理论力学 第五章 点的运动学(合)

合集下载

理论力学--运动学总结

理论力学--运动学总结

速度瞬心位置的确定总结
瞬时平动
几点注意 1、基点法是速度分析的基本方法;
2、速度投影法 应用起来简单,但必须知道待求速度 点的方位,致命的弱点—是不能求图形的角速度 2、当平面几何简单时,分析速度可采用瞬心法; 瞬心法既可以求某点的速度,也可以求刚体运动 的角速度; 4、确定速度瞬心的速度是该点的绝对运动速度; 5、具体分析时三种方法灵活运用;
(1)刚体的基本运动 平动
v A vB
aA aB
各点的轨迹相同;
可简化为一个点的运动。
定轴转动
v R
a R
an R 2
轮系的传动比:
1 n1 R1 Z 2 i12 2 n2 R2 Z1
各处不打滑时: 接触点有相同的线速度和相同的切向加速度。
(2)刚体的平面运动 1. 定义 任一点到某固定平面的距离保持不变。
B点的加速度分析
D
C
a a 2 a a 2 ae 2 ar 2
n

aa 2 ae 2
O1

30°
ar 2
B
aa 2cos60 aa2cos30 ae 2
n

aa 2
1
30° O2
n
A
a a2 O2 B 2
n 2 aa2 O2 B2
ae2 657mm/ s
2
三、刚体的运动
va=v
vCA
动点:滑块C 动系:固结于AE
u=vA
vr
vC' A
ωAE
分析三种运动
牵连运动:刚体的平面运动
牵连转动
va ( vA vCA ) vr
va cos vCA v A sin

理论力学习题答案

理论力学习题答案

理论力学习题答案(总26页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2第一章 静力学公理和物体的受力分析一、是非判断题在任何情况下,体内任意两点距离保持不变的物体称为刚体。

( ∨ ) 物体在两个力作用下平衡的必要与充分条件是这两个力大小相等、方向相反,沿同一直线。

( × ) 加减平衡力系公理不但适用于刚体,而且也适用于变形体。

( × ) 力的可传性只适用于刚体,不适用于变形体。

( ∨ ) 两点受力的构件都是二力杆。

( × ) 只要作用于刚体上的三个力汇交于一点,该刚体一定平衡。

( × ) 力的平行四边形法则只适用于刚体。

( × ) 凡矢量都可以应用平行四边形法则合成。

( ∨ ) 只要物体平衡,都能应用加减平衡力系公理。

( × ) 凡是平衡力系,它的作用效果都等于零。

( × ) 合力总是比分力大。

( × ) 只要两个力大小相等,方向相同,则它们对物体的作用效果相同。

( × )若物体相对于地面保持静止或匀速直线运动状态,则物体处于平衡。

( ∨ )当软绳受两个等值反向的压力时,可以平衡。

( × )静力学公理中,二力平衡公理和加减平衡力系公理适用于刚体。

( ∨ )静力学公理中,作用力与反作用力公理和力的平行四边形公理适用于任何物体。

( ∨ )凡是两端用铰链连接的直杆都是二力杆。

( × )如图所示三铰拱,受力F ,F 1作用,其中F 作用于铰C 的销子上,则AC 、BC 构件都不是二力构件。

( × )图3二、填空题力对物体的作用效应一般分为 外 效应和 内 效应。

对非自由体的运动所预加的限制条件称为 约束 ;约束力的方向总是与约束所能阻止的物体的运动趋势的方向 相反 ;约束力由 主动 力引起,且随 主动 力的改变而改变。

理论力学(5.6)--点的运动学-思考题

理论力学(5.6)--点的运动学-思考题

第五章 点的运动学5-1和 , 和 是否相同?5-2点沿曲线运动,如图所示各点所给出的速度v和加速度a哪些是可能的?哪些是不可能的?5-3点M 沿螺线自外向内运动,如图所示。

它走过的弧长与时间的一次方成正比,问点的加速度是越来越大,还是越来越小?点M越跑越快,还是越跑越慢?5-4当点作曲线运动时,点的加速度a是恒矢量,如图所示。

问点是否作匀变速运动?5-5 作曲线运动的两个动点,初速度相同、运动轨迹相同、运动中两点的法向加速度也相同。

判断下述说法是否正确:(1)任一瞬时两动点的切向加速度必相同;(2)任一瞬时两动点的速度必相同;(3)两动点的运动方程必相同。

5-6 动点在平面内运动,已知其运动轨迹)(x f y 及其速度在x 轴方向的分量。

判断下述说法是否正确:(1)动点的速度可完全确定;(2)动点的加速度在x 轴方向的分量可完全确定;(3)当速度在x 轴方向的分量不为零时,一定能确定动点的速度、切向加速度、法向加速度及全加速度。

5-7 下述各种情况,动点的全加速度,切向加速度和法向加速度三个矢量之间有何关系?(1)点沿曲线作匀速运动;(2)点沿曲线运动,在该瞬时其速度为零;(3)点沿直线作变速运动;(4)点沿曲线作变速运动。

5-8 点作曲线运动时,下述说法是否正确:(1)若切向加速度为正,则点作加速运动;(2)若切向加速度与速度的符号相同,则点作加速运动;(3)若切向加速度为零,则速度为常矢量。

5-9 在极坐标系中,ρρ =v ,ρϕϕ =v 分别代表在极径方向与极径垂直方向(极角ϕ的方向)的速度。

但为什么沿这两个方向的加速度为2ϕρρρ -=a ϕρϕρϕ 2+=a 试分析ρa 中2ϕρρ -=a 和ϕa 中的ϕρ 出现的原因和它们的几何意义。

理论力学(机械工业出版社)第五章点的运动学习题解答

理论力学(机械工业出版社)第五章点的运动学习题解答

习 题5-1 如图5-13所示,偏心轮半径为R ,绕轴O 转动,转角t ωϕ=(ω为常量),偏心距e OC =,偏心轮带动顶杆AB 沿铅垂直线作往复运动。

试求顶杆的运动方程和速度。

图5-13)(cos )sin(222t e R t e y ωω-+=)(cos 2)2sin()[cos(222t e R t e t e yv ωωωω-+==5-2 梯子的一端A 放在水平地面上,另一端B 靠在竖直的墙上,如图5-14所示。

梯子保持在竖直平面内沿墙滑下。

已知点A 的速度为常值v 0,M 为梯子上的一点,设MA = l ,MB = h 。

试求当梯子与墙的夹角为θ时,试点M 速度和加速度的大小。

图5-14A M x hl hh x +==θsin θcos l y M = 0cos v h l h x h l h h xA M +=+== θθ 得 θθcos )(0h l v +=θθθθθt a n)(c o s )(s i n s i n 00h l lv h l v l l yM +-=+⨯-=-= 0=M xθθθθθ322002020cos )(cos )(sec )(sec )(h l lv h l v h l lv h l lv y M +-=+⨯+-=+-=θ3220cos )(h l lv a M+=5-3 已知杆OA 与铅直线夹角6/πt =ϕ( 以 rad 计,t 以s 计),小环M 套在杆OA 、CD 上,如图5-15所示。

铰O至水平杆CD 的距离h =400 mm 。

试求t = 1 s 时,小环M 的速度和加速度。

图5-15ϕtan h x M = ϕϕϕ22sec 6π400sec ⨯== h xM ϕϕϕϕϕϕϕs i n s e c 9π200s i n s e c 6π3π400)s i n s e c 2(6π4003233=⨯⨯=⨯⨯= M x当s 1=t 时6π=ϕmm/s 3.2799π800346π400)6π(sec 6π4002==⨯==Mv 223232mm/s 8.168327π80021)32(9π200)6πsin()6π(sec 9π200==⨯⨯=⨯⨯=Ma5-4 点M 以匀速u 在直管OA 内运动,直管OA 又按t ωϕ=规律绕O 转动,如图5-16所示。

理论力学(第7版)第五章 点的运动学

理论力学(第7版)第五章 点的运动学
a 4、匀速运动: v 常数, 0, s s0 vt
运 动 规 律
[例5-1 ] 已知点的运动方程为x=2sin 4t m,y=2cos 4t m, z=4t m。 求:点运动轨迹的曲率半径 。
解:
vx x 8 cos 4t , ax 32 sin 4t x
r r t
—以矢量表示的 点的运动方程
矢端曲线:动点M在运动过程中,矢 径r的末端绘出的一条连续曲线。 ——动点M的运动轨迹
3
二.点的速度
dr v r dt
方向:沿着矢径r的矢端曲线的切线 方向,且与此点的运动方向一致。
大小:速度矢的模,表明点运动的快慢。
三.加速度
dv d 2r a r 2 dt dt
dv v2 a a a n a a n n n dt
17
5-3 自然法 曲率(1 / ) :
定义——曲线切线的转角对弧长 一阶导数的绝对值。表示曲线的 弯曲程度。
d lim| | t 0 S dS 1
由于a , an均在密切面内,全加速a必在密切面内。 度
— 与 弧 坐 标 的 正 向 一 致 n — 指 向 曲 线 内 凹 一 侧 b — 与 , n 构 成 右 手 系
b n
[注]:自然坐标系是沿曲 13 线而变动的游动坐标系。
(动画自然坐标轴的几何性质)
曲线在P点的密切面形成
5-3 自然法
二.点的速度
当t 0时,r MM' S
v y y 8 sin 4t , a y 32 cos 4t y
v z z 4, a z 0 z
2 2 2 2 v v x v 2 v z 80 m s , a a x a 2 a z 32m s 2 y y

理论力学基础点的合成运动

理论力学基础点的合成运动

1
平动和转动的区别
2
它们之间的关系对于理解合成运动具有
重要意义;
3
运动学基本公式
4
位置、速度、加速度等运动学基本公式 是研究合成运动的基础知识。
牛顿第二定律
合力产生加速度,加速度与力成正比。 一切合成运动都符合牛顿第二定律;
匀速圆周运动的分解
它是所有曲线合成运动的基础,掌握分 解方法可以为其他曲线合成运动的研究 提供启示;
结论和总结
合成运动是力学基础点之一,但不同于其他运动,它是由多个运动步骤组 成的复杂过程,因此有其独特的研究方法和工具。对合成运动理论及其实 际应用的深度理解和掌握,具有重要意义。 ——陈晓明,中国科技大学教授
机器人动作设计
机器人动作设计中需要进行多种复杂的合成运动分析与控制。合成运动理论可以指导机器人 的运动规划、轨迹跟踪和动作执行。
运动传感设计
合成运动分解是一种重要的运动测量技术。在车辆安全、物流配送、航空监控等领域,合成 运动传感器为复杂运动测量提供了有效手段。
合成运动的实验方法和技术
1
高速相机
观测高速运动的一种重要方法。运用指定的曝光时间和快门速度,拍摄合成运动 过程中的关键帧。
2
追踪仪器
用于测量运动物体的位置、速度和加速度等多种参数,对于合成运动的分析和控 制有着重要作用。
3
动力学仿真软件
自动地计算合成运动的轨迹、速度、加速度等参数。可以模拟物体的运动过程, 为结构设计和工艺分析提供有力支持。
合成运动的分类和特点
线性合成运动
由两个或两个以上直线运动叠 加而成;
圆周合成运动
由两个或两个以上曲线运动叠 加而成;
复合合成运动
由不同类型直线运动或曲线运 动叠加而成。

体育装备工程专业《理论力学》作业及答案

体育装备工程专业《理论力学》作业及答案

2011-2012 学年第一学期理论力学习题
——空间力系 一、 1. 2. 3. 4. 5. 6. 7. 8. 9. 判断题(正确的划√,错误的划×)
空间力偶中的两个力对任意投影轴的代数和恒为零。 (√) (模块 7) 空间力对点的矩在任意轴上的投影等于力对该轴的矩。 (×) (模块 6) 空间力系的主矢是力系的合力。 (√) (模块 7) 空间力系的主矩是力系的合力偶矩。 (√) (模块 7) 空间力系向一点简化得主矢和主矩与原力系等效。 (√) (模块 7) 空间力系的主矢为零,则力系简化为力偶。 (×) (模块 7) 空间汇交力系的平衡方程只有三个投影形式的方程。 (√) (模块 7) 空间汇交力系的三个投影形式的平衡方程,对投影轴没有任何限制。 (√) (模块 7) 空间力偶等效只需力偶矩矢相等。 (√) (模块 7)
空间力系向一点简化得主矢与简化中心的位置 有关 。 (模块 7)
6.
如图所示已知一正方体,各边长 a,沿对角线 BH 作用一个力 F,则该力在 x、y、z
- 11 -
2010 级体育装备工程专业
马勇
《理论力学》作业


的 2 3


Fx =
F1x = − F ⋅ 、 Fz =
2 3

2 3 =− F 2 3 1 3 = 3 3 F
2010 级体育装备工程专业
马勇
《理论力学》作业
3、 一组合梁 ABC 的支承及载荷如图示。已知 F=1KN,M=0.5KNm,求固定端 A 的约束反力。
(模块 5)
(解) :组合梁及 BC 杆,受力分析如图所示。 DE、DF、DG 杆均为二力杆。
∑m
i =1
n

理论力学运动学知识点总结

理论力学运动学知识点总结

运动学重要知识点一、刚体的简单运动知识点总结1.刚体运动的最简单形式为平行移动和绕定轴转动。

2.刚体平行移动。

·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。

·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。

·刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。

3.刚体绕定轴转动。

•刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。

•刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。

•角速度ω表示刚体转动快慢程度和转向,是代数量,。

角速度也可以用矢量表示,。

•角加速度表示角速度对时间的变化率,是代数量,,当α与ω同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。

角加速度也可以用矢量表示,。

•绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系:。

速度、加速度的代数值为。

•传动比。

一、点的运动合成知识点总结1.点的绝对运动为点的牵连运动和相对运动的合成结果。

•绝对运动:动点相对于定参考系的运动;•相对运动:动点相对于动参考系的运动;• 牵连运动:动参考系相对于定参考系的运动。

2.点的速度合成定理。

•绝对速度:动点相对于定参考系运动的速度;•相对速度:动点相对于动参考系运动的速度;•牵连速度:动参考系上与动点相重合的那一点相对于定参考系运动的速度。

3.点的加速度合成定理。

•绝对加速度:动点相对于定参考系运动的加速度;•相对加速度:动点相对于动参考系运动的加速度;•牵连加速度:动参考系上与动点相重合的那一点相对于定参考系运动的加速度;•科氏加速度:牵连运动为转动时,牵连运动和相对运动相互影响而出现的一项附加的加速度。

•当动参考系作平移或= 0 ,或与平行时, = 0 。

该部分知识点常见问题有问题一牵连速度和牵连加速度的意义。

问题二应用速度合成定理时要画速度矢量图。

理论力学8

理论力学8
摇杆绕固定轴O1来回摆动。设曲柄长OA=r,两轴间距离OO1 l
求曲柄在水平位置瞬时,摇杆O1B绕O1轴的角速度1及滑块A相
对摇杆O1B的相对速度。
运动学/点的合成运动
解:
选取动点: OA 上的A点 动系: O1B 定系: 基座
运 绝对运动:圆周运动 动 分 相对运动:直线运动 析 牵连运动:定轴转动 :
运动学/点的合成运动
另一方面,在实际问题中,不仅要在固联在地面上
的参考系上还要在相对于地面运动着的参考系上观察和
研究物体的运动。下面先看几个例子。
沿直线轨道纯滚动 的圆轮,研究轮缘上A 点的运动,对于地面上 的观察者,是旋轮线轨 迹,对站在轮心上的观 察者是圆。
A点的运动可看成随轮心的平移与绕轮心转动的合成。
运动学/点的合成运动
MM MM1 M1M 将上式两边同时除以t并取 t0得
lim MM lim MM1 t 0 t t 0 t
lim
M1M
t 0 t
va ve vr
即:在任一瞬时动点的绝对速度等于牵连速度与相对速
度的矢量和,这就是点的速度合成定理。
点的速度合成定理是瞬时矢量式,共包括大小‚方向 六个元素,已知任意四个元素,就能求出其它两个。
运动学/点的合成运动
例如,直管OB以匀角速度绕定轴O转动,小球M
以速度u在直管OB中作相对的匀速直线运动,如图示。 将动坐标系固结在OB管上,以小球M为动点。随着动 点M的运动,牵连点在动坐标系中的位置在相应改变。 设小球在t1、t2瞬时分别到达M1、M2位置,则动点的 牵连速度分别为
ve1 OM1
运动学/点的合成运动
第八章
点的合成运动
在前两章中研究点和刚体的运动时,认为地球( 参考体)固定不动,将坐标系(参考系)固连于地面。 因此,点和刚体的运动是相对固定参考系而言的。

理论力学 运动学复习

理论力学 运动学复习
O
60°
O
θ
B
C
a
ve = va sin30° ve ∴va = = 2 m/s sin30° ∴v A = 2 m/s
vr
A
30°
⑵加速度分析图: 加速度分析图: t y aa ae
60° 30°
n aa
a
n aa
t a
A B
v C
x
O
θ
a
ar
n t − aa cos 30° − aa cos 60° = − ae
m/s和加速度a =20 m/s2。方向均向左。求此时滑块A 方向均向左。 此时滑块 t 的速度和加速度。 的速度和加速度。 aa 解:动点——滑块A n A 动系固结于BC aa v 绝对运动: 绝对运动: 圆周运动 牵连运动: 牵连运动: 平动 相对运动: 相对运动: 直线运动 速度分析图: ⑴速度分析图: va ve
ω
A O D B 30°
v B =v D =v A v A = OA⋅ω = r ⋅ω
vA vD
C
∴v B = r ⋅ω v D cos 60 ° = v C cos 30 °
v D cos 60° 3 vC = rω = cos 30° 3
3 ω ∴ω C = 3
23
vC
vB
aB =aA +a +a
15
曲柄OA= r,以匀角速度ωO转动,BC=DE, 转动, , , [例7-9] 曲柄 例 。求图示位置时, 的角速度和 (P181) BD=CE=l。求图示位置时,杆BD的角速度和 ) 角加速度。
D 60° ° B
60° vr 60 ° ° 60
α ω
E vr C

理论力学第5章(点的运动)

理论力学第5章(点的运动)
包括几何静力学、分析静力学
(2) 运动学: 研究点与刚体运动的几何性质。
包括位移、轨迹、速度、加速度。 (与力无关、也是变形体运动基础)
A B
F
C
B
刚体运动
C
变形(包含刚体位移和相对位移)
(3) 动力学: 研究物体所受力与运动间的关系。
包括质点系、刚体,变形体的动力效应。
第五章 点的运动学
§5-1 运动学的基本概念
速度
已知: OC AC BC l , MC a , t。 求:运动方程、轨迹、速度和加速度。
x l a cost ax v x 2 a y vy y l a sin t
2
加速度
a a a
F ( x, y) 0
二、点的速度v

r = xi + yj + zk
式中 v x 所以得
dr dx dy dz v i j k dt dt dt dt v = vx i + vy j + vz k
、v y
、v z
vx
dx dt
v
表明:“动点的速度在坐标轴上的投影,等于动点对应的位置 坐标对时间 t 的一阶导数”。 则速度的大小和方向余弦为
弧坐标的运动方程sf切向加速度表示速度大小的变化三点的加速度法向加速度表示速度方向的变化匀速运动v常数常数常数匀变速直线运动匀速圆周运动匀速直线运动或静止直线运动匀速运动圆周运动匀速运动直线运动匀速曲线运动匀变速曲线运动点作曲线运动画出下列情况下点的加速度方向
(1) 静力学: 研究物体所受力系的简化、平衡规律及其应用。
△r称为在△t时间内动点M的位移。
间间隔△t内的平均速度。以 v*表示。则: Δr v Δt 平均速度表示动点在△t内平均运动的快慢和运动方向。

理论力学第五章——点的运动

理论力学第五章——点的运动
'
'
当Δt 0, Δv/Δt的极限称为点在瞬时t的加速度:
v dv d 2 x a lim 2 x t 0 t dt dt
5.1 点的直线运动
已知加速度或速度方程, 采用积分法 求运动方程 ,积 分常数由运动初始条件决定。 dv a dv adt dt v t dv adt
由于
dτ dτ ds dτ ds v n dt dt ds ds dt
所以
dv v a τ n dt
2
5.4 自然法
4 点的切向加速度和法向加速度
dv v a τ n dt
上式表明加速度矢量a是由两个分矢量组成:分矢量at 的方向永远沿轨迹的切线方向,称为切向加速度,它 表明速度代数值随时间的变化率;分矢量 an的方向永 远沿主法线的方向,称为法向加速度,它表明速度方 向随时间的变化率。
2 t 2
2
at tan | | 0.25 an
2
5.4 自然法
全加速度为aτ和an的矢量和
a at an
全加速度的大小和方向由下列二式决Leabharlann : 大小:a at an
2
2
方向:
at an cos(a ,t ) , cos(a ,n ) a a
5.4 自然法
如果动点的切向加速度的代数值保持不变,则动 点的运动称为匀变速曲线运动。现在来求它的运动规 律。 at c
dτ τ j 1 lim lim n n ds s 0 s s 0 s
t"
5.4 自然法
3 点的速度
r s ds v lim lim t 0 t t 0 t dt

理论力学-点的运动学

理论力学-点的运动学

7
三. 点的加速度
a dv dvx i dvy j dvz k dt dt dt dt
d2 x i
dt2
d2 y dt2
j
d2 z k
dt2
axi
ay
j
azk
a ax2 ay2 az2
cos(a, i
)
ax
,
a
[注] 这里的 x、y、z 都是时间单位连续函数。
x f1(t)
11
加速度的大小为
a
a
2 x
a
2 y
2
(l a)2 cos2 t (l a)2 sin2 t
2 l2 a2 2al cos 2t
加速度的方向余弦为
cos(a,i) ax a
cos(a,j) ay a
(l a)cost l2 a2 2al cos 2t
(l a)sint l2 a2 2al cos 2t
dt dt
dt
dt dt2
dt
① 切向加速度 a
——表示速度大小的变化
a
dv τ dt
d2 dt
s
2
τ
② 法向加速度 an ——表示速度方向的变化
an
vdτ dt
v lim Δ τ Δt0 Δ t
v lim (Δ τ Δt0 Δ s
Δ s) Δt
v2 lim Δ τ Δt0 Δ s
(lim Δ s d s v) Δt0 Δ t d t
1
即an
v2 n,
a a2 an2 ,
a
a arctg
2
an |a | an
dv dt
τ
v2
n
16

理论力学-点的运动学案例

理论力学-点的运动学案例
vy y (l a) cost v vx2 vy2 (l a)2 2 sin2 t (l a)2 2 cos2 t
l2 a2 2al cos 2t
cos(v, i ) vx
(l a) sin t
v
l 2 a2 2al cos 2t
cos(v, j ) vy
(l a) cost
2 l 2 a2 2al cos 2t
cos(a, i ) ax
(l a) cost
a
l 2 a2 2al cos 2t
cos(a, j ) ay
(l a) sin t
a
l 2 a2 2al cos 2t
例5-2
已知:正弦机构如图所示。曲柄OM长为r,绕O轴匀速转动,
B点的速度和加速度
vB xB r cost
aB xB r2 sin t 2xB
周期运动 x(t T ) xt
f 1 频率 T
例5-3 已知:如图所示,当液压减振器工作时,它的活塞在套
筒内作直线往复运动。设活塞的加速度 a kv
( v为活塞的速度, 为k 比例常数),初速度为 。v0
第五章 点的运动学
例 5-1
已知:椭圆规的曲柄OC 可绕定轴O 转动,其端点C 与规尺 AB 的中点以铰链相连接,而规尺A,B 两端分别在相互垂
直的滑槽中运动, OC AC BC l, MC a, ωt
求:① M 点的运动方程;
② 轨迹; ③ 速度; ④ 加速度。
解: 点M作曲线运动,取坐标系Oxy如图所示。 运动方程
求:活塞的运动规律。
解: 活塞作直线运动,取坐标轴Ox如图所示
由 a dv kv dt

v dv k

理论力学哈工大第八版答案

理论力学哈工大第八版答案

哈尔滨工业大学理论力学教研室理论力学(I)第8版习题答案《理论力学(1 第8版)/“十二五”普通高等教育本科国家级规划教材》第1版至第7版受到广大教师和学生的欢迎。

第8版仍保持前7版理论严谨、逻辑清晰、由浅入深、宜于教学的风格体系,对部分内容进行了修改和修正,适当增加了综合性例题,并增删了一定数量的习题。

本书内容包括静力学(含静力学公理和物体的受力分析、平面力系、空间力系、摩擦),运动学(含点的运动学、刚体的简单运动、点的合成运动、刚体的平面运动),动力学(含质点动力学的基本方程、动量定理、动量矩定理、动能定理、达朗贝尔原理、虚位移原理)。

本书可作为高等学校工科机械、土建、水利、航空、航天等专业理论力学课程的教材,也可作为高职高理论力学(I)第8版哈尔滨工业大学理论力学教研室习题答案专、成人高校相应专业的自学和函授教材,亦可供有关工程技术人员参考。

本书配套的有《理论力学学习辅导》、《理论力学(I)第8版哈尔滨工业大学理论力学教研室习题答案理论力学思考题集》、《理论力学解题指导及习题集》(第3版)、《理论力学电子教案》、《理论力学网络课程》、《理论力学习题解答》、《理论力学网上作业与查询系统》等。

理论力学(I)第8版哈尔滨工业大学理论力学教研室课后答案前辅文静力学关注网页底部或者侧栏二维码回复理论力学(I)第8版答案免费获取答案引言第一章静力学公理哈尔滨工业大学理论力学教研室理论力学(I)第8版课后答案理论力学思考题集》、《理论力学解题指导及习题集》(第3版)、《理论力学电子教案》、《理论力学网络课程》、《理论力学习题解答》、《理论力学网上作业与查询系统》等。

理论力学(I)第8版哈尔滨工业大学理论力学教研室课后答案前辅文静力学引言第一章静力学公理和物体的受力分析第二章平面力系第三章空间力系第四章摩擦理论力学(I)第8版哈尔滨工业大学理论力学教研室习题答案§4-4 滚动摩阻的概念运动学引言第五章点的运动学*§5-5 点的速度和加速度在球坐标中的投影思考题习题第六章刚体的简单运动§6-1 刚体的平行移动§6-2 刚体绕定轴的转动§6-3 转动刚体内各点的速度和加速度§6-4 轮系的传动比§6-5 以矢量表示角速度和角加速度·以矢积表示点的速度和加速度思考题习题第七章点的合成运动第八章刚体的平面运动动力学引言第九章质点动力学的基本方程第十章动量定理第十一章动量矩定理第十二章动能定理第十三章达朗贝尔原理第十四章虚位移原理参考文献习题答案索引Synopsis哈尔滨工业大学理论力学教研室理论力学(I)第8版课后答案第十四章虚位移原理。

理论力学PPT课件第5章 动量定理、质点系动量定理、质点系动量矩定理

理论力学PPT课件第5章 动量定理、质点系动量定理、质点系动量矩定理
y
A
o
G
B
x
2020年4月20日
15
偏心电机
e m2
F Oy
FOx
思考:偏心电机转动时,支座的动约束力为多大?
2020年4月20日
16
3.动量守恒与质心运动守恒
动量守恒 若:FRe=0 则:p = 常矢量 若:FRex=0 则:px = 常量
质心运动守恒(不动)
1) 若 FRe 0
ac 0
由动量矩定理:
dLOz dt
M
e Oz
d d t(2 W gr2A2 W gr2 BW gvC2 r)M W 2 r
2 W gr2A2 W gr2BW g2raCM 2 W r
2020年4月20日
49
2 W gr2A2 W gr2BW g2raCM 2 W r
补充运动学方程
aCrArB
2W graCW g2raCM2Wr
LA ri'm ivi' vi'— 相对速度
(3)绝对动量矩与相对动量矩的关系 LAL'AAC (mA), v c为质心,
当AC=0,即,动点为质心C时 LC=LC —对质心的绝对与 量相 矩对 相动 等
2020年4月20日
34
3.刚体的动量矩(对定点A)
(1)平移刚体的动量矩
L A r i ' m iv c A (C v m c ) A P C
Mce 0,Lc守恒 .
O
FT
C
GV
2020年4月20日
52
思考:猴子爬绳比赛,已 m A 知 m B ,vA rv B.r
答:若不计绳与滑轮的质量,则 v1a v2a
若考虑绳与滑轮的质量,则 m AvArm BvBrJoω

理论力学第五章 点的运动和刚体的基本运动 [同济大学]

理论力学第五章 点的运动和刚体的基本运动 [同济大学]

dv v2 τ n dt
a
r
O
`
v vτ
r
dv 2 v2 ) ( )2 dt ρ
tan
aτ an
1
例5-2 汽车以匀速度v=10m/s过拱桥,桥面曲线 y=4fx(L–x)/L2, f=1m,求车到桥最高点时的加速度。
解: aτ
例5-3 销钉A由导杆B带动沿固定圆弧槽运动。导杆B沿轴螺旋 立柱以不变的速度v0 =2m/s向上运动。试计算当θ=30° 时,销钉 A的切向和法向加速度。 解: 建立弧坐标s和直角坐标Oxy如图。 因 s=Rθ,
销钉A的加速度为
aτ v sin θ v0 θ cos θ
2 2 sin θ v0 12.32m/s 2 R cos3 θ
an
2 v2 v0 21.33m/s 2 R R cos 2 θ
例5-4
判别下图示曲线中加速度、速度矢量是否正确。
§5-4 刚体的基本运动平动,转动

则vD=vA=2rω
aDn=aAn=2rω2 aDτ=aAτ=2ra
0 dt
0
t
y x

θ θ0 ω0t
t
0 0

t
αdtdt
角加速度为常量:
两个独立方程
0 t,
1 θ θ0 ω0 t t 2 2
1 θ θ0 (ω0 ω)t , 2
t 0
'2 1 1 y " k y

切线
v r S M* + M
dτ s v lim n d t lim t 0 t t 0 s t
an

理论力学-点的运动学

理论力学-点的运动学
详细描述
速度和加速度的矢量表示
04
CHAPTER
点的运动轨迹和运动参数
通过已知的初始位置和速度矢量,利用矢量合成法则确定点的运动轨迹。
直角坐标系
极坐标系
参数方程
利用极坐标表示点的位置,通过已知的初始位置和速度矢量,确定点的运动轨迹。
通过设定参数表示点的位置,根据初始条件和运动规律,确定参数方程,从而确定点的运动轨迹。
加速度与轨迹的关系
根据点的加速度矢量,可以判断点加速或减速的情况,进一步推断出其运动轨迹的变化趋势。
位移与轨迹的关系
根据点的位移矢量,可以确定点在平面或空间中的运动轨迹。
运动参数与轨迹的关系
05
CHAPTER
点的运动学应用
刚体的平动是指刚体在空间中的移动,其上任意两点之间的距离保持不变。
总结词
刚体的平动是刚体运动的一种基本形式,它描述了刚体在空间中的移动。在这种运动中,刚体的所有点都以相同的速度和方向移动,因此刚体上任意两点之间的距离保持不变。平动不会改变刚体的形状和大小。
点的速度和加速度
总结词
速度是描述物体运动快慢的物理量,其大小等于物体在单位时间内通过的位移。
详细描述
速度的大小可以用矢量表示,其大小等于物体在单位时间内通过的位移量,方向与物体运动方向相同。在直角坐标系中,速度矢量可以表示为位置矢量对时间的一阶导数。
速度的定义与计算
总结词
加速度是描述物体速度变化快慢的物理量,其大小等于物体在单位时间内速度的变化量。
详细描述
加速度的大小可以用矢量表示,其大小等于物体在单位时间内速度的变化量,方向与物体速度变化方向相同。在直角坐标系中,加速度矢量可以表示为速度矢量对时间的一阶导数。

理论力学-5-点的复合运动分析

理论力学-5-点的复合运动分析

5.1 点的合成运动的基本概念
三种运动与三种速度和加速度
动点相对于动系的运动,称为 动点的相对运动(relative)。动 点刀尖上P点的相对运动是在工件 圆柱面上的螺旋线(相对轨迹)运 动。 动点相对于动系的运动速度和 加速度,分别称为动点的相对速度 和相对加速度,分别用符号vr和ar 表示。
具体方法:在有的机构中,一个构件上总有一个点被另一个构件所约束。 这时,以被约束的点作为动点,在约束动点的构件上建立动系,相对运动 轨迹便是约束构件的轮廓线或者约束动点的轨道。
(3) 应用速度合成定理时,可利用速度平行四边形中的几何关系解出 未知数。也可以采用投影法:即等式左右两边同时对某一轴进行投 影,投影的结果相等。
5.1 点的合成运动的基本概念
三种运动与三种速度和加速度
动系相对于定系的运动, 称为牵连运动。图中,牵连 运动为绕Oy ' 轴的定轴转动。
5.1 点的合成运动的基本概念
三种运动与三种速度和加速度
动系上每一瞬时与动点相重 合的那一点,称为瞬时重合点,又 称为牵连点。由于动点相对于动 系是运动的,因此,在不同的瞬 时,牵连点是动系上的不同点。 动系上牵连点相对定系的运 动速度和加速度,分别称为为动 点的牵连速度和牵连加速度,分 别用符号ve和ae表示。
第5章 点的复合运动分析 5.1 点的合成运动的基本概念 5.2 点的速度合成定理 5.3 牵连运动为平移时点的加速度合成定理 5.4 牵连运动为转动时点的加速度合成定理 科氏加速度 5.5 结论与讨论
第5章 点的复合运动分析
5.1 点的合成运动的基本概念
5.1 点的合成运动的基本概念
vr
q
ve OA
3 2 3e va ve tan q OA 3 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[讨论] (1) d v 与 d v 有何不同? 就直线和曲线分别说明。
dt dt
d v = a ——点的加速度矢。 dt
对直线、曲线都一样。
d v ——速度大小对时间的变化率 dt 在直线中为加速度大小: d v = a
dt
在曲线中为切向加速度大小: d v dt
=
at
36
第五章 点的运动学
(2)点作曲线运动, 画出下列情况下加速度的大致方向。 ① M1点作匀速运动; ② M2点作加速运动; ③ M3点作减速运动。
(2)速度
vx = x& = rω (1− cosωt)
vy = y& = rω sin ωt
v=
v
2 x
+
v
2 y
= rω
2
− 2 cosωt
=
2rω
sin
ωt
2
(3)切向、法向加速度
at = v&
= rω 2 cos ωt
2
an
=
rω 2
sin
ωt
2
思考:如何求点M的法向加速度?
30
第五章 点的运动学
dt dt
dt
dt
=
d2 x dt2 i
+ d2 y dt2
j
+
d2 dt
z
2
k
解析表达式: a = a x i + a y j + a z k
ax
=
d vx dt
=
d2 x d t2
=
v& x
=
&x&
ay
=
d vy dt
=
d2 y d t2
=
v& y
=
&y&
az
=
d vz dt
=
d2 z d t2
M点的运动方程为:
x = OC − O1M cos(ϕ −π / 2) = r(ωt − sinωt)
y = O1C + O1M sin(ϕ − π / 2) = r(1− cosωt)
29
第五章 点的运动学
x = OC − O1M cos(ϕ −π / 2) = r(ωt − sinωt) y = O1C + O1M sin(ϕ − π / 2) = r(1− cosωt)
ψ (y, z) = 0 13
第五章 点的运动学
三、点的速度
r = xi + yj+ zk
v = dr= dxi + d y j+ dz k
dt dt
dt
dt
解析表达式: v = v x i + v y j + v z k
vx
=
dx= dt
x&
vy
=
dy dt
=
y&
vz
=
dz dt
=
z&
即:速度在各坐标 轴上的投影等于动 点的各对应坐标对 时间的一阶导数。
(5)点作直线运动时,若其速度为零,其加速度也为零? 答:不一定,速度为零时加速度不一定为零。 例如:自由落体上抛到顶点时; 例5-1中正弦机构中B点的速度和加速度。
问:点作曲线运动时,若其速度大小不变,加速度是否 一定为零?
答:加速度不一定为零,只要点作曲线运动,就有法向 加速度。
40
第五章 点的运动学
xB = r sin( ωt + θ )
vB = rω cos( ω t + θ )
a B = − rω 2 sin( ω t + θ ) = −ω2xB
运动图线
加速度图线 速度图线
20
第五章 点的运动学
§5-3 自然法(弧坐标法)
前提:运动轨迹已知。
一、运动方程
弧坐标
(−)
A
原点O :轨迹上任选一点。
14
第五章 点的运动学
求出速度投影后,即可得速度的大小和方向余弦:
v=
v
2 x
+
v
2 y
+
v
2 z
cos( v , i ) = vx v
cos( v , j) = vy v
cos( v , k ) = vz v
15
第五章 点的运动学
四、点的加速度
a = d v = d vx i + d vy j + d vz k
第五章 点的运动学
例2 观察摆式运输机的运动
4
第五章 点的运动学
例3 观察行星轮的运动
5
第五章 点的运动学
例4 观察操纵斗的运动
6
第五章 点的运动学
例5 观察飞机的一般运动
7
第五章 点的运动学
例6 观察陀螺的运动特点
8
第五章 点的运动学
二、学习目的
学习动力学的基础 受力分析和运动分析是学习动力学的两大基础。
第五章 点的运动学
理 论 力 学(I)
第二部分
运动学
2009年10月8日
1
第五章 点的运动学
引言
一、运动学的研究对象及任务
研究对象 点和刚体(单个刚体、简单刚体系统)
研究任务 z 运动的几何性质; z 运动的合成与分解。 几个工程实例
2
第五章 点的运动学
例1 观察轮缘上点的运动轨迹
3
ds
=1
ρ
方向? n
26
第五章 点的运动学
an
=
v2
ρ
n
at
=
dvτ
dt
全加速度为:
a = a t + a n = a tτ + a n n
a = at2 + an2
θ = arctan | at |
an
讨论:什么情况下,点作加速运动? v 、at 同向 什么情况下,点作减速运动? v 、at 反向
= d s ⋅ d r = d s ⋅τ
dt ds dt

v M′
ΔrΔs
O
(+)
r (t )
(−)
r(t + Δt)
O
v= ds dt
= v ⋅τ
24
第五章 点的运动学
四、点的加速度
ቤተ መጻሕፍቲ ባይዱ
a = d v = d (vτ ) = d v ⋅ τ + v ⋅ d τ
d t dt
dt
dt
=
d2 s dt2
a3
a2 a1
37
第五章 点的运动学
(3)指出在下列情况下,点M作何种运动?
① an ≡ 0, at = 常数 ② at ≡ 0, ρ = 常数
(匀变速直线运动) (匀速圆周运动)
③ a =0
(匀速直线运动或静止)
④ an ≡ 0, ρ → ∞ ⑤ at ≡ 0 ⑥ ρ = 常数
(直线运动) (匀速运动) (圆周运动)
22
第五章 点的运动学
思考:自然轴系与固定直角坐标系的共同点? 自然轴系与固定直角坐标系的不同点?
23
第五章 点的运动学
三、点的速度
v = dr dt
= lim Δ r Δt→ 0 Δ t
= lim ( Δ r ⋅ Δ s ) Δt→ 0 Δ s Δ t
= lim Δ s ⋅ lim Δ r Δt→ 0 Δ t Δt→ 0 Δ s
§5-2 直角坐标法
一、运动方程
x = f1(t) = x(t) y = f2 (t) = y(t)
z = f3 (t) = z(t)
二、轨迹方程
z
M(x, y,z)
k
r
O j
i
z
y
x
x
y
r = xi + yj + zk
消去上式中的参数时间 t,即可求得点的轨迹方程。
ϕ (x, y) = 0
——空间曲线方程
第五章 点的运动学
第五章 点的运动学
研究对象 ——几何点, 称为运动的点 研究任务 ——研究点在空间运动的几何性质 具体内容
§5-1 矢量法 §5-2 直角坐标法 §5-3 自然法 *§5-4 点的速度和加速度在柱坐标和极坐标中的投影 *§5-5 点的速度和加速度在球坐标中的投影
11
第五章 点的运动学
夹角ϕ = ω t +θ,其中θ 为t =0 时的夹角,ω为常数。动杆上
A、B两点间距离为b。 求: A、B两点的运动方程及 点B的速度和加速度。
解:(1)求A、B两点的运动方程(取坐标轴Ox如图示)
xA = b + r sin ϕ = b + r sin( ωt + θ )
xB = r sin ϕ = r sin( ωt + θ )
将速度投影再对时间求导,即得加速度在直角坐标
轴上的投影:
ax = &x& = rω 2 sin ωt a y = &y& = rω 2 cos ωt
M点的全加速度为: a =
ax2
+
a
2 y
= rω 2
于是法向加速度为: an =
a2

a
2 t
= rω 2 sin ωt
2
另外,还可求得轨迹的曲率半径
27
第五章 点的运动学
28
第五章 点的运动学
[例5-2] 半径为r的轮子沿直线轨道作纯滚动,设轮子
转角ϕ =ωt ( ω为常值),如图所示。求用直角坐标和
相关文档
最新文档