猜想,数学学习的重要方式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
猜想,数学学习的重要方式
猜想是指根据某些已知的事实材料和数学知识对未知的量及其关系所作的一种预测或推断,它是发现新知识、创造新方法的一种手段。反思我们传统的数学教学,比较重视逻辑思维的培养和训练,而往往忽视非逻辑思维,包括顿悟、猜想等直觉思维的培养,在一定程度上抑制了学生思维的灵活性和创造性。因此,在教学中应鼓励学生进行合理猜想,使学生积极参与学习过程,主动获取知识,培养创造性思维。
一、引发猜想
猜想,作为一个思维过程,既是新旧知识联结的融合点,也是激发学习动机的催化剂。在导入新课时,教师应注意提出有探索性、挑战性的问题,引发猜想。如,教学“梯形的面积计算”,教师可以引导学生回忆平行四边形、三角形面积公式的推导过程,并提出问题:我们能否也利用转化的方法,把梯形转化成学过的平面图形来推导面积公式呢?问题一抛出,学生立刻活跃起来,有的说可以把它转化成平行四边形来推导出面积公式,有的说可以
转化成三角形来推导面积公式,还有的说可不可以把梯形转化成长方形呢?……合理猜想是主动探究的动力,它可以激发学生的探究兴趣,产生亲自动手试一试的强烈愿望,这种情境下的学习必然会收到良好的效果。
二、验证猜想
猜想只是对未知的量及其关系所作的一种预测或推断,还需要经过检验或验证。只有经过检验或验证,才能得出科学的结论,这也是数学严谨性的体现。在学生有了初步的猜想后,教师要为学生营造一种宽松、和谐的氛围,积极鼓励学生开拓思维,探求猜想的合理性和准确性。在梯形面积公式的教学中,当学生形成合理的猜想后,我让学生自主探究,用准备好的一个或两个(完全相同的)梯形,根据自己的猜想进行割补、移拼,检验自己的猜想是否正确。学生探究的积极性空前高涨,有的学生用两个完全相同的梯形拼成一个平行四边形,推导出梯形的面积公式;有的学生把一个梯形剪、拼成平行四边形,推导出梯形的面积公式。在探究的过程中,学生对知识发生、发展的过程有了更清晰的认识。同时,自主探究的过程还沟通了已有知识与
新知识之间的内在联系,利于构建完整的知识网络。
猜想是指根据某些已知的事实材料和数学知识对未知的量及其关系所作的一种预测或推断,它是发现新知识、创造新方法的一种手段。反思我们传统的数学教学,比较重视逻辑思维的培养和训练,而往往忽视非逻辑思维,包括顿悟、猜想等直觉思维的培养,在一定程度上抑制了学生思维的灵活性和创造性。因此,在教学中应鼓励学生进行合理猜想,使学生积极参与学习过程,主动获取知识,培养创造性思维。
一、引发猜想
猜想,作为一个思维过程,既是新旧知识联结的融合点,也是激发学习动机的催化剂。在导入新课时,教师应注意提出有探索性、挑战性的问题,引发猜想。如,教学“梯形的面积计算”,教师可以引导学生回忆平行四边形、三角形面积公式的推导过程,并提出问题:我们能否也利用转化的方法,把梯形转化成学过的平面图形来推导面积公式呢?
问题一抛出,学生立刻活跃起来,有的说可以把它转化成平行四边形来推导出面积公式,有的说可以转化成三角形来推导面积公式,还有的说可不可以把梯形转化成长方形呢?……合理猜想是主动探究的动力,它可以激发学生的探究兴趣,产生亲自动手试一试的强烈愿望,这种情境下的学习必然会收到良好的效果。
二、验证猜想
猜想只是对未知的量及其关系所作的一种预测或推断,还需要经过检验或验证。只有经过检验或验证,才能得出科学的结论,这也是数学严谨性的体现。在学生有了初步的猜想后,教师要为学生营造一种宽松、和谐的氛围,积极鼓励学生开拓思维,探求猜想的合理性和准确性。在梯形面积公式的教学中,当学生形成合理的猜想后,我让学生自主探究,用准备好的一个或两个(完全相同的)梯形,根据自己的猜想进行割补、移拼,检验自己的猜想是否正确。学生探究的积极性空前高涨,有的学生用两个完全相同的梯形拼成一个平行四边形,推导出梯形的面积公式;有的学生把一个梯形剪、拼成平行四边形,推导出梯形的面积公式。在探究的过
程中,学生对知识发生、发展的过程有了更清晰的认识。同时,自主探究的过程还沟通了已有知识与新知识之间的内在联系,利于构建完整的知识网络。
猜想是指根据某些已知的事实材料和数学知识对未知的量及其关系所作的一种预测或推断,它是发现新知识、创造新方法的一种手段。反思我们传统的数学教学,比较重视逻辑思维的培养和训练,而往往忽视非逻辑思维,包括顿悟、猜想等直觉思维的培养,在一定程度上抑制了学生思维的灵活性和创造性。因此,在教学中应鼓励学生进行合理猜想,使学生积极参与学习过程,主动获取知识,培养创造性思维。
一、引发猜想
猜想,作为一个思维过程,既是新旧知识联结的融合点,也是激发学习动机的催化剂。在导入新课时,教师应注意提出有探索性、挑战性的问题,引发猜想。如,教学“梯形的面积计算”,教师可以引导学生回忆平行四边形、三角形面积公式的推导
过程,并提出问题:我们能否也利用转化的方法,把梯形转化成学过的平面图形来推导面积公式呢?问题一抛出,学生立刻活跃起来,有的说可以把它转化成平行四边形来推导出面积公式,有的说可以转化成三角形来推导面积公式,还有的说可不可以把梯形转化成长方形呢?……合理猜想是主动探究的动力,它可以激发学生的探究兴趣,产生亲自动手试一试的强烈愿望,这种情境下的学习必然会收到良好的效果。
二、验证猜想
猜想只是对未知的量及其关系所作的一种预测或推断,还需要经过检验或验证。只有经过检验或验证,才能得出科学的结论,这也是数学严谨性的体现。在学生有了初步的猜想后,教师要为学生营造一种宽松、和谐的氛围,积极鼓励学生开拓思维,探求猜想的合理性和准确性。在梯形面积公式的教学中,当学生形成合理的猜想后,我让学生自主探究,用准备好的一个或两个(完全相同的)梯形,根据自己的猜想进行割补、移拼,检验自己的猜想是否正确。学生探究的积极性空前高涨,有的学生用两个完全相同的梯形拼成一个平行四边形,推导
出梯形的面积公式;有的学生把一个梯形剪、拼成平行四边形,推导出梯形的面积公式。在探究的过程中,学生对知识发生、发展的过程有了更清晰的认识。同时,自主探究的过程还沟通了已有知识与新知识之间的内在联系,利于构建完整的知识网络。