铁路缓和曲线计算
铁路公路坐标计算方法
铁路公路曲线防样坐标计算方法一、随着我国公路铁路的大力建设,对坐标放样的要求精度越来越高,以及通过一种快速的捷径来达到一次性对整个路基、桥梁的中线编辑公式,准确较快的计算出中心坐标,使得坐标放样在我们的施工中带来更大的方便。
1、首先熟悉测量知识圆曲线基本公式及概念。
偏角法测设圆曲线1-1知道了圆曲线的测设里程,即测设的曲线长Li ,即可进行计算,其计算公式如下:πα0180∙=R L i i2iiαδ=i i R c δsin 2= (1-1)式中,i δ,i c 为曲线测设曲线点i 的偏角与弦长。
切线支距法测设圆曲线ZYi i R x αsin ∙= )c o s 1(i i R y α-∙= π180∙=R L a i i(1-2)1-2式中i L 为曲线上点i 至ZY (或YZ )的曲线长。
2、缓和曲线的基本公式及概念。
缓和曲线是直线与圆曲线之间的一种过渡曲线,它与直线分界处半径为∞,与圆曲线相接处半径与圆曲线半径R 相等,缓和曲线上任一点的曲率半径ρ与该点到曲线起点的长度成反比。
如下图中,存在公式: ρ∝l1 或Cl =ρ (2-1)公式中C 是一个常数,称缓和曲线半径变更率。
当0l l =时,R =ρ 所以C l R =∙0,C l =ρ,是缓和曲线的必要条件,实用中能满足这一条件的曲线可称为缓和曲线,如辐射螺旋线、三次抛物线等,我国缓和曲线均采用辐射螺旋线。
1-33、缓和曲线方程式:按照C l =ρ为必要条件导出的缓和曲线方程为:∙∙∙∙++-=∙∙∙∙∙++-=5113734925422403366345640Cl C l C l y Cl C l l x (3-1) 根据测设精度的要求,实际应用中可将高次项舍去,并顾及到C Rl =0,则上式变为32025640Rl l y l R l l x =-=(3-2)式中,x ,y 为缓和曲线上任一点的直角坐标,坐标原点为直缓点(ZH )或缓直(HZ ),通过该点的缓和曲线切线为x 轴。
铁路缓和曲线坐标计算方法 (0517)
一、曲线的一般组成厦深铁路12标正线线形设计为 直线+缓和曲线+圆曲线+缓和曲线+直线。
从小里程至大里程依次为ZH (直缓点)、HY (缓圆点)、YH (圆缓点)、HZ (缓直点)如下图所示:二、方位角的概念从标准方向的正北端起,顺时针方向到直线的水平角称为该直线的方位角。
方位角的取值范围为0°~360°,如下图A 即为直线L 的方位角。
TT三、某点坐标的计算已知A 点坐标为(491548,2505452),B 点距离A 点L=125m ,直线AB 的方位角为235°,计算B 点坐标。
计算方法:Y=491548+125×SIN235=491445.606X=2505452+125×COS235=2505380.303四、曲线上任一点的坐标及切线方位角计算1 直线段上任一点的坐标及方位角直线上的坐标计算比较简单,只需要求出该点所在直线的方位角以及线路中的里程即可求得例1,求DK495+520处左中线的坐标及方位角由设计院所给的曲线要素表可知该点位于JD57 JD58的直线上,查曲线要素表JD57,JD58的坐标分别为(488809.902,2504127.029),(485660.627,2504491.226)。
通过坐标反算直线JD57 JD58的方位角:TTA=atg((485660.627-488809.902)/( 2504491.226-25 04127.029))=276.59665°注意:A的取值可根据下述条件确定ΔY>0,ΔX>0,第一象限0-90°ΔY>0,ΔX<0,第二象限90°-180°ΔY<0,ΔX<0,第三象限180°-270°ΔY<0,ΔX>0,第四象限270°-360°查曲线表,JD58切线长T= 690.303m,JD58坐标(Y58,X58)=(485660.627,2504491.226),ZH点里程为DK496+093.885。
缓和曲线要素及公式介绍
11.2.1 带缓和曲线的圆曲线的测设为了保障车辆行驶安全,在直线与圆曲线之间加入一段半径由∞逐渐变化到R的曲线,这种曲线称为缓和曲线。
目前常用的缓和曲线多为螺旋线,它有一个特性,曲率半径ρ与曲线长度l成反比。
数学表达为:ρ∝1/l 或ρ·l = k ( k为常数)若缓和曲线长度为l0,与它相连的圆曲线半径为R,则有:ρ·l = R·l0 = k目前我国公路采用k = 0.035V3(V为车速,单位为km/h),铁路采用k = 0.09808V3,则公路缓和曲线的长度为l0 = 0.035V3/R ,铁路缓和曲线的长度为:l0 = 0.09808V3/R 。
11.2.2 带缓和曲线的圆曲线的主点及主元素的计算带缓和曲线的圆曲线的主点有直缓点ZH、缓圆点HY、曲中点QZ、圆缓点YH、缓直点HZ 。
带缓和曲线的圆曲线的主元素及计算公式:切线长 T h = q+(R+p)·tan(α/2)曲线长 L h = 2l0+R·(α-2β0)·π/180°外矢距 E h = (R+p)·sec(α/2)-R切线加长 q = l0/2-l03/(240R2)圆曲线相对切线内移量 p = l02/(24R)切曲差 D h = 2T h -L h式中:α 为线路转向角;β0为缓和曲线角;其中q、p、β0缓和曲线参数。
11.2.3 缓和曲线参数推导dβ = dl/ρ = l/k·dl两边分别积分,得:β= l2/(2k) = l/(2ρ)当ρ = R时,则β =β0β0 = l0/(2R)若选用点为ZH原点,切线方向为X轴,垂直切线的方向为Y轴,建立坐标系,则:dx = dl·cosβ = cos[l2/(2k)]·dldy = dl·sinβ = si n[l2/(2k)]·dl考虑β很小,sinβ和cosβ即sin(l2/(2k))和cos(l2/(2k))可以用级数展开,等式两边分别积分,并把k = R·l0代入,得以曲线长度l为参数的缓和曲线方程式:X = l-l5/(40R2l02)+……Y = l3/(6Rl0)+……通常应用上式时,只取前一、二项,即:X = l-l5/(40R2l02)Y = l3/(6Rl0)另外,由图可知,q = X HY-R·sinβ0p = Y HY-R(1-cosβ0)以β0= l0/(2R)代入,并对sin[l0/(2R)]、cos[l0/(2R)]进行级数展开,取前一、二项整理可得:q = l0/2-l03/(240R2)p = l02/(24R)若仍用上述坐标系,对于圆曲线上任意一点i,则i点的坐标X i、Y i可以表示为:Xi = R·sinψi+qYi = R·(1-cosψi)+p11.2.4 带缓和曲线的圆曲线的主点桩号计算及检核ZH桩号 = JD桩号-T hHY桩号 = ZH桩号+l0QZ桩号 = HY桩号+L/2YH桩号 = QZ桩号+L/2 = HY桩号+L = ZH桩号+l0+LHZ桩号 = YH桩号+l0 = ZH桩号+L hJD桩号 = ZY桩号-T h+D h(检核)11.2.5 带缓和曲线的圆曲线的主点的测设过程:(1)在JD点安置经纬仪(对中、整平),用盘左瞄准直圆方向,将水平度盘的读数配到0°00′00″,在此方向量取T h,定出ZH点;(2)从JD沿切线方向量取T h-X HY,然后再从此点沿切线垂直方向量取Y HY , 定出HY点;(3)倒转望远镜,转动照准部到度盘读数为α,量取T h,定出HZ点;(4)从JD沿切线方向量取T h-X HY,然后再从此点沿切线垂直方向量取Y HY , 定出YH点;(5)继续转动照准部到度盘读数为(α+180°)/2,量取E h,定出QZ点。
铁路、公路线路测量公式
4)、圆曲线上任意点法线方向上任意点的大地坐标(X法,Y法),法线方位角α法,
如果转向角左偏取α法=α-3*β-3.1415/2,若α法<0,则计算结ห้องสมุดไป่ตู้加上2倍的圆周率即α法=α-3*β-l/R-3.1415/2+2*3.1415;
即α法=α-3(20Rls/(40R^2-ls^2)) -l/R-3.1415/2+2*3.1415
如果转向角右偏取
α法=α+3(20Rls/(40R^2-ls^2)) +l/R +3.1415/2;
若α法>360,
则α法=α+3(20Rls/(40R^2-ls^2)) +l/R +3.1415/2-2*3.1415;
如果转向角左偏取α法=α-3*β-3.1415/2,若α法<0,则计算结果加上2倍的圆周率即α法=α-3*β-3.1415/2+2*3.1415;
如果转向角右偏取α法=α+3*β+3.1415/2;若α法>360,则计算结果加上2倍的圆周率即α法=α+3*β+3.1415/2-2*3.1415;
法线上任意一点到切点的距离为D法,
X=l-l5/(40*R2*ls2)
Y= l3/(6*R*ls)
αi为直缓点到待求点直线的方位角(弧度);
如果转向角左偏取αi=(α-β)=(α-20R lsl2/3(40R2ls2- l4))
若(α-β)<0,则αi=(α-β)+2*3.1415,但在计算坐标中可不考虑;
如果转向角右偏取αi=(α+β)=(α+20R lsl2/3(40R2ls2- l4))
缓和曲线要素及公式介绍
为了保障车辆行驶安全,在直线与圆曲线之间加入一段半径由∞逐渐变化到R的曲线,这种曲线称为缓和曲线。
目前常用的缓和曲线多为螺旋线,它有一个特性,曲率半径ρ与曲线长度l成反比。
数学表达为:ρ∝1/l 或ρ·l = k ( k为常数)若缓和曲线长度为l0,与它相连的圆曲线半径为R,则有:ρ·l = R·l0 = k目前我国公路采用k = (V为车速,单位为km/h),铁路采用k = ,则公路缓和曲线的长度为l0 = R ,铁路缓和曲线的长度为:l0 = R 。
11.2.2 带缓和曲线的圆曲线的主点及主元素的计算带缓和曲线的圆曲线的主点有直缓点ZH、缓圆点HY、曲中点QZ、圆缓点YH、缓直点HZ 。
带缓和曲线的圆曲线的主元素及计算公式:切线长 T h = q+(R+p)·tan(α/2)曲线长 L h = 2l0+R·(α-2β0)·π/180°外矢距 E h = (R+p)·sec(α/2)-R切线加长 q = l0/2-l03/(240R2)圆曲线相对切线内移量 p = l02/(24R)切曲差 D h = 2T h -L h式中:α 为线路转向角;β0为缓和曲线角;其中q、p、β0缓和曲线参数。
11.2.3 缓和曲线参数推导dβ = dl/ρ = l/k·dl两边分别积分,得:β= l2/(2k) = l/(2ρ)当ρ = R时,则β =β0β0 = l0/(2R)若选用点为ZH原点,切线方向为X轴,垂直切线的方向为Y轴,建立坐标系,则:dx = dl·cosβ = cos[l2/(2k)]·dldy = dl·sinβ = sin[l2/(2k)]·dl考虑β很小,sinβ和cosβ即sin(l2/(2k))和cos(l2/(2k))可以用级数展开,等式两边分别积分,并把k = R·l0代入,得以曲线长度l为参数的缓和曲线方程式:X = l-l5/(40R2l02)+……Y = l3/(6Rl0)+……通常应用上式时,只取前一、二项,即:X = l-l5/(40R2l02)Y = l3/(6Rl0)另外,由图可知,q = X HY-R·sinβ0p = Y HY-R(1-cosβ0)以β0= l0/(2R)代入,并对sin[l0/(2R)]、cos[l0/(2R)]进行级数展开,取前一、二项整理可得:q = l0/2-l03/(240R2)p = l02/(24R)若仍用上述坐标系,对于圆曲线上任意一点i,则i点的坐标X i、Y i可以表示为:Xi = R·sinψi+qYi = R·(1-cosψi)+p11.2.4 带缓和曲线的圆曲线的主点桩号计算及检核ZH桩号 = JD桩号-T hHY桩号 = ZH桩号+l0QZ桩号 = HY桩号+L/2YH桩号 = QZ桩号+L/2 = HY桩号+L = ZH桩号+l0+LHZ桩号 = YH桩号+l0 = ZH桩号+L hJD桩号 = ZY桩号-T h+D h(检核)11.2.5 带缓和曲线的圆曲线的主点的测设过程:(1)在JD点安置经纬仪(对中、整平),用盘左瞄准直圆方向,将水平度盘的读数配到0°00′00″,在此方向量取T h,定出ZH点;(2)从JD沿切线方向量取T h-X HY,然后再从此点沿切线垂直方向量取Y HY , 定出HY点;(3)倒转望远镜,转动照准部到度盘读数为α,量取T h,定出HZ点;(4)从JD沿切线方向量取T h-X HY,然后再从此点沿切线垂直方向量取Y HY , 定出YH点;(5)继续转动照准部到度盘读数为(α+180°)/2,量取E h,定出QZ点。
缓和曲线半径计算公式
缓和曲线半径计算公式缓和曲线是指将两条直线或曲线段平滑地连接起来的过渡曲线。
在道路设计、铁路设计等领域中广泛应用。
计算缓和曲线半径的公式基于几何学原理和交通工程的需求。
在计算缓和曲线半径之前,首先需要了解以下几个关键参数:1.设计速度(Vd):即车辆在缓和曲线上行驶的目标速度。
2.过渡长度(L):即缓和曲线的总长度。
3.动摩擦因数(f):即车辆行驶过程中的轮胎与路面之间的摩擦系数。
4.允许超高(e):在垂直方向上,车辆离开水平线的最大允许值。
基于以上参数,可以通过以下公式计算缓和曲线半径:R=Vd^2/(127*f*e)其中,R表示缓和曲线半径。
需要注意的几点是:1.这个公式是根据欧拉公式推导得来的,适用于大多数情况。
但对于特定道路设计,如复杂弯道或高速公路等,可能需要采用更复杂的公式进行计算。
2.设计速度需要根据具体路段的要求进行选择。
一般来说,缓和曲线的设计速度应与前后道路的设计速度相匹配,以确保平稳过渡。
3.允许超高是指驶过缓和曲线过程中,车辆会偏离水平线的程度。
允许超高的值应根据实际需要进行确定。
4.确定缓和曲线总长度的计算需要根据具体情况进行。
一般来说,它被设定为车辆达到设计速度所需的时间内行驶的距离。
5.动摩擦因数是一个经验值,根据道路状况、车辆类型等因素进行选择。
一般来说,可以参考交通工程相关规范或手册中的推荐值。
需要注意的是,以上计算仅为基本公式,实际应用中还会受到其他因素的影响,如地形、道路条件、车辆特性等。
因此,在进行具体的设计和计算时,建议参考相关的交通工程规范和设计手册,确保计算结果符合实际需求。
铁路缓和曲线计算
、缓和曲线的作用及其几何特征行驶于曲线轨道的机车车辆,出现一些与直线运行显著不同的受力特征。
如曲线运行的离心力,外轨超高不连续形成的冲击力等。
为使上述诸力不致突然产生和消失,以保持列车曲线运行的平稳性,需要在直线与圆曲线轨道之间设置一段曲率半径和外轨超高度均逐渐变化的曲线,称为缓和曲线。
当缓和曲线连接设有轨距加宽的圆曲线时,缓和曲线的轨距是呈线性变化的。
概括起来,缓和曲线具有以下几何特征:1. 缓和曲线连接直线和半径为R的圆曲线,其曲率由零至1/R逐渐变化。
2. 缓和曲线的外轨超高,由直线上的零值逐渐增至圆曲线的超高度,与圆曲线超高相连接。
3. 缓和曲线连接半径小于350m的圆曲线时,在整个缓和曲线长度内,轨距加宽呈线性递增,由零至圆曲线加宽值。
因此,缓和曲线是一条曲率和超高均逐渐变化的空间曲线。
二、缓和曲线的几何形位条件图2-9所示为一段缓和曲线。
其始点与终点用ZH与HY表示。
要达到设置缓和曲线的目的,根据如图所取直角坐标系,缓和曲线的线形应满足以下条件:1.为了保持连续点的几何连续性,缓和曲线在平面上的形状应当是:在始点处,横坐标x= 0,纵坐标y= 0,倾角φ= 0;在终点处,横坐标x=x0,纵坐标y=y0,倾角φ=φ0。
2.列车进入缓和曲线,车体受到离心力J的作用,为保持列车运行的平稳性,应使离心力不突然产生和消失,即在缓和曲线始点处,J=0,在缓和曲线终点处Ρ=R。
3.缓和曲线上任何一点的曲率盈余外轨超高相吻合。
在纵断面上,外轨超高顺坡的形式有两种形式。
一种形式是,如图2-10(a)所示;另一种形式是曲线形,如图2-10(b)所示。
图 2-9缓和曲线坐标图列车经过直线顺坡的缓和曲线始点和终点时,对外轨都会产生冲击。
在行车速度不高,超高顺破相对平缓时,列车对外轨的冲击不大,可以采用直线形顺坡,即可满足曲率与超高相配合的要求。
当行车速度较高,为了消除列车对外轨的冲击,应采用曲线形超高顺坡。
铁路缓和曲线计算
、缓和曲线的作用及其几何特征行驶于曲线轨道的机车车辆,出现一些与直线运行显著不同的受力特征。
如曲线运行的离心力,外轨超高不连续形成的冲击力等。
为使上述诸力不致突然产生和消失,以保持列车曲线运行的平稳性,需要在直线与圆曲线轨道之间设置一段曲率半径和外轨超高度均逐渐变化的曲线,称为缓和曲线。
当缓和曲线连接设有轨距加宽的圆曲线时,缓和曲线的轨距是呈线性变化的。
概括起来,缓和曲线具有以下几何特征:1. 缓和曲线连接直线和半径为R 的圆曲线,其曲率由零至1/R 逐渐变化。
2. 缓和曲线的外轨超高,由直线上的零值逐渐增至圆曲线的超高度,与圆曲线超高相连接。
3. 缓和曲线连接半径小于350m 的圆曲线时,在整个缓和曲线长度内,轨距加宽呈线性递增,由零至圆曲线加宽值。
因此,缓和曲线是一条曲率和超高均逐渐变化的空间曲线。
二、缓和曲线的几何形位条件图2-9所示为一段缓和曲线。
其始点与终点用ZH 与HY 表示。
要达到设置缓和曲线的目的,根据如图所取直角坐标系,缓和曲线的线形应满足以下条件:1.为了保持连续点的几何连续性,缓和曲线在平面上的形状应当是:在始点处,横坐标x = 0,纵坐标y = 0,倾角φ = 0;在终点处,横坐标 x =x 0,纵坐标y =y 0 ,倾角φ =φ0 。
2.列车进入缓和曲线,车体受到离心力 J 的作用,为保持列车运行的平稳性,应使离心力不突然产生和消失,即在缓和曲线始点处,J =0,在缓和曲线终点处 Ρ=R 。
3.缓和曲线上任何一点的曲率盈余外轨超高相吻合。
在纵断面上,外轨超高顺坡的形式有两种形式。
一种形式是,如图2-10(a )所示;另一种形式是曲线形,如图2-10(b )所示。
列车经过直线顺坡的缓和曲线始点和终点时,对外轨都会产生冲击。
在行车速度不高,超高顺破相对平缓时,列车对外轨的冲击不大,可以采用直线形顺坡,即可满足曲率与超高相配合的要求。
当行车速度较高,为了消除列车对外轨的冲击,应采用曲线形超高顺坡。
线路常用计算公式
线路常用计算公式一、曲线计算(一)超高按下列公式计算:R H j28.11υ= ∑∑=iii i i j QN Q N 2υυ式中 H ——超高(mm); . υj ——平均速度(km /h); R ——曲线半径(m);N i ——一昼夜各类列车次数(列); Q i ——各类列车重量(t); υi ——实测各类列车速度(km /h)。
按上式算出后,对未被平衡欠超高和未被平衡过超高分别按下列公式检算:HRH c -=2max8.11υR H H Hg 28.11υ-=式中H 一实设超高(mm);H c ——未被平衡欠超高(mm); H g ——未被平衡过超高(mm); υmax ——线路允许速度(km /h);υH ——货物列车平均行车速度(km /h)。
未被平衡欠超高不应大于75mm ,困难情况下不应大于90mm ,但允许速度大于120 km /h 线路个别特殊情况下已设置的90(不舍)~110mm 的欠超高可暂时保留,但应逐步改造;未被平衡过超高不应大于30mm ,困难情况下不应大于50mm ,允许速度大于160 km /h 线路的个别特殊情况下不应大于70 mm 。
实设超高在满足上述条件下,货物列车较多时,宜减小H g ,旅客列车较多时宜减小H c 。
(二)缓和曲线长度计算缓和曲线长度主要是根据圆曲线半径和列车运行速度来确定。
其长度应满足以下条件: 1.满足旅客舒适度列车在缓和曲线上运行时,沿外轨滚动的车轮逐渐升高(或逐渐降低),为满足旅客舒适条件,这个升高速度不能超过一定数值。
满足旅客舒适度的缓和曲线长度由以下公式计算:0l ≥fhV 6.3max式中 0l ——缓和曲线长(m );h ——圆曲线外轨超高(mm );max V ——列车通过曲线最高运行速度(km/h );f ——为保证旅客列车的舒适条件所允许的外轮升高速度(mm/s )。
在选用缓和曲线长时,我国铁路规定,Ⅰ、Ⅱ级铁路一般采用f =32mm/s ,困难情况下采用f =36mm/s ,而在行车速度较高,但受桥隧、车站等限制或在小半径曲线地段等,Ⅲ级铁路采用f =40mm/s ,以便通过适当降低旅客舒适度,来减少工程数量。
铁路缓和曲线规矩尺计算水平值教学
铁路缓和曲线规矩尺计算水平值教学(最新版)目录一、铁路缓和曲线的概述二、缓和曲线的作用及其几何特征三、规矩尺计算水平值的方法四、教学实践与应用正文一、铁路缓和曲线的概述铁路缓和曲线是在直线轨道与圆曲线轨道之间设置的一段曲线,其曲率半径和外轨超高度逐渐变化,以保持列车在曲线运行时的平稳性。
缓和曲线的几何特征主要包括曲率半径、外轨超高度和轨距。
在实际应用中,为了提高列车的运行安全性和舒适性,需要对缓和曲线进行精确计算和设计。
二、缓和曲线的作用及其几何特征缓和曲线的主要作用是使列车在曲线轨道上运行时,所受到的离心力、冲击力等力不至于突然产生和消失,保持列车的运行平稳性。
缓和曲线的几何特征如下:1.曲率半径:缓和曲线的曲率半径是逐渐变化的,一般在直线轨道与圆曲线轨道之间进行平滑过渡。
2.外轨超高度:外轨超高度是指轨道外轨相对于内轨的高度差,它在缓和曲线上是不连续的,但在缓和曲线的末端应逐渐降低至零。
3.轨距:在缓和曲线上,轨距是呈线性变化的。
当缓和曲线连接设有轨距加宽的圆曲线时,轨距的变化会更加明显。
三、规矩尺计算水平值的方法规矩尺是一种常用的测量工具,可以用于计算缓和曲线的水平值。
其计算方法如下:1.测量曲线上各点的高差:使用水准仪测量曲线上各点的高差,并将其记录在表格中。
2.计算曲线的平均高差:根据测量数据,计算曲线的平均高差。
3.计算水平值:根据公式,计算出曲线的水平值。
四、教学实践与应用在教学实践中,可以通过以下方式应用铁路缓和曲线规矩尺计算水平值的方法:1.讲解铁路缓和曲线的基本概念和几何特征,使学生了解缓和曲线在铁路运行中的重要作用。
2.讲解规矩尺的测量原理和使用方法,使学生掌握测量缓和曲线水平值的技能。
3.组织学生进行实际测量,指导学生使用规矩尺计算缓和曲线的水平值,并分析测量结果。
线路圆曲线半径_缓和曲线长度和线间距标准制定依据的介绍
收稿日期:20040524作者简介:王厚雄(1938—),男,研究员,1959年毕业于唐山铁道学院选线设计及铁路航空勘察专业。
线路圆曲线半径、缓和曲线长度和线间距标准制定依据的介绍王厚雄(铁道科学研究院铁道建筑研究所 北京 100081) 摘 要:着重介绍《新建时速200公里客货共线铁路设计暂行规定》(以下简称《暂规》)中3个主要线路平面设计标准的拟定原则,计算方法和参数选择的思路。
《暂规》期望,这些思路有助于提高线路平面质量,使线路有可能达到“少维修”的水平,从而满足新建时速200km 客货共线铁路安全、舒适和不间断运营的要求。
关键词:时速200km 铁路;客货共线铁路;线路圆曲线半径;线间距;缓和曲线长度 中图分类号:U412134 文献标识码:C 文章编号:10042954(2004)07003304 《新建时速200公里客货共线铁路设计暂行规定》基于我国铁路设计和运营实践多年经验教训,对线路主要平面设计标准的拟定原则、计算方法及参数选择方法,作了不同于99版国标《铁路线路设计规范》(以下简称《线规》)的一些改动。
这些改动与前苏联铁路设计规范(СНИПⅡ3976)和欧盟国家铁路设计思路基本接轨[1]。
编制者期望,由这些改动得出的相关设计标准,配合线路、轨道、路基和桥梁等设计标准,有助于提高时速200km 铁路的线路设计质量,在符合安全适用、技术先进、经济合理的前提下,有可能使线路达到“少维修”水平,从而满足新建时速200km 客货共线铁路安全、舒适和不间断的运营要求。
国外多年运营实践表明,“少维修”是时速200km 以上高速铁路所必需具备的基本条件之一。
由于新建时速200km 客货共线铁路在我国属开创性工程,既无试验数据可以利用,也无运营实践经验可遵循,故本次编制的相关规定只能是暂时性的,有待今后深入研究、实践观测和修订完善。
1 线路圆曲线半径111 圆曲线半径的划分及选用原则(1)推荐半径在定线选择圆曲线半径时,应优先选用推荐半径。
圆曲线加缓和曲线
圆曲线加缓和曲线及其主点测设§11—4 圆曲线加缓和曲线及其主点测设一、缓和曲线的概念二、缓和曲线方程三、缓和曲线常数四、圆曲线加缓和曲线的综合要素及主点测设一、缓和曲线的概念1、为什麽要加入缓和曲线?(1)在曲线上高速运行的列车会产生离心力,为克服离心力的影响,铁路在曲线部分采用外轨超高的办法,即把外轨抬高一定数值.使车辆向曲线内倾斜,以平衡离心力的作用,从而保证列车安全运行。
图11-10(a).(b)为采用外轨超高前、后的情况。
外轨超高和内轨加宽都是逐渐完成,这就需要在直线与圆曲线之间加设一段过渡曲线——缓和曲线.缓和曲线: 其曲率半径ρ 从∞逐渐变化到圆曲线的半径R 。
2、缓和曲线必要的前提条件(性质):在此曲线上任一点P 的曲率半径ρ与曲线的长度l成反比,如图11-12所示,以公式表示为:ρ ∝1l 或ρ. l = C (11-4)式中: C 为常数,称曲线半径变更率。
当l= l o时,ρ= R ,按(11-4)式,应有C = ρ.l= R .l o (11-5)符合这一前提条件的曲线为缓和曲线,常用的有辐射螺旋线及三次抛物线,我国采用辐射螺旋线。
3、加入缓和曲线后的铁路曲线示意图(见图11-J)二、缓和曲线方程1、加入缓和曲线后的切线坐标系坐标原点:以直缓(ZH)点或缓直(HZ)点为原点;X坐标轴:直缓(ZH)点或缓直(HZ)点到交点(JD)的切线方向;Y坐标轴:过直缓(ZH)点或缓直(HZ)点与切线垂直的方向。
其中:x、y 为P点的坐标;x o、y o为HY点的坐标;ρ 为P 点上曲线的曲率半径;R 为圆曲线的曲率半径l 为从ZH点到P 点的缓和曲线长;l o为从ZH点到HY点的缓和曲线总长;2、缓和曲线方程式:根据缓和曲线必要的前提条件推导出缓和曲线上任一点的坐标为实际应用时, 舍去高次项, 代入C=R*l o,采用下列公式:式中:l 为缓和曲线上任一点P 到直缓(ZH)点的曲线长;R 为圆曲线半径;l o为缓和曲线总长度。
铁路曲线缩短轨计算
铁路曲线缩短轨计算曲线内股铺设缩短轨的目的:为了减少轮对接头的冲击次数,铺设铁路采用相对式接头,应当对正,但在曲线上由于内股形式就受轨线比外轨线短,如果内外股同样用标准长度的钢轨,内股钢轨的接头,必将超前于外股钢轨接头。
当这个超前值的累计达到一定限度,对接式接头的形式就受到破坏。
因此,为了保持内外钢轨接头成对接式,就必须在内股线上铺设适量的缩短轨。
圆曲线内股的缩短量与转向角及内外轨中线距离有关,而于曲线其它因素无关。
缓和曲线内股缩短量的计算~从缓和曲线起点算起(L缓为计算点距缓曲线起点的长度)则缓和曲线上的某点的内股缩短量为:一、缓缩短量=1500×L×L缓㎡÷2×R×L(缓全长)一端缓和曲线全长的缩短量:L缓总缩量=1500×L缓总长÷2R圆曲线缩短量=1500×L圆÷R曲线总缩短量的计算如果两端缓和曲线等长则:曲线总缩短量=圆曲线缩短量+2×-端缓和曲线缩短量。
如果曲线两端缓和曲线不等长则:曲线总缩短量=圆曲线缩短量+第-端缓和曲线缩短量+第二端缓和曲线缩短量计算缩短轨根数缩短轨根数=曲线总缩短量÷标准缩短轨缩短量标准缩短轨缩短量:㎜注:按表列缩短量宜选用较小的一种如何用现场丈量的方法布置缩短轨计算例缓和曲线长70m,圆曲线长38.27m钢轨为12.5m的标准轨,R=400m采用12.42m缩短轨1、计算曲线总缩短量圆曲线缩短量=1500×L圆÷R=1500×38.27÷400=143.5㎜2、L缓总缩量=1500×L缓总长÷2R1500×70÷2×400=131.3㎜3、曲线总缩短量=圆曲线缩短量+2×-端缓和曲线缩短量总缩短量=L圆+2L缓=143.5+2×131.3=406.1㎜4、缩短轨根数=曲线总缩短量÷标准缩短轨缩短量缩短轨根数=406.1÷80=5.08 取整为5根二、布置方法1、用钢尺由曲线头附近的接头零号起(如图)外轨量一根标准轨加一个轨缝(轨缝0.01m)即量12.51m内股也量同样长度,同时用方尺把外股丈量点到内股则内股比外超一个数值2、按上述方法连续丈量,每量一次,方一次当内股钢轨累计超前量甲值大于缩短轨缩短量时的一半(即超过40㎜)表示要插入缩短轨。
铁路缓和曲线规矩尺计算水平值教学
铁路缓和曲线规矩尺计算水平值教学【原创版】目录一、铁路缓和曲线的概述二、铁路缓和曲线的计算方法三、铁路缓和曲线在教学中的应用四、结论正文一、铁路缓和曲线的概述铁路缓和曲线是用于连接直线轨道和圆曲线轨道之间的曲线,其主要作用是平滑地过渡列车在直线和曲线轨道之间的受力,以保持列车的平稳运行。
在缓和曲线上,曲率半径和外轨超高度都逐渐变化,以适应列车在曲线轨道上的运行。
二、铁路缓和曲线的计算方法铁路缓和曲线的计算方法主要包括以下几个步骤:1.确定缓和曲线的长度:缓和曲线的长度是根据列车在曲线轨道上的运行速度和曲线半径来确定的。
一般来说,缓和曲线的长度越长,列车在曲线上的速度就越快。
2.确定曲率半径:曲率半径是缓和曲线的重要参数,它决定了曲线的弯曲程度。
曲率半径越大,曲线的弯曲程度就越小,列车在曲线上的受力就越小。
3.确定外轨超高度:外轨超高度是缓和曲线的另一个重要参数,它决定了列车在曲线上的运行方向。
外轨超高度越大,列车在曲线上的向心加速度就越大,从而提高了列车的运行速度。
三、铁路缓和曲线在教学中的应用铁路缓和曲线在教学中的应用主要包括以下几个方面:1.理论教学:在理论教学中,可以通过讲解铁路缓和曲线的定义、作用和计算方法,使学生了解铁路缓和曲线的基本概念和原理。
2.实践教学:在实践教学中,可以通过实地考察和测量铁路缓和曲线,使学生了解铁路缓和曲线的实际应用情况,加深对理论知识的理解。
3.计算练习:在计算练习中,可以通过布置铁路缓和曲线的计算题,使学生掌握铁路缓和曲线的计算方法,提高学生的计算能力。
四、结论铁路缓和曲线是铁路工程中重要的曲线类型,其计算方法和应用在教学中具有重要的意义。
第四讲3、缓和曲线
五、缓和曲线常数的计算
β 0 、 δ 0 、m、p、x0、y0等称为缓和曲线常数,其物理含义及几何关系由图12-29得知: β 0 ——缓和曲线的切线角,即HY(或YH)点的切线角与ZH(或HZ)点切线的交角;亦即圆曲
线一端延长部分所对应的圆心角。 δ 0 ——缓和曲线的总偏角。 ——切垂距,即ZH(或HZ)到圆心O向切线所作垂线垂足的距离。 p ——圆曲线的内移量,为垂线长与圆曲线半径R之差。 x0、y0计算见式(12-5),其它常数的计算公式如下:
(四)圆曲线的详细测设
加设缓和曲线之后圆曲线的测设,其关键是正确确定后视方向及度盘安置值。如图12-31, 经纬仪安置于HY点上,后视ZH,并将度盘读数安置为反偏角b0值(正拨),倒转望远镜反拨 圆曲线上第1′点的偏角,得相应曲线点,直至QZ 。另一半曲线,则在YH点设站,以(360° -b0)来后视HZ,而倒镜后圆曲线为正拨偏角值来测设。 为避免仪器视准误差的影响,也可以 (180°+ b0) 后视ZH,平转照准部,当度盘读数为 0°00′00″时,即为HY点的切线方向。 若利用《铁路曲线测设用表》测设,为避免分弦偏角的累计计算工作,现场常把HY 的方向 作零方向,如图12-32,以(为圆曲线上第1点的偏角)后视ZH点。
图 12-30
若将缓和曲线等分为N段,则各分段点的俯角之间有如下关系: 2 设为第1点的偏角,为第 i点的偏角,则由式(12-20)可知, li δ i=
∴
δ 1 :δ 2 :L :δ n = l1 : l2 : L : ln
2 2
2
6Rl0
(12-24)
由式(12-24)得出结论(b): 偏角与测点到缓和曲线起点的曲线长度的平方成正比。 在等分的条件下, l2 = 2l1 , l3 = 3l1 ,L, ln = Nl1 , 2 2 2 δ 2 = 2 δ 1 , δ 3 = 3 δ 1 , L, δ n = N δ 1 = δ 0 故
铁路缓和曲线规矩尺计算水平值教学
铁路缓和曲线规矩尺计算水平值教学
摘要:
一、铁路缓和曲线基本概念
1.缓和曲线的定义
2.缓和曲线的作用
3.缓和曲线的类型
二、缓和曲线规矩尺的计算方法
1.缓和曲线的半径计算
2.缓和曲线的水平值计算
3.缓和曲线的超高缓和段计算
三、计算实例与教学应用
1.计算实例
2.教学应用
正文:
铁路缓和曲线是铁路线路中的一种重要曲线,用于连接两个不同半径的圆曲线,使列车在行驶过程中能够平稳地过渡。
缓和曲线的主要作用是减少列车在曲线上的离心力,提高乘客的舒适度。
缓和曲线的类型主要有抛物线缓和曲线和双曲线缓和曲线。
在铁路缓和曲线的计算中,缓和曲线规矩尺是一个重要的工具。
它可以帮助我们计算出缓和曲线的半径、水平值以及超高缓和段。
其中,缓和曲线的水平值是衡量曲线水平位置的重要参数。
计算缓和曲线的水平值需要使用到缓和曲线规矩尺。
其计算方法主要包括以下几个步骤:
1.首先,根据给定的缓和曲线半径和圆曲线半径,计算出缓和曲线的缓和率。
2.然后,根据缓和率,使用缓和曲线规矩尺计算出缓和曲线的水平值。
3.最后,根据缓和曲线的类型(抛物线或双曲线),计算出缓和曲线的超高缓和段。
为了更好地理解和掌握铁路缓和曲线的计算方法,我们可以通过具体的计算实例来进行教学。
例如,我们可以选择一个典型的缓和曲线,根据其半径、圆曲线半径等信息,逐步计算出缓和曲线的水平值和超高缓和段。
通过这样的实例教学,学生可以更好地理解和掌握铁路缓和曲线的计算方法。
总之,铁路缓和曲线规矩尺的计算方法是铁路线路设计中一个重要的环节。
缓和曲线计算公式
当前的位置】:工程测量→第十一章→ 第四节圆曲线加缓和曲线及其主点测设第四节圆曲线加缓和曲线及其主点测设§11—4圆曲线加缓和曲线及其主点测设一、缓和曲线的概念二、缓和曲线方程三、缓和曲线常数四、圆曲线加缓和曲线的综合要素及主点测设一、缓和曲线的概念1、为什麽要加入缓和曲线?(1)在曲线上高速运行的列车会产生离心力,为克服离心力的影响,铁路在曲线部分采用外轨超高的办法,即把外轨抬高一定数值.使车辆向曲线内倾斜,以平衡离心力的作用,从而保证列车安全运行。
图11-10(a).(b)为采用外轨超高前、后的情况。
外轨超高和内轨加宽都是逐渐完成,这就需要在直线与圆曲线之间加设一段过渡曲线——缓和曲线.缓和曲线: 其曲率半径ρ 从∞逐渐变化到圆曲线的半径R 。
2、缓和曲线必要的前提条件(性质):在此曲线上任一点P 的曲率半径ρ与曲线的长度l成反比,如图11-12所示,以公式表示为:ρ ∝1l 或ρ. l = C (11-4)式中: C 为常数,称曲线半径变更率。
当l= l o时,ρ= R ,按(11-4)式,应有C = ρ.l= R .l o (11-5)符合这一前提条件的曲线为缓和曲线,常用的有辐射螺旋线及三次抛物线,我国采用辐射螺旋线。
3、加入缓和曲线后的铁路曲线示意图(见图11-J)二、缓和曲线方程1、加入缓和曲线后的切线坐标系坐标原点:以直缓(ZH)点或缓直(HZ)点为原点;X坐标轴:直缓(ZH)点或缓直(HZ)点到交点(JD)的切线方向;Y坐标轴:过直缓(ZH)点或缓直(HZ)点与切线垂直的方向。
其中:x、y 为P点的坐标;x o、y o为HY点的坐标;ρ 为P 点上曲线的曲率半径;R 为圆曲线的曲率半径l 为从ZH点到P 点的缓和曲线长;l o为从ZH点到HY点的缓和曲线总长;2、缓和曲线方程式:根据缓和曲线必要的前提条件推导出缓和曲线上任一点的坐标为实际应用时, 舍去高次项, 代入C=R*l o,采用下列公式:式中:l 为缓和曲线上任一点P 到直缓(ZH)点的曲线长;R 为圆曲线半径;l o为缓和曲线总长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
、缓和曲线的作用及其几何特征
行驶于曲线轨道的机车车辆,出现一些与直线运行显著不同的受力特征。
如曲线运行的离
心力,外轨超高不连续形成的冲击力等。
为使上述诸力不致突然产生和消失,以保持列车曲线运行的平稳性,需要在直线与圆曲线轨道之间设置一段曲率半径和外轨超高度均逐渐变化的曲线,称为缓和曲线。
当缓和曲线连接设有轨距加宽的圆曲线时,缓和曲线的轨距是呈线性变化的。
概括起来,缓和曲线具有以下几何特征:
1. 缓和曲线连接直线和半径为R 的圆曲线,其曲率由零至1/R 逐渐变化。
2. 缓和曲线的外轨超高,由直线上的零值逐渐增至圆曲线的超高度,与圆曲线超高相连接。
3. 缓和曲线连接半径小于350m 的圆曲线时,在整个缓和曲线长度内,轨距加宽呈线性递增,由零至圆曲线加宽值。
因此,缓和曲线是一条曲率和超高均逐渐变化的空间曲线。
二、缓和曲线的几何形位条件
图2-9所示为一段缓和曲线。
其始点与终点用ZH 与HY 表示。
要达到设置缓和曲线的目的,根据如图所取直角坐标系,缓和曲线的线形应满足以下条件:
1.为了保持连续点的几何连续性,缓和曲线在平面上的形状应当是:在始点处,横坐标x = 0,纵坐标y = 0,倾角φ = 0;在终点处,横坐标 x =x 0,纵坐标y =y 0 ,倾角φ =
φ
0 。
2.列车进入缓和曲线,车体受到离心力 J 的作用,为保
持列车运行的平稳性,应使离心力不突然产生和消失,即在缓和曲线始点处,J =0,在缓和曲线终点处 Ρ=R 。
3.缓和曲线上任何一点的曲率盈余外轨超高相吻合。
在纵断面上,外轨超高顺坡的形式有两种形式。
一种形式是,如图2-10(a )所示;另一
种形式是曲线形,如图2-10(b )所示。
列车经过直线顺坡的缓和曲线始点和终点时,对外轨都会产生冲击。
在行车速度不高,超高顺破相对平缓时,列车对外轨的冲击不大,可以采用直线形顺坡,即可满足曲率与超高相配合的要求。
当行车速度较高,为了消除列车对
外轨的冲击,应采用曲线形超高顺坡。
其几何特征是缓和曲线始点及终点处
图 2-9缓和曲线坐标图
图 2-10 超高顺坡
的超高顺坡倾角r=0 ,即在始点和终点处应有:
式中h--外轨超高度,其值为:
l--曲线上任何一点至缓和曲线起点的距离。
对某一特定曲线,平均速度v p可视为常数。
令
则
可见缓和曲线上各点超高为曲率K的线性函数。
因此,在缓和曲线始、终点处应有:
4.列车在缓和曲线上运动时,其车轴与水平面倾斜角φ不断变化,亦即车体发生测滚。
要使钢轨对车体傾转的作用力不突然产生和消失,在缓和曲线始、终点处应使傾转的角加速度为零。
可见:
式中h = EK由此
因为
所以
综上所述,缓和曲线的线形条件,可归纳如表2-5。
表 2-5 缓和曲线线形条件表
可以看出,表中前两项是基本的几何形位要求,而后三项则是由行车平稳性形成的力学条件推导出的几何形位要求。
在行车速度不高的线路上,满足前三项要求的缓和曲线尚能适应列车运行的需要,而在速度较高的线路上,缓和曲线的几何形位就必须考虑后两项的要求。
三、常用缓和曲线
满足表2-6中前三项要求的缓和曲线,是目前铁路上最常用的缓和曲线,所以也称为常用缓和曲线。
常用缓和曲线的外轨超高顺坡,其基本方程必须满足的条件为:
当l=0 时,K=0 ;当l=l0时,K=1/R。
由超高与曲率的线性关系可知,满足这些条件的基本方程应为:
(2-23)
式中K--缓和曲线上任意一点的曲率;
l--缓和曲线上某一点离ZH点(或HZ点)的距离;
K0--缓和曲线终点HY点(或YH点)的曲率;
l0--缓和曲线长度。
由式(2-12)可见,缓和曲线长度l与其曲率K成正比。
符合这一条件的曲线称为放射螺旋线。
缓和曲线的偏角为:
(2-24)
在缓和曲线终点处,l=l0,缓和曲线偏角为:
(2-25)
由式(2-24)可见,在缓和曲线长度范围内,偏角数值较小,可取近似值:
于是可得
积分上两式得
(2-26)
(2-26)
这就是放射螺旋线得近似参变数方程式,是我国铁路常用得缓和曲线方程式。
如消去上两式得参变数l,则得
(2-28)
这是放射螺旋线得近似直角坐标方程式。
在曲线半径较小得铁路上,采用第一项作为近似式。
四、高次缓和曲线
满足表2-6中前两项或全部五项要求得缓和曲线称为高次缓和曲线。
高次缓和曲线外轨超高顺坡为曲线顺坡。
这种曲线在列车经过时,各种力得作用不突然产生和消失,适应高速行车的需要。
求缓和曲线方程的方法,可先确定一个符合条件的基本方程,在逐步推导,最后得出所需求
的缓和曲线方程式。
表2-6列出可用于高速铁路的三种高次缓和曲线。
表 2-6 高次缓和曲线
五、缓和曲线的长度
缓和曲线长度的确定,受到许多因素影响,其中最主要的是保证行车安全和行车平稳两个条件。
1.缓和曲线要保证行车安全,使车轮不致脱轨。
机车车辆行驶在缓和曲线上,若不计轨道弹性和车辆弹簧作用,则车架一端的两轮贴着钢轨顶面;另一端的两轮,在外轨上的车轮贴着钢轨顶面,而在内轨上的车轮是悬空的。
为保证安全,应使车轮轮缘不爬越内轨顶面。
设外轨超高顺坡坡度为i,最大固定轴距为Lmax ,则车轮离开内轨顶面的高度为。
当悬空高度大于轮缘最小高度 iLmax时,车轮就有脱轨的危险。
因此必须保证:
(2-29)
式中i0-- 外轨超高顺坡坡度。
缓和曲线长度l0应为:
(2-30)
式中 h0--圆曲线超高度。
对外轨超高顺坡为曲线性的缓和曲线,外轨超高顺坡的最大坡度也要满足式(2-29)对i0的要求。
曲线形顺坡的坡度由下式计算:
(2-31)
《铁路线路维修规则》规定:曲线超高应在整个缓和曲线内完成,顺坡坡度一般不应大于1/(9v max);困难条件下不得大于1/(7v max) 。
当1/(7v max)大于2‰时,按2‰设置。
2.缓和曲线长度要保证外轮的升高(或降低)速度不得超过限值,以满足旅客舒适度要求。
车轮在外轨上的升高速度μ由下式计算:
式中h--圆曲线外轨超高,以mm计;
v max--通过曲线的最高行车速度,以m/s计;
l0--缓和曲线长度,相当于直线形顺坡缓和曲线长度,以m计。
为保证旅客舒适度的要求,则缓和曲线长度为:
(2-32)
式中Vmax--通过曲线的最高行车速度,以km/h计;
1/3.6--换算系数。
我国根据长期运营实践,μ0在一般情况下采用32mm/s;困难地段用40mm/s 。
运营铁路以实际最高行车速度及实设超高为计算标准。
一般地段μ0=28mm/s,特别困难地段μ0=40mm/s。
则在一般地段应取:
(2-33)
计算结果取两项要求中的最大值,并取为10m的整倍数。
《铁路线路设备大修规则》规定:缓和曲线长度一般地段:
(2-34)
特别困难地段
(2-35)
式中l0--缓和曲线长,以m计;
h--超高,以m计;
Vmax--容许最高行车速度。
计算结果取10m的整倍数,长度不短于20m。
两缓和曲线间的圆曲线长度不短于20m。
缓和曲线长度应根据曲线半径,路段旅客列车设计速度和地形条件按表2-7选用。
有条件时应采用较表2-7规定的更大值。
表 2-7 缓和曲线长度(m)。