一元二次方程知识点与其应用
数学知识点:一元二次方程及其应用_知识点总结

数学知识点:一元二次方程及其应用_知识点总结
数学知识点:一元二次方程及其应用一元二次方程的定义:
含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
一元二次方程的一般形式:
一元二次方程的应用:
建立一元二次方程模型进行求解,把得到的答案带回实际问题中检验是否合理,来解决实际问题,如打折、营销、增长率问题等。
一元二次方程的根与系数的关系:
如果方程的两个实数根是,那么。
命题的概念:
1、命题:把语言、符号或式子表达的,可以判断真假的陈述句称为命题;
2、真命题、假命题:判断为真的语句称为真命题,判断为假的语句称为假命题。
注意:
1、并不是所有的语句都是命题,高考物理,只有能够判断真假的语句才是命题。
2、如果一个语句是命题,则它是真命题或是假命题,二者必具其一。
数学第讲一元二次方程及应用

❖ 3、(5x-4)2 -(4-5x)=0 ( 分解因式 法)
❖ 4、 x2-4x-10=0
( 配方 法)
❖ 5、 3x2-4x-5=0
( 公式 法)
❖ 6、 x2+6x-1=0
( 配方 法)
❖ 7、 y2- y-1=0
( 公式 法)
小结:选择方法的顺序是: 直接开平方法 →分解因式法 → 配方法 → 公式法
【解析】由题意得 x1+x2=3,x1x2=-2,所以 x21+3x1x2+x22=x21+2x1x2+x22+x1x2=(x1+x2)2 +x1x2=33+(-2)=9-2=7.
【答案】7
(2011 中考预测题)阅读材料:设一元二次方
程 ax2+bx+c=0(a≠0)的两根为 x1、x2,则
两根与方程系数之间有如下关系:x1+x2=-
b ≠0)有两个相等的实数根,即 x1=x2=-2a;
3.b2-4ac<0⇔一元二次方程 ax2+bx+c=0(a
≠0)没有实数根;
一元二次方程根的判别式:
△=b2-4ac>0 △=b2-4ac=0 △=b2-4ac<0
有两个不相等实数根 有两个相等实数根 方程无实数解
(2010·上海)已知一元二次方程 x2+x-1=0,下列判断正确的是( ) A.该方程有两个相等的实数根 B.该方程有两个不相等的实数根 C.该方程无实数根 D.该方程根的情况不确定
一元二次方程的应用
考点三:一元二次方程根的判别式
关于 x 的一元二次方程 ax2+bx+c=0(a≠
0)的根的判别式为 b2-4ac.
1.b2-4ac>0⇔一元二次方程 ax2+bx+c=0(a
≠ 0) 有 两 个 不 相 等 的 实 数 根 , 则 x1,2 =
九年级一元二次方程讲解

九年级一元二次方程讲解一、一元二次方程的概念。
1. 定义。
- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程。
- 一般形式为ax^2+bx + c = 0(a≠0),其中ax^2是二次项,a是二次项系数;bx 是一次项,b是一次项系数;c是常数项。
- 例如方程x^2+3x - 1 = 0,这里a = 1,b=3,c=-1。
二、一元二次方程的解法。
(一)直接开平方法。
1. 适用情况。
- 对于形如(x + m)^2=n(n≥0)的一元二次方程,可以使用直接开平方法求解。
2. 解题步骤。
- 例如方程(x - 2)^2=9。
- 第一步,直接开平方得x - 2=±3。
- 第二步,分别求解两个一元一次方程:- 当x - 2 = 3时,解得x=5。
- 当x - 2=-3时,解得x=-1。
(二)配方法。
1. 适用情况。
- 所有的一元二次方程都可以用配方法求解。
2. 解题步骤。
- 以方程x^2+6x - 1 = 0为例。
- 第一步,移项,把常数项移到等号右边,得到x^2+6x = 1。
- 第二步,配方,在等式两边加上一次项系数一半的平方。
一次项系数b = 6,一半为3,平方后为9,则x^2+6x+9 = 1 + 9,即(x + 3)^2=10。
- 第三步,用直接开平方法求解,x+3=±√(10),解得x=-3±√(10)。
(三)公式法。
1. 一元二次方程的求根公式。
- 对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}。
2. 解题步骤。
- 例如方程2x^2-5x+1 = 0,这里a = 2,b=-5,c = 1。
- 第一步,计算判别式Δ=b^2-4ac=(-5)^2-4×2×1 = 25 - 8 = 17。
- 第二步,代入求根公式x=(5±√(17))/(4)。
实际问题与一元二次方程知识点总结及重难点精析

实际问题与一元二次方程知识点总结及重难点精析一、知识点总结1.在九年级数学中,实际问题与一元二次方程这一章知识点主要包括:一元二次方程的基本概念、性质及其在实际问题中的应用。
2.一元二次方程的基本概念:一元二次方程是一个含有未知数x 的整式方程,其一般形式为ax²+bx+c=0(a≠0)。
其中a、b、c为常数,a≠0.且x的最高次数为2.3.一元二次方程的性质:一元二次方程有四个性质,分别是:(1) 有两个解,即x1和x2;(2) 两解的和为-b/a;(3) 两解的积为c/a;(4) 判别式△=b²-4ac,当△>0时,方程有两个不相等的实数解;当△=0时,方程有两个相等的实数解;当△<0时,方程没有实数解。
4.一元二次方程的应用:在实际问题中,一元二次方程通常用于解决一些二次关系的问题,比如物体的运动轨迹、建筑物的面积和体积、经济利润最大化等问题。
二、重难点精析在本章节中,重难点主要包括如何将实际问题转化为数学问题、一元二次方程的解法以及根的性质和应用。
1.如何将实际问题转化为数学问题:在解决实际问题时,需要从题目中提取出有用的信息,并转化为数学语言。
这需要学生具备一定的阅读理解能力和数学建模能力。
2.一元二次方程的解法:一元二次方程的解法有公式法和因式分解法两种。
公式法是通过公式直接求解,但需要学生记忆公式。
因式分解法是通过将方程左边分解成两个一次因式的乘积,再分别令每个因式等于0来求解。
这种方法更直观易懂,但需要学生掌握因式分解的技巧。
3.根的性质和应用:根的性质包括前面提到的两个解的和、积和判别式。
这些性质在解决实际问题时具有重要应用。
例如,利用判别式可以判断方程是否有实数解,从而确定实际问题是否有解;利用两解的和可以计算实际问题的某些物理量,如位移等。
三、总结通过以上知识点总结和重难点精析,我们可以看到实际问题与一元二次方程这一章知识点的重要性和应用价值。
初中数学一元二次方程知识点总结(含习题)

初中数学一元二次方程知识点总结(含习题)一元二次方程知识点的总结知识结构梳理:1、概念1) 一元二次方程含有一个未知数。
2) 未知数的最高次数是2.3) 是方程。
4) 一元二次方程的一般形式是ax²+bx+c=0.2、解法1) 因式分解法,适用于能化为(x+m)(x+n)=0的一元二次方程。
2) 公式法,即把方程变形为ax²+bx+c=0的形式,一元二次方程的解为x=[-b±√(b²-4ac)]/(2a)。
3) 完全平方式,其中求根公式是(x±a)²=b,当时,方程有两个不相等的实数根。
4) 配方法,其中求根公式是(x±a)(x±b)=0,当时,方程有两个实数根。
5) 二次函数图像法,当时,方程有没有实数根。
3、应用1) 一元二次方程可用于解某些求值题。
2) 一元二次方程可用于解决实际问题的步骤包括:列方程、化简方程、解方程、检验答案。
知识点归类:考点一:一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。
一元二次方程必须同时满足以下三点:①方程是整式方程。
②它只含有一个未知数。
③未知数的最高次数是2.考点二:一元二次方程的一般形式一元二次方程的一般形式为ax²+bx+c=0,其中a、b、c分别叫做二次项系数、一次项系数、常数项。
要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。
考点三:解一元二次方程的方法一元二次方程的解也叫一元二次方程的根。
解一元二次方程的方法包括因式分解法、公式法、完全平方式、配方法和二次函数图像法。
解一元二次方程有四种常用方法:直接开平方法、配方法、因式分解法和公式法。
选择哪种方法要根据具体情况而定。
直接开平方法是解形如x²=a的方程的方法,解为x=±√a。
配方法是将方程的左边加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,然后用因式分解法或直接开平方法解方程。
一元二次方程的解法及应用

一元二次方程的解法及应用一元二次方程是数学中常见的二次多项式方程,其一般形式为ax²+bx+c=0,其中a、b、c为实数且a≠0。
解一元二次方程的方法通常有因式分解法、配方法和求根公式法等。
本文将依次介绍这几种解法,并探讨一元二次方程在实际生活中的应用。
一、因式分解法对于一元二次方程ax²+bx+c=0,当其可以因式分解成两个一次因式的乘积时,可以直接利用因式分解法求解。
具体步骤如下:1. 将方程转化为标准形式,即将方程两边移项合并同类项,使等式右边为0;2. 对方程进行因式分解,将二次项拆分为两个一次项的乘积;3. 令得到的每个一次项等于0,解出方程;4. 检查解是否满足原方程,若满足则为方程的解,若不满足则舍去。
例如,对于方程3x²+7x+2=0,可以进行因式分解得到(3x+1)(x+2)=0,解得x=-1/3和x=-2。
二、配方法配方法是通过变形将一元二次方程转化为一个完全平方的形式,进而求解方程。
其主要步骤如下:1. 将方程转化为标准形式;2. 将方程的一次项系数b通过添加或减去一个适当的常数c/2a使其成为一个完全平方;3. 将方程的左边转化为一个完全平方,即将一次项的系数与1/2a相乘后平方;4. 将方程的两边开平方,解出方程。
例如,对于方程x²+4x-3=0,可以通过配方法将其变形为(x+2)²-7=0,进而解得x=-2+√7和x=-2-√7。
三、求根公式法求根公式法也称为根号公式法,适用于任何一元二次方程的解法。
一元二次方程ax²+bx+c=0的解可通过求根公式x=(-b±√(b²-4ac))/2a得到。
具体步骤如下:1. 将方程的系数代入求根公式,并计算出方程的两个解;2. 验证解是否满足原方程,若满足则为方程的解,若不满足则舍去。
例如,对于方程2x²-5x+2=0,代入求根公式得到x=1和x=2/2。
《一元二次方程》知识梳理及经典例题

《一元二次方程》知识梳理及经典例题【知识梳理】考点一、概念(1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程。
(2)一般表达式:ax2+bx+c=0(a≠0)⑶难点:如何理解“未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。
⑵应用:利用根的概念求代数式的值;考点三、解法⑴方法:①直接开方法;②因式分解法;③配方法;④公式法⑵关键点:降次类型一、直接开方法:x2=m(m≥0),⇒x=±√m对于(x+a)2=m,(ax+m)2=(bx+n)2等形式均适用直接开方法类型二、因式分解法:(x−x1)(x−x2)=0⇒x=x1,或x=x2方程特点:左边可以分解为两个一次因式的积,右边为“0”,方程形式:如(ax+m)2=(bx+n)2,(x+a)(x+b)=(x+a)(x+c),x2+2ax+a2=0类型三、配方法ax2+bx+c=0(a≠0)⇒(x+b2a )2=b2−4ac4a2在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。
类型四、公式法⑴条件:(a≠0,且b2−4ac≥0)⑵公式:x=−b±√b2−4ac2a,(a≠0,且b2−4ac≥0)类型五、“降次思想”的应用⑴求代数式的值;⑵解二元二次方程组。
.考点四、根的判别式b2−4ac根的判别式的作用:①定根的个数;②求待定系数的值;③应用于其它。
考点五、应用解答题⑴“握手”问题;⑵“利率”问题;⑶“几何”问题;⑷“最值”型问题;⑸“图表”类问题考点六、根与系数的关系⑴前提:对于ax2+bx+c=0而言,当满足①a≠0、②Δ≥0时,才能用韦达定理。
⑵主要内容:x1+x2=−ba ,x1x2=ca⑶应用:整体代入求值。
一元二次方程的应用(7种题型)-2023年新八年级数学核心知识点与常见题型(沪教版)(解析版)

一元二次方程的应用(7种题型)【知识梳理】1、数字问题:对于数的应用题主要是要知道数的表示.例如:一个三位数个位、十位、百位分别为x、y、z,那么这个三位数则可以表示为10010x y z++.2、增长率问题基本公式:()21a x b+=,a表示增长前的数,x表示增长率,b表示增长后的数,要列出这类方程关键在于找出a、b.如果是降低率,则为()21a x b−=.3、利润问题:总利润=单件利润⨯总件数;总利润=总售价−总成本价.根据公式想办法将降价后的利润以及降价后能售出的件数表示出来即可.4、几何面积问题:x表示出来.例如要求的某个长方形面积,就必须先把长和宽表示出来.5、双循环问题送贺卡原则是我送你一张你也要送我一张,所以对于每个人都送出去了1x−张,总共有x个人所以列式为()1930x x−=;6、单循环问题握手以及单循环比赛是不重复进行的,但我们可以假设它重复进行,所以列式为(1)1052x x−=.这两类问题具有共同的特征,统称为传播问题.7、利率问题:利息=本金×年利率×期数×(1-利息税);本利和=本金+利息=本金+本金×年利率×期数×(1-利息税)=本金×[1+年利率×期数×(1-利息税)] .【考点剖析】题型一:数字问题例1.有一个两位数等于它各位数字积的3倍,其十位数字比个位数字小2,求这个两位数.【答案】24.【解析】设个位数字为x ,则十位数字是2−x ,由题意可得:()()x x x x 23210−=+−,整理可得:0201732=+−x x ,解:41=x ,352=x (不是整数,舍去)∴这个两位数为24.【总结】本题主要考查一元二次方程在数字问题中的运用.【变式1】有一个两位数等于其数字之积的2倍,其十位数字比个位数字小3,求这个两位数.【答案】36.【解析】设个位数字为x ,则十位数字是3−x .根据题意可得:()()32310−=+−x x x x , 整理得:0301722=+−x x ,()()0652=−−x x , 解得:61=x ,252=x (不是整数,舍去).答:这个两位数为36.【总结】本题主要考查利用一元二次方程解决数字问题.【变式2】已知两个连续奇数的积是323,求这两个数.【答案】17,19或1719−−,.【解析】解:设这两个连续奇数为2x x +,,则(2)323x x +=, 整理得:223230x x +−=, 解得:121719x x ==−,, 所以12+219+217x x ==−,.答:这两个数是17,19或1719−−,.【总结】本题主要考查利用一元二次方程解决数字问题.【变式3】有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数.【答案】原来的两位数是35或53.【解析】设个位数字为x ,则十位数字是x −8.根据题意可得:()[]()[]1855810810=−++−x x x x ,整理得:01357292=+−x x .分解得:()()05279=−−x x ,解得:31=x ,52=x .答:原来的两位数是35或53. 【总结】本题主要考查利用一元二次方程解决数字问题.题型二:增长率问题例2.受疫情影响某厂今年第一季度的产值只有200万元,为帮助企业渡过难关,政府出台了很多帮扶政策,在当地政府的暖心相助下,该厂第三季度的总产值提高到500万元.若平均每季度的增产率是x ,则可以列方程( )A .()20012500+=xB .()50012200−=xC .()22001500+=xD .()25001200−=x 【答案】C【分析】若平均每季度的增产率是x ,经过两次增长后应该为()22001x +,建立方程即可. 【详解】解:若平均每季度的增产率是x ,则可以列方程()22001500+=x 故本题选择C【点睛】本题是一元二次方程的应用问题当中的变化率问题,解题时找到等量关系是关键.【变式1】某口罩加工厂今年一月口罩产值达80万元,第一季度总产值达340万元,问二、三月份的月平均增长率是多少?设月平均增长率为x ,则根据题意可得方程为( )A .280(1)340x +=B .8080(1)80(12)340x x ++++=C .380(1)340x +=D .28080(1)80(1)340x x ++++= 【答案】D【分析】由一月份口罩产值以及月平均增长率分别求出二月份、三月份的口罩产值,再根据第一季度总产值达340万元列方程即可.【详解】二月份口罩产值:80(1)x +万元,三月份口罩产值:280(1)x +万元,∴28080(1)80(1)340x x ++++=.故选:D .【点睛】本题主要考查一元二次方程的应用,理解增长率的概念并灵活运用是解题关键.【变式2】某商场今年一月份销售额100万元,二月份销售额下降10%,进入3月份该商场采取措施,改革营销策略,使日销售额大幅上升,四月份的销售额达到129.6万元,求三、四月份平均每月销售额增长的百分率.【答案】20%【解析】三、四月份平均每月销售额增长的百分率是x ,则根据题意可得:()()6.12911011002=+−x %, 解:2.0=x (负值舍去).答:三、四月份平均每月销售额增长的百分率是20%.【总结】本题主要考查利用一元二次方程解决增长率的问题.【变式3】某工厂1月份产品数是50万件,要求第1季度总产品数达到183.705万件,若每月平均增长率相同,求该工厂每月的平均增长率.(只列方程不求解)【答案】设该工厂每月的平均增长率是x ,则根据题意可得:()()705.183********=++++x x . 【解析】注意第一季度为1、2、3月份产品数之和.【变式4】某中学读书社对全校600名学生图书阅读量(单位:本)进行了调查,第一季度全校学生人均阅读量是6本,读书社人均阅读量是15本.读书社人均阅读量在第二季度、第三季度保持一个相同的增长率x ,全校学生人均阅读量第三季度和第一季度相比,增长率也是x ,己知第三季度读书社全部40名成员的阅读总量将达到第三季度全校学生阅读总量的25%,求增长率x 的值.【答案】增长率x 的值为50%【分析】根据“第三季度读书社全部40名成员的阅读总量将达到第三季度全校学生阅读总量的25%”列出方程即可求出结论.【详解】解:由题意可得40×15(1+x )2=600×6(1+x )×25%整理,得(x +1)(x -0.5)=0解得:1=0.5x =50%,21x =−(不符合实际,舍去)答:增长率x 的值为50%.【点睛】此题考查的是一元二次方程的应用,掌握实际问题中的等量关系是解题关键.题型三:利润问题例3.某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P (件)与每件的销售价X (元)满足关系:1002P X =−,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?【答案】每件商品的售价应定为40元,每天要售出这种商品20件.【解析】由题意列方程得:()()200210030=−−X X ,整理可得:01600802=+−X X ,解得:40=X20801002100=−=−=X P答:每件商品的售价应定为40元,每天要售出这种商品20件.【总结】本题主要考查一元二次方程在利润问题中的应用,注意对题目条件的分析.【变式1】某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产X 只熊猫的成本为R (元),售价每只为P (元),且R 、P 与X 的关系式分别为=500+30R X ,1702P X =−. (1) 当日产量为多少时每日获得的利润为1750元?(2) 若可获得的最大利润为1950元,问日产量应为多少?【答案】(1)当日产量为25时每日获得的利润为1750元;(2)当日产量为35时每日获得的利润为1950元.【解析】设利润为W 元,则()()50014023050021702−+−=+−−=x x x x x W .当每日获得的利润为1750元时,则1750=W .则175050014022=−+−x x ,解得:251=x ,452=x .∵每日最高产量为40只, ∴45=x 舍去. ∴当日产量为25时每日获得的利润为1750元.(2)当每日获得的利润为1950元时,则1950=W ,则195050014022=−+−x x ,解得:3521==x x . ∴当日产量为35时每日获得的利润为1950元.【总结】本题主要考查一元二次方程在利润问题中的应用,注意对题目条件的分析.【变式2】某商场销售一批衬衫,进货价为每件40元,按每件50元出售,一个月内可售出500件.已知这种衬衫每件涨价1元,其销售量要减少10件.为了减少库存量,且在月内赚取8000元的利润,售价应定为每件多少元?【答案】60元.【解析】设这种衬衫每件涨价x 元.则根据题意可得:()()8000105004050=−−+x x ,整理可得:0300402=+−x x , 解得:101=x ,302=x .当101=x 时,50010400x −=; 当302=x 时,50010200x −=.因为要减少库存量,所以售价应定为每件50+10=60元.【总结】本题中主要考查对减少库存的理解.【变式3】某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商品要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?【答案】5元.【解析】设这种衬衫每件涨价x 元.则根据题意可得:()()60002050010=−+x x ,整理可得:050152=+−x x , 解得:101=x ,52=x ,要使顾客得到实惠,需涨价少,则5=x .∴每千克应涨价5元.【总结】本题主要考查一元二次方程在利润问题中的应用,注意对题目条件的分析.【变式4】服装柜在销售中发现某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现,如果每件童装每降价4元,那么平均每天就可多售出8件.要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?【答案】20元.【解析】设每件童装应降价x 元,则根据题意可得:()()120022040=+−x x ,整理可得:0200302=+−x x , 解得:101=x ,202=x .要减少库存,则要使()x 220+的值比较大,则20=x .∴每件童装应降价20元.【总结】本题主要考查一元二次方程在利润问题中的应用,注意对题目条件的分析.【变式5】工艺商场按标价销售某种工艺品时,每件可获利45元,按标价的八五折销售共工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.(1)该工艺品每件的进价、标价分别是多少元?(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件,若每件工艺品降价1元,则每天可售出该工艺品4件,如果既要每天要获得的利润4800元,又要使消费者得到实惠,问每件工艺品降价多少元出售?(3)请商场如何定价可以使每天获得最高利润?【答案】(1)该商品的每件标价为200元,进价为155元;(2)每件工艺品降价15元出售;(3)当工艺品定价为190元,每天获得的利润最大,最大利润4900元【分析】(1)设标价为x,则进价为x-45,根据“标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等”列方程求解即可;(2)设工艺品降价m元,根据“总利润=单件利润×件数”列出方程即可求出结论;(3)设工艺品定价为a元,可根据总利润=单件利润×件数、配方法及平方的非负性即可求出结论.【详解】解:(1)设标价为x,则进价为x-45,8[0.85x-(x-45)]=12[x-35-(x-45)],整理得360-1.2x=120,即1.2x=240,解得:x=200,则每件进价为:200-45=155(元)答:该商品的每件标价为200元,进价为155元.(2)设工艺品降价m元,则(45-m)(100+4m)=4800解得:m1=5,m2=15∵要使消费者得到实惠∴m=15答:每件工艺品降价15元出售.(3)设工艺品定价为a元,总利润为:(a-155)[ 100+4(200-a)]=-4a2+1520a -139500=-4(a-190)2+4900,∵(a-190)2≥0∴-4(a-190)2≤0∴-4(a-190)2+4900≤4900,即总利润最大值为4900,此时a=190答:当工艺品定价为190元,每天获得的利润最大,最大利润4900元.【点睛】本题考查了一元二次方程的应用,重点是掌握求最值的问题.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用配方法和平方的非负性求最值.题型四:几何面积问题:例4.某建筑工程队,在工地一边的靠墙处,用120米长的铁栅栏围成一个所占地面为长方形的临时仓库,铁栅栏只围三边,按下列要求,分别求长方形的两条邻边的长.(1)长方形的面积是1152平方米(2)长方形的面积是1800平方米(3)长方形的面积是2000平方米【答案】(1)长方形的长为96米,宽为12米或长为48米,宽为24米.(2)长方形的长为60米,宽为30米.(3)此时的长方形不存在.【分析】本题可根据题意分别用x 表示垂直于墙的一边的长或平行于墙的一边的长,再根据面积公式列出方程求解即可.【详解】设垂直于墙的一边的长为x 米,则平行于墙的一边为(120-2x )米.(1)根据题意得x (120-2x )=1152.2605760x x −+=()()12480x x −−=解得1212,48x x ==当12x =时,120212021296x −=−⨯=;当48x =时,120212024824x −=−⨯=;答:长方形的长为96米,宽为12米或长为48米,宽为24米.(2)x (120-2x )=1800212021800x x −=2212018000x x −+=2609000x x −+=()2300x −=,解得30x =当30x =时,120212023060x −=−⨯=答:长方形的长为60米,宽为30米.(3)x (120-2x )=2000212022000x x −=2212020000x x −+=26010000x x −+=∵()26041000360040004000=−−⨯=−=−△<∴方程无实数根.故此时的长方形不存在.【点睛】本题考查的是一元二次方程的运用,要注意靠墙的那面不需要栅栏,不要把平行于墙的一边算成是12(120-2x ).【变式1】如图,有一面积是150平方米的长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一个2米宽的门,另三边(门除外)用竹篱笆围成,篱笆总长33米.求鸡场的长和宽各多少米?【答案】宽为10米,长为15米.【解析】设鸡场的宽为x ,则长为x x 2352233−=−+.根据题意可得:()150235=−x x ,整理可得:()()010152=−−x x , 解得:2151=x ,102=x . 当215=x 时,1820215235235>=⨯−=−x ,舍去.∴宽为10米,长为15米. 【总结】本题主要考查一元二次方程在几何图形面积中的应用,注意对条件的分析.【变式2】如图利用长25米的一段围墙,用篱笆围一个长方形的场地做鸡场,中间用篱笆分割出2个小长方形,与墙平行的一边上和中间用篱笆的隔离各开一扇宽为1米的门,总共用去篱笆的长度为51米,为了使这个长方形ABCD 的面积为216平方米,求,AB BC 边各为多少米?【答案】AB 边为12米,BC 边为18米【分析】设AB 的长为x 米,根据题意列出一元二次方程,求解并找到符合题意的解即可.【详解】设AB 的长为x 米,根据题意得()5133216x x +−=, 解得126,12x x ==,当6x =时,513363625BC =+−⨯=>,不符合题意,故舍去;当12x =时,5133121825BC =+−⨯=<,符合题意,∴12,18AB BC ==,∴AB 边为12米,BC 边为18米.【点睛】本题主要考查一元二次方程的应用,根据题意列出方程并找到合适的解是关键.【变式3】如图,要建一个面积为 140 平方米的仓库,仓库的一边靠墙,这堵墙的长为 18 米,在 与墙垂直的一边要开一扇 2 米宽的门,已知围建仓库的现有木板材料可使新建板墙的总长 为 32 米,那么这个仓库的宽和长分别是多少米?【答案】长和宽分别为14米和10米.【分析】首先设这个仓库的长为x 米, 则宽表示为1(322)2x +−,再根据面积为 140 平方米的仓库可得1(322)1402x x +−=,再解一元二次方程即可 .【详解】解: 设这个仓库的长为x 米, 由题意得:1(322)1402x x +−=,解得:120x =,214x =, 这堵墙的长为 18 米,20x ∴=不合题意舍去,14x ∴=, 宽为:1(32214)102⨯+−=(米).答: 这个仓库的宽和长分别为 14 米、 10 米 .【点睛】此题主要考查了一元二次方程的应用, 关键是正确理解题意, 正确表示出长方形的长和宽 .【变式4】如图,某小区有一块长为30m ,宽为24m 的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为2594m ,两块绿地之间及周边有宽度相等的人行通道,求人行通道的宽度.【答案】人行通道的宽度为1米.【分析】设人行通道的宽度为x 米,将两块矩形绿地合在一起长为(30-3x)m ,宽为(24-2x)m ,根据矩形绿地的面积为594m2,即可列出关于x 的一元二次方程,解方程即可得出x 的值,经检验后得出x=21不符合题意,此题得解.【详解】解:设人行通道的宽度为x 米,将两块矩形绿地合在一起长为()303x m −,宽为()242x m −, 由已知得:()()303x 242x 594−⋅−=, 解得:1x 1=,2x 21=,当x 21=时,303x 33−=−,242x 18−=−,不符合题意舍去,即x 1=.答:人行通道的宽度为1米.【点睛】本题考查了一元二次方程的应用,根据等量关系列出关于x 的一元二次方程是解题的关键.【变式5】如图①,在一幅矩形地毯的四周镶有宽度相同的边.如图②,地毯中央的矩形图案长6米、宽3米,整个地毯的面积是40平方米.求花边的宽【答案】花边的宽为1米.试题分析:可以设花边的宽为x .【详解】解:设花边的宽为x 米,列方程为(26)(23)40x x ++=,解之得12111,2x x ==−(舍去)答:花边的宽为1米. 考点:实际问题与一元二次方程题型五:双循环问题例5.圣诞节昂立师生互送贺卡,总共送出930张,求昂立共有师生多少人?【答案】31人.【解析】设昂立共有师生x 人,由题意可得:()9301=−x x整理得:09302=−−x x ,解得:311=x ,302−=x (负值舍去).答:昂立共有师生31人.【总结】本题主要考查互送卡片问题,由于每人都要送到,因此不用除2.【变式1】生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,这个小组共有多少名同学?【答案】14.【解析】设这个小组共有x 名同学,由题意可得:()1821=−x x整理得:01822=−−x x ,解得:141=x ,132−=x (负值舍去).答:这个小组共有14名同学.【总结】本题主要考查传播问题中的互送问题,由于每个成员各赠送一件,因此不用除2.【变式2】某小组每人给他人送一张照片,全组共送出132张,那么这个小组共有___________人.【答案】12【分析】先找出题目中的等量关系为:人数×(人数-1)=132,通过列一元二次方程计算求得正数解即可.【详解】解:设这个小组共有x 人.x (x-1)=132,解得x1=12,x2=-11(不合题意,舍去).故答案为: 12.【点睛】本题主要考查一元二次方程的应用,得到照片总张数的等量关系是解决本题的关键,重点是理解2个人之间要互送出2张照片.题型六:单循环问题例6.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有多少个队参加比赛?【答案】10.【解析】设共有x 个队参加比赛,由题意可得:()4521=−x x整理得:0902=−−x x ,解得:101=x ,92−=x (负值舍去).答:共有10个队参加比赛.【总结】本题主要考查传播问题中的比赛问题,由于每两队之间都进行一场比赛,因此不用除2.【变式1】一个小组同学互相握手,规定每个同学都与其他同学握一次手,共计握手120次,设小组共有x 人,则可列出方程___________________ .【答案】()11202x x −=【分析】先根据题意可得每个人都要与()1x −个人握一次手,再根据“共计握手120次”建立方程即可得.【详解】由题意,可列方程为()11202x x −=,故答案为:()11202x x −=.【点睛】本题考查了列一元二次方程,理解题意,正确找出等量关系是解题关键.【变式2】某校八年级举行足球比赛,每个班级都要和其他班级比赛一次,结果一共进行了6场比赛,则八年级共有_____个班级.【答案】3.【分析】设共有x 个班级参加比赛,根据共有45场比赛列出方程,求出方程的解即可得到结果.【详解】解:设共有x 个班级参加比赛, 根据题意得:(1)62x x −=,整理得:260x x −−=,即(3)(2)0x x −+=,解得:3x =或2x =−(舍去).则共有3个班级球队参加比赛.故答案为:3.【点睛】此题考查了一元二次方程的应用,解题的关键是找出等量关系“需安排6场比赛”.【变式3】首届中国象棋比赛采用单循环制,每位棋手与其它棋手比赛一盘制,已知第一轮比赛共下了105场,那么参加第一轮比赛的共有几名选手?【答案】21.【解析】设参加第一轮比赛的共有x 名选手由题意可得:()10521=−x x ,整理得:02102=−−x x ,解得:115x =,214x =−(负值舍去).答:参加第一轮比赛的共有21名选手.【总结】本题主要考查传播问题中的比赛问题,由于每队只参加一场,因此要除2.题型七:利率问题例7.某人想把10000元钱存入银行,存两年.一年定期年利率6%,两年定期年利率为6.2%.方式一:采用一年期的利率存一年后到期取出再存一年;方式二:一次性存两年再取出,问两种方式哪种划算?【答案】方式一划算.【解析】方式一:两年后可取出:()1123661100002=+%;方式二:两年后可取出:()100622.6110000=+%;∵11236>10062,∴方式一划算.【总结】本题主要考查利率的应用,注意对两种不同存款方式的区分.【变式1】某人将1000元人民币按一年期存入银行,到期后将本金和利息再按一年期存入银行,两年后本金和利息共获1077.44元,则这种存款的年利率是多少?(注:所获利息应扣除5%的利息税,1.038=).【答案】4%.【解析】设这种存款的年利率是x,由题意可列方程:()44.107795110002=+x%,则()07744.19512=+x%,解:038.1951±=+x%(负值舍去),04.0=x.答:这种存款的年利率是4%.【总结】注意要扣除利息税,则第一年的表达式为()x%9511000+,而不是()x+11000.【变式2】王红梅同学将1000元压岁钱第一次按一年定期存入“少儿银行”,到期后将本利和全部取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本利和共530元,求第一次存款时的年利率,只列式不计算.(不计利息税)【答案】设第一次存款时的年利率为x,则可列方程为:()[]()53090150011000=+−+xx%.【解析】注意年利率的变化.【变式3】李立购买了1500元的债券,定期1年,到期兑换后他用去了435元,然后把其余的钱又购买了这种债券定期1年(利率不变),再到期后他兑换得到1308元,求这种债券的年利率.【答案】9%.【解析】设这种债券的年利率为x,则可列方程为()[]()1308143511500=+−+xx,化简可得:0818555002=−+xx,分解可得:()()0910095=−+xx,解:591−=x(负值舍去),09.02=x.答:这种债券的年利率为9%.【总结】本题中需要注意对题意得理解以及解方程的方法.【过关检测】一.选择题(共6小题)1.(2020秋•浦东新区校级月考)同学聚会,大家见面,所有人互赠小礼物,共有礼物90件.设x人参加聚会,列方程为()A.B.C.x(x+1)=90D.x(x﹣1)=90【分析】此题利用一元二次方程应用中的基本数量关系:x人参加聚会,每两名同学之间都互送了一件礼物,所有同学共送了x(x﹣1)件礼物解决问题即可.【解答】解:有x人参加这次聚会,每两人都互赠了一件礼物,则每人有(x﹣1)件礼物,依题意,得x(x﹣1)=90.故选:D.【点评】考查了由实际问题抽象出一元二次方程.理清题意,找对等量关系是解答此类题目的关键;需注意的是本题中“每两人都互赠了一件礼物”的条件,类似于球类比赛的双循环赛制.2.(2022秋•宝山区校级期中)容器内盛满60升纯酒精,倒出一部分后用水加满,第二次倒出比第一次多14升的溶液,再用水加满.这时容器内纯酒精和水正好各占一半,则第一次倒出了酒精多少升()A.10或96B.10C.96D.26【分析】设第一次倒出了酒精x升,则第二次倒出溶液(x+14)升,根据倒出两次后容器内纯酒精还剩下60×升,即可得出关于x的一元二次方程,解之取其符合题意的值,即可得出结论.【解答】解:设第一次倒出了酒精x升,则第二次倒出溶液(x+14)升,根据题意得:•[60﹣(x+14)]=60×,解得:x1=10,x2=96(不符合题意,舍去),∴第一次倒出了酒精10升.故选:B.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.3.(2022秋•宝山区期中)某玩具店销售某款玩具,单价为20元,为扩大销售,该玩具店连续两次对该款玩具进行降价销售,降价后的单价为16.2元,且两次降价的百分比均为x,那么可列方程为()A.16.2(1﹣x)2=20B.20(1﹣x)2=16.2C.20(1﹣x)2=20﹣16.2D.20(1﹣2x)=16.2【分析】利用经过两次降价后的价格=原价×(1﹣每次降价的百分比)2,即可得出关于x的一元二次方程,此题得解.【解答】解:依题意得:20(1﹣x)2=16.2,故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.4.(2022春•庐阳区校级期中)如图所示,在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图.如果要使整幅挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是()A.x2+130x﹣1400=0B.x2+65x﹣350=0C.x2﹣130x﹣1400=0D.x2﹣65x﹣350=0【分析】根据矩形的面积=长×宽,得出本题的等量关系是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.【解答】解:依题意,设金色纸边的宽为xcm,(80+2x)(50+2x)=5400,故选:B.【点评】此题主要考查了由实际问题抽象出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据题意列出方程是解题关键.5.(2022秋•徐汇区校级期末)公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18B.x2﹣3x+16=0C.(x﹣1)(x﹣2)=18D.x2+3x+16=0【分析】可设原正方形的边长为xm,则剩余的空地长为(x﹣1)m,宽为(x﹣2)m.根据长方形的面积公式可列出方程.【解答】解:设原正方形的边长为xm,依题意有(x﹣1)(x﹣2)=18,故选:C.【点评】本题考查了由实际问题抽象出一元二次方程的知识,应熟记长方形的面积公式.另外求得剩余的空地的长和宽是解决本题的关键.6.(2021秋•松江区期末)某果园今年栽种果树300棵,现计划扩大种植面积,使今后两年的栽种量都比前一年增长一个相同的百分数,这样三年(包括今年)的总栽种量为2100棵.若这个百分数为x.则由题意可列方程为()A.300(1+x)2=2100B.300+300(1+x)2=2100C.300(1+x)+300(1+x)2=2100D.300+300(1+x)+300(1+x)2=2100【分析】首先表示出各年栽种果树棵数,进而得出方程即可.【解答】解:设这个百分数为x,根据题意得出:300+300(1+x)+300(1+x)2=2100,故选:D.【点评】此题主要考查了一元二次方程的应用,分别表示出各年的栽种数量是解题关键.二.填空题(共12小题)7.(2023春•奉贤区期末)某品牌新能源汽车的某款车型售价为30万元,连续两次降价后售价为24.3万元,假如每次平均降价的百分率都为x,那么可列方程为.【分析】利用连续两次降价后的售价=原价×(1﹣每次平均降价的百分率)2,即可列出关于x的一元二次方程,此题得解.【解答】解:根据题意得:30(1﹣x)2=24.3.故答案为:30(1﹣x)2=24.3.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.(2022秋•奉贤区期中)如图,用33米长的竹篱笆一边靠墙(墙长18米)围一个长方形养鸡场,墙的对面有一个2米宽的门,围成的养鸡场的面积为150平方米,设垂直于墙的长方形的宽为x米,则可列出方程为.【分析】根据各边之间的关系,可得出长方形的长为(33+2﹣2x)米,根据围成的养鸡场的面积为150平方米,即可得出关于x的一元二次方程,此题得解.【解答】解:∵竹篱笆的总长度为33米,且垂直于墙的长方形的宽为x米,∴垂直于墙的长方形的长为(33+2﹣2x)米,依题意得:x(33+2﹣2x)=150.故答案为:x(33+2﹣2x)=150.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.(2023春•浦东新区期末)有一个两位数,如果个位上的数比十位上的数大1,并且十位上的数的平方比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、相关知识点1.理解并掌握一元二次方程的意义未知数个数为 1,未知数的最高次数为 2,整式方程,可化为一般形式; 2.正确识别一元二次方程中的各项及各项的系数 ( 1)明确只有当二次项系数 a0时,整式方程 ax 2bx c 0 才是一元二次方程。
( 2)各项的确定 (包括各项的系数及各项的未知数 ). ( 3)熟练整理方程的过程3.一元二次方程的解的定义与检验一元二次方程的解 4.列出实际问题的一元二次方程 二.解法1.明确一元二次方程是以降次为目的,以配方法、开平方法、公式法、因式分解法等方法为手段,从而把一元二次方程转化为一元一次方程求解;2.根据方程系数的特点,熟练地选用配方法、开平方法、公式法、因式分解法等方法解一元二次方程; 3.体会不同解法的相互的联系; 4.值得注意的几个问题:2或 ( ax b 2 n a 0) 的一元二次方程,即一元二次方程的一边是含有未 (1) 开平方法:对于形如xn ) ( 知数的一次式的平方,而另一边是一个非负数,可用开平方法求解. 形如 x 2n 的方程的解法: 当 n 0时, x n ; 当 n 0 时, x 1x 2 0 ;当 n 0 时,方程无实数根。
( 2)配方法:通过配方的方法把一元二次方程转化为 ( x m )2n 的方程,再运用开平方法求解。
配方法的一般步骤:①移项:把一元二次方程中含有未知数的项移到方程的左边,常数项移到方程的右边; ②“系数化 1”:根据等式的性质把二次项的系数化为 1;③配方:将方程两边分别加上一次项系数一半的平方,把方程变形为 2( x mn 的形式; ) ④求解:若 n 0 时,方程的解为x m n ,若 n 0 时,方程无实数解。
( 3)公式法:一元二次方程 ax2bx c 0( a 0) 的根 x b b 2 4ac2a当 b 24ac0 时,方程有两个实数根 ,且这两个实数根不相等; 当 b 24ac0 时,方程有两个实数根 ,且这两个实数根相等,写为x 1x 2b ;2a 第1页共7页当 b24ac 0 时,方程无实数根.公式法的一般步骤:①把一元二次方程化为一般式;②确定a, b, c 的值;③代入b24ac 中计算其值,判断方程是否有实数根;④若b24ac 0 代入求根公式求值,否则,原方程无实数根。
(因为这样可以减少计算量。
另外,求根公式对于任何一个一元二次方程都适用,其中也包括不完全的一元二次方程。
)( 4)因式分解法:①因式分解法解一元二次方程的依据:如果两个因式的积等于0,那么这两个因式至少有一个为0,即:若ab 0,则 a 0或 b 0 ;②因式分解法的一般步骤:若方程的右边不是零,则先移项,使方程的右边为零;把方程的左边分解因式;令每一个因式都为零,得到两个一元一次方程;解出这两个一元一次方程的解可得到原方程的两个解。
( 5)选用适当方法解一元二次方程①对于无理系数的一元二次方程,可选用因式分解法,较之别的方法可能要简便的多,只不过应注意二次根式的化简问题。
②方程若含有未知数的因式,选用因式分解较简便,若整理为一般式再解就较为麻烦。
(6)解含有字母系数的方程(1)含有字母系数的方程,注意讨论含未知数最高项系数,以确定方程的类型;(2)对于字母系数的一元二次方程一般用因式分解法解,不能用因式分解的可选用别的方法,此时一定不要忘记对字母的取值进行讨论。
三、根的判别式1.了解一元二次方程根的判别式概念,能用判别式判定根的情况,并会用判别式求一元二次方程中符合题意的参数取值范围。
( 1)= b24ac( 2)根的判别式定理及其逆定理:对于一元二次方程ax2bx c 0( a 0 )a 0①当0时方程有实数根;(当a 0 a 0方程有两个不相等的实数根;当方程有两个相等的实数根;)0时0时a 0②当0时方程无实数根;从左到右为根的判别式定理;从右到左为根的判别式逆定理。
2.常见的问题类型(1)利用根的判别式定理,不解方程,判别一元二次方程根的情况(2)已知方程中根的情况,如何由根的判别式的逆定理确定参数的取值范围(3)应用判别式,证明一元二次方程根的情况①先计算出判别式(关键步骤);第2页共7页②用配方法将判别式恒等变形;③判断判别式的符号;④总结出结论.( 4)分类讨论思想的应用:如果方程给出的时未指明是二次方程,后面也未指明两个根,那一定要对方程进行分类讨论,如果二次系数为 0,方程有可能是一元一次方程;如果二次项系数不为 0,一元二次方程可能会有两个实数根或无实数根。
(5)一元二次方程根的判别式常结合三角形、四边形、不等式(组)等知识综合命题,解答时要在全面分析的前提下,注意合理运用代数式的变形技巧(6)一元二次方程根的判别式与整数解的综合(7)判别一次函数与反比例函数图象的交点问题四、一元二次方程的应用1.数字问题:解答这类问题要能正确地用代数式表示出多位数,奇偶数,连续整数等形式。
2.几何问题:这类问题要结合几何图形的性质、特征、定理或法则来寻找等量关系,构建方程,对结果要结合几何知识检验。
3.增长率问题(下降率):在此类问题中,一般有变化前的基数(a ),增长率( x ),变化的次数(n ),变化后的基数( b ) ,这四者之间的关系可以用公式a xnb 表示。
(1 )4.其它实际问题(都要注意检验解的实际意义,若不符合实际意义,则舍去)。
五.实际应用( 1)有 100 米长的篱笆材料,想围成一矩形仓库,要求面积不小于600 平方米,在场地的北面有一堵50米的旧墙,有人用这个篱笆围成一个长40 米、宽 10 米的仓库,但面积只有400 平方米,不合要求,问应如何设计矩形的长与宽才能符合要求呢?( 2)读诗词解题(列出方程,并估算出周瑜去世时的年龄):大江东去浪淘尽,千古风流数人物,而立之年督东吴,英年早逝两位数,十位恰小个位三,个位平方与寿符,哪位学子算得准,多少年华属周瑜?(36 岁)(3) 已知:a,b, c 分别是 A B C的三边长,当 m 0 时,关于x 的一元二次方程c( x 2m) b(x 2m) 2 max 0 有两个相等的实数根,求证:ABC 是直角三角形。
第3页共7页( )已知: a,b, c 分别是 ABC 的三边长,求证:方程2 x 2 (b 2 c 2 2)x c 2 0 没有实数根。
4ba( 5)当 m 是什么整数时, 关于 x 的一元二次方程 mx 2 4x 4 0 与 x 24mx 4m 24m 5 0 的根都是整数?( m 1)( 6)已知关于 x 的方程 x 2 2x2 m 21,其中 m 为实数,( 1)当 m 为何值时,方程没有实x 2x 2m数根?( 2)当 m 为何值时,方程恰有三个互不相等的实数根?求出这三个实数根。
答案:( 1) m 2 ( 2)x 1, 1 2 .(二)一元二次方程的解法1.开平方法解下列方程:( 1) 2 125 0(x 1 5, x 2 52 5622) ( ) ( ) 5 x 169( x 3) 289 x 1 , x 2 2 13 13( 3) y 2 361 0(原方程无实根) ( 4) (1 3) m 20 ( m 1 m 2 0 )2.配方法解方程:( 1) x 22x 5 0 ( x 1 6 ) (2) y 25 y 1 0 ( x 521)23.公式法解下列方程:( 1) 3x 26x 2 ( x 33 ) (2) p 23 2 3 p( p 1 p 2 3 )3第4页共7页4.因式分解法解下列方程:(1)1x 2 9 0( x 6 )2y 2 4 y 45 0(y19, y2 5)4()( 3) 8x210 x 3 0 ( x11 , x2 3 )(4) 7 x221x 0 ( x1 0, x23)4 25.解法的灵活运用(用适当方法解下列方程):( 1) 2( 2x 7) 2128 ( x 7 2 )( 2) 2m m2 1 2( m22m) 2( m 2 6 )2 26.解含有字母系数的方程(解关于 x 的方程):( 1) x22mx m2n20 ( x1m n, x2m n )( 2) x23a 24ax 2a 1 ( x13a 1, x2 a 1)(三)一元二次方程的根的判别式1.不解方程判别方程根的情况:( 1) 4 x 2x 3 7x (有两个不等的实数根)( 2) 3(x 22) 4x (无实数根)2 k 为何值时,关于x的二次方程kx26x 9 0.( 1)有两个不等的实数根( k 1且 k 0 )( 2)有两个相等的实数根( k 1)( 3)无实数根( k 1)第5页共7页3.已知关于x的方程 4x2(m 2) x 1 m 有两个相等的实数根.求m的值和这个方程的根.( m 2, x1 x21x23 或 m 10, x1) 2 24.若方程 x 22(a 1) x a 24a 5 0 有实数根,求:正整数 a. ( a 1, a 2,a 3 )5.对任意实数 m,求证:关于x 的方程 (m21)x 22mx m2 4 0 无实数根 .6. k 为何值时,方程(k 1) x2(2k 3) x (k 3) 0 有实数根 .7 m 为整数,且4m 40 时,方程x22( 2m 3) x4m214m 8 0 有两个相异整数根,求m.设的值及方程的根。
(当m =12 时,方程的根为x116, x226;当 m =24时,方程的根为 x1 38,x252 )第6页共7页3.某商场销售一批名牌衬衫,平均每天可以售出20 件,每件盈利40 元,为了扩大销售增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价 1 元,商场每天可多售出2件,若商场平均每天要盈利1200 元,每件衬衫应降价多少元?(20 元)4.已知甲乙两人分别从正方形广场ABCD 的顶点 B、 C 同时出发,甲由 C 向 D 运动,乙由 B 向 C 运动,甲的速度为每分钟 1 千米,乙的速度每分钟 2 千米,若正方形广场周长为40 千米,问几分钟后,两人相距2 10千米?(2分钟后 )7.某科技公司研制一种新产品,决定向银行贷款200 万元资金,用于生产这种产品,签订的合同上约定两年到期时一次性还本付息,利息为本金的8%,该产品投放市场后由于产销对路, 使公司在两年到期时除还清贷款的本金和利息外 , 还盈余 72 万元 , 若该公司在生产期间每年比上一年资金增长的百分数相同, 试求这个百分数 . (20%)8.如图,东西和南北向两条街道交于O 点,甲沿东西道由西向东走,速度是每秒 4 米,乙沿南北道由南向北走,速度是每秒 3 米,当乙通过 O 点又继续前进 50 米时,甲刚好通过 O 点,求这两人在相距 85 米时,每个人的位置。