第三章 几种常见的概率分布律

合集下载

第三章几种常见的概率分布律解读

第三章几种常见的概率分布律解读
二项分布变量的一些例子:
(1)连续抛硬币100次,统计总共出现正面的次数。次数X服从二项分布。 (2)调查250名新生婴儿的性别,记男婴的总数为X,则X服从二项分布。
(3)调查n枚种蛋的出雏数,出雏数X服从二项分布。 (4)n头病畜治疗后的治愈数X,X服从二项分布。 (5)n尾鱼苗的成活数X,X服从二项分布。
乘法法则
P(ssff) P(s)P(s)Pf()P(f) (1) (1) 2 (1)2
其它5种方式发生的概率也是如此。
因此,在n 4次试验中取得x 2次成功的概率为
P(2) C42 2 (1)42
** 由此类推到一般情形,在n此贝努利试验中, 共获得x次成功的概率是
P(x) Cnx x (1 )nx
概率
X的概率分布图为
二项分布
0.4
0.35
0.3
0.25
0.2 0.15
0.1
0.05
0
0
1
2
3
4
获得正面的次数x
注意:
0.5时,分布对称; 0.5时,分布偏斜:
0.5时,正偏 0.5时,负偏
5 二项分布变量的平均数和标准差
• 平均数 E( X ) n
定义 n
证明: E( X ) P(x)x x0
以n=4,x=2为例,欲求P(x=2)=?。
在4次贝努利试验里,获得 2次成功的方式有 C42种:
ssff sfsf sffs fssf fsfs ffss
注意:C42是从四个位置选取两个位置的组合方式。
依据计算公式Cnx
n! x!(n
, x)!
C42
4! 2!2!
4 3 21=6 21 21
每种方式发生的概率为:

几种常见的概率分布率

几种常见的概率分布率

点数(x)
率(f)
μx P (x)= e –μ . x!
N × P (x)
0
57
0
P(0)=e-3.87 ×3.870/0!=0.0209 54.5072
1
203
203 P(0)=e-3.87 ×3.871/1!=0.0807 210.4656
2
283
766 P(0)=e-3.87 ×3.872/2!=0.1562 407.3696
3
525
1575 P(0)=e-3.87 ×3.873/3!=0.2015 525.5120
4
532
2128 P(0)=e-3.87 ×3.874/4!=0.1949 508.2992
5
408
2040 P(0)=e-3.87 ×3.875/5!=0.1509 393.5472
6
273
1638 P(0)=e-3.87 ×3.876/6!=0.0973 253.7584
几种常见的概率分布率
几种常见的概率分布率

几种常见的概率分布率
几种常见的概率分布率
几种常见的概率分布率
几种常见的概率分布率
几种常见的概率分布率
几种常见的概率分布率
几种常见的概率分布率
几种常见的概率分布率
几种常见的概率分布率
几种常见的概率分布率
几种常见的概率分布率
2. 普阿松分布:----小概率事件( p≦ 0.1)符合普阿松式分布.
nk
x------在n次抽样中某一种类型的个体数.
μ= N
n k (N-K)(N-n)
S2 = N2(N-1) ^ nk N= x
N------^群体大小的估计. K------加有标记的个体数.

几种常见的概率分布律

几种常见的概率分布律

的概率,其值为 ϕ4
=
⎛ ⎜⎝
1 2
⎞4 ⎟⎠
=1 16

ϕ 3 (1 − ϕ ) 表示有三个显性基因和一个隐性基因组合出现的概率。其中
显形基因有三个,隐性基因一个,该项的系数表示这样的组合共有四种。
它们是RRYy,RRyY,RrYY和rRYY。这四种组合的概率均为

ϕ
3
(1

ϕ
)
=
⎛ ⎜⎝
1 2
⎞3 ⎟⎠
上式正是二项式展开式的第x+1项,因此产生理论分布中“二项分布”这一名 称。故该式称为二项分布的概率函数。
• 二项展开式,
⎡⎣ϕ +(1−ϕ)⎤⎦n =Cn0ϕ0 (1−ϕ)n +Cn1ϕ1 (1−ϕ)n−1 +"+Cnxϕx (1−ϕ)n−x +"+Cnnϕn (1−ϕ)0 = p(0) + p(1) + p(2) +"+ p( x) +"+ p(n)
⎛ ⎜⎝
1 2
⎞10 ⎟⎠
=
2−10
=
0.0009766
( ) p(1)
=
10! ⎛
1!(10 −1)!⎜⎝
1 2
⎞1 ⎟⎠
⎛ ⎜⎝
1 2
⎞9 ⎟⎠
=
10
2−10
= 0.0097656
( ) p(2) =
10! ⎛ 1 ⎞2 ⎛ 1 ⎞8
2!(10 − 2)!⎜⎝ 2 ⎟⎠ ⎜⎝ 2 ⎟⎠
= 45
2−10
(1) 二项分布图形的形状取决于P 和 n 的大小; (2) 当P = 0.5时,无论 n 的大小, 均为对称分布; (3) 当P ≠ 0.5,n 较小时为偏态分 布,n 较大时逼近正态分布。

生物统计学 几种常见的概率分布律

生物统计学 几种常见的概率分布律

非此即彼
随机试验有两种互不相容不同结果。 重要条件: 1. 每次试验两个结果(互为对立事件),每一种结果在每次 试验中都有恒定的概率; 2. 试验之间应是独立的。
P(AB)=P(A)P(B)
2.14
二项分布的概率函数
服从二项分布的随机变量的特征数
方差 当以比率表示时
偏斜度
了解
峭度
做题时请先 写公式,代 数字,出结 果,描述结 果的意义。
正态分布表的单侧临界值
上侧临界值
下侧临界值
双侧临界值
§3.5 另外几种连续型概率分布
指数分布(exponential distribution)
了解
Γ分布(gamma distribution)
了解
了解
随着p的增加, Γ分布愈来愈 接近于正态分 布。
§3.6 中心极限定理 (Central Limit Theorem) 假设被研究的随机变量X可以表 示为许多相互独立的随机变量Xi 的和。如果Xi的数量很大,而且 每一个别的Xi对于X所起的作用 又很小,则X可以被认为服从或 近似地服从正态分布。
作业
P51
3.1, 3.2(算出各表现型概率即可); 3.12, 3.18
正态分布的密度函数和分布函数 正态分布(normal distribution) 高斯分布(Gauss distribution) 正态曲线(normal curve) 连续型概率分布律 两头少,中间多,两侧对称
了解
标准正态分布
/fai/
标准正态分布的特性
ቤተ መጻሕፍቲ ባይዱ
正态分布表的使用方法
正态分布标准化
生物统计学
第三章 几种常见的概率 分布律
2010.9

概率分布函数

概率分布函数

第三章 几种重要的概率分布
例 4 一页书上印刷错误的个数 X 是一个离散型随机变量,它服从参数 为 的泊松分布,一本书共有 300 页,有 21 个印刷错误,求任取 1 页 书上没有印刷错误的概率。 21 7 解:由于 300 页中有 21 个印刷错误,从而平均每页有 个印刷
300 100 7 错误,即离散型随机变量 X 的数学期望 E ( X ) , 100 又由于离散型随机变量 X 服从参数为 的泊松分布,因此数学期望
由概率加法公式得:
n
m m nm b(m; n, p) C n p q , 其中m 0,1,2,, n; q 1 p
m m nm 且 b(m; n, p) Cn p q ( p q) n 1 n
概率 b(m; n, p) 实际上是二项式 ( p q) n 的展开式中的通项公式。
2 2
返回主目录
第三章 几种重要的概率分布
小结与提问: 本次课,我们介绍了贝努里概型与二项公式、二项分布。 二项分布是离散型随机变量的概率分布中的重要分布,我们 应掌握二项分布及其概率计算,能够将实际问题归结为贝努
里概型,然后用二项分布计算有关事件的概率、数学期望与
方差。。 课外作业:P150 习题三 3.01,3.02,3.03,3.04,3.05
m m nm b(m; n, p) C n p q , 其中m 0,1,2,, n; q 1 p
m 0
m 0
称为概率计算的二项公式。
返回主目录
第三章 几种重要的概率分布
二、二项分布
定义 如果随机变量 X 的概率分布为
i PX i C n p i q n i
(0 p 1, p q 1)

第三章第二次课 几种常见的理论分布

第三章第二次课 几种常见的理论分布

第三章第二次课: 回顾概率基础知识,通过离散型和连续型随机变量的概率分布引出本次讲授内容。

第二节几种常见的理论分布重点:掌握正态分布、二项分布、泊松分布的定义、特点和概率计算。

难点:二项分布的概率函数特征,正态分布的特征。

一、二 项 分 布一)、贝努利试验及其概率公式将某随机试验重复进行n 次,若各次试验结果互不影响, 即每次试验结果出现的概率都不依赖于其它各次试验的结果,则称这n 次试验是独立的。

对于n 次独立的试验,如果每次试验结果出现且只出现对立事件A 与A 之一,在每次试验中出现A 的概率是常数p (0<p <1),因而出现对立事件A 的概率是1-p=q ,则称这一串重复的独立试验为n 重贝努利试验,简称贝努利试验(Bernoulli trials )。

在生物学研究中,我们经常碰到的一类离散型随机变量,如入孵n 枚种蛋的出雏数、n 头病畜治疗后的治愈数、n 尾鱼苗的成活数等,可用贝努利试验来概括。

在n 重贝努利试验中,事件A 可能发生0,1,2,…,n 次,现在我们来求事件A 恰好发生k (0≤k ≤n )次的概率P n (k)。

先取n =4,k =2来讨论。

在4次试验中,事件A 发生2次的方式有以下24C 种: 21A A 43A A 4321A A A A 4321A A A A 4321A A A A 4321A A A A 4321A A A A其中A k (k =1,2,3,4)表示事件A 在第k 次试验发生;k A (k =1,2,3,4)表示事件A 在第k 次试验不发生。

由于试验是独立的,按概率的乘法法则,于是有 P (21A A 43A A )=P (4321A A A A )=…= P (4321A A A A )= P (1A )·P (2A )·P (3A )·P (4A )=242-qp又由于以上各种方式中,任何二种方式都是互不相容的,按概率的加法法则,在4 次试验中,事件A 恰好发生2次的概率为)2(4P = P (21A A 43A A )+P (4321A A A A )+…+ P (4321A A A A )=24C 242-qp一般,在n 重贝努利试验中,事件A 恰好发生k (0≤k ≤n)次的概率为)(k P n =kn C kn k qp - k =0,1,2…,n (3-14)若把(4-14)式与二项展开式∑=-=+nk kn k k n nqp C p q 0)(相比较就可以发现,在n 重贝努利试验中,事件A 发生k 次的概率恰好等于np q )(+ 展开式中的第k +1项,所以也把(4-14)式称作二项概率公式。

概率论第三章第3,4节条件分布,独立性

概率论第三章第3,4节条件分布,独立性
1,2,
P X m, Y n q n2 p2 , n 2,3,; m 1,2,n 1
目 录 前一页 后一页 退 出
第三章 随机变量及其分布
§3条件分布
例3 设某班车起点站上车人数 X 服从参数为 ( 0) 的泊松分布,每位乘客在中途下车的概率为 p(0 p 1),
1 f ( x, y) , x y x, f ( y | x ) 当0 x 1, Y | X 2x f X ( x) 其它。 0,
1 P{ X , Y 0} 1 2 ( 3) P{ X | Y 0} 2 P{Y 0} y
1 1 (1 ) 2 3 2 2 1 4 1 1 2
目 录 前一页 后一页 退 出
第三章 随机变量及其分布
§3条件分布
P{ X x , y Y y } FX |Y ( x | y ) lim 0 P{ y Y y }
F ( x , y ) lim [F ( x, y ) F ( x, y )]/ 2 y 0 d lim [ F ( y ) F ( y )] / 2 Y Y FY ( y ) 0 dy y x x f ( u, v )dudv f ( u, y )du y . fY ( y) fY ( y)
n 2
2
第三章 随机变量及其分布
§3条件分布
在 X= m 条件下随机变量Y 的条件分布律为
当m=1,2,3,… 时,
P{Y n | X m}
P{ X m ,Y n} P{ X m }
p 2 q n 2 n m 1 pq , m 1 pq

4 第三章 几种常见的概率分布律

4 第三章 几种常见的概率分布律

φ-事件A发生的概率(每次试验都是恒定的)
1-φ- 事件 A 发生的概率 p(y)-y的概率函数=P(Y=y)
F(y)= P(Y≤y)=
p( yi )
yi y
5
例3.1 从雌雄各半的100只动物中,每次抽一只, 做放回式抽样,若抽样试验共进行10次,问其中 包括0,1,2,3只雄性动物的概率是多少?包括 3只及3只以下的概率是多少?
1
e dz y

(
y )2 2 2

2
24
F(y) 1
1 2

y
25
正态分布的特性
当y=μ时,f(y)有最大值,正态分布曲线是以平均数 为中心的分布。
当y不论向哪个方向远离μ时, f(y)的值都减小,但永 远不会等于0,正态分布以y轴为渐近线, y的取值区 间(-∞,+∞)。
36
标准正态分布的概率计算
如:设y服从标准正态分布,求概率 P(y>0.3) 。 解:标准正态分布关于y=0对称,所以
P(y>0.3)=P(y<-0.3)= (0.30) 0.3821
37
标准正态分布的概率计算
例:设y服从标准正态分布,求概率P(-1.83 <y <0.3) 。
解:即求标准正态分布曲线下在(-1.83,-0.30)范围 内的面积
k,
k
1,
k

2,
...
20
第四节 正态分布
第四节 正态分布
正态分布:两头少,中间多,两侧对称。 一、正态分布的密度函数和累积分布函数
正态分布密度函数
f (y)
1
e
(
y )2 2 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x n
每种方式发生的概率为:
P(ssff)
乘法法则
P(s)P(s)P( f)P(f) (1 ) (1 ) 2 (1 ) 2
其它5种方式发生的概率也是如此。
因此,在n 4次试验中取得 x 2次成功的概率为
2 2 P(2) C4 (1 ) 42
解:设2000 株幼苗的成材数为 X , 则X服从二项分布。
根据题意, n 2000 , 0.70 。
平均数 n 2000 0.70 1400
标准差 n(1 ) 2000 0.7 0.3 20.49
第二节 泊松分布
(Poisson Distribution)
解:一张片子里看到的 微粒数X,可以看成是一定空间 里的稀有 事件数,所以它服从泊 松分布,且有 3。
P( X 3)
xe
x!
33 e 3 0.2240 3!
P ( X 3) P( X 0) P ( X 1) P ( X 2) 30 e 3 31 e 3 32 e 3 0! 1! 2! 0.4232
注意:
0.5时,分布对称; 0.5时,分布偏斜:
概率
0.5时,正偏 0.5时,负偏
5 二项分布变量的平均数和标准差
• 平均数
E ( X ) n
定义 n
证明: E ( X )
P( x) x
x 0
n! x (1 ) n x x x 0 x!( n x)!
2. 二项分布的常用记号
n:
x:
贝努利试验的次数 ;
二项分布变量 X的取值,即总共获得“ 成功”的次数;
:
1 - :
一次贝努利试验中获得 “成功”的概率;
显然是一次试验中获得 “失败”的概率;
P( x) :
总共获得x次“成功”的概率。
3. 二项分布的概率函数P(x)
• 怎样得到P(x)?
以n=4,x=2为例,欲求P(x=2)=?。
n n! n! x n x 2 (1 ) [(x x)] x (1 ) n x x x 2 x!( n x )! x 1 x!( n x )! n (n 2)! (n 1)! x2 n x n(n 1) (1 ) n x 1 (1 ) n x x 2 ( x 2)!( n x )! x 1 ( x 1)!( n x )! 2 n n

x
x!
e , 证明见40页。
• 泊松分布的平均数

=E ( X )

证明:E ( X ) P( x) x
x 0 x 0
xe
x!
x

e
x 1

x
( x 1)!

e
x 1
x1
( x 1)!
t x 1
第三章 几种常见的概率分布律
回顾一下,在上一章里讲了变量及其概率分布的一 般概念。
• 离散变量用概率函数来研究,概率函数定义了这个变量取
每个值的概率;
• 连续变量用密度函数(一条曲线)来研究,通过这条曲线我们
可以求得变量在某个特定区间取值的概率。
在这一章里,我们将介绍一些在实际研究中应用最 广的变量类型及其概率分布。
n
n
n(n 1) 2 n n 2 2 n 2 n
2 Var( X ) n 2 2 n 2 n (n ) 2 n n 2 n (1 )
例三,某树种幼苗成材率为70%,现种植 2000株,问成材幼苗数的平均值和标准差是 多少?
e
t 0
t
t!
泰勒级数

e e

• 泊松分布的方差和标准差 2=Var( X )

证明: 2 Var( X ) E( X 2 ) [ E( X )]2
E[ X ( X 1) X ] [ E( X )]2 E[ X ( X 1)] E( X ) [ E( X )]2
0 0 1 1 n n [ (1 )]n Cn (1 )n Cn (1 )n1 Cnx x (1 )n x Cn (1 )0
(2) P( x) Cnx x (1 ) n x [ (1 )]n 1n 1
大约有 100 P( X 3) 100 0.4232 42.32(张)
第三节 正态分布
(Normal Distribution)
正态分布是一种最重要的连续型变量的概率分布。
• 在生物科学研究里,有许多变量是服从或近似 服从正态分布的,如水稻产量、小麦株高、玉 米百粒重等; • 许多统计分析方法是以正态分布为基础的。 • 不少随机变量的概率分布在样本容量增大时趋于 正态分布。
n 1
n 1
(n 1)! n t (1 ) n1t t 0 t!(n 1 t )!
n[ (1 )]n1
n
• 方差和标准差
Var( X ) n (1 )
2
n (1 )
证明: 2 Var( X ) E( X 2 ) [ E( X )]2
* * 由此类推到一般情形, 在n此贝努利试验中, 共获得x次成功的概率是 P( x) C (1 )
x n x n x
关于P( x) C (1 )
x n x
n x
的讨论:
( 1 )从形式上来说, Cnx x (1 ) n x 是二项式 [ (1 )]n 展开 的第x 1项,所以有“二项分布 ”这个名称。
泊松分布变量X只取零和正整数:0,1,2…,其概率 函数为 x
P( x)

x!
e

其中 0, e 2.7182 是自然对数底数。
注意:P( x)怎么得到的呢?泊松分 布可以用二项分布在 n , 0, n 的情形来近似。在这种 情形下C (1 )
x n x n x
2 在4次贝努利试验里,获得 2次成功的方式有 C4 种:
ssff
sfsf
sffs
fssf
fsfs
ffss
2 注意 :C 4 是从四个位置选取两个 位置的组合方式。
n! 4! 4 3 2 1 2 依据计算公式C , C4 =6 x!(n x)! 2!2! 2 1 2 1
二项分布 泊松分布
正态分布
离散变量
连续变量
超几何分布 负二项分布 指数分布
第一节 二项分布
(Binomial Distribution)
1.贝努利试验和在什么情形下应用二项分布
•贝努利试验(Bernoulli trial):试验只有两种可能的结果, 并且发生每种结果的概率是一定的。 例如:抛一枚硬币,看得到正面还是反面; 掷一次骰子,看得到6还是没有得到6; 随机抽查一名婴儿的性别,看是男是女 在贝努利试验里,两种结果可分别称为“成功”和“失败”, 或者“事件A发生”和“事件A没有发生”。
另外一种方法: P (至少有1粒出苗)=1-P(没有出苗)=1 P( x 0)
0 1 C6 0.670 0.336 1 0.0013 0.9987
这说明每穴种6粒种子,几乎肯定出苗。
4 二项分布的概率分布表和概率分布图
除以P(x)表示,二项分布也可通过表或图来直观显示。 例如,抛硬币4次,获得的正面数记为X,则X服从二项 分布。X的概率分布表为
• 什么情形时应用二项分布:实验中进行了n次独立的贝努利 试验,统计在这n次试验中总共获得了多少次“成功”。“成 功”的次数,记为变量X;X称为二项分布变量,X的概率分布 称为二项分布。 X的可能取值为0,1,2,…,n。所以X是个离散型变量。
二项分布变量的一些例子:
(1)连续抛硬币100次,统计总共出现正面的次数。次数X服从二项分布。 (2)调查250名新生婴儿的性别,记男婴的总数为X,则X服从二项分布。 (3)调查n枚种蛋的出雏数,出雏数X服从二项分布。 (4)n头病畜治疗后的治愈数X,X服从二项分布。 (5)n尾鱼苗的成活数X,X服从二项分布。
定义 n
E( X )
2
ห้องสมุดไป่ตู้2 P ( x ) x x 0
n! x (1 ) n x x 2 x 0 x!(n x)!
n
n! x (1 ) n x [(x 2 x) x] x 0 x!(n x)!
n n! n! x (1 ) n x [(x 2 x)] x (1 ) n x x x 0 x!(n x)! x 0 x!(n x)!
7 10 7
107
10! 0.757 0.253 7!3! 0.2503
所以,窝产仔10头,有7头白猪的概率是0.2503。
例二,有一批玉米种子,出苗率为0.67。现任取6粒 种子种1穴中,问这穴至少有1粒种子出苗的概率是 多少?
解:根据题意,这是一 个二项分布的问题。 视出苗为成功,有 n 6, =0.67。 设出苗的种子数为 x, 则x服从二项分布。
因此,在统计学里,正态分布无论在理论研究上还是在实际 应用中均占有重要的地位。
1 正态分布的定义与主要特征
• 定义:若变量X的概率分布的密度函数为
x 0 1 2
P(x) 0.062 0.250 0.375
n 4, 0.5,
0 P(0) C4 0.500.54 0.062
3 4
0.250 0.062
X的概率分布图为
相关文档
最新文档