解分式方程及增根-无解的典型问题含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(
分式方程
1. 解分式方程的思路是:
(1) 在方程的两边都乘以最简公分母,约去分母,化成整式方程。
(2) 解这个整式方程。
(3) 把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根是原
方程的增根,必须舍去。
(4) 写出原方程的根。
“一化二解三检验四总结”
例1:解方程
214111
x x x +-=-- )
例2:解关于x 的方程223242
ax x x x +=--+有增根,则常数a 的值。 解:化整式方程的(1)10a x -=-由题意知增根2,x =或2x =-是整式方程的根,把2,x =代入得2210a -=-,解得4a =-,把2x =-代入得-2a+2=-10,解得6a =
所以4a =-或6a =时,原方程产生增根。
方法总结:1.化为整式方程。
2.把增根代入整式方程求出字母的值。
—
例3:解关于x 的方程223242
ax x x x +=--+无解,则常数a 的值。 解:化整式方程的(1)10a x -=-
当10a -=时,整式方程无解。解得1a =原分式方程无解。
当10a -≠时,整式方程有解。当它的解为增根时原分式方程无解。
把增根2,x =或2x =-代入整式方程解得4a =-或6a =。
综上所述:当1a =或4a =-或6a =时原分式方程无解。
方法总结:1.化为整式方程。
2.把整式方程分为两种情况讨论,整式方程无解和整式方程的解为增根。 .
例4:若分式方程212
x a x +=--的解是正数,求a 的取值范围。 解:解方程的23a x -=且2x ≠,由题意得不等式组:2-a 032-a 23
>≠解得2a <且4a ≠-
思考:1.若此方程解为非正数呢答案是多少
2.若此方程无解a 的值是多少
方程总结:1. 化为整式方程求根,但是不能是增根。
2.根据题意列不等式组。
当堂检测
1. |
2. 解方程
11322x x x
-=---答案:2x =是增根原方程无解。 3. 关于x 的方程12144a x x x
-+=--有增根,则a =-------答案:7 4. 解关于x 的方程15
m x =-下列说法正确的是(C ) A.方程的解为5x m =+ B.当5m >-时,方程的解为正数
C.当5m <-时,方程的解为负数
D.无法确定
4.若分式方程1
x a a x +=-无解,则a 的值为-----------答案:1或-1 5. 若分式方程=11
m x x +-有增根,则m 的值为-------------答案:-1 6.分式方程121m x x =-+有增根,则增根为------------答案:2或-1 ;
7. 关于x 的方程
1122
k x x +=--有增根,则k 的值为-----------答案:1 8. 若分式方程x a a a
+=无解,则a 的值是----------答案:0 9.若分式方程201m x m x ++=-无解,则m 的取值是------答案:-1或1-2
10. 若关于x 的方程(1)5321
m x m x +-=-+无解,则m 的值为-------答案:6,10 11. 若关于x 的方程311x m x x
--=-无解,求m 的值为-------答案: 12.解方程21162-x 2312x x x -=---答案67
x =- 13.解方程2240x-11
x -=- 14. 解方程2212525x x x -=-+ 15. 解方程222213339
x x x x --=-+- 16. 关于x 的方程2
1326
x m x x -=--有增根,则m 的值-----答案:m=2或-2
17.当a为何值时,关于x的分式方程
3
1
1
x a
x x
-
-=
-
无解。答案:-2或1