分式加减法一教学设计教案

合集下载

分式的加减法教案1.docx

分式的加减法教案1.docx

分式的加减法教案1分式的加减法教案1教学目标(一)教学知识点1.同分母的分式的加减法的运算法则及其应用.2.简单的异分母的分式相加减的运算.(二)能力训练要求1.经历用字母表示数量关系的过程,发展符号感.2.会进行同分母分式的加减运算和简单的异分母分式的加减运算,并能类比分数的加减运算,得出同分母分式的加减法的运算法则,发展有条理的思考及其语言表达能力.(三)情感与价值观要求1.从现实情境中提出问题,提高〃用数学〃的意识.2.结合已有的数学经验,解决新问题,获得成就感以及克服困难的方法和勇气.教学重点1.同分母的分式加减法.2.简单的异分母的分式加减法.教学难点当分式的分子是多项式时的分式的减法.教学方法启发与探究相结合教具准备投影片四张:第一张:提出问题,(记作§3. 3. 1A);第二张:想一想,做一做,(记作§ 3. 3. 1B); 第三张:想一想,(记作§3. 3. 1C);第四张:议一议,(记作§3. 3. 1D);第五张:例1,记作(§ 3. 3 . 1E);第六张:补充练习,(记作§ 3. 3. 1F).教学过程I •创设现实情境,提出问题上一节我们学习了分式的乘除法运算法则,学会了分式乘除法的运算,这节课我们先来看下面的问题:(出示投影片§ 3. 3. 1A)问题一:从甲地到乙地有两条路,每条路都是3km,其中第一条是平路,第二条有lkm的上坡路、2 km的下坡路•小丽在上坡路上的骑车速度为vk m/h,在平路上的骑车速度为2vkm/h,在下坡路上的骑车速度为3 vkm/h,那么(1)当走第二条路时,她从甲地到乙地需多长时间?(2)她走哪条路花费的时间少?少用多长时间?问题二:某人用电脑录入汉字文稿的效率相当于手抄的3倍,设他手抄的速度为a字/时,那么他录入3000字文稿比手抄少用多少时间?问题一,根据题意可得下列线段图:(1)当走第二条路时,她从甲地到乙地需要的时间为(+)h.(2)走第一条路,小丽从甲地到乙地需要的时间为h.但要求出小丽走哪条路花费的时间少•就需要比较(+)与的大小,少用多少时间,就需要用它们中的较大者减去较小者,便可求出.如果要比较(+)与的大小,就比较难了,因为它们的分母中都含有字母.比较两个数的大小,我们可以用作差法•例如有两个数a, b .如果a-bgt; 0,则agt; b;如果a-b=0,则a=b;如果a-bit; 0,则al t ;b.这位同学想得方法很好,显然(+)和中含有字母,但它们也是用来表示数的,所以我认为可以用实数比较大小的方法来做.如果用作差的方法,例如(+) -,如何判断它大于零,等于零,小于零呢?我们不妨观察(+) -中的每一项都是分式,这是什么样的运算呢?分式的加减法.很好!这正是我们这节课要学习的内容一分式的加减法(板书课题)我们再来看一下问题二.问题二中这个人用电脑录入3000字的文稿需小时,利用分式的基本性质化简,即为小时;用手抄3000字文稿则需用小时,因此这个人录入3000字的文稿比手抄少用(-)小时. ,是分式,-是分式的加减法.但和问题一中加减法比较一下,你会发现什么?问题一中的是异分母的分式相加减,而问题二是同分母的加减法.很好!我们按研究问题的一般思路,从简单的学起即先学习同分母的加减法.II.讲授新课1.同分母的加减法我们接着看下面的问题(出示投影片§ 3. 3. 1B)想一想(1)同分母的分数如何加减?你能举例说明吗?(2)你认为分母相同的分式应该如何加减?做一做仃)+= ____________ .(2) -= ____________ .(3)-+= ___________ .[生]同分母的分数的加减是分母不变,把分子相加减,例如+-==-.我认为分母相同的分式相加减与同分母的分数相加减一样,应该是分母不变,把分子相加减.谁能试着到黑板上板演〃做一做〃中的三个小题.解:(1)+==;解:⑵-二;解:一+我们一块来讲评一下上面三位同学的运算过程.第(1)小题是正确的•第(2)小题没有把结果化简•应该为原式==x+2.这位同学很仔细•我们学习分式乘除法时就强调运算结果必须是最简的,如果分子、分母中有公因式,一定要把它约去,使分式最简.第(3)小题,我认为也有错误.同分母的分式相加减,分母不变,把分子相加减,我觉得(x+1)分母不变,做得对,但三个分式的分子x+2、xT、x-3相加减应为(x+2) - (xT) + (x- 3).的确如此,我们知道列代数式时,(x-1) - (x+1)要写成分式的形式即,因此分数线既有除号的作用,还有括号的作用,即分子、分母应该是一个整体.老师,是我做错了•第(3)题应为:(3)-+发现问题,及时改正是一种很好的学习习惯,努力发扬, 你一定会取得更大进步.通过前面做一做,想一想,我们可以得出同分母的分式相加减的法则:同分母的分式相加减,分母不变,把分子相加减,用式子表示是:± =(其中a、b既可以是数,也可以是整式,c是含有字母的非零的整式).前面问题二现在可以完成了吧!大胆地试一试.-==,所以这个人录入3000字文稿比手抄少用个小时.2.简单的异分母的分式相加减问题一还没有解决呢?是的,如果分式的分母不同,那么该如何加减呢?同学们不妨凭借自己的数学经验,合作交流,找到一个可行的方法. 出示投影片(§3. 3. 10想一想(1)异分母的分数如何加减?(2)你认为异分母的分式应该如何加减?比如+应如何计算.异分母的分数加减时,可利用分数的基本性质通分,把异分母的分数加减法化成同分母的分数加减法我认为分式有很多地方和分数相类似,异分母的分式加减是否也可以通过像分数那样通分,将异分母的分式加减法化成同分母的分式加减法.同学们的想法很好!我这儿就有两位同学将异分母的分式加减化成同分母的分式加减.(出示投影片§ 3. 3. 1 D)小明认为,只要把异分母的分式化成同分母的分式,异分母分式的加减问题就变成了同分母分式的加减问题•小亮同意小明的这种看法,但他俩的具体做法不同:小明:+=+小亮:+二+ =+=.你对这两种做法有何评论?与同伴交流.我觉得这两种做法都有一个共同的目标:把异分母的分式加减法化成同分母的分式加减法•但我觉得小亮的方法更简单•就像分数运算:+・如果+=+=+==,这样计算就比较麻烦;如果找6和4的最小公倍数12,算起来就很方便,即+二+二+二.我认为也是这样,根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分•但通分时为了简便,也应该像分数的通分一样,找各个分母的最小公倍数.同学们分析得很有道理,为了计算简便,异分母分式通分时,通常取最简单的公分母(简称最简公分母)作为它们的公分母•例如+, a和4a的最简公分母是4a .下面我们再来看几个例子.岀示投影片(§3. 3. 1E)计算:⑴+ ;⑵+老师,我们组还是联系异分母的分数相加减的方法,利用分数的性质,先通分,转化成同分母的就可以完成.我们组也是用了将异分母的分式相加减转化成同分母相加减的分式运算.中的第(1)题,一个分母是a,另一个分母是5a,利用分式的基本性质,只需将第一个分式化成二即可.解:仃)+=+我们组也已完成了第(2 )题•两个分式相加,一个分式的分母是x-1,另一个分式的分母是1-x,我们注意到了l-x =- (x-1),所以要把化成分母为x-1的分式,利用分式的基本性质,得=•所以第⑵题的解法如下:⑵+=+同学们能凭借自己的数学经验,将新岀现的数学难题处理的有条有理,很了不起.问题一可以出来结果啦.(1)小丽当走第二条路时,她从甲地到乙地需要的时间为+=+=h.(2)小丽走第一条路所用的时间为h.作差可知—=gt:0.所以小丽走第一条路花费的时间少, 少用h. III.应用、升华1.随堂练习第1题计算:⑴-;⑵+ ;⑶-解:(1)-==;⑵+=+=;(3)-=-2.补充练习(出示投影片§3. 3. 1F ) 计算:+-.解:+一二二二-1VI.课时小结这节课我们学习了分式的加减法,同学们课堂上思维非常活跃,想必收获一定很大.我觉得我这节课最大的收获是:〃做一做〃中犯的错误, 在今后做此类题的过程中,一定不会犯同样的错误.我的收获是学会用转化的思想将异分母的分式的加减法转化成同分母分式的加减法.V.课后作业习题3.4第1、2、3题.VI.活动与探究已知x+二z+二1,求y+的值.已知条件实际上是一个方程组,我们可以取其中两个方程x+=l, z+=l ,由这两个方程把y、Z都用X表示后,再求代数式的值.由x+=l,得y二,由z+二1,得z 二.所以y+二+二+二二1.板书设计§ 3. 3 . 1分式的加减法(一)分数的加减法分式的加减法同分母分母不变,分子相加减分母不变,分子相加减.异分母转化为同分母转化为同分母做一做:(学生板演)⑴+⑵-⑶-+计算:⑴+⑵+注意:1。

八年级数学上册《分式的加减》教案、教学设计

八年级数学上册《分式的加减》教案、教学设计
2.教学策略:
(1)针对学生的认知水平,由浅入深地设计教学内容,使学生在逐步掌握分式加减运算的过程中建立信心。
(2)注重培养学生的数学思维,引导学生从特殊到一般,发现分式加减运算的规律。
(3)关注学生的个体差异,实施分层教学积极参与课堂讨论,培养学生的表达能力和团队合作精神。
2.归纳总结:教师强调分式加减运算的重点和难点,提醒学生注意运算顺序和符号规则。
3.拓展延伸:教师提出一些与分式加减相关的问题,激发学生的思考,为下一节课的学习打下基础。
五、作业布置
为了巩固学生对分式加减运算的理解和应用,特布置以下作业:
1.基础练习题:完成课本第chapter页的习题1、2、3,这些题目涵盖了分式的基本概念和同分母分式的加减运算,旨在帮助学生巩固基础知识。
3.培养学生严谨、细致的学习态度,使学生养成认真审题、规范解题的好习惯。
4.培养学生运用数学知识解决实际问题的意识,让学生体会数学在生活中的重要作用,增强学生的应用意识。
5.通过分式加减的教学,引导学生认识到数学知识之间的内在联系,培养学生的整体观念和系统思维。
二、学情分析
八年级的学生已经具备了一定的数学基础,掌握了基本的代数运算,但对于分式的认识和使用还处于初级阶段。在学习本章节前,学生已经熟悉了整式的加减运算,但对于分式的加减运算可能还存在一些困难。因此,在教学过程中,我们需要关注以下几点:
3.教学评价:
(1)采用形成性评价,关注学生在学习过程中的表现,及时发现并解决学生的问题。
(2)设计多元化的评价方式,如课堂提问、小组讨论、课后作业、阶段测试等,全面评估学生的学习成果。
(3)注重评价学生的数学思维和解决问题的能力,鼓励学生创新思考,提高学生的数学素养。
4.教学资源:

分式加减法(一)教学设计

分式加减法(一)教学设计

分式的加减法(一)教学设计一、设计思想《义务教育数学课程标准》指出:“对学生数学学习过程的评价,包括参与数学活动的程度、自信心、合作交流的意识,以及独立思考的习惯、数学思考的发展水平等方面。

”本节课会关注学生的参与度及通过合作交流、独立思考并归纳发现的能力。

由于分式是分数的“代数化”,所以其性质与运算是完全类似的,因此,本节课将会结合学生已有的分数的知识,通过观察、类比、归纳、猜想等思维方法的应用,让学生在讨论、交流中获得法则,这样处理,既渗透了常用的我们所倡导的数学思维方法,又培养了学生的归纳推理能力,更重要的是学生在获得这些知识的同时,学会了自主探索、合作交流,形成发现式学习方法,也体现了课程改革的核心——努力改变学生的学习方式。

二、教学内容分析教学内容为北师大版教材《数学》八年级下册第三章第三节第一课时。

分式的运算法则与小学的分数大同小异,分式的阐述就是从分数开始的。

根据教材的课时安排,分式加减法的内容安排两个课时。

第一课时阐述同分母的分式加减法的运算法则及其应用,简单的异分母的分式相加减的运算。

第二课时则阐述异分母的分式加减法的运算法则及分式的通分。

这样的课时安排比较合理,利用学生已有的知识体系引入,从简单到复杂,符合学生的认知规律。

本节课作为铺垫,可为学生易于掌握后面分式的内容打下必要的基础,若这个内容过不了关,后面将会出现分式运算紊乱,或能根据实际生活问题能列出分式方程,但无法解出正确答案,功亏一篑的情况,所以本节对整章书有着至关重要的作用。

三、教学对象情况分析学生的一般特征:八年级学生对学校、老师都比较熟悉,显得大胆、好动、好问,且乐于交流合作及自我表现的心理特征。

学生的知识基础:(1)分数的四则运算,如同分母、异分母分数的加减运算法则,学生在小学时已经学习过,其中也渗透了字母表示现实情境中数量关系的内容。

通过类比分数的加减,可以让学生猜想、归纳出分式的加减运算法则。

(2)在相关知识的学习过程中,学生已经具有一定的从实际问题建模的思想。

分式的加减法教案

分式的加减法教案
26
THANKS
感谢观看
2024/1/25
27
示例
$frac{a^2+ab}{b^2+ab} + frac{b^2}{a^2+ab} = frac{a(a+b)}{b(a+b)} + frac{b^2}{ab(a+b)} = frac{a^2+ab+b^2}{ab(a+b)}$
14
04
分式加减法的应用举例
2024/1/25
15
在数学中的应用
2024/1/25
6
02
分式的基本概念与性质
2024/1/25
7
分式的定义
分式是两个整式相除的商式,其中分 子是被除数,分母是除数,分数线表 示除法。
分式可以表示为一个有理数,即分子 除以分母的结果。
2024/1/25
分式中的分子和分母都是整式,且分 母不能为0。
8
分式的基本性质
分式的分子和分母都乘以(或除 以)同一个不为零的整式,分式
的值不变。
2024/1/25
分式的符号取决于分子的符号, 分母的符号不影响分式的符号。
分式的值随着分子和分母的变化 而变化,当分子不变时,分母越 大,分式的值越小;当分母不变 时,分子越大,分式的值越大。
9
分式的值域与定义域
分式的定义域是分母不为0的所有实数集合。
2024/1/25
分式的值域取决于分子和分母的取值范围,一般来说,分式的值域是全 体实数集合去掉使得分母为0的点。
分式加减法的法则
总结同分母分式相加减和异分母分式相加减的法 则,强调通分和约分的步骤。
典型例题解析
回顾课堂上讲解的例题,强调解题思路和步骤, 加深学生对知识点的理解。

《分式的加减》教案

《分式的加减》教案

一、教学目标:1. 让学生理解分式的加减法概念,掌握分式加减法的运算规则。

2. 培养学生运用分式加减法解决实际问题的能力。

3. 提高学生分析问题、解决问题的能力,培养学生的逻辑思维能力。

二、教学内容:1. 分式的加减法概念及运算规则。

2. 分式加减法的实际应用问题。

三、教学重点与难点:1. 重点:分式的加减法概念、运算规则及实际应用。

2. 难点:分式加减法在实际问题中的运用。

四、教学方法:1. 采用案例分析法,让学生通过实际例子理解分式的加减法。

2. 运用小组讨论法,培养学生合作解决问题的能力。

3. 采用问答法,激发学生思考,引导学生深入理解分式加减法。

五、教学过程:1. 导入新课:通过生活实例引入分式的加减法概念。

2. 讲解与演示:讲解分式的加减法运算规则,并通过多媒体演示分式加减法的运算过程。

3. 案例分析:分析实际问题,让学生运用分式加减法解决问题。

4. 小组讨论:学生分组讨论,分享各自解决问题的方法。

5. 问答环节:教师提问,学生回答,巩固所学知识。

6. 课堂练习:布置练习题,让学生巩固所学内容。

8. 作业布置:布置课后作业,巩固所学知识。

9. 课后辅导:针对学生作业中的问题进行辅导。

10. 教学评价:对学生的学习情况进行评价,为下一步教学提供参考。

六、教学准备:1. 准备PPT课件,展示分式的加减法运算过程。

2. 准备实际应用问题案例,用于课堂讲解和练习。

3. 准备课后作业,巩固学生所学知识。

七、教学步骤:1. 回顾上节课的内容,复习分式的加减法概念和运算规则。

2. 通过PPT课件,展示分式加减法的运算过程,让学生跟随步骤进行学习。

3. 讲解实际应用问题,让学生运用分式加减法解决问题。

4. 分组讨论,让学生分享自己解决问题的方法和思路。

5. 问答环节,教师提问,学生回答,巩固所学知识。

八、课堂练习:1. 布置练习题,让学生独立完成,巩固分式的加减法运算。

2. 挑选部分学生的作业进行讲解和点评,指出其中的错误和不足。

分式的加减法教学设计一

分式的加减法教学设计一

分式的加减法
教学过程
(一)引入
(二)新课
1.类比分数的通分得到分式的通分:
把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.
2.通分的依据:分式的基本性质.
3.通分的关键:确定几个分式的公分母.
通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.
例1 通分:
解:∵最简公分母是12xy2,
小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数.
解:∵最简公分母是10a2b2c2,
例2 通分:
解:∵最简公分母是2x(x+1)(x-1),
小结:当分母是多项式时,应先分解因式.
解:
将分母分解因式:x2-4=(x+2)(x-2).4-2x=-2(x-2).
∴最简公分母为2(x+2)(x-2).
练习:教材P.79中1、2、3.
(三)课堂小结
1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.
2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.
3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.
(四)作业
略。

2024版八年级数学教案《分式的加减》

2024版八年级数学教案《分式的加减》

八年级数学教案《分式的加减》CONTENTS•课程介绍与目标•分式的基本概念与性质•分式的加减运算规则•分式加减在实际问题中的应用•典型例题分析与解答•课堂练习与作业布置课程介绍与目标01分式的基本概念包括分式的定义、分子、分母及分式的表示方法等。

分式的加减法法则详细讲解同分母分式、异分母分式的加减运算方法。

分式的化简介绍如何通过约分、通分等方法将分式化简为最简形式。

使学生掌握分式的基本概念和加减法运算方法,能够熟练进行分式的加减运算和化简。

通过讲解、示范、练习等多种方式,引导学生积极参与课堂活动,提高分析问题和解决问题的能力。

培养学生严谨的数学思维习惯,增强数学学习的兴趣和自信心。

知识与技能过程与方法情感态度与价值观教学重点与难点教学重点分式的加减法运算方法和化简技巧。

教学难点异分母分式的加减运算,以及如何选择合适的方法进行分式的化简。

分式的基本概念与性质02分式的定义01分式是两个整式相除的商式,其中分子是被除数,分母是除数,分数线相当于除号。

02分式中的分子和分母都是整式,且分母不能为0,否则分式无意义。

分式的基本性质分式的值不变的性质分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变。

分式的符号性质分式的符号取决于分子和分母的符号,当分子和分母同号时,分式为正;异号时,分式为负。

分式的约分性质分式的分子和分母有公因式时,可以约去公因式,得到最简分式。

分式的值域与定义域分式的定义域分母不为0的所有实数组成的集合。

分式的值域根据分式的表达式和定义域,可以确定分式的值域。

一般来说,分式的值域是除了使分母为0的点以外的所有实数。

分式的加减运算规则03同分母分式加减时,分母保持不变,分子进行相应的加减运算。

规则理解如$frac{a}{c} + frac{b}{c} = frac{a+b}{c}$,$frac{a}{c} -frac{b}{c} = frac{a-b}{c}$。

实例解析确保进行运算的分式具有相同的分母。

分式加减法教案

分式加减法教案

《分式的加减法》教案教学目标⒈熟练地进行同分母的分式加减法的运算⒉会把异分母的分式通分,转化成同分母的分式相加减教学重点难点1重点:分式的加减运算.2难点:异分母的分式加减法运算教具学具:小黑板教学程序:一、提纲导学(一)、复习导入1.回忆:同分母的分数加减法计算:总结:同分母分数的加减法2. 回忆:异分母分数的加减法计算:总结:异分母分数的加减法那么,分式的加减如何进行呢?本节课我们就来学习(二)出示导纲,学生自学1、猜一猜,同分母的分式应该如何加减?异分母的分式应该如何加减?2、试一试,计算下面各题(1);(2)二、合作互动1、小组合作解决导纲中的疑难问题2、班级互动展示评价3、教师精讲例1计算:⑴⑵—解:⑴===提示:⑵可转化为同分母的分式的减法,但应注意符号问题。

例2 计算:⑴+;⑵解:⑴+==⑵因为最简公分母是_____所以=_____=______=______例3 计算 解:原式=三、导学归纳1、同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,需要先通分,变为同分2、注意:分子相加减时,如果减式分子是一个多项式,先用括号括起来,再运算,可减少出现 符号错误:分式加减运算的结果要约分,化为最简分式(或整式)。

2、四、拓展训练1、计算:(1); (2); (3); (4) 2、计算:(1) (2)(3);3、做游戏八张卡片上分别写着 ⑴ ⑵⑶ ⑷ ⑸ ⑹⑺ ⑻你能找出与自己运算结果相同的好朋友吗?1)1111(42-÷+---+a a a a a a 、计算.11,0,221111152的值代入求值的值,作为中任取一个你认为合适,然后从)、先化简(x x x x --÷+-- 3-,2,42,2-x 1.62=÷-÷+=-==x C B A C B A x x C x B A 化简,再求值,其中任选一种进行计算,先的形式,请你从中或)将他们组合成(已知五、布置作业六、板书设计:。

分式的加减法教案

分式的加减法教案

分式的加减法教案【教案】分式的加减法【教学目标】1. 理解分式的加减法的概念和基本原理。

2. 掌握分式的加减法的运算方法和技巧。

3. 能够应用所学知识,进行分式的加减法计算。

4. 培养学生的逻辑思维和分析问题的能力。

【教学重难点】1. 掌握分式的加减运算方法。

2. 解决实际问题时,将问题转化为分式的加减法运算。

【教学准备】1. 教师准备用于示范和练习的习题。

2. 学生准备铅笔、橡皮和笔记本。

【教学步骤】Step 1 引入分数的概念(5分钟)1. 复习分数的概念和分子、分母的含义。

2. 提问:你们还记得分数的相加和相减吗?Step 2 分式的加法(10分钟)1. 讲解分式的加法的规则:在具有相同分母的分式中,分子相加,分母保持不变。

2. 以示例进行讲解和演示:a. $\frac{1}{6} + \frac{2}{6} = \frac{1+2}{6} = \frac{3}{6} =\frac{1}{2}$b. $\frac{2}{5} + \frac{1}{5} = \frac{2+1}{5} = \frac{3}{5}$3. 给出练习题,学生自己完成。

Step 3 分式的减法(10分钟)1. 讲解分式的减法的规则:在具有相同分母的分数中,分子相减,分母保持不变。

2. 以示例进行讲解和演示:a. $\frac{1}{3} - \frac{1}{3} = \frac{1-1}{3} = \frac{0}{3} = 0$b. $\frac{2}{4} - \frac{1}{4} = \frac{2-1}{4} = \frac{1}{4}$3. 给出练习题,学生自己完成。

Step 4 应用实际问题(15分钟)1. 提供一些实际问题,要求学生将问题转化为分式的加减法运算。

2. 学生通过思考和讨论,找到解决问题的方法。

3. 学生独立完成实际问题的解答,然后互相交流和讨论。

Step 5 练习巩固(15分钟)1. 教师提供一些练习题,涵盖分式的加减法运算。

分式的加减法数学教案设计

分式的加减法数学教案设计

分式的加减法数学教案设计一、教学目标:1. 让学生理解分式的加减法概念,掌握分式加减法的运算方法。

2. 培养学生运用分式加减法解决实际问题的能力。

3. 提高学生分析问题、解决问题的能力,培养学生的逻辑思维能力。

二、教学内容:1. 分式的加减法概念及运算方法。

2. 分式加减法在实际问题中的应用。

三、教学重点与难点:1. 重点:分式的加减法运算方法。

2. 难点:分式加减法在实际问题中的应用。

四、教学方法:1. 采用讲授法,讲解分式的加减法概念及运算方法。

2. 运用案例分析法,分析分式加减法在实际问题中的应用。

3. 组织学生进行小组讨论,培养学生的合作能力。

五、教学过程:1. 导入新课:通过复习分数的加减法,引导学生思考分式的加减法。

2. 讲解分式的加减法概念及运算方法:(1)分式的加减法概念:同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,再按照同分母分式加减法的法则计算。

(2)分式加减法的运算方法:a. 同分母分式相加减:分子相加减,分母保持不变。

b. 异分母分式相加减:先通分,再按照同分母分式加减法的法则计算。

3. 案例分析:分析分式加减法在实际问题中的应用。

(1)例题讲解:分析实际问题,引导学生运用分式加减法解决问题。

(2)学生练习:布置练习题,让学生独立解决实际问题。

4. 小组讨论:组织学生进行小组讨论,分享分式加减法在实际问题中的应用实例。

5. 总结与评价:总结本节课所学内容,对学生的学习情况进行评价。

6. 布置作业:布置课后作业,巩固所学知识。

六、教学评估:1. 课堂问答:通过提问方式检查学生对分式加减法概念的理解程度。

2. 练习题:布置随堂练习,评估学生对分式加减法运算方法的掌握情况。

3. 小组讨论:观察学生在小组讨论中的表现,评估他们的合作能力和解决问题的能力。

七、教学拓展:1. 引入更复杂的分式加减法问题,提高学生的解题能力。

2. 探讨分式加减法在高级数学中的应用,如在微积分、线性代数等领域。

分式的加减 (1优秀教学设计)

分式的加减 (1优秀教学设计)

第3课时分式的加减(一)教学目标1.理解同分母分式与异分母分式加减法的运算法则,体会类比思想.2.能运用同分母分式和异分母分式加减运算法则进行运算,体会化归思想.教学重点分式的加减法法则.教学难点异分母分式的加减运算.教学过程设计一、创设情景,明确目标同学们还记得分数是如何进行加减法运算的吗?(找同学叙述)现在我们看下面两个问题:问题1:甲工程队完成一项工程需要n天,乙工程队要比甲队多用3天,才能完成这项工程,两队共同工作一天完成这项工程的几分之几?问题2:2011年、2012年、2013年某地的森林面积(单位:公顷)分别是1S、2S、3S,2013年与2012年相比,森林面积增长率提高了多少?请按两个问题的要求列出代数式,请观察两个代数式有何特征,如何对这类代数式进行运算,这就是我们今天所要探究的内容.二、自主学习,指向目标1.自学教材第139至140页.2.学习至此:请完成《学生用书》相应部分.三、合作探究,达成目标探究点一分式加减法运算法则及应用活动一:1.让学生观察课本P140页思考,并让学生叙述分数加减法法则.2.类似分数加减法运算法则,推广可得分式的加减法法则,你能叙述吗?展示点评:同分母的分式相加减,分母________,把分子相________.异分母的分式相加减,先________,变为________分式,再加减.这些法则用式子可表示为:a c ±bc=________;ab±cd=adbd±________=________针对训练:下列运算是否正确,如果不正确,错在什么地方?1.am+bm=a+bm;( √ )2.xm+yn=x+ym+n;( × )3xm-yn=x-ym-n. ( × )例1计算:(1)5x +3y x 2-y 2-2x x 2-y 2 解:原式=3x -y(2)12p +3q +12p -3q解:原式=4p 4p 2-9q 2 小组讨论:1.(2)和(1)有什么不同?2.进行异分母分式加减运算时如何确定分式的最简公分母?变式训练:计算:(1)2a 2a -b +b 2b -2a; (2)a 2a 2-b 2+2ab b 2-a 2+b 2a 2+b 2. 答:(1)1;(2)a +b a -b. 反思小结:异分母分式相加减,通分后变成同分母分式,再加减.体现了转化的数学思想.针对训练:见《学生用书》相应部分探究点二 分式加减混合运算活动二:计算:(1)x +2y +4y 2x -2y +4x 2y 4y 2-x 2 展示点评:(1)x 2x +2y.在解答中可把x +2y 当成一个整体. 小组讨论:分式的加减混合运算注意什么问题?反思小结:同分母分式相加减,当分子是一个多项式时应把多项式分子看作一个整体,加上括号参与运算.针对训练:见《学生用书》相应部分四、总结梳理,内化目标1.我们是怎么引出分式加减法法则的?2.知识小结——(1)理解同分母分式与异分母分工加减法的运算法则,并能熟练地运用同分母分式和异分母分式加减运算法则进行运算;(2)运算结果必须是最简分式.3.思想方法小结——类比、转化等数学思想.五、达标检测,反思目标1.化简x 2y -x -y 2y -x的结果是( A ) A .-x -y B .y -x C .x -y D .x +y2.分式1a +1+1a (a +1)的计算结果是( C ) A.1a +1 B.a a +1 C.1a D.a +1a3.计算a -2a +1-2a -3a +1= 1-a a +1__. 4.已知a(a -1)-(a 2-b)=2,那么a 2+b 22-ab 的值为__2__. 5.计算:(1)5a +3b a +b +3b -4a a +b -a +3b a +b解:原式=5a +3b +3b -4a -a -3b a +b=3b a +b(2)2x 2-4-12x -4解:原式=42(x +2)(x -2)-x +22(x -2)(x +2) =-12(x +2)●布置作业,巩固目标教学难点1.上交作业 课本第146页第4、5题.2.课后作业 见《学生用书》.。

15.2.2第1课时分式的加减教学设计2024-2025学年人教版数学八年级上册

15.2.2第1课时分式的加减教学设计2024-2025学年人教版数学八年级上册
- 教师可提供必要的指导和帮助,如推荐阅读材料、解答疑问等,为学生提供支持和服务。
- 学生可以将自己的学习成果进行分享和交流,可以是在课堂上展示,也可以是通过作业、报告等形式提交。
- 鼓励学生积极参与拓展学习,培养他们的自主学习能力和批判性思维能力。
拓展作业:
- 选择一篇阅读材料或观看一个视频资源,撰写读后感或观后感,不少于300字。
8. 学生反馈表:准备一份学生反馈表,用于收集学生对课堂学习的意见和建议,以便及时调整教学方法和策略。
五、教学过程设计
1. 导入新课(5分钟)
目标: 引起学生对分式加减法的兴趣,激发其探索欲望。
过程:
开场提问:“你们知道分式加减法是什么吗?它与我们的生活有什么关系?”
展示一些关于分式的实际应用场景,让学生初步感受分式的魅力或特点。
二、核心素养目标
本节课的核心素养目标在于培养学生的数学逻辑推理能力和数学抽象能力。通过学习分式的加减法运算,学生将能够运用已有的数学知识,分析问题、解决问题,从而提高他们的数学逻辑推理能力。同时,在本节课的学习过程中,学生需要对分式的加减法运算进行抽象思考,将实际问题转化为数学问题,进一步培养他们的数学抽象能力。此外,通过小组合作、讨论交流等环节,学生将能够提高团队合作意识和沟通表达能力,培养他们的社会合作素养。通过本节课的学习,学生将能够在知识与技能、过程与方法、情感态度与价值观等方面得到全面发展。
5. 混合运算
- 混合运算中,先进行乘除法,后进行加减法。
- 例如:(a/b + c/d) * e/f,先计算括号内的加法,得到(ad+bc)/(bd),再乘以e/f,得到((ad+bc)*e)/(bd*f)。
6. 分式的化简

八年级数学下册《分式的加减法》教案、教学设计

八年级数学下册《分式的加减法》教案、教学设计
1.利用生活实例,如“小明的妈妈在超市购物,使用优惠券后,实际支付了多少钱?”等,引导学生回顾分数的加减运算,为新课的学习做好铺垫。
2.提问学生:“我们已经学习了分数的加减法,那么分式是否也可以进行加减运算呢?”引发学生思考,激发学习兴趣。
3.通过对比分数加减法与分式加减法的异同,导入新课,让学生对分式的加减法产生好奇心,为后续学习打下基础。
-对于基础薄弱的学生,通过个别辅导、课后答疑等方式,帮助他们弥补知Байду номын сангаас缺陷,增强学习信心。
5.注重学习评价,及时反馈教学效果:
-设计形式多样的评价方式,如课堂提问、作业批改、阶段测试等,全面评估学生的学习状况。
-根据评价结果,及时调整教学策略,帮助学生巩固知识,提高教学效果。
四、教学内容与过程
(一)导入新课
(二)过程与方法
1.通过导入实际问题,激发学生的学习兴趣,引导学生主动探究分式加减法的运算规律。
2.采用师生互动、小组合作的学习方式,让学生在讨论、交流中掌握分式加减法的方法。
3.设计丰富的例题和练习,帮助学生巩固所学知识,提高运算技巧。
4.引导学生通过分式的加减法,发现数学规律,培养学生的观察能力和逻辑思维能力。
2.选做题:
-完成课本第57页的拓展题1、2,鼓励学生在掌握基本知识的基础上,挑战更高难度的题目,提高运算技巧和逻辑思维能力。
-对本节课学习的分式加减法进行总结,撰写学习心得体会,要求不少于300字,帮助学生反思学习过程,提高自我认知。
3.小组合作任务:
-以小组为单位,共同讨论并解决一道具有挑战性的分式加减问题,要求小组成员共同参与,分工合作,将解题过程和答案以书面形式提交。
2.针对难点问题,采取以下策略进行教学:

《分式的加法和减法》教案

《分式的加法和减法》教案

《分式的加法和减法》教案一、教学目标:知识与技能:使学生掌握分式的加法和减法运算法则,能够正确进行分式的加法和减法运算。

过程与方法:通过实例分析和练习,培养学生解决实际问题的能力。

情感态度与价值观:激发学生对数学的兴趣,培养学生的逻辑思维能力。

二、教学重点与难点:重点:分式的加法和减法运算法则。

难点:如何正确进行分式的加法和减法运算,以及解决实际问题。

三、教学准备:教师准备:分式的加法和减法运算示例、练习题。

学生准备:了解分式的基本概念,具备基本的数学运算能力。

四、教学过程:1. 导入新课:通过一个实际问题,引入分式的加法和减法运算。

2. 讲解与演示:讲解分式的加法和减法运算法则,并通过示例进行演示。

3. 练习与讨论:学生进行练习,教师引导学生讨论解题思路和方法。

4. 解决问题:学生运用所学知识解决实际问题。

五、课后作业:1. 完成练习题:巩固分式的加法和减法运算。

2. 思考题:引导学生进行深入思考,提高解决问题的能力。

注意:教师在教学过程中要关注学生的学习情况,及时解答学生的疑问,确保学生能够掌握分式的加法和减法运算。

要注重培养学生的逻辑思维能力,提高他们解决实际问题的能力。

六、教学评估:1. 课堂问答:通过提问学生,了解他们对分式加减法的理解和掌握程度。

2. 练习批改:对学生的练习题进行批改,评估他们对分式加减法的操作熟练度。

3. 课后访谈:课后与部分学生进行访谈,了解他们在课堂外的学习情况和问题。

七、教学反思:1. 针对学生的掌握情况,调整教学方法和节奏,以适应不同学生的学习需求。

2. 对于学生在学习中遇到的问题,进行个别辅导,确保他们能够跟上课程进度。

3. 总结本次教学中的成功经验和不足之处,为下一次教学做好准备。

八、拓展与延伸:1. 引导学生思考分式加减法在实际生活中的应用,提高他们的实际问题解决能力。

2. 介绍分式加减法的相关数学历史背景,激发学生对数学的兴趣。

3. 推荐学生阅读相关的数学读物,拓展他们的数学视野。

分式加减教学设计

分式加减教学设计

分式加减教学设计一、教学目标1.掌握分式加减的概念和基本计算方法2.能够灵活运用分式加减法解决实际问题3.提高学生的数学思维和解决问题的能力二、教学重难点重点1.分式加减的概念2.分式加减的运算法则及其运用难点1.分式加减的综合应用2.分式加减的错误解法与纠错思路三、教学内容及进度第一课时:分式加减的基本概念1.分式的定义及其应用2.分式的基本运算法则3.分式加减的定义及其性质第二课时:分式加减的计算方法1.通分法和化简法2.分式加减的运算步骤和技巧第三课时:分式加减的综合应用1.分式加减在实际问题中的应用2.分式加减的综合练习和解题思路四、教学方法与手段教学方法1.讲授与练习相结合2.问题引导和启发3.案例分析和实践演练教学手段1.课件2.黑板、白板3.练习册、习题课五、教学评价与反馈教学评价1.考试成绩2.课堂表现3.课后作业教学反馈1.分析学生的问题和优势2.收集学生的反馈和建议3.不断改进教学方法和手段六、教学流程第一节课:分式加减的基本概念时间教学内容10:00-10:10导入:引出分式的应用和意义10:10-10:30分式的定义及其应用10:30-10:50分式的基本运算法则10:50-11:10分式加减的定义及其性质11:10-11:20课后作业第二节课:分式加减的计算方法时间教学内容10:00-10:10导入:引出分式加减问题10:10-10:30通分法和化简法的概念和运用10:30-10:50分式加减的运算步骤和技巧10:50-11:10课堂练习和实践演练11:10-11:20课后作业第三节课:分式加减的综合应用时间教学内容10:00-10:10导入:引出分式加减的应用题时间教学内容10:10-10:30分式加减在实际问题中的应用10:30-10:50分式加减的综合练习和解题思路10:50-11:10案例分析和复杂问题解决11:10-11:20总结和反馈七、教学资源1.教师课件2.练习册3.习题库4.课外参考书八、教学反思针对分数加减这一难点,本教学设计采用了“讲授与练习相结合”的方法,通过大量的分式加减实例和课堂练习,确保学生对方法掌握熟练,并能够将其应用到实践中。

(完整版)分式加减教案

(完整版)分式加减教案

第五章分式与分式方程第三节分式的加减法〔第一课时〕一、授课目的1、知识与技术掌握同分母分式的加减法法那么,会进行简单分式的加减运算。

2、过程与方法经历研究分式加减运算法那么的过程,进一步培养代数化归意识和类比思想。

3、感神态度与价值观经过学习认识到数与式的联系,激发学生学习数学的兴趣,重视学习过程中对学生的概括、概括、交流等能力的培养;丰富数学感情与思想。

二、授课重点〔1〕同分母分式的加减运算法那么,同分母分式加减法的简单应用。

〔2〕类比、转变的思想的浸透。

三、授课难点〔1〕分子为多项式括号要加括号。

〔2〕当分式的分母是互为相反式时,转变为同分母。

四、授课过程1、情况引入〔1〕做一做:你能说说上面原由?1212777775751212式子的1212特点吗?并思虑做法运算法那么:同分母的分数相加减,分母不变,把分子相加减.1221a a x x35742b2b3y3y〔 2〕猜一猜:运算法那么:同分母的分式相加减,分母不变,把分子相加减.〔类比思想〕用式子表示为:b c b ca a a2、同分母加减例 1〔 1〕a ba b ;〔2〕 x224;ab ab x x2〔3〕m 2n4m n ;〔4〕x 3x 2 x 1 . m n m n x1x 1 x 1目的:授课生如何运用法那么进行运算,经过这 4 道例题,让学生学会加减法运算并注意运算时可能出现的问题。

注意:在进行运算时假设分子是多项式的,分子要先带括号,再去括号后合并同类项;运算结果也类比分数加减法的结果,要化成最简形式,即约去分子与分母的所有公因式—化简。

牛刀小试 1:(1)3x2x2xy ;(2)b2a22ab .2 x y2x y a b a b注意:经过学生的解答情况,对法那么做进一步的讲解,力求让学生理解并掌握同分母分式的加减法法那么。

3、拓展提高例2 计算〔 1〕 xy ; 〔 2〕 a21 2a . x yy xa 11 a牛刀小试 2:① 计算:2 x 1x 1 1 x② 先化简,再求值x 25 x 1 x x2x 22 , 其中 x 2021 .x目的:这是一组分母互为相反式的分式加减的题目,实那么是简单的异分母分式的加减法,经过例题的讲解,又有练一练的坚固,应该能够掌握,第三小题有意增加难度,在于学生能力的提高。

分式加减教学设计

分式加减教学设计

分式加减教学设计一、教学目标1. 理解分式的概念,学会分式的加减运算方法;2. 掌握分式加减运算的基本技巧;3. 能够熟练解决与分式加减相关的问题。

二、教学准备1. 教材:教科书、练习册等;2. 教具:黑板、白板、彩色粉笔或白板笔;3. 辅助工具:计算器、分数线、带有分数计算功能的软件等。

三、教学过程1. 导入教师可以通过一个与分式加减相关的实际问题引入本节课的内容,并激发学生的学习兴趣。

2. 概念讲解(1)分式的定义:分式是由分子和分母组成的数,分子和分母都是整数。

(2)分式的加法和减法:a. 分母相同的分式相加减:将分子相加减,分母保持不变。

b. 分母不同的分式相加减:先找到它们的公分母,然后按照公分母相加减的原则进行计算。

3. 实例演示教师通过多个实例演示分式的加减运算步骤和方法,引导学生理解并掌握运算技巧。

例如:(1)7/8 + 5/8 = ?首先,分母相同,直接将分子相加,结果为 12/8;然后,将 12/8 化简为 1 4/8 或 1 1/2。

(2)1/3 - 1/6 = ?先找到它们的公分母,最小公倍数是 6;然后,将分子按照公分母相应比例扩大或缩小,得到 2/6 - 1/6 = 1/6。

4. 课堂练习教师设计一些练习题,让学生在课堂上进行练习,巩固所学的知识和技巧。

5. 拓展延伸教师可以设计一些扩展题目,让学生运用所学的知识解决更加复杂的问题,培养学生的分析和解决问题的能力。

6. 总结归纳教师对本节课所学的内容进行总结和归纳,强调重点和难点,让学生进行知识梳理和思考。

四、巩固练习布置一些相关的作业,让学生继续巩固和应用所学的知识。

五、教学反思回顾本节课的教学过程和结果,思考如何改进,提高学生的学习效果和兴趣。

以上是一份关于分式加减教学设计的范例,具体的教学设计可以根据教师的实际情况进行调整和修改。

希望能对您的教学工作有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.3分式的加减法(一)
教学目标
(一)知识与技能目标
1、会进行简单分式的加减运算,具有一定的代数化归能力.
2、引导学生不断小结运算方法和技巧,提高运算能力.
(二)过程与方法目标
探索分式加减运算法则的过程,理解其算理
(三)情感与价值目标
在活动中培养学生乐于探究、合作学习的习惯,培养学生“用数学”的意识和能力 教学重点:分式的加减运算.
教学难点:异分母的分式加减法运算.
教学过程
一、情境引入:
从甲地到乙地有两条路,每条路都是3km ,其中第一条是平路,第二条有1km 的上坡路,2km 的下坡路,小丽在上坡路上的骑车速度为vkm/h ,在平路上的骑车速度为2vkm/h ,在下坡路上的骑车速度为3vkm/h ,那么当走第二条路时,她从甲地到乙地需要多长时间?12()3h v v
+ 她走哪条路花费时间少?少用多长时间?123()32h v v v
+- 想一想
2、解读探究
同分母分数如何加减?(学生举例)你认为12a a
+应该等于什么? 二、讲授新课 1.猜一猜,同分母的分式应该如何加减?
同分母的分式相加减,分母不变把分式相加减
做一做(1)24()22
x x x +=--_____________
(2)213()111
x x x x x x +---+=+++__________ 想一想:异分母分数如何加减?(学生举例)
你认为异分母的分式应该如何加减?比如314a a
+应该怎样计算? 2.议一议:小明认为,只要把异分母的分式化成同分母的分式,异分母分式的加减问题就变成了同分母分式的加减问题。

小亮同意小明的这种看法,但他俩的具体做法不同。

小明:
22231341213134444444a a a a a a a a a a a a a a a
+=+=+==小亮:3134112113444444a a a a a a a ⨯+=+=+= 3.你对这两种做法有何评论?与同伴交流。

根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分。

为了计算方便,异分母分式通分时,通常取最简单的公分母(简称最简公分母)作为它们的共同分母。

4.例1 计算
(1)3155a a a -+;(2)2111x x x
-+-- 三、随堂练习P77
四、课堂小结:
通过本节课的学习,你学到了哪些知识和方法?
五、作业 P77 习题3.5
教学反思:
本节课本内容太乱了.没有学通分,就让学生去进行异分母分式的加减运算(异分母特简单),跳跃太快.学生接受有难度..。

相关文档
最新文档