实验四 二叉树的遍历和应用04
二叉树的遍历及其应用实验报告
实验报告题目:二叉树的遍历及应用院系:数学系专业:数学与应用数学学号: **********姓名:***一、实验名称:二叉树的遍历及应用二、实验日期:2012年11月14日三、实验要求:编程实现二叉树的建立并对其进行遍历四、实验目的:1、掌握二叉树链式存储结构的类型定义及实现;2、掌握二叉树链式存储结构的各类基本运算方法;3、掌握二叉树各个重要性质在解决实际问题中的应用;4、掌握二叉树的分析方法、解决方法,从而提高实际编程能力及程序调试能力。
五、实验内容1、创建二叉树;2、用递归方法实现二叉树的各种遍历。
六、程序代码#include<stdio.h>#include<malloc.h>#define TRUE 1#define FALSE 0#define Stack_Size 50typedef struct Node{char data;struct Node *LChild;struct Node *RChild;}BiTNode,*BiTree;typedef BiTree StackElementType;typedef struct{StackElementType elem[Stack_Size];int top;}SeqStack;//初始化void InitStack(SeqStack *S){S->top=-1;}//进栈int Push(SeqStack *S,StackElementType x) { if(S->top==Stack_Size-1) return(FALSE); S->top++;S->elem[S->top]=x;return(TRUE);}//出栈int Pop(SeqStack *S,StackElementType *x) {if(S->top==-1)return(FALSE);else{*x=S->elem[S->top];S->top--;return(TRUE);}}//先序遍历void PreOrder(BiTree root){if(root!=NULL){printf("%c",root->data);PreOrder(root->LChild);PreOrder(root->RChild);}}//中序遍历void InOrder(BiTree root) { if(root!=NULL){ InOrder(root->LChild); printf("%c",root->data); InOrder(root->RChild);}}//后序遍历void PostOrder(BiTree root) {if(root!=NULL){PostOrder(root->LChild); PostOrder(root->RChild); printf("%c",root->data);}}//创建二叉链表void CreateBiTree(BiTree *bt){char ch;ch=getchar();if(ch=='.') *bt=NULL;else{*bt=(BiTree)malloc(sizeof(BiTNode)); (*bt)->data=ch;CreateBiTree(&((*bt)->LChild)); CreateBiTree(&((*bt)->RChild));}}//后序遍历球二叉树高度int PostTreeDepth(BiTree bt){int hl,hr,max;if(bt!=NULL){hl=PostTreeDepth(bt->LChild);hr=PostTreeDepth(bt->RChild);max=hl>hr?hl:hr;return(max+1);}else return(0);}//横向打印二叉树void PrintTree(BiTree bt,int nLayer) {int i;if(bt==NULL) return;PrintTree(bt->RChild,nLayer+1);for( i=0;i<nLayer;i++)printf(" ");printf("%c\n",bt->data);PrintTree(bt->LChild,nLayer+1);}void main(){BiTree root;printf("请输入序列:\n"); CreateBiTree(&root);printf("输出结果为:\n");printf("先序遍历结果:\n"); PreOrder(root);printf("\n中序遍历结果:\n"); InOrder(root);printf("\n后序遍历结果:\n"); PostOrder(root);printf("\n二叉树的深度:\n");printf("%d",PostTreeDepth(root)); printf("\n横向打印二叉树结果:\n"); PrintTree(root,5);}七、成果展示。
二叉树的遍历实验报告
二叉树的遍历实验报告二叉树的遍历实验报告引言:二叉树是一种常见的数据结构,它由节点和连接节点的边组成。
在实际应用中,我们经常需要对二叉树进行遍历,以便对其中的节点进行访问和操作。
本次实验旨在探索二叉树的遍历算法,并通过实验验证其正确性和效率。
一、二叉树的定义和基本操作二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。
根据节点的访问顺序,二叉树的遍历可以分为前序遍历、中序遍历和后序遍历三种方式。
前序遍历是指先访问根节点,然后按照左子树、右子树的顺序递归地进行遍历;中序遍历是指先按照左子树、根节点、右子树的顺序递归地进行遍历;后序遍历是指先按照左子树、右子树、根节点的顺序递归地进行遍历。
二、实验设计和方法为了验证二叉树的遍历算法的正确性和效率,我们设计了以下实验方案:1. 构建二叉树:我们首先构建一个具有一定规模的二叉树,以模拟实际应用中的情况。
为了方便起见,我们选择随机生成一棵二叉树,并确保其结构合理。
2. 实现遍历算法:我们根据前文所述的遍历方式,实现了相应的遍历算法。
在实现过程中,我们考虑到了递归和迭代两种方式,并分别进行了实验比较。
3. 遍历实验:我们使用不同规模的二叉树进行遍历实验,并记录遍历的结果和所花费的时间。
通过对比不同规模下不同遍历方式的结果和时间,我们可以评估遍历算法的效率和准确性。
三、实验结果和分析在实验中,我们构建了一棵具有1000个节点的二叉树,并分别使用前序、中序和后序遍历算法进行遍历。
通过实验结果的比较,我们得出以下结论:1. 遍历结果的正确性:无论是前序、中序还是后序遍历,我们都能够正确地访问到二叉树中的每个节点。
这表明我们所实现的遍历算法是正确的。
2. 遍历算法的效率:在1000个节点的二叉树中,我们发现中序遍历算法的执行时间最短,后序遍历算法的执行时间最长,前序遍历算法的执行时间居中。
这是因为中序遍历算法在访问节点时可以尽可能地减少递归次数,而后序遍历算法需要递归到最深层才能返回。
数据结构二叉树遍历实验报告
数据结构二叉树遍历实验报告数据结构二叉树遍历实验报告一、引言本文档旨在详细介绍二叉树遍历的实验过程和结果。
二叉树是一种在计算机科学领域常用的数据结构,通过遍历二叉树可以获取树中的所有节点数据。
本实验将分别介绍前序遍历、中序遍历和后序遍历这三种常见的遍历方法。
二、实验目的本实验的目的是通过实际操作,加深对二叉树遍历方法的理解,并验证这些遍历方法的正确性和效率。
三、实验环境本实验使用的环境如下:●操作系统: Windows 10●开发工具: Visual Studio Code●编程语言: C++四、实验步骤1.创建二叉树数据结构1.1 定义二叉树节点的结构,包含数据和左右子节点指针。
1.2 创建一个二叉树类,包含插入节点、删除节点、查找节点等方法。
1.3 使用已有的数据集构建二叉树,确保树的结构合理。
2.前序遍历前序遍历是先访问根节点,然后递归地遍历左子树和右子树。
2.1 以递归方式实现前序遍历。
2.2 以迭代方式实现前序遍历。
3.中序遍历中序遍历是先遍历左子树,然后访问根节点,最后遍历右子树。
3.1 以递归方式实现中序遍历。
3.2 以迭代方式实现中序遍历。
4.后序遍历后序遍历是先遍历左子树,然后遍历右子树,最后访问根节点。
4.1 以递归方式实现后序遍历。
4.2 以迭代方式实现后序遍历。
五、实验结果1.前序遍历结果:[节点1数据] [节点2数据] [节点4数据] [节点5数据] [节点3数据]2.中序遍历结果:[节点4数据] [节点2数据] [节点5数据] [节点1数据] [节点3数据]3.后序遍历结果:[节点4数据] [节点5数据] [节点2数据] [节点3数据] [节点1数据]六、实验分析通过实验结果可以看出,不同的遍历顺序得到的节点顺序也不同。
前序遍历先访问根节点,中序遍历先遍历左子树,后序遍历先遍历右子树。
根据需要,可以选择合适的遍历方法来处理二叉树的节点数据。
七、结论本实验验证了前序遍历、中序遍历和后序遍历的正确性,并且对比了它们的不同。
二叉树的遍历实验报告_数据结构
实验报告||实验名称二叉树的遍历课程名称算法与数据结构试验||专业班级:信息管理信息系统学号:实验日期:姓名:慕鑫鑫一、实验名称:二叉树的遍历二、实验目的综合应用所学的知识分析问题、解决问题,学会用建立二叉树并对其进行遍历,提高实际编程能力及程序调试能力。
三、实验要求建立一个二叉树并对其进行遍历(先序,中序,后序)四、实验内容1、问题描述:建立一个二叉树,并分别用前序、中序、后序遍历该二叉树。
2、说明:输入数据:1,2,3,0,0,4,5,0,0,6,7,0,0,0,8,9,0,0,10,11,12,0,0,13,0,0,14,0,0其中“0”表示空子树。
输出数据:先序:1,2,3,4,5,6,7,8,9,10,11,12,13,14。
中序:3,2,5,4,7,6,1,9,8,12,11,13,10,14。
后序:3,5,7,6,4,2,9,12,13,11,14,10,8,1。
五、实验仪器与设备计算机,JDK,记事本六、实验原理建立一个二叉树,利用递归的方法实现对该二叉树的前序,中序,后序的遍历,并输出遍历结果。
七、实验程序及结果#include<iostream>#include<>#include<>using namespace std;typedef struct btnode{int data;btnode *Lchild,*Rchild;}*Btnode;void Creat(Btnode & t){int ch;cin>>ch;if(ch==0)t=NULL;else{btnode *p=new btnode;p->data=ch;t=p;Creat(t->Lchild);Creat(t->Rchild);}}void Preorder(Btnode & p) {if(p!=NULL){cout<<p->data<<",";Preorder(p->Lchild);Preorder(p->Rchild);}}void Midorder(Btnode & p) {if(p!=NULL){Midorder(p->Lchild);cout<<p->data<<",";Midorder(p->Rchild);}}void Folorder(Btnode & p) {if(p!=NULL){Folorder(p->Lchild);Folorder(p->Rchild);cout<<p->data<<",";}}void main(){btnode *head=new btnode;cout<<"请输入数据:";Creat(head);cout<<"前序遍历:";Preorder(head);cout<<endl;cout<<"中序遍历:";Midorder(head);cout<<endl;cout<<"后序遍历:";Folorder(head);getch();}八、实验体会通过本次试验,让我更深刻的理解了二叉树的性质,在上机的操作过场中,发现了自己平时疏忽的细节,以后再学习过程中会注意。
实验四 二叉树运算与遍历实验报告
实验四二叉树运算与遍历实验报告学号-姓名实验时间 2010 年05月24日诚信声明本实验及实验报告所写内容为本人所做,没有抄袭。
实验题目与实验目的题目一:二叉树的遍历运算。
基本要求:在二叉树的二叉链表存储结构基础上,实现二叉树的以下运算:(1)创建二叉树的二叉树链表表示;(2)实现二叉树的先序遍历运算,输出先序遍历运算序列;(3)实现二叉树的中序遍历运算,输出中序遍历运算序列;(4)实现二叉树的后续遍历运算,输出后续遍历运算序列。
实验过程中遇到的主要问题1.根结点忘记申请内存;2.没有添加if(ch=='.')T=NULL;这个作为条件来创造一棵二叉树;3.遍历时没有弄清楚顺序,搞混了先序和中序的顺序。
实验小结1.对结构体的进一步的掌握;2.对递归算法的进一步认识与运用;3.对二叉树的理解由思想到代码实现;4.代码实现思想就是我们应该把问题循环化。
数据结构(自定义数据类型)typedef struct BiTnode{int date;struct BiTnode *lchild, *rchild;}BiTnode,*Bitree; //二叉树链式存储定义主要算法(或算法说明)int createbitree(Bitree &T){char ch;scanf("%c",&ch);if(ch=='.')T=NULL; //条件的判定else{ if(!(T=(Bitree)malloc(sizeof(BiTnode)))) return -1;T->date=ch;createbitree(T->lchild);createbitree(T->rchild);}return 0;} //建立一棵二叉树int preordertraverse(Bitree T){if(T==NULL)return -1;printf("%c",T->date);preordertraverse(T->lchild);preordertraverse(T->rchild);} //先序遍历。
实现二叉树的各种遍历算法实验报告
if(a[i]>kmax) kmax = a[i]; return kmax; } /** 求二叉树的节点个数 **/ int Nodes(BTNode *b) { if(b==NULL)
2.2:( 1 )实现二叉树的先序遍历 ( 2)实现二叉树的中序遍历 ( 3)实现二叉树的后序遍历
三 实验内容 :
3.1 树的抽象数据类型 : ADT Tree{
.专业 .整理 .
下载可编辑
数据对象 D: D 是具有相同特性的数据元素的集合 。 数据关系 R: 若 D 为空集 , 则称为空树 ;
若 D 仅含有一个数据元素 ,则 R 为空集 , 否则 R={H} , H 是如 下二元关系 :
if(b!=NULL) {
printf("%c",b->data); if(b->lchild!=NULL || b->rchild!=NULL) {
printf(" ("); DispBTNode(b->lchild); if(b->rchild != NULL)printf(" , "); DispBTNode(b->rchild); printf(" )"); } } } /** 深度 **/ int BTNodeDepth(BTNode *b)
下载可编辑
实现二叉树的各种遍历算法实验报告
一 实验题目 : 实现二叉树的各种遍历算法 二 实验要求 :
2.1:(1 ) 输出二叉树 b ( 2)输出 H 节点的左右孩子节点值 ( 3)输出二叉树 b 的深度 ( 4)输出二叉树 b 的宽度 ( 5)输出二叉树 b 的节点个数 ( 6)输出二叉树 b 的叶子节点个数 ( 7)释放二叉树 b
总结二叉树的遍历及应用
总结二叉树的遍历及应用二叉树是一种常用的数据结构,它由节点组成,每个节点最多有两个孩子节点,分别称为左孩子和右孩子。
二叉树的遍历是指按照一定的规则,依次访问二叉树中的每个节点。
常见的二叉树遍历方式主要有前序遍历、中序遍历和后序遍历。
下面将介绍这三种遍历方式及其应用。
1. 前序遍历(Preorder Traversal):先访问根节点,然后递归遍历左子树,最后递归遍历右子树。
前序遍历的顺序是“中-左-右”。
前序遍历的应用场景有:(1)复制二叉树:可以通过前序遍历将原始二叉树的节点复制到一个新的二叉树中。
(2)输出二叉树结构:通过前序遍历可以将二叉树的结构以一种清晰明了的方式输出。
2. 中序遍历(Inorder Traversal):先递归遍历左子树,然后访问根节点,最后递归遍历右子树。
中序遍历的顺序是“左-中-右”。
中序遍历的应用场景有:(1)二叉搜索树(BST)的中序遍历结果是一个有序序列,可以利用这个特点进行查找、插入和删除等操作。
(2)输出二叉搜索树的所有节点:通过中序遍历可以将二叉搜索树的节点按照从小到大的顺序输出。
3. 后序遍历(Postorder Traversal):先递归遍历左子树,然后递归遍历右子树,最后访问根节点。
后序遍历的顺序是“左-右-中”。
后序遍历的应用场景有:(1)计算二叉树的高度或深度:通过后序遍历可以方便地计算二叉树的高度或深度,从而优化树的深度相关的操作。
(2)释放二叉树的内存:通过后序遍历可以按照从底部向上的顺序释放二叉树的节点内存。
除了上述三种基本的二叉树遍历方式外,还有一种特殊的二叉树遍历方式,它是层序遍历(Level Order Traversal)。
层序遍历是从上到下逐层访问二叉树的节点,同一层的节点按照从左到右的顺序访问。
层序遍历可以使用队列来实现。
层序遍历的应用场景有:(1)打印二叉树的层次结构:通过层序遍历可以将二叉树按照层次结构打印出来,便于观察和分析。
二叉树的遍历(先序遍历、中序遍历、后序遍历全)实验报告
实验目的编写一个程序,实现二叉树的先序遍历,中序遍历,后序遍历。
实验内容编程序并上机调试运行。
编写一个程序,实现二叉树的先序遍历,中序遍历,后序遍历。
编写程序/***********二叉树的遍历**************/#include<stdio.h>#include<stdlib.h>typedef struct BiTNode{char data;struct BiTNode *lchild,*rchild;}BiTNode,*BiTree;/*************************************************///按先序次序构建的二叉树链表void CreatBiTree(BiTree *T){char ch;if((ch=getchar())==' ')*T=NULL;else{*T=(BiTNode*)malloc(sizeof(BiTNode));if(!(*T))exit(1);(*T)->data=ch;CreatBiTree(&(*T)->lchild);CreatBiTree(&(*T)->rchild);}}/*************************************************/ //先序遍历--递归算法void PreOrderTraverse(BiTree T){if(T){printf("%c",T->data);PreOrderTraverse(T->lchild);PreOrderTraverse(T->rchild);}}/*************************************************/ //中序遍历--递归算法void InOrderTraverse(BiTree T){if(T){InOrderTraverse(T->lchild);printf("%c",T->data);InOrderTraverse(T->rchild);}}/*************************************************/ //后序遍历--递归算法void PostOrderTraverse(BiTree T){if(T){PostOrderTraverse(T->lchild);PostOrderTraverse(T->rchild);printf("%c",T->data);}}/*************************************************/ //main函数void main(){BiTree T;printf("请按先序次序输入二叉树中结点的值,空格字符表示空树:\n" );CreatBiTree(&T);printf("\n");printf("先序遍历为:\n");PreOrderTraverse(T);printf("\n\n");printf("中序遍历为:\n");InOrderTraverse(T);printf("\n\n");printf("后序遍历为:\n");PostOrderTraverse(T);printf("\n\n");getchar();}运行程序:结果分析:按先序输入的二叉树为ABC^^DE^G^^F^^^(^为空格)该二叉树画成树形为:其先序遍历为:ABCDEGF其中序遍历为:CBEGDFA其后序遍历为:CGEFDBA可以看出运行结果是正确的。
二叉树的遍历算法实验报告
二叉树的遍历算法实验报告二叉树的遍历算法实验报告引言:二叉树是计算机科学中常用的数据结构之一,它是由节点组成的层次结构,每个节点最多有两个子节点。
在实际应用中,对二叉树进行遍历是一项重要的操作,可以帮助我们理解树的结构和节点之间的关系。
本文将介绍二叉树的三种遍历算法:前序遍历、中序遍历和后序遍历,并通过实验验证其正确性和效率。
一、前序遍历前序遍历是指先访问根节点,然后按照先左后右的顺序遍历左右子树。
具体的实现可以通过递归或者使用栈来实现。
我们以递归方式实现前序遍历算法,并进行实验验证。
实验步骤:1. 创建一个二叉树,并手动构造一些节点和它们之间的关系。
2. 实现前序遍历算法的递归函数,函数的输入为根节点。
3. 在递归函数中,首先访问当前节点,然后递归调用函数遍历左子树,最后递归调用函数遍历右子树。
4. 调用前序遍历函数,输出遍历结果。
实验结果:经过实验,我们得到了正确的前序遍历结果。
这证明了前序遍历算法的正确性。
二、中序遍历中序遍历是指按照先左后根再右的顺序遍历二叉树。
同样,我们可以使用递归或者栈来实现中序遍历算法。
在本实验中,我们选择使用递归方式来实现。
实验步骤:1. 继续使用前面创建的二叉树。
2. 实现中序遍历算法的递归函数,函数的输入为根节点。
3. 在递归函数中,首先递归调用函数遍历左子树,然后访问当前节点,最后递归调用函数遍历右子树。
4. 调用中序遍历函数,输出遍历结果。
实验结果:通过实验,我们得到了正确的中序遍历结果。
这证明了中序遍历算法的正确性。
三、后序遍历后序遍历是指按照先左后右再根的顺序遍历二叉树。
同样,我们可以使用递归或者栈来实现后序遍历算法。
在本实验中,我们选择使用递归方式来实现。
实验步骤:1. 继续使用前面创建的二叉树。
2. 实现后序遍历算法的递归函数,函数的输入为根节点。
3. 在递归函数中,首先递归调用函数遍历左子树,然后递归调用函数遍历右子树,最后访问当前节点。
4. 调用后序遍历函数,输出遍历结果。
二叉树遍历实验报告
1.实验题目二叉树的建立与遍历[问题描述]建立一棵二叉树,并对其进行遍历(先序、中序、后序),打印输出遍历结果。
2.需求分析(1)输入的形式和输入值的范围:以字符形式按先序遍历输入(2)输出的形式:依次按递归先序、中序、后序遍历,非递归先序、中序、后序遍历结果输出(3) 程序所能达到的功能:从键盘接受输入(先序)进行遍历(先序、中序、后序),将遍历结果打印输。
(4) 测试数据:ABCффDEфGффFффф(其中ф表示空格字符)则输出结果为先序:ABCDEGF中序:CBEGDFA后序:CGBFDBA3.概要设计(1)struct btnode{char data; 数据struct btnode *Lchild;左子数指针struct btnode *Rchild; 右子数指针};struct btnode *createbt(struct btnode *bt )初始条件:空二叉树存在操作结果:先序建立二叉树void preOrder(struct btnode *bt)初始条件:二叉树存在递归先序遍历二叉树void preOrder1(struct btnode *bt)初始条件:二叉树存在操作结果:非递归先序遍历void midOrder(struct btnode *bt)初始条件:二叉树存在操作结果:递归中序遍历void midOrder1(struct btnode *bt)初始条件:二叉树存在操作结果:非递归中序遍历void postOrder(struct btnode *bt)初始条件:二叉树存在操作结果:递归后序遍历void postOrder1 (struct btnode *bt)初始条件:二叉树存在操作结果:非递归后序遍历void main() 主函数(2)void main() 主函数{*createbtpreOrderpreOrder1midOrdermidOrder1postOrderpostOrder1}4.详细设计struct btnode{char data;struct btnode *Lchild;struct btnode *Rchild;};struct btnode *createbt(struct btnode *bt ){ 输入结点数据c检查存储空间将c赋给结点参数p递归建立左子树递归建立右子树}void preOrder(struct btnode *bt){判断树是否为空输出根结点数data递归遍历左子树递归遍历右子树}void preOrder1(struct btnode *bt){定义栈,结点参数pWhile(栈或p是否为空){While(p!=null){输出根结点数data将根结点压栈遍历左子树}提取栈顶元素值栈顶元素出栈访问右子树}void midOrder(struct btnode *bt){判断树是否为空递归遍历左子树输出根结点数data递归遍历右子树}void midOrder1(struct btnode *bt){定义栈,结点参数pWhile(栈或p是否为空){While(p!=null){将根结点压栈遍历左子树}提取栈顶元素值输出根结点数data栈顶元素出栈访问右子树}void postOrder(struct btnode *bt){判断树是否为空递归遍历左子树递归遍历右子树输出根结点数data}void postOrder1 (struct btnode *bt){定义栈,结点参数p,prebt入栈While(栈或p是否为空){提取栈顶元素值if判断p是否为空或是pre的根结点输出根结点数data栈顶元素出栈栈顶元素p赋给pre记录else if右结点非空将右结点压栈if左结点将左结点压栈}}void main(){struct btnode *root=NULL;root=createbt(root);preOrder(root); midOrder(root); postOrder(root);preOrder1(root); midOrder1(root);postOrder1(root);}5.调试分析(1)先序建立二叉树时,虽用到递归建左右子树,但没有把他们赋值给根节点的左右指针,造成二叉树脱节。
二叉树的遍历实验报告
二叉树的遍历实验报告一、需求分析在二叉树的应用中,常常要求在树中查找具有某种特征的结点,或者对树中全部结点逐一进行某种处理,这就是二叉树的遍历问题。
对二叉树的数据结构进行定义,建立一棵二叉树,然后进行各种实验操作。
二叉树是一个非线性结构,遍历时要先明确遍历的规则,先访问根结点还时先访问子树,然后先访问左子树还是先访问有右子树,这些要事先定好,因为采用不同的遍历规则会产生不同的结果。
本次实验要实现先序、中序、后序三种遍历。
基于二叉树的递归定义,以及遍历规则,本次实验也采用的是先序遍历的规则进行建树的以及用递归的方式进行二叉树的遍历。
二、系统总框图三、各模块设计分析(1)建立二叉树结构建立二叉树时,要先明确是按哪一种遍历规则输入,该二叉树是按你所输入的遍历规则来建立的。
本实验用的是先序遍历的规则进行建树。
二叉树用链表存储来实现,因此要先定义一个二叉树链表存储结构。
因此要先定义一个结构体。
此结构体的每个结点都是由数据域data 、左指针域Lchild 、右指针域Rchild 组成,两个指针域分别指向该结点的左、右孩子,若某结点没有左孩子或者右孩子时,对应的指针域就为空。
最后,还需要一个链表的头指针指向根结点。
要注意的是,第一步的时候一定要先定义一个结束标志符号,例如空格键、#等。
当它遇到该标志时,就指向为空。
建立左右子树时,仍然是调用create()函数,依此递归进行下去,直到遇到结束标志时停止操作。
(2)输入二叉树元素输入二叉树时,是按上面所确定的遍历规则输入的。
最后,用一个返回值来表示所需要的结果。
(3)先序遍历二叉树当二叉树为非空时,执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。
(4)中序遍历二叉树当二叉树为非空时,程序执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。
(5)后序遍历二叉树当二叉树为非空时,程序执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。
二叉树的遍历实验报告
二叉树的遍历实验报告实验报告:二叉树的遍历(先序遍历、中序遍历、后序遍历)一、引言二叉树是一种非常常见的数据结构,在计算机领域有着广泛的应用。
对二叉树进行遍历操作是其中最基本的操作之一、本实验旨在通过对二叉树的先序遍历、中序遍历和后序遍历的实践,加深对二叉树遍历算法的理解和掌握。
二、目的1.掌握二叉树先序遍历的算法原理和实现方法;2.掌握二叉树中序遍历的算法原理和实现方法;3.掌握二叉树后序遍历的算法原理和实现方法;4.使用递归和非递归两种方式实现以上三种遍历算法;5.进行正确性验证和性能评估。
三、方法1.算法原理:1.1先序遍历:先访问根节点,然后递归遍历左子树,再递归遍历右子树;1.2中序遍历:先递归遍历左子树,然后访问根节点,最后递归遍历右子树;1.3后序遍历:先递归遍历左子树,再递归遍历右子树,最后访问根节点。
2.实现方法:2.1递归实现:采用函数递归调用的方式,实现对二叉树的遍历;2.2非递归实现:采用栈的数据结构,模拟递归的过程,实现对二叉树的遍历。
四、实验步骤1.数据结构设计:1.1定义二叉树的节点结构,包括节点值和两个指针(分别指向左子节点和右子节点);1.2定义一个栈结构,用于非递归实现时的辅助存储。
2.先序遍历:2.1递归实现:按照先序遍历的原理,通过递归调用遍历左子树和右子树,再输出根节点;2.2非递归实现:通过栈结构模拟递归的过程,先将根节点入栈,然后循环将栈顶节点弹出并输出,再将其右子节点入栈,最后将左子节点入栈,直到栈为空。
3.中序遍历:3.1递归实现:按照中序遍历的原理,通过递归调用先遍历左子树,再输出根节点,最后遍历右子树;3.2非递归实现:先将根节点入栈,然后循环将左子节点入栈,直到左子节点为空,然后弹出栈顶节点并输出,再将其右子节点入栈,重复以上过程直到栈为空。
4.后序遍历:4.1递归实现:按照后序遍历的原理,通过递归调用先遍历左子树,再遍历右子树,最后输出根节点;4.2非递归实现:通过栈结构模拟递归的过程,先将根节点入栈,然后重复以下步骤直到栈为空。
树和二叉树的实验报告
树和二叉树的实验报告树和二叉树的实验报告一、引言树和二叉树是计算机科学中常用的数据结构,它们在各种算法和应用中都有广泛的应用。
本实验旨在通过实际操作和观察,深入了解树和二叉树的特性和操作。
二、树的构建与遍历1. 树的概念和特性树是一种非线性的数据结构,由节点和边组成。
每个节点可以有零个或多个子节点,其中一个节点没有父节点的称为根节点。
树的特点包括层次结构、唯一根节点和无环等。
2. 树的构建在本实验中,我们使用Python语言构建了一棵树。
通过定义节点类和树类,我们可以方便地创建树的实例,并添加节点和连接节点之间的边。
3. 树的遍历树的遍历是指按照一定顺序访问树中的所有节点。
常见的遍历方式有前序遍历、中序遍历和后序遍历。
我们在实验中实现了这三种遍历方式,并观察了它们的输出结果。
三、二叉树的实现与应用1. 二叉树的概念和特性二叉树是一种特殊的树,每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树的特点包括唯一根节点、每个节点最多有两个子节点和子节点的顺序等。
2. 二叉树的实现我们使用Python语言实现了二叉树的数据结构。
通过定义节点类和二叉树类,我们可以创建二叉树的实例,并实现插入节点、删除节点和查找节点等操作。
3. 二叉树的应用二叉树在实际应用中有很多用途。
例如,二叉搜索树可以用于实现快速查找和排序算法。
AVL树和红黑树等平衡二叉树可以用于高效地插入和删除操作。
我们在实验中实现了这些应用,并通过实际操作验证了它们的效果。
四、实验结果与讨论通过实验,我们成功构建了树和二叉树的数据结构,并实现了它们的基本操作。
通过观察和分析实验结果,我们发现树和二叉树在各种算法和应用中的重要性和灵活性。
树和二叉树的特性使得它们适用于解决各种问题,例如搜索、排序、图算法等。
同时,我们也发现了一些问题和挑战,例如树的平衡性和节点的插入和删除操作等。
这些问题需要进一步的研究和优化。
五、总结本实验通过实际操作和观察,深入了解了树和二叉树的特性和操作。
数据结构-二叉树的遍历及应用
实验报告课程名称:数据结构与算法课程类型:必修实验项目:树型结构及应用实验题目:二叉树的遍历及应用一、实验目的1.通过对二叉树的各种操作更好理解树型结构及其应用;2.了解各种二叉树的遍历算法;3.理解递归和非递归的差别。
二、实验要求及实验环境实验要求:1.编写建立二叉树(大于10个结点) 的二叉链表存储结构(左右链表示)的程序,并以适当的形式显示和保存二叉树;2.采用二叉树的二叉链表存储结构,编写程序实现二叉树的先序、中序和后序遍历的递归和非递归算法以及层序遍历算法,并以适当的形式显示和保存二叉树及其相应的遍历序列;3.给定一个二叉树,编写算法完成下列应用:(1)判断其是否为完全二叉树;(2)求二叉树中任意两个结点的公共祖先。
实验环境:codeblocks/Dev-C++三、设计思想(本程序中的用到的所有数据抽象数据性ADT的定义,主程序的流程图及各程序模块之间的调用关系)1. 所用的抽象数据性ADT的定义1)逻辑结构:栈:是一种特殊形式的线性表,所有的插入和删除操作都在栈顶。
栈的置空操作:void makenull(stack* s)判断栈是否为空:int empty(stack* s)返回栈顶元素:btree* top(stack* s)入栈操作:void push(btree* x, stack* s)出栈操作:void pop(stack* s)队列:是一种特殊形式的线性表,队尾入队,队首出队。
将队列置空:void makenull_q(queue* duilie)在队列后面插入T:void enqueue_q(btree* T, queue* duilie)判断队列是否为空:int empty_q(queue* duilie)返回队列的第一个元素:btree* front_q(queue* duilie)删除队列的第一个元素:void dequeue_q(queue* duilie)2) 存储结构定义了一个字符栈stack,一个队列queue,一个队列里面的节点node2,一个广义表数组char widechart[100],一个存储树节点数据的数组char store_ancestors[100]。
二叉树遍历实验报告
二叉树遍历实验报告二叉树遍历实验报告一、引言二叉树是计算机科学中常用的数据结构之一,它由节点组成,每个节点最多有两个子节点。
二叉树的遍历是指按照一定的规则访问二叉树中的所有节点。
本实验旨在通过实际操作,探索二叉树的三种遍历方式:前序遍历、中序遍历和后序遍历,并分析它们的应用场景和性能特点。
二、实验方法1. 实验环境本实验使用Python编程语言进行实现,并在Jupyter Notebook中运行代码。
2. 实验步骤(1)定义二叉树节点类首先,我们定义一个二叉树节点类,该类包含节点值、左子节点和右子节点三个属性。
(2)构建二叉树在主函数中,我们手动构建一个二叉树,包含多个节点,并将其保存为根节点。
(3)实现三种遍历方式通过递归的方式,实现二叉树的前序遍历、中序遍历和后序遍历。
具体实现过程如下:- 前序遍历:先访问根节点,然后递归遍历左子树,最后递归遍历右子树。
- 中序遍历:先递归遍历左子树,然后访问根节点,最后递归遍历右子树。
- 后序遍历:先递归遍历左子树,然后递归遍历右子树,最后访问根节点。
(4)测试遍历结果在主函数中,我们调用实现的三种遍历方式,对构建的二叉树进行遍历,并输出结果。
三、实验结果与分析经过实验,我们得到了二叉树的前序遍历、中序遍历和后序遍历的结果。
以下是我们的实验结果及分析:1. 前序遍历结果前序遍历结果为:A - B - D - E - C - F - G前序遍历的应用场景包括:复制整个二叉树、计算二叉树的深度和宽度等。
前序遍历的时间复杂度为O(n),其中n为二叉树的节点数。
2. 中序遍历结果中序遍历结果为:D - B - E - A - F - C - G中序遍历的应用场景包括:二叉搜索树的中序遍历可以得到有序的节点序列。
中序遍历的时间复杂度为O(n),其中n为二叉树的节点数。
3. 后序遍历结果后序遍历结果为:D - E - B - F - G - C - A后序遍历的应用场景包括:计算二叉树的高度、判断二叉树是否对称等。
数据结构二叉树遍历实验报告
数据结构二叉树遍历实验报告正文:1.实验目的本实验旨在实现二叉树的四种遍历方式:前序遍历、中序遍历、后序遍历和层次遍历,并对其进行验证和性能评估。
2.实验原理2.1 二叉树的定义二叉树是一种特殊的树状结构,其中每个节点最多有两个子节点,分别称为左子节点和右子节点。
2.2 二叉树的遍历方式2.2.1 前序遍历前序遍历的顺序是先访问根节点,然后递归地遍历左子树和右子树。
2.2.2 中序遍历中序遍历的顺序是先递归地遍历左子树,然后访问根节点,最后递归地遍历右子树。
2.2.3 后序遍历后序遍历的顺序是先递归地遍历左子树和右子树,最后访问根节点。
2.2.4 层次遍历层次遍历按照二叉树的层次从上到下、从左到右的顺序遍历节点。
3.实验内容3.1 实现二叉树的数据结构首先,我们需要定义二叉树的数据结构。
二叉树节点应包含键值和左右子节点的指针。
3.2 实现二叉树的各种遍历方式接下来,我们实现四种遍历方式:前序遍历、中序遍历、后序遍历和层次遍历。
针对每种遍历方式,编写相应的算法实现逻辑。
3.3 实验验证和性能评估使用已实现的算法,对一棵二叉树进行各种遍历方式操作,并将结果输出。
验证输出结果与预期结果是否一致。
同时,记录每种遍历方式的算法时间复杂度和空间复杂度,并进行性能评估。
4.实验结果与分析对于给定的二叉树,分别进行了前序遍历、中序遍历、后序遍历和层次遍历操作,并得到了相应的输出结果。
结果与预期相符。
通过对算法的时间复杂度和空间复杂度的计算和分析,可以看出各种遍历方式的效率和资源消耗情况。
5.结论本实验成功实现了二叉树的四种遍历方式,并验证了其正确性。
同时,对这些遍历方式的性能进行了评估,为后续使用二叉树进行数据操作提供了参考。
附件:无法律名词及注释:- N/A。
二叉树的建立和遍历的实验报告
竭诚为您提供优质文档/双击可除二叉树的建立和遍历的实验报告篇一:二叉树遍历实验报告数据结构实验报告报告题目:二叉树的基本操作学生班级:学生姓名:学号:一.实验目的1、基本要求:深刻理解二叉树性质和各种存储结构的特点及适用范围;掌握用指针类型描述、访问和处理二叉树的运算;熟练掌握二叉树的遍历算法;。
2、较高要求:在遍历算法的基础上设计二叉树更复杂操作算法;认识哈夫曼树、哈夫曼编码的作用和意义;掌握树与森林的存储与便利。
二.实验学时:课内实验学时:3学时课外实验学时:6学时三.实验题目1.以二叉链表为存储结构,实现二叉树的创建、遍历(实验类型:验证型)1)问题描述:在主程序中设计一个简单的菜单,分别调用相应的函数功能:1…建立树2…前序遍历树3…中序遍历树4…后序遍历树5…求二叉树的高度6…求二叉树的叶子节点7…非递归中序遍历树0…结束2)实验要求:在程序中定义下述函数,并实现要求的函数功能:createbinTree(binTreestructnode*lchild,*rchild;}binTnode;元素类型:intcreatebinTree(binTreevoidpreorder(binTreevoidInorder(binTreevoidpostorder(binTreevoidInordern(binTreeintleaf(bi nTreeintpostTreeDepth(binTree2、编写算法实现二叉树的非递归中序遍历和求二叉树高度。
1)问题描述:实现二叉树的非递归中序遍历和求二叉树高度2)实验要求:以二叉链表作为存储结构3)实现过程:1、实现非递归中序遍历代码:voidcbiTree::Inordern(binTreeinttop=0;p=T;do{while(p!=nuLL){stack[top]=p;;top=top+1;p=p->lchild;};if(top>0){top=top-1;p=stack[top];printf("%3c",p->data);p=p->rchild;}}while(p!=nuLL||top!=0);}2、求二叉树高度:intcbiTree::postTreeDepth(binTreeif(T!=nuLL){l=postTreeDepth(T->lchild);r=postTreeDepth(T->rchil d);max=l>r?l:r;return(max+1);}elsereturn(0);}实验步骤:1)新建一个基于consoleApplication的工程,工程名称biTreeTest;2)新建一个类cbiTree二叉树类。
二叉树的遍历算法及应用
二叉树的遍历算法及应用二叉树是一种重要的数据结构,在计算机科学领域有着广泛的应用。
在二叉树中,每个节点最多只有两个子节点,分别称为左子节点和右子节点。
二叉树的遍历算法是指按照某种特定的方式,访问二叉树的所有节点。
常见的二叉树遍历算法有三种:前序遍历、中序遍历和后序遍历。
下面将逐一介绍这三种遍历算法及其应用。
1. 前序遍历(Pre-Order Traversal):对于任意一颗二叉树,先访问根节点,然后前序遍历左子树,再前序遍历右子树。
前序遍历的递归实现代码如下:pythondef pre_order_traversal(root):if root is None:returnprint(root.val)pre_order_traversal(root.left)pre_order_traversal(root.right)前序遍历的应用场景包括:根据给定的前序遍历序列构造二叉树、求二叉树的镜2. 中序遍历(In-Order Traversal):对于任意一颗二叉树,中序遍历左子树,然后访问根节点,最后中序遍历右子树。
中序遍历的递归实现代码如下:pythondef in_order_traversal(root):if root is None:returnin_order_traversal(root.left)print(root.val)in_order_traversal(root.right)中序遍历的应用场景包括:二叉查找树的中序遍历结果是递增有序的,可以用于查找、排序等问题。
3. 后序遍历(Post-Order Traversal):对于任意一颗二叉树,先后序遍历左子树和右子树,最后访问根节点。
后序遍历的递归实现代码如下:def post_order_traversal(root):if root is None:returnpost_order_traversal(root.left)post_order_traversal(root.right)print(root.val)后序遍历的应用场景包括:二叉树的后序遍历序列可以用于构造表达式树,实现表达式的计算等。
二叉树的遍历实验报告
二叉树的遍历实验报告一、实验目的1.了解二叉树的基本概念和性质;2.理解二叉树的遍历方式以及它们的实现方法;3.学会通过递归和非递归算法实现二叉树的遍历。
二、实验内容1.二叉树的定义在计算机科学中,二叉树是一种重要的数据结构,由节点及它们的左右儿子组成。
没有任何子节点的节点称为叶子节点,有一个子节点的节点称为一度点,有两个子节点的节点称为二度点。
二叉树的性质:1.每个节点最多有两个子节点;2.左右子节点的顺序不能颠倒,左边是父节点的左子节点,右边是父节点的右子节点;3.二叉树可以为空,也可以只有一个根节点;4.二叉树的高度是从根节点到最深叶子节点的层数;5.二叉树的深度是从最深叶子节点到根节点的层数;6.一个深度为d的二叉树最多有2^(d+1) -1个节点,其中d>=1;7.在二叉树的第i层上最多有2^(i-1)个节点,其中i>=1。
2.二叉树的遍历方式二叉树的遍历是指从根节点出发,按照一定的顺序遍历二叉树中的每个节点。
常用的二叉树遍历方式有三种:前序遍历、中序遍历和后序遍历。
前序遍历:先遍历根节点,再遍历左子树,最后遍历右子树;中序遍历:先遍历左子树,再遍历根节点,最后遍历右子树;后序遍历:先遍历左子树,再遍历右子树,最后遍历根节点。
递归算法:利用函数调用,递归实现二叉树的遍历;非递归算法:利用栈或队列,对二叉树进行遍历。
三、实验步骤1.创建二叉树数据结构并插入节点;2.实现二叉树的前序遍历、中序遍历、后序遍历递归算法;3.实现二叉树的前序遍历、中序遍历、后序遍历非递归算法;4.测试算法功能。
四、实验结果1.创建二叉树数据结构并插入节点为了测试三种遍历方式的算法实现,我们需要创建一个二叉树并插入节点,代码如下:```c++//定义二叉树节点struct TreeNode {int val;TreeNode* left;TreeNode* right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}};递归算法是实现二叉树遍历的最简单方法,代码如下:```c++//前序遍历非递归算法vector<int> preorderTraversal(TreeNode* root) {stack<TreeNode*> s;vector<int> res;if (!root) return res;s.push(root);while (!s.empty()) {TreeNode* tmp = s.top();s.pop();res.push_back(tmp->val);if (tmp->right) s.push(tmp->right);if (tmp->left) s.push(tmp->left);}return res;}4.测试算法功能return 0;}```测试结果如下:preorderTraversal: 4 2 1 3 6 5 7inorderTraversal: 1 2 3 4 5 6 7postorderTraversal: 1 3 2 5 7 6 4preorderTraversalNonRecursive: 4 2 1 3 6 5 7inorderTraversalNonRecursive: 1 2 3 4 5 6 7postorderTraversalNonRecursive: 1 3 2 5 7 6 4本次实验通过实现二叉树的递归和非递归遍历算法,加深了对二叉树的理解,并熟悉了遍历算法的实现方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
preorder(p->rchild);
}
}
//中序遍历
void inorder (bitree *root)
{
bitree *p;
p=root;
if(p!=NULL)
{
inorder(p->lchild);
cout<<p->data<<" ";
inorder(p->rchild);
}
}
//后序遍历
void postorder(bitree *root)
{
bitree *p;
p=root;
if(p!=NULL)
{
postorder(p->lchild);
postorder(p->rchild);
cout<<p->data<<" ";
}
}
void main()
{
//以下为验证程序
bitree *root;
cout<<"建立一棵根为root"<<endl;
root=CreatBiTree();
cout<<"\n";
preorder(root);
cout<<"\n";
inorder(root);
cout<<"\n";
postorder(root);
cout<<endl;
}报告评分:
typedef struct bitree
{
char data ;
bitree *lchild;
bitree *rchild;
}bitree;
bitree *CreatBiTree()
{
bitree *T;
char ch ;//结点的data域值
cin>>ch;
if(ch==',')T=NULL;
else {
二、实验项目名称:二叉树的遍历和应用
三、实验学时:4学时
四、实验原理:
二叉树的遍历和应用
五、实验目的:
1、掌握二叉树的数据类型描述及特点。
2、掌握二叉树的存储结构(二叉链表)的建立算法。
3、掌握二叉链表上二叉树的基本运算的实现。
六、实验内容:
阅读后面的程序,并将其输入到计算机中,通过调试为下面的二叉树建立二叉链表,并用递归实现二叉树的先序、中序、后序三种遍历。
十、实验结论:
该程序可以完成线性表的常规功能,且增加了异常处理,在异常情况下,例如:
表空,删除结点号不合法或出界,删除数值未找到等,这些情况下都能作出处理。可以通过边界测试。
十一对本实验过程及方法、手段的改进建议:
对书中程序的几点错误做了改正,见源程序。
附:源程序
#include <iostream.h>
江南大学通信与控制工程学院
标准实验报告
(实验)课程名称:计算机软件技术基础
实验名称:二叉树的遍历和应用
班级:自动化
姓名:李玉书
学号:03
指导教师:卢先领
江南大学通信与控制学院
江南大学
实验报告
学生姓名:张晓蔚学号:0704090304
实验地点:信控机房实验时间:90分钟
一、实验室名称:信控学院计算中心
七、实验器材(设备、元器件):
计算机
八、实验步骤:
1、输入示例程序
2、构建按序插入函数实现算法
3、用C语言实现该算法
4、与源程序合并,编译,调试
5、测试,查错,修改
6、生成可执行文件,通过综合测试,完成实验
九、实验数据及结果分析:
测试用例
初始数据:ABDH,,I,,EJ,,K,,CFL,,,G,,
测试结果
T=new bitree;
T->data=ch;
T->lchild=CreatBiTree();
T->rchild=CreatBiTree();
}
return r(bitree *root)
{
bitree *p;
p=root;
if(p!=NULL)
{
cout<<p->data<<" ";
指导教师签字: