英文版 微积分试卷答案 (1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、 (1) sin 2lim
x x x
→∞
= 0 . (2) d(arctan )x = 2
1d 1+x
x
(3)
2
1
d sin
x x
=
⎰
-cot +C
x x
(4).2()()x n e = 22n x e .
(5)0
x =⎰
26/3
2、
(6) The right proposition in the following propositions is ___A_____.
A. If lim ()x a
f x →exists and lim ()x a
g x →does not exist then lim (()())x a
f x
g x →+does not exist.
B. If lim ()x a
f x →,lim ()x a
g x →do bot
h not exist then lim (()())x a
f x
g x →+does not exist.
C. If lim ()x a
f x →exists and lim ()x a
g x →does not exist then lim ()()x a
f x
g x →does not exist.
D. If lim ()x a
f x →exists and lim ()x a
g x →does not exist then ()lim
()
x a
f x
g x →does not exist.
(7) The right proposition in the following propositions is __B______.
A. If lim ()()x a
f x f a →=then ()f a 'exists.
B. If lim ()()x a
f x f a →≠ then ()f a 'does not exist.
C. If ()f a 'does not exist then lim ()()x a
f x f a →≠.
D. If ()f a 'does not exist then the cure ()y f x =does not have tangent at (,())a f a .
(8) The right statement in the following statements is ___D_____.
A. sin lim
1x x x
→∞
= B. 1
lim (1)x x x e →∞
+=
C.
1
1d 1x x x
C
α
αα
+=
++⎰
D.
5
5
11d d 11b b a
a
x y
x
y
=
++⎰
⎰
(9) For continuous function ()f x , the erroneous expression in the following expressions
is ____D__. A.d (()d )()
d b
a f x x f
b b =⎰ B.
d (()d )()d b
a
f x x f a a =-⎰
C.
d (()d )0
d b
a
f x x x
=⎰ D.
d (()d )()()d b
a
f x x f b f a x
=-⎰
(10) The right proposition in the following propositions is __B______.
A. If ()f x is discontinuous on [,]a b then ()f x is unbounded on [,]a b .
B. If ()f x is unbounded on [,]a b then ()f x is discontinuous on [,]a b .
C. If ()f x is bounded on [,]a b then ()f x is continuous on [,]a b .
D. If ()f x has absolute extreme values on [,]a b then ()f x is continuous on [,]a b . 3、Evaluate 2
11lim (
)x
x e x
x
→--
2
1=lim (
)x
x e x
x
→--0
1=lim (
)2x
x e x
→-0
1=lim
=
2
2x
x e
→
(考点课本4.4节洛比达法则,每年都会有一道求极限的解答题,大多数都是用洛比达法则去求解,所以大家要注意4.4节的内容。注意洛比达法则的适用范围。)
4.Find 0d |x y =and (0)y ''if 2
x x
x y y t e
+=
+⎰
.
2
'()'
x x
x y y t e +=+⎰
()
1'2()'2()1
x
x
y x y x e y x y x e +=⋅+⇒=⋅+-
(20(0)1)0x dy
y e dx dx
==⋅⋅+-=
''(2()1)'2()2'()x
x
y x y x e y x xy x e
=⋅+-=++
2
-(0)0-01
x x y y t e x y e =
+⇒=+=⎰
''02(0)20'(0)=3
y y y e =+⋅+()
(考察微积分基本定理与微分,书上5.3节)
5、 Find 2
2
arctan d (1)
x x x x +⎰
=22
2
2
1)arctan d (1)
x x x
x
x x +-+⎰
(
2
2
arctan arctan =d d (1)
x x x x
x
x -
+⎰
⎰
-1
2
3
1
1=-arctan +d arctan +2
x x x x x x
-
⎰
2
2-1
2
2
1++1=-arctan +d arctan 1+2
x x
x x x x x x -⎰
() -1
221
1=-arctan +d d arctan 1+2
x x x x x x x x --⎰
⎰() -12
2
11=-arctan +In In 1+arctan 22
x x x x
x --
-1
2
1=-arctan +In
arctan +C 2
x x x -
(凑微分求不定积分,积分是微积分的重点及难点,大家一定要掌握透彻。)
6、 Given that 2
2()1
x
f x x =+.