20√2(cosθ−sinθ)=400(sin2θ+cos2θ−1)=400√2sin(2θ+π4)−400,其中θ∈(0,π4).所以当sin(2θ+π4)=1,即θ=π8时,S max =400(√2−1),即观赛场地面积的最大值为400(√2−1)m 2.故选D .9.【答案】D;10.【答案】C; 【解析】此题主要考查三角函数在实际生活中的应用. 由题设可得PA −1=PAsinα,即可得结果. 解:由题设,PC =PB′sinα=PAsinα,而PC =PA −1,所以PA −1=PAsinα,可得PA =11−sinα米.故选:C11.【答案】A; 【解析】此题主要考查解三角形的应用,根据题意作出示意图是解答该题的关键,考查空间立体感、学科素养和运算能力,属于中档题.作出示意图,过点B 作BC ⊥OA 于C ,结合三角函数和勾股定理,转化为平面几何中的简单计算,即可得解.解:根据题意作出如下示意图,其中tanα=32,β=θ=π3,AB =20m ,过点B 作BC ⊥OA 于C , 设OH =3x ,则OA =OH tanα=2x ,OB =OH tanβ=√3x ,在Rt △ABC 中,因为AB =20,θ=π3,所以AC =AB ×cos π3=10,BC =AB ×sin π3=10√3,所以OC =OA −AC =2x −10,在Rt △OBC 中,由勾股定理知,(2x −10)2+(10√3)2=(√3x)2, 化简得x 2−40x +400=0,解得x =20, 所以瀑布的高度OH =3x =60m.故答案选:A.12.【答案】A;【解析】略13.【答案】23;3πx−π; 【解析】略14.【答案】f(t)={2sinπt2,0<t⩽2sin[π3(t−2)+π],2<t⩽5;【解析】此题主要考查利用三角函数的定义解决实际问题,在做题过程中点的坐标与角度之间的关系,属于综合题.解:由三角函数的定义可得:当动点P在半径为2的上半圆上运动时,t∈(0,2],终边OP对应的角度为π2t,所以P点坐标为(2cosπ2t,2sinπ2t),当动点P在半径为1的下半圆上运动时,t∈(2,5],终边OP对应的角度为π3(t−2)+π,所以P点坐标为(cos[π3(t−2)+π],sin[π3(t−2)+π]),综上:动点P的纵坐标y关于时间t的函数表达式为y={2sinπ2t,t∈(0,2]sin[π3(t−2)+π],t∈(2,5]15.【答案】π;π6+kπ,k∈Z;【解析】略16.【答案】y=12cosπ6t+1;【解析】此题主要考查了三角函数模型的应用的相关知识,试题难度一般. 解题时先计算出周期和振幅,然后求解解析式即可.解:由表中数据,知周期T=12,∴ω=2πT =2π12=π6,由t=0,y=1.5,得A+b=1.5;由t=3,y=1.0,得b=1.0,∴A=0.5,b=1,∴y=12cosπ6t+1.17.【答案】14;【解析】解:设P 与地面高度与时间t 的关系,f (t )=Asin (ωt+φ)+B (A >0,ω>0,φ∈[0,2π)),由题意可知:A=8,B=10,T=12,所以ω=,又因为f (0)=2,故ϕ=-πt所以f (16)=8sin(π- . 故答案为:14.18.【答案】解:根据图象可知,当t =1时,y 有最小值15;当t =8时,y 有最大值27. ∴{−A +b =15ω+φ=−π28ω+φ=π2A +b =27解得{A =6b =21ω=π7φ=−9π14, ∴y =6sin(π7t −9π14)+21,周期T =2πω=2ππ7=14,振幅A =6.气温在1月份时达到最低, 在8月份时达到最高.;【解析】此题主要考查由y =Asin(ωt +φ)的部分图象确定其解析式,属于中档题. 当t =8月份时平均气温达到最大值25℃,当t =1月份时,平均气温达到最小值15℃,列出方程组,结合周期与振幅,从而可得函数解析式.19.【答案】解:(1)由题意,函数f(t)=12−3sin(π12t +π3),t ∈[0,24), 根据正弦型函数的性质可得−1⩽sin(π12t +π3)⩽1,所以f(t)max=15,f(t)min=9,可得f(t)max−f(t)min=6,则实验室这一天的最大温差为6℃.(2)由题意,令f(t)>10.5,即12−3sin(π12t+π3)>10.5,即sin(π12t+π3)<12,因为t∈[0,24),可得π12t+π3∈[π3,7π3),所以5π6<π12t+π3<13π6,解得6<t<22,即在6时至22时这段时间内大棚需要降温.;【解析】此题主要考查了函数y=Asin(ωx+φ)的图象与性质,三角函数模型的应用,属于中档题.(1)根据正弦型函数的性质可得−1⩽sin(π12t+π3)⩽1,求得f(t)max=15,f(t)min=9,进而求得这一天的最大温差;(2)根据题意,令f(t)>10.5,得到sin(π12t+π3)<12,利用正弦型函数的性质,求得t的范围即可求解.20.【答案】解(1)连接OB,如图所示,设∠AOB=θ,则AB=OBsinθ=20sinθ,OA=OBcosθ=20cosθ,且θ∈(0,π2).因为A,D关于点O对称,所以AD=2OA=40cosθ.设矩形ABCD的面积为S,则S=AD·AB=40cosθ·20sinθ=400sin2θ.因为θ∈(0,π2),所以2θ∈(0,π),所以当sin2θ=1,即θ=π4时,S max=400(m2).此时AO=DO=10√2(m).故当A,D距离圆心O为10√2m时,矩形ABCD的面积最大,其最大面积是400m2.(2)由(1)知AB=20sinθ,AD=40cosθ,所以AB+BC+CD=40sinθ+40cosθ=40√2sin(θ+π4),又θ∈(0,π2),所以θ+π4∈(π4,3π4),当θ+π4=π2,即θ=π4时,(AB+BC+CD)max=40√2(m),此时AO=DO=10√2(m),即当A,D距离圆心O为10√2m时,步行小路的距离最远.;【解析】此题主要考查三角函数在实际生活中的应用,考查正弦函数的最值,是中档题21.【答案】解(1)T =2π|ω|=2π160π =180(min).(2)f =1T=80. 即此人每分钟心跳的次数为80.(3)p(t)max =115+25=140(mmHg),p(t)min =115−25=90(mmHg), 即收缩压为140mmHg ,舒张压为90mmHg.此人的血压在血压计上的读数为140/90mmHg ,在正常值范围内.;【解析】此题主要考查三角函数在实际生活中的应用,考查正弦函数的周期与频率之间的关系以及求正弦函数的的值域相关问题,属于一般题.22.【答案】解:由题意,有7α=k·360°+α(k ∈Z),即α=k·60°. 又由于0°<α<360°,即0°<k·60°<360°(k ∈Z),则k 取1,2,3,4,5,所以α的值可取60°,120°,180°240°,300°.; 【解析】略.23.【答案】【解析】(1)由题表中数据可得:水深的最大值为13,最小值为7,所以{A +B =13,−A +B =7B =13+72=10,A =13−72=3,且相隔12小时达到一次最大值,说明周期为12,因此T=2πω=12,ω=π6,故f(t)=3sin π6t +10(0≤t ≤24)(2)要想船舶安全,必须f (t )≥11.5,即3sin π6t +10≥11.5, 所以sin π6t ≥12,所以2kπ+π6≤π6t ≤5π6+2kπ,k ∈Z ,解得12k+1≤t≤5+12k ,k ∈Z ,当k=0时,1≤t≤5;当k=1时,13≤t≤17.故船舶能安全进出该港的时间段为1:00至5:00,13:00至17:00,共8个小时.; 【解析】略。

三角函数高考试题精选(含详细答案)

三角函数高考试题精选(含详细答案)

三角函数高考试题精选(含详细答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(三角函数高考试题精选(含详细答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为三角函数高考试题精选(含详细答案)的全部内容。

三角函数高考试题精选一.选择题(共18小题)1.(2017•山东)函数y=sin2x+cos2x的最小正周期为()A.B.C.πD.2π2.(2017•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=3.(2017•新课标Ⅱ)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.4.(2017•新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是() A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减5.(2017•新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C26.(2017•新课标Ⅲ)函数f(x)=sin(x+)+cos(x﹣)的最大值为() A.B.1 C.D.7.(2016•上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin(ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.48.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A.B.C.1 D.9.(2016•新课标Ⅲ)若tanθ=﹣,则cos2θ=()A.﹣B.﹣C.D.10.(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关11.(2016•新课标Ⅱ)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=﹣(k∈Z)B.x=+(k∈Z)C.x=﹣(k∈Z)D.x=+(k∈Z)12.(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.513.(2016•四川)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度14.(2016•新课标Ⅰ)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+) B.y=2sin(2x+) C.y=2sin(2x﹣)D.y=2sin (2x﹣)15.(2016•北京)将函数y=sin(2x﹣)图象上的点P(,t)向左平移s(s>0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为16.(2016•四川)为了得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度D.向下平行移动个单位长度17.(2016•新课标Ⅱ)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣)B.y=2sin(2x﹣)C.y=2sin(x+)D.y=2sin (x+)18.(2016•新课标Ⅱ)函数f(x)=cos2x+6cos(﹣x)的最大值为() A.4 B.5 C.6 D.7二.填空题(共9小题)19.(2017•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ=.20.(2017•上海)设a1、a2∈R,且+=2,则|10π﹣α1﹣α2|的最小值为.21.(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是.22.(2017•新课标Ⅱ)函数f(x)=2cosx+sinx的最大值为.23.(2016•上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x ﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为.24.(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是.25.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.26.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.27.(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是.三.解答题(共3小题)28.(2017•北京)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.29.(2016•山东)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.30.(2016•北京)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.三角函数2017高考试题精选(一)参考答案与试题解析一.选择题(共18小题)1.(2017•山东)函数y=sin2x+cos2x的最小正周期为()A.B.C.πD.2π【解答】解:∵函数y=sin2x+cos2x=2sin(2x+),∵ω=2,∴T=π,故选:C2.(2017•天津)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f()=2,f()=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=﹣C.ω=,φ=﹣D.ω=,φ=【解答】解:由f(x)的最小正周期大于2π,得,又f()=2,f()=0,得,∴T=3π,则,即.∴f(x)=2sin(ωx+φ)=2sin(x+φ),由f()=,得sin(φ+)=1.∴φ+=,k∈Z.取k=0,得φ=<π.∴,φ=.故选:A.3.(2017•新课标Ⅱ)函数f(x)=sin(2x+)的最小正周期为()A.4πB.2πC.πD.【解答】解:函数f(x)=sin(2x+)的最小正周期为:=π.故选:C.4.(2017•新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是() A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减【解答】解:A.函数的周期为2kπ,当k=﹣1时,周期T=﹣2π,故A正确,B.当x=时,cos(x+)=cos(+)=cos=cos3π=﹣1为最小值,此时y=f(x)的图象关于直线x=对称,故B正确,C当x=时,f(+π)=cos(+π+)=cos=0,则f(x+π)的一个零点为x=,故C正确,D.当<x<π时,<x+<,此时函数f(x)不是单调函数,故D错误,故选:D5.(2017•新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.6.(2017•新课标Ⅲ)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.B.1 C.D.【解答】解:函数f(x)=sin(x+)+cos(x﹣)=sin(x+)+cos(﹣x+)=sin(x+)+sin(x+)=sin(x+).故选:A.7.(2016•上海)设a∈R,b∈[0,2π),若对任意实数x都有sin(3x﹣)=sin (ax+b),则满足条件的有序实数对(a,b)的对数为()A.1 B.2 C.3 D.4【解答】解:∵对于任意实数x都有sin(3x﹣)=sin(ax+b),则函数的周期相同,若a=3,此时sin(3x﹣)=sin(3x+b),此时b=﹣+2π=,若a=﹣3,则方程等价为sin(3x﹣)=sin(﹣3x+b)=﹣sin(3x﹣b)=sin(3x ﹣b+π),则﹣=﹣b+π,则b=,综上满足条件的有序实数组(a,b)为(3,),(﹣3,),共有2组,故选:B.8.(2016•新课标Ⅲ)若tanα=,则cos2α+2sin2α=()A.B.C.1 D.【解答】解:∵tanα=,∴cos2α+2sin2α====.故选:A.9.(2016•新课标Ⅲ)若tanθ=﹣,则cos2θ=()A.﹣B.﹣C.D.【解答】解:由tanθ=﹣,得cos2θ=cos2θ﹣sin2θ==.故选:D.10.(2016•浙江)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关【解答】解:∵设函数f(x)=sin2x+bsinx+c,∴f(x)图象的纵坐标增加了c,横坐标不变,故周期与c无关,当b=0时,f(x)=sin2x+bsinx+c=﹣cos2x++c的最小正周期为T==π,当b≠0时,f(x)=﹣cos2x+bsinx++c,∵y=cos2x的最小正周期为π,y=bsinx的最小正周期为2π,∴f(x)的最小正周期为2π,故f(x)的最小正周期与b有关,故选:B11.(2016•新课标Ⅱ)若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A.x=﹣(k∈Z)B.x=+(k∈Z) C.x=﹣(k∈Z) D.x=+(k∈Z)【解答】解:将函数y=2sin2x的图象向左平移个单位长度,得到y=2sin2(x+)=2sin(2x+),由2x+=kπ+(k∈Z)得:x=+(k∈Z),即平移后的图象的对称轴方程为x=+(k∈Z),故选:B.12.(2016•新课标Ⅰ)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B13.(2016•四川)为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度【解答】解:把函数y=sin2x的图象向右平移个单位长度,可得函数y=sin2(x﹣)=sin(2x﹣)的图象,故选:D.14.(2016•新课标Ⅰ)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+) C.y=2sin(2x﹣)D.y=2sin (2x﹣)【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x﹣)+],即有y=2sin(2x﹣).故选:D.15.(2016•北京)将函数y=sin(2x﹣)图象上的点P(,t)向左平移s(s>0)个单位长度得到点P′,若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为【解答】解:将x=代入得:t=sin=,将函数y=sin(2x﹣)图象上的点P向左平移s个单位,得到P′(+s,)点,若P′位于函数y=sin2x的图象上,则sin(+2s)=cos2s=,则2s=+2kπ,k∈Z,则s=+kπ,k∈Z,由s>0得:当k=0时,s的最小值为,故选:A.16.(2016•四川)为了得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向上平行移动个单位长度D.向下平行移动个单位长度【解答】解:由已知中平移前函数解析式为y=sinx,平移后函数解析式为:y=sin(x+),可得平移量为向左平行移动个单位长度,故选:A17.(2016•新课标Ⅱ)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣) B.y=2sin(2x﹣)C.y=2sin(x+) D.y=2sin (x+)【解答】解:由图可得:函数的最大值为2,最小值为﹣2,故A=2,=,故T=π,ω=2,故y=2sin(2x+φ),将(,2)代入可得:2sin(+φ)=2,则φ=﹣满足要求,故y=2sin(2x﹣),故选:A.18.(2016•新课标Ⅱ)函数f(x)=cos2x+6cos(﹣x)的最大值为() A.4 B.5 C.6 D.7【解答】解:函数f(x)=cos2x+6cos(﹣x)=1﹣2sin2x+6sinx,令t=sinx(﹣1≤t≤1),可得函数y=﹣2t2+6t+1=﹣2(t﹣)2+,由∉[﹣1,1],可得函数在[﹣1,1]递增,即有t=1即x=2kπ+,k∈Z时,函数取得最大值5.故选:B.二.填空题(共9小题)19.(2017•北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=,则sinβ=.【解答】解:∵在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=,∴sinβ=sin(π+2kπ﹣α)=sinα=.故答案为:.20.(2017•上海)设a1、a2∈R,且+=2,则|10π﹣α1﹣α2|的最小值为.【解答】解:根据三角函数的性质,可知sinα1,sin2α2的范围在[﹣1,1],要使+=2,∴sinα1=﹣1,sin2α2=﹣1.则:,k1∈Z.,即,k2∈Z.那么:α1+α2=(2k1+k2)π,k1、k2∈Z.∴|10π﹣α1﹣α2|=|10π﹣(2k1+k2)π|的最小值为.故答案为:.21.(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是1.【解答】解:f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈[0,1],则y=﹣t2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:122.(2017•新课标Ⅱ)函数f(x)=2cosx+sinx的最大值为.【解答】解:函数f(x)=2cosx+sinx=(cosx+sinx)=sin(x+θ),其中tanθ=2,可知函数的最大值为:.故答案为:.23.(2016•上海)设a,b∈R,c∈[0,2π),若对于任意实数x都有2sin(3x ﹣)=asin(bx+c),则满足条件的有序实数组(a,b,c)的组数为4.【解答】解:∵对于任意实数x都有2sin(3x﹣)=asin(bx+c),∴必有|a|=2,若a=2,则方程等价为sin(3x﹣)=sin(bx+c),则函数的周期相同,若b=3,此时C=,若b=﹣3,则C=,若a=﹣2,则方程等价为sin(3x﹣)=﹣sin(bx+c)=sin(﹣bx﹣c),若b=﹣3,则C=,若b=3,则C=,综上满足条件的有序实数组(a,b,c)为(2,3,),(2,﹣3,),(﹣2,﹣3,),(﹣2,3,),共有4组,故答案为:4.24.(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是7.【解答】解:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象如下:由图可知,共7个交点.故答案为:7.25.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=2sinx的图象至少向右平移个单位长度得到.【解答】解:∵y=sinx﹣cosx=2sin(x﹣),令f(x)=2sinx,则f(x﹣φ)=2in(x﹣φ)(φ>0),依题意可得2sin(x﹣φ)=2sin(x﹣),故﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ+(k∈Z),当k=0时,正数φmin=,故答案为:.26.(2016•新课标Ⅲ)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.【解答】解:∵y=f(x)=sinx+cosx=2sin(x+),y=sinx﹣cosx=2sin(x﹣),∴f(x﹣φ)=2sin(x+﹣φ)(φ>0),令2sin(x+﹣φ)=2sin(x﹣),则﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ(k∈Z),当k=0时,正数φmin=,故答案为:.27.(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是8.【解答】解:由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,可得sinBcosC+cosBsinC=2sinBsinC,①由三角形ABC为锐角三角形,则cosB>0,cosC>0,在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC,又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣②,则tanAtanBtanC=﹣•tanBtanC,由tanB+tanC=2tanBtanC可得tanAtanBtanC=﹣,令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0,由②式得1﹣tanBtanC<0,解得t>1,tanAtanBtanC=﹣=﹣,=()2﹣,由t>1得,﹣≤<0,因此tanAtanBtanC的最小值为8,另解:由已知条件sinA=2sinBsinc,sin(B十C)=2sinBsinC,sinBcosC十cosBsinC=2sinBcosC,两边同除以cosBcosC,tanB十tanC=2tanBtanC,∵﹣tanA=tan(B十C)=,∴tanAtanBtanC=tanA十tanB十tanC,∴tanAtanBtanC=tanA十2tanBtanC≥2,令tanAtanBtanC=x>0,即x≥2,即x≥8,或x≤0(舍去),所以x的最小值为8.当且仅当t=2时取到等号,此时tanB+tanC=4,tanBtanC=2,解得tanB=2+,tanC=2﹣,tanA=4,(或tanB,tanC互换),此时A,B,C均为锐角.三.解答题(共3小题)28.(2017•北京)已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sinxcosx,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣29.(2016•山东)设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2 =2sin2x ﹣1+sin2x=2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sinx+﹣1的图象,∴g()=2sin+﹣1=.30.(2016•北京)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.【解答】解:(1)f(x)=2sinωxcosωx+cos2ωx=sin2ωx+cos2ωx==.由T=,得ω=1;(2)由(1)得,f(x)=.再由,得.∴f(x)的单调递增区间为[](k∈Z).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数高考解答题专题三角函数的图像和性质1、(2018北京文)已知函数()2sin cos f x x x x =+.(1)求()f x 的最小正周期;(2)若()f x 在区间3m π⎡⎤-⎢⎥⎣⎦,上的最大值为32,求m 的最小值.2、(2017北京文)已知函数())2sin cos 3f x x -x x π=-.(1)f (x )的最小正周期; (2)求证:当[,]44x ππ∈-时,()12f x ≥-3、(2017山东理)设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<.已知()06f π=.(1)求ω;(2)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在3[,]44ππ-上的最小值.4、(2017浙江)已知函数f (x )=sin 2x –cos 2x – sin x cos x (x ∈R ). (1)求)32(πf 的值;(2)求)(x f 的最小正周期及单调递增区间. 5、(2016北京文)已知函数)0(2cos cos sin 2)(>+=ωωωωx x x x f 的最小正周期为π. (1)求ω的值;(2)求)(x f 的单调递增区间.6、(2016山东文)设2()23sin(π)sin (sin cos )f x x x x x =--- .(1)求()f x 得单调递增区间;(2)把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数()y g x =的图象,求π()6g 的值.7、(2016天津理)已知函数f(x)=4tanxsin(2x π-)cos(3x π-)-3.(1)求f (x )的定义域与最小正周期; (2)讨论f(x)在区间[,44ππ-]上的单调性.8、(2015安徽文)已知函数2()(sin cos )cos 2f x x x x =++ (1)求()f x 最小正周期; (2)求()f x 在区间[0,]2π上的最大值和最小值.9、(2015北京文)已知函数()2sin 232xf x x =-. (1)求()f x 的最小正周期; (2)求()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的最小值.10、(2015北京理)已知函数2()2cos 2222x x xf x .(1) 求()f x 的最小正周期; (2) 求()f x 在区间[π0]-,上的最小值11、(2015福建文)已知函数()2cos 10cos 222x x xf x =+.求函数()f x 的最小正周期12、(2015湖北理)某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一(........... 析式;(2)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图象. 若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值.13、 (2015重庆文)已知函数f(x)=122cos x . (1) 求f (x )的最小周期和最小值;(2)将函数f (x )的图像上每一点的横坐标伸长到原来的两倍,纵坐标不变,得到函数g (x )的图像.当x ∈,2ππ⎡⎤⎢⎥⎣⎦时,求g(x)的值域.三角恒等变换14、(2018江苏)已知,αβ为锐角,4tan 3α=,cos()αβ+=.(1)求cos2α的值; (2)求tan()αβ-的值.15、(2015广东文)已知tan 2α=.()1求tan 4πα⎛⎫+⎪⎝⎭的值; ()2求2sin 2sin sin cos cos 21ααααα+--的值解三角形16、(2018天津文)在△ABC 中,内角A ,B ,C 所对的边分别为a,b,c .已知b sin A =a cos(B –π6). (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A –B )的值.17、(2018北京理)在△ABC 中,a =7,b =8,cos B =–17.(1)求∠A ;(2)求AC 边上的高. 18、(2018全国新课标Ⅰ理)在平面四边形ABCD 中,90ADC ∠=,45A ∠=,2AB =,5BD =.(1)求cos ADB ∠; (2)若DC =BC19、(2017上海)已知函数221()cos sin ,(0,)2f x x x x π=-+∈ (1)求()f x 的单调递增区间;(2)设△ ABC 为锐角三角形,角 A 所对边a = ,角 B 所对边 b=5,若f (A )=0,求△ ABC 的面积.20、(2017北京理)在△ABC 中,A ∠ =60°,c =37a . (1)求sin C 的值; (2)若a =7,求△ABC 的面积. 21、(2017全国新课标Ⅰ理)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A.(1)求sin B sin C ; (2)若6cos B cos C =1,a =3,求△ABC 的周长.22、(2017全国新课标Ⅱ理)ABC ∆的内角A B C 、、所对的边分别为,,a b c ,已知()2sin 8sin 2BA C +=, (1)求cosB ; (2)若6a c +=,ABC ∆的面积为2,求b23、(2017山东文)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,6AB AC ⋅=-,S △ABC =3,求A 和a .24、(2017天津理)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =. (1)求b 和sin A 的值;(2)求πsin(2)4A +的值. 25、(2016天津文)在ABC ∆中,内角C B A ,,所对应的边分别为a,b,c ,已知sin 2sin a B A =.(1)求B ;(2)若1cos A 3=,求sinC 的值.26、(2016北京理)在∆ABC 中,222+=a c b .(1)求B ∠ 的大小; (2cos cos A C + 的最大值.27、(2016江苏)在ABC △中,AC =6,4πcos .54B C , (1)求AB 的长;(2)求πcos(6A )的值.28、(2016全国Ⅰ理)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos ).C a B+b A c =(1)求C ;(2)若c ABC =∆的面积为2,求ABC 的周长.29、(2015安徽理)在ABC ∆中,3,6,4A AB AC π===点D 在BC 边上,AD BD =,求AD 的长.30、(2015江苏)在ABC ∆中,已知60,3,2===A AC AB . (1)求BC 的长;(2)求C 2sin 的值.31、(2015全国新课标Ⅰ卷文)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(1)若a b =,求cos ;B (2)若90B =,且a = 求ABC ∆的面积.32、(2015全国新课标Ⅱ卷文)△ABC 中D 是BC 上的点,AD 平分∠BAC ,BD =2DC . (1)求sin sin BC∠∠ ;(2)若60BAC ∠=,求B ∠.33、(2015全国新课标Ⅱ卷理)ABC ∆中,D 是BC 上的点,AD 平分BAC ∠,ABD ∆面积是ADC ∆面积的2倍.(1) 求sin sin BC∠∠;(2)若1AD =,DC =BD 和AC 的长.34、(2015山东文)ABC ∆中,角A ,B ,C 所对的边分别为a,b,c.已知36cos ,sin (),23B A B ac =+== ,求sin A 和c 的值.35、(2015山东理)设()2sin cos cos 4f x x x x π⎛⎫=-+⎪⎝⎭. (1)求()f x 的单调区间;(2)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若0,12A f a ⎛⎫== ⎪⎝⎭,求ABC ∆面积的最大值.36、(2015陕西文)ABC ∆的内角,,A B C 所对的边分别为,,a b c ,向量(,3)m a b =与(cos ,sin )n A B =平行.(1)求A ;(2)若7,2a b ==求ABC ∆的面积.37、(2015天津文)△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,12,cos ,4b c A -==-(I )求a 和sin C 的值; (II )求cos 26A π⎛⎫+ ⎪⎝⎭的值.。

相关文档
最新文档