高频谐振功率放大器实验
高频功率放大器实验
实验三高频功率放大器一、实验目的1、掌握丙类谐振功率放大器的基本工作原理;2、掌握丙类谐振功率放大器的负载特性和振幅特性;3、掌握丙类谐振功率放大器集电极效率的测试和计算方法。
二、实验仪器1、示波器一台2、数字万用表一块3、频谱分析仪一套4、高频毫伏表一台 4、信号发生器一台三、实验原理及其相关知识在通信系统中, 谐振功率放大器经常位于通信发射机的末级, 其目的就是使要输出的高频大信号能获得足够的高频功率。
功率放大器是依靠激励信号对放大管电流的控制, 起到把集电极电源的直流功率转换成负载回路的交流功率的放大器。
功率放大器一般分为甲类、乙类、甲乙类、丙类等工作方式,为了进一步提高工作效率还有丁类、戊类放大器。
甲类、乙类功率放大器我们在上学期的实验都完成过, 现在比较一下和它们丙类功率放大器的不同:甲类放大器:输入信号幅度小,输出信号不失真。
但是其工作效率较低。
乙类和丙类放大器:输入信号幅度大,工作效率较高,但是输出信号失真大。
特别丙类谐振功率放大器, 电压导通角较小, 工作效率最高, 通信发射机的高频末级功率放大器通常采用丙类工作方式。
另外, 对于谐振功率放大和小信号调谐放大器的对比:两种放大器的放大对象都为高频信号, 负载也均是谐振回路; 不同之处主要在于激励信号的幅度大小不同, 电路的静态工作点不同,动态范围不同。
在实验过程中要认真体会。
高频功率放大器与低频功率放大器的相同点:都是为了得到高输出功率和高转换效率, 激励信号也同为大信号;不同点:⑴工作频率与相对频宽不同;⑵放大器的负载不同;⑶放大器工作状态不同。
1、丙类谐振功率放大器的工作特点功率放大器的最终目的是:电路与系统中, 如果具有相同直流功率, 那么所设计放大器的转换效率越高, 输出的交流功率就越大。
丙类放大器就是这样一种放大器, 如图 3-1所示, 这是一个典型的丙类放大器的原理图:负载为 LC 谐振回路, 基极偏置为负偏压, 半通角θc < 90°,放大器的基极没有设置直流偏置电路,仅在晶体管基极设置了一个偏置电阻,从电路的形式来看, 当没有载波信号输入时, 放大器处于截止状态, 集电极和发射级没有电流流过, 集电极也没有交流信号输出。
高频实验高频谐振功率放大器
高频功放的工作状态: 高频功放的工作状态:
高频功放的工作状态有三种,分别是: 高频功放的工作状态有三种,分别是: (1) 欠压工作状态 特点:晶体管的工作范围在放大区和截止区。 特点:晶体管的工作范围在放大区和截止区。 (2) 过压工作状态 特点: 晶体管的动态范围延伸到饱和区 特点:
− θC
ic
三、实验应知知识
三、实验应知知识
(2)高功放的主要技术指标与外部特性 高功放的主要技术指标与外部特性 1)高功放的主要技术指标 高功放的主要技术指标 高功放的 输出功率
高频功放的输出功率是指放大器的负载R 高频功放的输出功率是指放大器的负载RL上得到的最大不失真功 也就是集电极的输出功率, 率。也就是集电极的输出功率,即
ic Icmax ic1 ic2 ic3 Ico
故输出仍为不失 真的正弦波. 真的正弦波.
ωt
θc
θc
利用功放负载LC 利用功放负载LC 回路的选频功能, 回路的选频功能, 适当选择LC的参 适当选择LC的参 LC 数使之谐振与基 波频率, 波频率,
R
+
L Uc1
BT
C
-
-VBB
Ec
厚德博学 追求卓越
uBE = ub − U BB = −U BB + U bm cos+ t ω
由晶体管的转移特性曲线可知: 由晶体管的转移特性曲线可知:
ub
BT
+ UBE
_
_ ic
-VBB
Ec
当 uBE < U BZ , i c = 0
当 uBE > UBZ , ic = gc (uBE − UBZ )
式中 gc 为:
θC
通信电子电路高频谐振功率放大器实验报告
实验室时间段座位号实验报告实验课程实验名称班级姓名学号指导老师高频谐振功率放大器预习报告实验目的1.通过实验,加深对丙类功率放大器基本工作原理的理解,掌握丙类功率放大器的调谐特性。
2.掌握输入激励电压,集电极电源电压及负载变化对放大器工作状态的影响。
3.通过实验进一步了解调幅的工作原理。
实验内容1.实验准备在实验箱主板上装上幅度调制与无线发射模块,接通电源即可开始实验。
2.测试前置放大级输入、输出波形高频信号源频率设置为6.3MHZ,幅度峰-峰值300mV左右,用铆孔线连接到1P05,用示波器测试1P05和1TP07的波形的幅度,并计算其放大倍数。
由于该级集电极负载是电阻,没有选频作用。
3. 激励电压、电源电压及负载变化对丙类功放工作状态的影响U对放大器工作状态的影响(1)激励电压bE=5V左右(用万用表测1TP08直流电压, 1W05 1K03置“右侧”。
保持集电极电源电压cR=10KΩ左右(1K04置“右侧”,用万用表测1TP11电阻, 1W6逆时针调到底),负载电阻L顺时针调到底,然后1K04置“左侧”)不变。
高频信号源频率1.9MHZ左右,幅度200mv(峰—峰值),连接至功放模块输入端(1P05)。
示波器CH1接1P08,CH2接1TP09。
调整高频信号源频率,使功放谐振即输出幅度(1TP08)U,观察1TP09电压波形。
信号源幅度变化最大。
改变信号源幅度,即改变激励信号电压b时,应观察到欠压、临界、过压脉冲波形。
其波形如图7-7所示(如果波形不对称,应微调高频信号源频率,如果高频信号源是DDS信号源,注意选择合适的频率步长档位)。
实验报告1.认真整理实验数据,对实验参数和波形进行分析,说明输入激励电压、集电极电源电压,负载电阻对工作状态的影响。
2.用实测参数分析丙类功率放大器的特点。
3.总结由本实验所获得的体会。
c实验报告一.实验目的1.通过实验,加深对丙类功率放大器基本工作原理的理解,掌握丙类功率放大器的调谐特性。
电子信息专业电子线路实验之-实验三、 高频谐振功率放大器实验
实验二 高频谐振功率放大器实验一、实验目的1、进一步理解谐振功率放大器的工作原理及负载阻抗和激励信号电压变化对其工作状态的影响。
2、掌握谐振功率放大器的调谐特性、放大特性和负载特性。
二、实验内容1、 调试谐振功放电路特性,观察各点输出波形。
2、 改变输入信号大小,观察谐振功率放大器的放大特性。
3、 改变负载电阻值,观察谐振功率放大器的负载特性。
三、实验仪器1、BT-3频率特性测试仪(选项) 一台2、高频电压表(选项) 一台3、20MHz 双踪模拟示波器 一台4、万用表 一块5、调试工具 一套四、实验原理利用选频网络作为负载回路的功率放大器称为谐振功率放大器,这是无线电发射机中的重要组成部分。
根据放大器电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型的功率放大器。
电流导通角θ愈小,放大器的效率η愈高。
如甲类功放的θ=180,效率η最高也只能达到50%,而丙类功放的θ< 90º,效率η可达到80%,甲类功率放大器适合作为中间级或输出功率较小的末级功率放大器。
丙类功率放大器通常作为末级功放以获得较大的输出功率和较高的效率。
图3-1为由两级功率放大器组成的高频功率放大器电路,其中晶体管Q 1组成甲类功率放大器,晶体管Q 2组成丙类谐振功率放大器,这两种功率放大器的应用十分广泛,下面介绍它们的工作原理及基本关系式。
1、甲类功率放大器(1)静态工作点如图3-1所示,晶体管Q 1组成甲类功率放大器,工作在线性放大状态。
其中R B1、R B2为基极偏置电阻;R E1为直流负反馈电阻,以稳定电路的静态工作点。
R F1为交流负反馈电阻,可以提高放大器的输入阻抗,稳定增益。
电路的静态工作点由下列关系式确定:()111E CQ E F EQ EQ R I R R I U ≈+=(3-1)式中,R F1一般为几欧至几十欧。
BQ CQ I I β=(3-2)图3-1 高频功率放大器V U U EQ BQ 7.0+= (3-3))(11E F CQ CC CEQ R R I U U +-= (3-4)(2)负载特性如图3-1所示,甲类功率放大器的输出负载由丙类功放的输入阻抗决定,两级间通过变压器进行耦合,因此甲类功放的交流输出功率P 0可表示为: B H P P η'=0 (3-5)式中,P H ′为输出负载上的实际功率,ηB 为变压器的传输效率,一般为ηB =0.75~0.85。
高频功率放大器实验(共10张PPT)
1.进一步了解高频功率放大器(丙类)的基本工作原理; 5MHz ,Uip-p≈2V的正弦信号。 负载特性曲线如下图所示:
测试条件:UCC = 12V,RL先用75Ω,回路处于谐振,
并在不失真状态下进行测试。分别改变RL的值,完成实
验指导书中的测试内容。
测试条件:UCC = 12V,RL=75Ω, 测试条件:UCC = 12V,RL=75Ω,回路处于谐振,并在临界状态下进行。 高频功率放大器实验板G2 1.进一步了解高频功率放大器(丙类)的基本工作原理; 导通角θC、输出功率Po及效率η的测量 3)效率ηC的测量:
三种工作状态波形
3.导通角θC、输出功率Po及效率η的测量
高频功率放大器
一、实验目的
1.进一步了解高频功率放大器(丙类)的基 本工作原理;
2.掌握高频功率放大器的调整方法和性能指 标的测试方法;
3.了解电源电压UCC、激励信号U bm及负载 RL对高频功率放大器的影响。
二、实验原理
1.实验电路图
高频功率放大器是发射 机的一个重要组成部分。它 的任务是:以高效率输出最 大的高频功率。由于高频功 放往往是放大高频窄带信号, 用谐振回路作为集电极的负 载,因此,高频功率放大器 几乎都采用导通角θ≤ 的 丙类工作状态。虽功率增益 比甲类和乙类小,但效率却
5.选做内容:
激励信号U bm对高频功率放大器的响 应的测试。
测试条件:UCC = 12V,RL=75Ω,回路处于谐振,并在临界状
态 测下试进。行。分别改变Uip-p的值,完成实验指导书中表1-34内容的
实验报告要求见实验指导书。
高频功率放大器实验板G2
2.三种工作状态的观测
实验三丙类高频功率放大器实验
实验三 丙类高频功率放大器实验一. 实验目的1.通过实验,加深对于高频谐振功率放大器工作原理的理解。
2.研究丙类高频谐振功率放大器的负载特性,观察三种状态的脉冲电流波形。
3.了解基极偏置电压、集电极电压、激励电压的变化对于工作状态的影响。
4.掌握丙类高频谐振功率放大器的计算与设计方法。
二。
预习要求:1.复习高频谐振功率放大器的工作原理及特点。
2.熟悉并分析图3所示的实验电路,了解电路特点。
三.电路特点及实验原理简介在高频范围内为获得足够大的高频输出功率,必须采用高频放大器,高频功率放大器主要用于发射机的未级和中间级,它将振荡产生的信号加以放大,获得足够高频功率后,再送到天线上辐射出去。
另外,它也用于电子仪器作未级功率放大器。
高频功率放大器要求效率高,输出功率大。
丙类放大器它是紧紧围绕如何提高它的效率而进行的。
高频功率放大器的工作频率范围一般为几百kHz —几十MHz 。
一般都采用LC 谐振网络作负载,且一般都是工作于丙类状态,如果要进一步提高效率,也可工作于丁类或戊类状态。
1.电路特点本电路的核心是谐振功率放大器,在此电路基础上,将音频调制信号加入集电极回路中,利用谐振功率放大电路的集电极调制特性,完成集电极调幅实验。
当电路的输出负载为天线回路时,就可以完成无线电发射的任务。
为了使电路稳定,易于调整,本电路设置了独立的载波振荡源。
2.高频谐振功率放大器的工作原理参见图1。
谐振功率放大器是以选频网络为负载的功率放大器,它是在无线电发送中最为重cR L要、最为难调的单元电路之一。
根据放大器电流导通角的范围可分为甲类、乙类、丙类等类型。
丙类功率放大器导通角θ<900,集电极效率可达80%,一般用作末级放大,以获得较大的功率和较高的效率。
图1中,Vbb 为基极偏压,Vcc为集电极直流电源电压。
为了得到丙类工作状态,Vbb应为负值,即基极处于反向偏置。
u b为基极激励电压。
图2示出了晶体管的转移特性曲线,以便用折线法分析集电极电流与基极激励电压的关系。
实验3 高频谐振功率放大器
实验三高频谐振功率放大器
1.实验目的
(1)进一步熟悉仿真电路的绘制及仪器的连接方法;
(2)学会利用仿真仪器测量高频功率放大器的电路参数、性能指标;(3)熟悉谐振功率放大器的三种工作状态及调整方法。
2.实验内容及步骤
(1)利用EWB软件绘制高频谐振功率放大器如附图所示的实验电路。
(2)对交流输入信号进行设置
正弦交流电有效值300mV;工作频率2MH Z;相位0°。
(3)对变压器进行设置
N设定为0.99;LE=1e-05H;LM=0.0005H
(4)其它元件参数编号和参数按附图所示设置。
(5)按下仿真电源开关,双击示波器,按附图所示的示波器参数设置,即可观察到图示的高频功率放大器集电极电流波形和负载上的电压波形。
由波形可说明电路的工作特点。
附图2 高频功率放大器集电极电流波形和负载上的电压波形(6)将输入信号设定为400mV,观察到的集电流电流波形和负载上的电压波形如图1.6所示。
说明高频功率放大器工作在过压状态的特点。
附图3 工作于过压状态时的集电极电流波形和负载上的电压波形。
高频实验报告_高频谐振功率放大器
1 1R0 8
1
1 1C0 5 1 1 1K0 1
2 3
1 1BG0 2
25
EC
1 1BG0 1
B
1
1 1TP0 4 1
3
1 1R0 2
1 1C0 6
1 1R0 7
+12 V1
1 1R0 9
1 1D0 1
1 1TP0 1
1
1 1C0 9
1 1R1 0
1 1P0 1
1 1R0 3
GND14 1
1 1R0 5
1 04 28 81 85 41 44 64 6 24 14 00 94 84 画出频率与电压的关系曲线如下:
(3)异常或错误处理:
1、一开始波形的出现不是非常明显,后来稍稍调整了一下高频信号源频率和幅度,波形就 变得非常明显了。
2、在“集电极电源电压 Ec 对放大器工作状态的影响”实验内容过程中,波形变化非常不明
实验 2 高频谐振功率放大器
实验名称
高频谐振功率 放大器
所属课程
高频电子 成绩评定
线路
电子信息工程专业电子班
实验桌编号
4
实验日期 2014 年 11 月 22 日
指导教师
***
学生姓名
**
学 号 *******
一、实验目的:
1、进一步理解谐振功率放大器的工作原理及负载阻抗,激励电压和集电极电源电压变化对 其工作状态的影响。 2、掌握丙类功率放大器的调谐特性和负载特性。
显,多次调试也是如此。 3、在“功放调谐特性测试”实验内容过程中,即便保持中心频率改变峰峰值,或者保持峰 峰值改变中心频率,波形始终没有出来,所以后来我就同时调整了一下中心频率和峰峰值, 当以12.9MHZ为中心频率,以600mV为峰峰值时,波形非常清楚,后面我以400KHZ为频率间隔。 因为若以200KHZ为频率间隔,变化不是很明显。
高频谐振功率放大器实验报告
高频谐振功率放大器实验报告一、实验目的本次实验的目的是理解高频谐振电路的工作原理,以及掌握高频谐振功率放大器的设计、测试和调试方法。
二、实验器材本次实验所需的器材有:1.信号发生器2.谐振电路3.功率放大器4.示波器5.负载三、实验原理1.高频谐振电路的原理高频谐振电路是利用电容和电感构成谐振回路,当电路频率与谐振频率相同时,电路呈现出较大的阻抗,使得谐振电路的输出电压和输出功率得到显著提高。
2.高频谐振功率放大器的原理高频谐振功率放大器是将谐振电路和功率放大器组合在一起,实现对输入信号的放大。
其输入信号经过谐振回路谐振后,输出到功率放大器,通过功率放大器进行放大,最终输出到负载。
四、实验过程1.搭建高频谐振功率放大器电路首先,将信号发生器连接到谐振电路的输入端,谐振电路的输出端连接到功率放大器的输入端,功率放大器的输出端连接到负载。
然后,根据实验要求调整信号发生器的频率,并观察谐振电路的输出波形,以及功率放大器的输出波形。
2.测试谐振频率通过改变电容和电感的数值,调整谐振电路的谐振频率。
在调整过程中,使用示波器观察输出波形,并记录谐振电路的谐振频率。
3.测试输出功率根据实验要求,改变负载的阻抗,测试功率放大器的输出功率,并记录输出功率随负载变化的曲线。
五、实验结果在实验过程中,我们对高频谐振功率放大器进行了测试和调试,并获得了以下实验结果:1.谐振频率为8MHz,放大倍数为10。
2.随着负载阻抗的增加,输出功率逐渐下降,最大输出功率为5W。
3.在工作频率附近,输出波形呈现出较高的稳定性和准确性。
六、实验结论通过本次实验,我们理解了高频谐振电路的工作原理,以及高频谐振功率放大器的设计、测试和调试方法。
并成功完成了谐振频率和输出功率的测试,为下一步的实验奠定了基础。
高频谐振功率放大器实验报告
高频谐振功率放大器实验报告高频谐振功率放大器实验报告引言:高频谐振功率放大器是一种用于放大高频信号的重要电子元件。
它的设计和性能对于无线通信、雷达系统以及其他高频应用至关重要。
本实验旨在通过搭建一个高频谐振功率放大器的电路并进行测试,探究其工作原理和性能。
实验器材和方法:本实验使用的器材包括信号发生器、功率放大器、频谱分析仪以及示波器等。
首先,我们搭建了一个基于共射极放大器的高频谐振功率放大器电路。
然后,通过调节信号发生器的频率和功率放大器的偏置电压,我们得到了不同频率下的输出信号。
最后,通过频谱分析仪和示波器对输出信号进行测量和分析。
实验结果和讨论:在实验过程中,我们观察到了以下几点结果和现象。
1. 频率响应特性:通过改变信号发生器的频率,我们得到了功率放大器在不同频率下的输出功率。
我们发现,功率放大器的输出功率在某个特定频率附近达到最大值,而在其他频率下则显著降低。
这是因为在谐振频率附近,谐振电路对输入信号具有最大的增益,从而实现了信号的放大。
2. 谐振电路的选择:在实验中,我们使用了一个LC谐振电路作为功率放大器的输出匹配网络。
这是因为LC谐振电路具有较高的品质因数,能够在特定频率下实现较高的增益和较低的损耗。
同时,通过调节电感和电容的数值,我们可以调整谐振频率和带宽,以满足不同应用的需求。
3. 非线性失真:在实验中,我们注意到在谐振频率附近,功率放大器的输出信号存在一定的非线性失真。
这是因为功率放大器在工作过程中会引入非线性元件,如晶体管等。
这些非线性元件会导致输入信号的失真和谐波的产生。
因此,在实际应用中,我们需要采取相应的补偿措施,以减小非线性失真对系统性能的影响。
4. 功率放大器的效率:通过测量输入功率和输出功率,我们计算了功率放大器的效率。
我们发现,在谐振频率附近,功率放大器的效率较高,可以达到70%以上。
这是因为在谐振频率附近,功率放大器的输入和输出阻抗匹配较好,能够最大程度地转移能量。
高频功率放大器 实验报告
高频功率放大器实验报告高频功率放大器实验报告引言:高频功率放大器是一种常见的电子设备,用于将低功率的信号放大到较高功率的水平。
在无线通信、雷达系统、无线电广播等领域,高频功率放大器发挥着至关重要的作用。
本实验旨在研究高频功率放大器的性能和特点,并通过实验验证其放大效果。
一、实验目的本实验的主要目的是:1. 了解高频功率放大器的工作原理和基本结构;2. 研究高频功率放大器的频率响应和增益特性;3. 通过实验验证高频功率放大器的放大效果。
二、实验装置和原理1. 实验装置:本次实验所使用的装置包括高频信号源、高频功率放大器、频谱分析仪等设备。
2. 实验原理:高频功率放大器的基本结构包括输入匹配网络、放大器芯片、输出匹配网络等组成。
输入匹配网络用于将输入信号的阻抗与放大器芯片的阻抗匹配,以提高能量传输效率。
放大器芯片是实现放大功能的核心部件,其内部包含多个晶体管级联,通过适当的偏置和电源供应,实现对输入信号的放大。
输出匹配网络用于将放大器芯片的输出阻抗与负载的阻抗匹配,以提高能量传输效率和输出功率。
三、实验步骤1. 搭建实验电路:按照实验要求,搭建高频功率放大器的电路。
连接高频信号源、高频功率放大器和频谱分析仪,并确保连接正确。
2. 调节输入信号:调节高频信号源的频率和幅度,使其符合实验要求。
注意调节信号源的输出阻抗与输入匹配网络的阻抗相匹配。
3. 测量放大器的频率响应:通过改变高频信号源的频率,测量高频功率放大器在不同频率下的输出功率和增益。
记录数据并绘制频率响应曲线。
4. 测量放大器的线性度:在实验中,改变输入信号的幅度,测量高频功率放大器在不同输入功率下的输出功率。
记录数据并绘制线性度曲线。
5. 测量放大器的稳定性:在实验中,改变负载的阻抗,测量高频功率放大器在不同负载条件下的输出功率和增益。
记录数据并分析稳定性。
四、实验结果与分析1. 频率响应:根据实验数据绘制的频率响应曲线显示,高频功率放大器在特定频率范围内具有较高的增益,且在频率范围外的增益下降明显。
高频谐振功率放大器实验实验报告
丙类高频谐振功率放大器与基极调幅实验报告一. 实验目的1.了解和掌握丙类高频谐振功率放大器的构成及工作原理。
2.了解丙类谐振功率放大器的三种工作状态及负载特性、调制特性、放大特性和调谐特性。
3. 掌握丙类谐振功率放大器的输出功率o P 、直流功率D P 、集电极效率C 测量方法。
4. 掌握用频谱仪观测信号频谱、频率及调制度的方法。
二.实验仪器及设备1.调幅与调频接收模块。
2.直流稳压电压GPD-3303D3.F20A 型数字合成函数发生器/计数器 4.DSO-X 2014A 数字存储示波器 5.SA1010频谱分析仪三.实验原理1.工作原理高频谐振功率放大器是通信系统重要的组成电路,用于发射机的末级。
主要任务是高效率的输出最大高频功率,馈送到天线辐射出去。
为了提高效率,晶体管发射结采用负偏置,使放大器工作于丙类状态(导通角θ<90O)。
高频谐振功率放大器基本构成如图1.4.1所示,丙类谐振功率放大器属于大信号非线性放大器,工程上常采用折线分析法,各级电压、电流波形如图1.4.2所示。
(a )原理电路 (b )等效电路图1.4.1 高频功率放大器图1.4.1中,晶体管放大区的转移(内部静态)特性折线方程为:()C C BE BZ i g v U =-1.4.1放大器的外电路关系为:cos BE B b m u E U t ω=+1.4.2cos CE C cm u E U t ω=-1.4.3当输入信号B BZ b u E U <+时,晶体管截止,集电极电流0C i =;当输入信号B BZ b u E U >+时,发射结导通,由式1.4.1、1.4.2和1.4.3得集电极电流C i 为:maxcos cos 1cos C C t i i ωθθ-=- 1.4.4式中,BZ U 为晶体管开启电压,C g 为转移特性的斜率。
以上分析可知,晶体管的集电极输出电流c i 为尖顶余弦脉冲,可用傅里叶级数展开为:++++=t I t I t I I t i m C m C m C C c ωωω3cos 2cos cos )(3210 1.4.5其中,0C I 为C i 的直流分量,m C I 1、2C m I 、…分别为c i 的基波分量、二次谐波分量、…。
高频功率放大器实验
VCC由小至大变化时,放大器的工作状态由欠压经临界转入过压。改变 vCC 时,其工作
状态和电流、功率的变化如图 3-6 所示。
P=
Icm1
Ic0
Po
Pc
0 过压状态 欠压状态 VCC 0 过压状态 欠压状态 VCC
(a)
(b)
图 3-6 VCC改变时电流、功率的变化
甲类、乙类功率放大器我们在上学期的实验都完成过,现在比较一下和它们丙类功率放 大器的不同:
甲类放大器:输入信号幅度小,输出信号不失真。但是其工作效率较低。 乙类和丙类放大器:输入信号幅度大,工作效率较高,但是输出信号失真大。特别丙类 谐振功率放大器,电压导通角较小,工作效率最高,通信发射机的高频末级功率放大器通常 采用丙类工作方式。 另外,对于谐振功率放大和小信号调谐放大器的对比:两种放大器的放大对象都为高频 信号,负载也均是谐振回路;不同之处主要在于激励信号的幅度大小不同,电路的静态工作 点不同,动态范围不同。 在实验过程中要认真体会。 高频功率放大器与低频功率放大器的相同点:都是为了得到高输出功率和高转换效率, 激励信号也同为大信号;不同点:⑴工作频率与相对频宽不同;⑵放大器的负载不同;⑶放 大器工作状态不同。 1、丙类谐振功率放大器的工作特点 功率放大器的最终目的是:电路与系统中,如果具有相同直流功率,那么所设计放大器 的转换效率越高,输出的交流功率就越大。丙类放大器就是这样一种放大器,如图 3-1 所示, 这是一个典型的丙类放大器的原理图:负载为LC谐振回路,基极偏置为负偏压,半通角θc< 90°,放大器的基极没有设置直流偏置电路,仅在晶体管基极设置了一个偏置电阻,从电路 的形式来看,当没有载波信号输入时,放大器处于截止状态,集电极和发射级没有电流流过, 集电极也没有交流信号输出。当输入大幅度信号时,输入信号加在放大器基极,在偏置电阻 上产生自给偏压,放大器将随着输入信号的频率进行开关工作,放大器的集电极将输出放大 的信号。
高频实验三 高频丙类谐振功率放大器实验报告
高频实验三高频丙类谐振功率放大器实验报告实验目的:1. 理解高频振荡电路的谐振条件,并掌握它的基本工作原理;2. 理解高频功率放大器的基本原理;3. 掌握高频振荡电路的调谐方法;4. 熟练掌握高频功率放大器的参数选择和调试方法。
实验器材:1.高频发生器2.谐振电路板3.二级元件(J310晶体管、VMMK-2203二极管、0.2Ω15W电阻)4.射频电阻5.多用表6.示波器7.功率计8.负载实验原理:1.谐振电路谐振电路是在特定的频率下,由电感和电容构成的谐振回路,通过它产生的信号波,能够单纯频率的持续振荡,保证了信号的稳定性。
在PCB板上我们对谐振电路布线,包括多个元器件的互连、地线的走向等设计严谨,注重缩小回路面积,降低谐振频率,减小谐振面积,从而提高谐振质量和谐振Q值,增强谐振电路稳定性,提高谐振电路的抗干扰能力。
谐振频率的计算公式f=1/(2π(LC)^0.5)2.高频功率放大器高频功率放大器是在HF频段(3MHz~30MHz)内的放大器,在电视机、收音机、通信设备等广泛应用中,常采用的是质子放大器,它所具有的功率放大、稳定性好等性能,能胜任各种业余通信需求。
实验步骤:1.按照谐振电路图在PCB板上完成电路组装,安装元器件之间要严谨紧密。
2.将负载连接到电路的输出端,连接电源,连接示波器和功率计。
3.改变高频发生器的频率,寻找谐振点。
4.调谐谐振电路的电感和电容,使其达到最佳状态。
5.检验电路的信号质量、放大系数和输出功率。
实验结果:1.通过调谐谐振电路,我们最终定位到了谐振点,稳定的输出正弦波。
2.经过功率计测量,我们发现功率输出效果较为满意。
实验分析:1.在谐振电路的制作过程中,需要仔细考虑各个元器件之间的互连,并且严格控制回路面积,以提高谐振质量和谐振Q值。
2.对于高频功率放大器的参数调试,需要对电感和电容等元器件进行仔细调谐,以找到最佳状态。
高频谐振功率放大器
高频谐振功率放大器实验121180166 赵琛1、实验目的1.进一步掌握高频丙类谐振功率放大器的工作原理。
2.掌握丙类谐振功率放大器的调谐特性和负载特性。
3.掌握激励电压、集电极电源电压及负载变化对放大器工作状态的影响。
4. 掌握测量丙类功放输出功率,效率的方法。
二、实验使用仪器1. 丙类谐振功率放大器实验板2. 200MH泰克双踪示波器3. FLUKE万用表4. 高频信号源5. 扫频频谱仪(安泰信)6 . 高频毫伏表三、实验基本原理与电路1.高频谐振功率放大器原理电路高频谐振功率放大器是一种能量转换器件,它可以将电源供给的直流能量转换为高频交流输出。
高频谐振功率放大器是通信系统中发送装置的重要组件,其作用是放大信号,使之达到足够的功率输出,以满足天线发射和其它负载的要求。
高频谐振功率放大器研究的主要问题是如何获得高效率、大功率的输出。
放大器电流导通角θ愈小,放大器的效率η愈高。
如甲类功放的θ=180,效率η最高为50%,而丙类功放的θ<90°,效率η可达到80%。
谐振功率放大器采用丙类功率放大器,采用选频网络作为负载回路的丙类功率放大器称为高频谐振功率放大器。
高频谐振功率放大器原理电路如图3-1。
图中U b 为输入交流信号,E B 是基极偏置电压,调整E B ,改变放大器的导通角,以改变放大器工作的类型。
E C 是集电极电源电压。
集电极外接LC 并联振荡回路的功用是作放大器负载。
放大器工作时,晶体管的电流、电压波形及其对应关系如图3-1所示。
晶体管转移特性如图3.2中虚线所示。
由于输入信号较大,可用折线近似转移特性,如图中实线所示。
图中'B U 为管子导通电压,g m 为特征斜率(跨导)。
图3-1 高频谐振功率放大器的工作原理设输入电压为一余弦电压,即u b =U bm cos ωt 则管子基极、发射极间电压u BE 为u BE =E B +u b =E B +U bm cos ωt在丙类工作时,E B <'B U ,在这种偏置条件下,集电极电流iC 为余弦脉冲,其最大值为i Cmax ,电流流通的相角为2θ,通常称θ为集电极电流的通角,丙类工作时,θ<π/2。
通信电子电路高频谐振功率放大器实验报告
实验室时间段座位号实验报告实验课程实验名称班级姓名学号指导老师高频谐振功率放大器预习报告实验目的1.通过实验,加深对丙类功率放大器基本工作原理的理解,掌握丙类功率放大器的调谐特性。
2.掌握输入激励电压,集电极电源电压及负载变化对放大器工作状态的影响。
3.通过实验进一步了解调幅的工作原理。
实验内容1.实验准备在实验箱主板上装上幅度调制与无线发射模块,接通电源即可开始实验。
2.测试前置放大级输入、输出波形高频信号源频率设置为6.3MHZ,幅度峰-峰值300mV左右,用铆孔线连接到1P05,用示波器测试1P05和1TP07的波形的幅度,并计算其放大倍数。
由于该级集电极负载是电阻,没有选频作用。
3. 激励电压、电源电压及负载变化对丙类功放工作状态的影响U对放大器工作状态的影响(1)激励电压bE=5V左右(用万用表测1TP08直流电压, 1W05 1K03置“右侧”。
保持集电极电源电压cR=10KΩ左右(1K04置“右侧”,用万用表测1TP11电阻, 1W6逆时针调到底),负载电阻L顺时针调到底,然后1K04置“左侧”)不变。
高频信号源频率1.9MHZ左右,幅度200mv(峰—峰值),连接至功放模块输入端(1P05)。
示波器CH1接1P08,CH2接1TP09。
调整高频信号源频率,使功放谐振即输出幅度(1TP08)U,观察1TP09电压波形。
信号源幅度变化最大。
改变信号源幅度,即改变激励信号电压b时,应观察到欠压、临界、过压脉冲波形。
其波形如图7-7所示(如果波形不对称,应微调高频信号源频率,如果高频信号源是DDS信号源,注意选择合适的频率步长档位)。
实验报告1.认真整理实验数据,对实验参数和波形进行分析,说明输入激励电压、集电极电源电压,负载电阻对工作状态的影响。
2.用实测参数分析丙类功率放大器的特点。
3.总结由本实验所获得的体会。
c实验报告一.实验目的1.通过实验,加深对丙类功率放大器基本工作原理的理解,掌握丙类功率放大器的调谐特性。
高频功率放大器)
实验二高频丙类功率放大器一.实验目的1.通过实验,加深对于高频谐振功率放大器工作原理的理解。
2.研究丙类高频谐振功率放大器的负载特性,观察三种状态的脉冲电流波形。
3.了解基极偏置电压、集电极电压、激励电压的变化对于工作状态的影响。
4.掌握丙类高频谐振功率放大器的计算与设计方法。
二、实验教学重点及难点丙类功放静态工作点(基极电压)与甲类放大器区别,负载变化对输出功率的影响,输出匹配滤波器选择及设计,三、参考资料1、王卫东模拟电子技术基础电子工业出版社 2010-52、王卫东高频电子线路电子工业出版社 2009-33、卓圣鹏高频电路设计与制作科学出版社 2006-8四、教学过程1、讲解实验原理2、介绍各实验仪器3、讲解实验内容与步骤4、实验报告要求5、布置思考题五、实验原理1.高频谐振功率放大器的工作原理谐振功率放大器是以选频网络为负载的功率放大器,它是在无线电发送中最为重要、最为难调的单元电路之一。
根据放大器电流导通角的范围可分为甲类、乙类、丙类等类型。
丙类功率放大器导通角θ<900,集电极效率可达80%,一般用作末级放大,以获得较大的功率和较高的效率。
图2-1丙类放大器原理图 图2-2 ic 与ub 关系图图2-1中,V bb 为基极偏压,V cc 为集电极直流电源电压。
为了得到丙类工作状态,V bb 应为负值,即基极处于反向偏置。
u b 为基极激励电压。
图2-2示出了晶体管的转移特性曲线,以便用折线法分析集电极电流与基极激励电压的关系。
V bz 是晶体管发射结的起始电压(或称转折电压)。
由图可知,只有在u b 的正半周,并且大于V bb 和V bz 绝对值之和时,才有集电极电流流通。
即在一个周期内,集电极电流i c 只在-θ~+θ时间内导通。
由图可见,集电极电流是尖顶余弦脉冲,对其进行傅里叶级数分解可得到它的直流、基波和其它各次谐波分量的值,即:i c =I C0+ I C1m COS ωt + I C2M COS2ωt + … + I CnM COSn ωt + …通过滤波,选出所需要的基波分量。
谐振功率放大器实例实验报告
谐振功率放大器实例实验报告一、实验目的1.了解谐振功率放大器的工作原理;2.掌握谐振功率放大器的基本参数测量方法;3.通过实验验证理论计算结果与实际测量结果的吻合程度。
二、实验原理谐振功率放大器是一种利用谐振电路频率选择特性进行功率放大的放大器。
其工作原理基于放大元件(如晶体管)共振频率与谐振电路的谐振频率相吻合,以获得最大功率转换效率的目标。
三、实验装置1.功率放大器电路;2.频率发生器;3.直流稳压电源;4.示波器;5.电压表;6.电流表。
四、实验步骤1.按照给定的电路图搭建谐振功率放大器电路;2.将频率发生器接入电路,设置合适的频率和幅度;3.使用示波器观察输出波形,调整频率和幅度使得放大器工作在谐振频率点;4.使用电压表和电流表分别测量输入端和负载端的电压、电流,记录数据;5.根据测量数据计算功率放大器的功率增益、效率等参数;6.将测量结果与理论计算结果进行比较和分析;7.结束实验。
五、实验结果与分析根据实验数据和理论计算结果,得到功率放大器的功率增益为XdB,效率为X%。
通过比较发现,实验结果与理论计算结果吻合较好,验证了谐振功率放大器的工作原理和参数测量方法的准确性。
六、实验总结本实验通过搭建谐振功率放大器电路,使用示波器观察输出波形并测量电压、电流等参数,验证了谐振功率放大器的工作原理和性能参数的测量方法。
实验结果表明,谐振功率放大器具有较高的功率增益和效率,并且实验数据与理论计算结果吻合较好。
通过这次实验,我们对谐振功率放大器的原理有了更深入的理解,并掌握了相关的实际操作技巧,为今后的学习和研究打下了基础。
暂无。
以上是关于谐振功率放大器实例实验的报告,通过该实验我们能够更好地了解谐振功率放大器的工作原理和参数测量方法,并通过实验结果验证理论计算的准确性。
这对于我们深入理解功率放大器的工作原理和应用具有重要意义。