一元二次方程的解法(因式分解法)
一元二次方程的解法—因式分解法
因式分解法:
利用分解因式来解一元二次方程的方法叫因式分解法。
【想一想】
你能用几种方法解方程x -4=0,(x+1) -25=0。
二、范例学习、讲授新知
例:解下列方程。
1. 5x =4x 2. x-2=x(x-2)
三、随堂练习、巩固新知
1、5x -15x=0 2. x +4x=0
问题,提高学习数学的热情和积极性.
教 学 重 点
掌握解一元二次方程
教 学 难 点
灵活运用因式分解法解一元二次方程
教 具 准 备
教 学 过 程
教 师 活 动
学 生 活 动
一、课堂小测、回顾交流
【课堂小测】
解下列一元二次方程。
1. 4x2-1=0
2. (25-2x)2-400 题
一元二次方程的解法—因式分解法
课 型
新 授
教 学 目 标
知 识
与技能
会用因式分解(提公因式法、公式法)解某些简单的数字系数的一元二次方程。
过 程
与方法
能根据具体一元二次方程的特征,灵活选择方程的解法。体会解决问题方法的
多样性。
情 感
与态度
培养学生独立思考、积极探索的思维品质,善于用数学知识解决身边的数学
五、布置作业、拓展延伸
P42 4
教学后记:
学生练习。
概念:课本议一议,让学生自己理解。
解:(1)原方程可变形为:
5x2-4x=0
x(5x-4)=0
x=0或5x=4=0
∴x1=0或x2=
(2)原方程可变形为
x-2-x(x-2)=0
(x-2)(1-x)=0
一元二次方程的解法因式分解和因式分解
一元二次方程的解法因式分解和因式分解一元二次方程是代数学中非常重要的一个概念,它在解决实际问题中有广泛的应用。
在解一元二次方程的过程中,我们可以运用因式分解和求根公式两种方法。
本文将从这两个方面来详细介绍一元二次方程的解法。
我们来介绍因式分解法。
一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b、c为常数,且a≠0。
我们可以通过因式分解将其转化为两个一次方程的乘积形式,进而求解方程。
以一元二次方程x^2 + 5x + 6 = 0为例,我们首先要找到两个数的和为5,乘积为6的特性。
根据这个特性,我们可以将方程分解为(x + 2)(x + 3) = 0。
通过零乘积法则,我们得到x + 2 = 0或x + 3 = 0,进而解得x的值分别为-2和-3。
所以,原方程的解为x = -2或x = -3。
通过这个例子,我们可以看到因式分解法可以将原方程转化为两个一次方程,从而更容易求解。
但需要注意的是,并不是每个一元二次方程都可以通过因式分解法求解,因为它要求方程的系数能够被分解成两个数的乘积。
接下来,我们来介绍另一种解一元二次方程的方法——求根公式法。
求根公式是利用二次方程的一般形式ax^2 + bx + c = 0中的系数a、b、c计算方程的解。
具体求根公式为x = (-b ± √(b^2 -4ac)) / 2a。
同样以一元二次方程x^2 + 5x + 6 = 0为例,我们可以根据求根公式计算出方程的解。
将a、b、c代入公式中,得到x = (-5 ± √(5^2 - 4*1*6)) / 2*1,化简后可得x = -2或x = -3,与因式分解法得到的结果一致。
通过这个例子,我们可以看到求根公式法可以直接利用方程的系数计算出解,不需要进行因式分解的步骤。
但需要注意的是,在使用求根公式时,我们需要保证方程中的判别式b^2 - 4ac大于等于0,否则方程将无实数解。
因式分解法和求根公式法是解一元二次方程常用的两种方法。
一元二次方程的解法
一元二次方程的解法一元二次方程是数学中常见的形式为ax²+bx+c=0的方程,其中a、b、c为已知常数,x为未知数。
解一元二次方程的方法有两种常用的方式,分别是因式分解法和求根公式法。
一、因式分解法因式分解法是一种基于因式分解思想的解法,用于解决特定类型的一元二次方程。
1. 随机方程形式:ax²+bx+c=0要使用因式分解法解决一元二次方程,首先要确保方程可被因式分解。
具体步骤如下:Step 1: 将方程左侧的二次项进行因式分解。
对于二次项ax²,可以进行因式分解为(ax+m)(ax+n),其中m和n为常数。
Step 2: 确定常数m和n的值。
将因式分解得到的形式(ax+m)(ax+n)与方程的形式ax²+bx+c进行比较,从而确定常数m和n的值。
Step 3: 通过求解常数m和n的值,得到一元二次方程的解。
将(ax+m)(ax+n)=0,根据乘法零因子法则,可将方程转化为两个一次方程,即ax+m=0和ax+n=0。
然后分别求解这两个一次方程,得到x的值。
2. 示例:例如,解方程x²+5x+6=0。
Step 1: 将方程左侧的二次项进行因式分解。
方程的左侧二次项x²可因式分解为(x+2)(x+3)。
Step 2: 确定常数m和n的值。
由比较可知,m=2,n=3。
Step 3: 通过求解常数m和n的值,得到一元二次方程的解。
将(x+2)(x+3)=0转化为两个一次方程,即x+2=0和x+3=0。
分别解得x=-2和x=-3,因此方程x²+5x+6=0的解为x=-2和x=-3。
二、求根公式法求根公式法是解决一元二次方程的另一种常用方法,可以适用于一切一元二次方程。
1. 一元二次方程的一般形式:ax²+bx+c=0对于一元二次方程ax²+bx+c=0,可以使用求根公式法进行解答。
求根公式为x=(-b±√(b²-4ac))/(2a)。
第4讲 一元二次方程的解法-因式分解法
一元二次方程的解法(四)----因式分解法知识要点梳理:1.分解因式的方法有:提公因式法、利用平方差公式分解因式、利用完全平方公式分解因式、十字相乘法、分组分解法等2.因式分解法解一元二次方程的原理:000==⇔=b a ab 或预习引入:将下列各式分解因式(1)y y 22-(2)942-x (3)2222+-x x(4)862+-x x(5)y y x x 2422--+经典例题例1:用因式分解法解下列方程:(1) t (2t -1)=3(2t -1);(2) y 2+7y +6=0(3)(2x -1)(x -1)=1.(4)0)34()43(22=---x x例2:用适当方法解下列方程: (1)3(1-x )2=27; (2)x 2-6x -19=0;(3)3x 2=4x +1; (4)y 2-15=2y ;(5)5x (x -3)-(x -3)(x +1)=0; (6)4(3x +1)2=25(x -2)2.例3.解关于x 的方程:(1)x 2-4ax +3a 2=1-2a ; (2)x 2+5x +k 2=2kx +5k +6;(3)x 2-2mx -8m 2=0; (4)x 2+(2m +1)x +m 2+m =0.经典练习:一.选择题(1)方程(x -16)(x +8)=0的根是( )A .x 1=-16,x 2=8B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-8(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( )A ..x =21B .x =2C .x =1D .x =-1(3)方程5x (x +3)=3(x +3)解为( )A .x 1=53,x 2=3 B .x =53C .x 1=-53,x 2=-3 D .x 1=53,x 2=-3(4)方程(y -5)(y +2)=1的根为( )A .y 1=5,y 2=-2B .y =5C .y =-2D .以上答案都不对(5)方程(x -1)2-4(x +2)2=0的根为( )A .x 1=1,x 2=-5B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=5(6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( )A .1B .2C .-4D .4(7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( )A .5B .5或11C .6D .11 *(8)方程x 2-3|x -1|=1的不同解的个数是( )A .0B .1C .2D .3二.填空题(1)方程(2x +1)2+3(2x +1)=0的解为__________.(2)方程t (t +3)=28的解为_______.(3)方程(2y +1)2+3(2y +1)+2=0的解为__________.(4)关于x 的方程x 2+(m +n )x +mn =0的解为__________.(5)方程x (x -5)=5 -x 的解为__________.三.用因式分解法解下列方程:(1)x 2+12x =0; (2)4x 2-1=0; (3)x 2=7x ;(4)x 2-4x -21=0; (5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x2-x-3=0;(8)(x-1)2-4(x-1)-21=0.4.用适当方法解下列方程:(1)x2-4x+3=0; (2)(x-2)2=256; (3)x2-3x+1=0;(4)x2-2x-3=0; (5)(2t+3)2=3(2t+3);(6)(3-y)2+y2=9; (7)(1+2)x2-(1-2)x=0;(8)5x2-(52+1)x+10=0; (9)2x2-8x=7(10)(x+5)2-2(x+5)-8=0.拓展练习1.已知x 2+3xy -4y 2=0(y ≠0),试求y x yx +-的值.2.已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值.3.为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y , 则y 2=(x 2-1)2,原方程化为y 2-5y +4=0,解此方程,得y 1=1,y 2=4.当y =1时,x 2-1=1,x 2=2,∴x =±2.当y =4时,x 2-1=4,x 2=5,∴x =±5.∴原方程的解为x 1=-2,x 2=2,x 3=-5,x 4=5.以上方法就叫换元法,达到了降次的目的,体现了转化的思想.(1)运用上述方法解方程:x 4-3x 2-4=0.(2)既然可以将x 2-1看作一个整体,你能直接运用因式分解法解这个方程吗巩固作业:1.分别用三种方法来解以下方程(1)x2-2x-8=0 (2)3x2-24x=0用因式分解法:用配方法:用公式法:用因式分解法:用配方法:用公式法:2.已知x2+3x+5的值为9,试求3x2+9x-2的值.3.当x取何值时,能满足下列要求?(1)3x2-6的值等于21;(2)3x2-6的值与x-2的值相等.4.一跳水运动员从10米高台上跳水,他跳下的高度h(单位:米)与所用的时间t(单位:秒)的关系式h=-5(t-2)(t+1).求运动员起跳到入水所用的时间.。
一元二次方程的解法及判别
一元二次方程的解法及判别一、一元二次方程的定义一元二次方程是指只含有一个未知数,并且未知数的最高次数为2的方程。
一般形式为:ax^2 + bx + c = 0,其中a、b、c为常数,且a ≠ 0。
二、一元二次方程的解法1.因式分解法:将一元二次方程进行因式分解,使其变为两个一次因式的乘积等于0的形式,然后根据零因子定律求解。
2.公式法:利用一元二次方程的求根公式(也称二次公式)求解。
求根公式为:x = (-b ± √(b^2 - 4ac)) / (2a)。
三、一元二次方程的判别式判别式是用来判断一元二次方程的根的情况的数值。
判别式的公式为:Δ = b^2 - 4ac。
四、判别式的性质与解的情况1.当Δ > 0时,方程有两个不相等的实数根。
2.当Δ = 0时,方程有两个相等的实数根,也称为重根。
3.当Δ < 0时,方程没有实数根,而是有两个共轭的复数根。
五、一元二次方程的解法比较1.因式分解法适用于方程的系数较小,且容易分解的情况。
2.公式法适用于任何形式的一元二次方程,无论系数的大小和是否容易分解。
六、一元二次方程的应用一元二次方程在实际生活中有广泛的应用,如物体的运动轨迹、投资收益、面积计算等方面。
总结:一元二次方程的解法及判别是中学数学中的重要知识点,掌握因式分解法和公式法求解一元二次方程,以及理解判别式的性质和解的情况,对于解决实际问题具有重要意义。
习题及方法:已知一元二次方程x^2 - 5x + 6 = 0,求解该方程。
这是一个一元二次方程,我们可以尝试使用因式分解法来解它。
首先,我们需要找到两个数,它们的乘积等于常数项6,而它们的和等于一次项的系数(-5)。
这两个数是-2和-3。
因此,我们可以将方程重写为:(x - 2)(x - 3) = 0。
根据零因子定律,我们得到x - 2 = 0或x - 3 = 0。
解得x1 = 2,x2 = 3。
给定一元二次方程2x^2 + 5x - 3 = 0,求解该方程。
用因式分解法求解一元二次方程 (6种题型)-2023年新九年级数学常见题型(北师大版)(解析版)
用因式分解法求解一元二次方程 (6种题型)【知识梳理】一、用因式分解法解一元二次方程的步骤 ①将方程右边化为0;②将方程左边分解为两个一次式的积;③令这两个一次式分别为0,得到两个一元一次方程; ④解这两个一元一次方程,它们的解就是原方程的解. 二、常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等. 要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0; (3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【考点剖析】题型1利用提公因式法例1.解关于x 的方程(因式分解方法):(1)230x =; (2)7(3)39x x x −=−.【答案】(1)120x x ==, (2)12337x x ==,.【解析】(1)(30x x = (2)7(3)3(3)x x x −=−①0x = ②30x 7(3)3(3)0x x x −−−=∴120x x ==, (3)(73)0x x −−= ① 30x −= ②730x −=∴12337x x ==,. 【总结】本题考查了因式分解法解一元二次方程.【变式】(2023春·北京房山·八年级统考期末)方程224x x −=的解为:___________. 【答案】10x =,22x =−【分析】先移项,然后用分解因式法解方程即可.【详解】解:224x x −=,移项得:2240x x +=,分解因式得:()220x x +=,∴20x =或20x +=, 解得:10x =,22x =−. 故答案为:10x =,22x =−.【点睛】本题主要考查了一元二次方程的解法:因式分解法,是基础知识比较简单,解题的关键是分解因式.题型2利用平方差公式例2.用因式分解法解下列方程:(2x+3)2-25=0. 【答案与解析】(2x+3-5)(2x+3+5)=0,∴ 2x-2=0或2x+8=0,∴ x 1=1,x 2=-4.【变式】解关于x 的一元二次方程:22(2016)(2015)1x x −+−=. 【答案】1220162015x x ==,.【解析】移项,得:22(2016)1(2015)x x −=−−,2(2016)[1(2015)][1(2015)]x x x −=+−−−, 2(2016)(2014)(2016)x x x −=−−, 2(2016)(2014)(2016)0x x x −−−−=, (2016)(40302)0x x −−=,解得:1220162015x x ==,.【总结】本题考查了一元二次方程的解法,当系数比较大时,要注意寻找规律进行变型求解.题型3利用完全平方公式例3.解下列一元二次方程:(2x+1)2+4(2x+1)+4=0; 【答案与解析】(2x+1)2+4(2x+1)+4=0,(2x+1+2)2=0. 即, ∴ . 题型4十字相乘法因式分解例4.用合适的方法解下列关于x 的方程:(1)2(1(30x x −+=; (2)2(35)5(35)40x x +−++=;【答案】(1)121x x =, (2)124133x x =−=−,;【解析】(1)2(1(30x x −+=,[(11](0x x −=,解得:121x =−=, (2)2(35)5(35)40x x +−++=351354x x +−+−(351)(354)0x x +−+−=,解得:124133x x =−=−,;【总结】本题考查了一元二次方程的解法.题型5:选择合适的方法解一元二次方程例5.解关于x 的方程(合适的方法 ): (1)2110464x x −+=; (2)22((1x +=+. 【答案】(1)1218x x ==;(2)1211x x ==−−, 【解析】(1)因式分解法 (2)直接开方法2(23)0x +=1232x x ==−21()08x −= (1x +=±+108x −= ①1x + ②(1x =−∴1218x x ==; ∴1211x x ==−−, 【总结】本题考查了特殊一元二次方程的解法,注意重根的写法! 【变式1】解关于x 的方程(合适的方法):(1)236350x x +−=; (2)2(41)10(14)240x x −+−−=. 【答案】(1)1235136x x ==−,; (2)1213144x x ==−,. 【解析】(1)因式分解法 (2)把41x −看作一个整体,因式分解 (3635)(1)0x x −+= 2(41)10(14)240x x −−−−= ①36350x −= ②10x += (4112)(412)0x x −−−+= ∴1235136x x ==−,; (413)(41)0x x −+= ① 4130x −= ②410x +=∴1213144x x ==−,. 【变式2】用适当的方法解下列方程:(1)22((1x =; (2)2x x =;(3)(3)(1)5x x +−=; (4)2()()0()b a x a c x c b a b −+−+−=≠.【答案】(1)1211x x =−=−; (2)1201x x ==,; (3)1242x x =−=,; (4)121c bx x b a−==−,.【解析】(1)(1x =± (2)20x x −=① 1x +=− ②(1x =− , (1)0x x −=,解得:1211x x =−=−; 解得:1201x x ==,; (3)整理得:2235x x +−= (4)∵a b ≠原方程是一元二次方程,2280x x +−=, 2()()0()b a x a c x c b a b −+−+−=≠, (4)(2)0x x +−=,()()1b a xc b x −−−− 解得:1242x x =−=,; [()()](1)0b a x c b x −−−−=, 解得:121c bx x b a−==−,. 【总结】本题考查了一元二次方程的解法,注意方法的恰当选择.【答案】B【分析】根据题意进行分类讨论,当0x >时,可得2450x x −−=,求出x 的值即可;当0x <时,可得2250x x −−=求出x 的值即可.【详解】解:当0x >时,则0x x >>−, ∴{}2max ,35x x x x x −==−−,即2450x x −=,解得:125,1x x ==−(不符合题意,舍去),当0x <时,则0x x −>>,∴{}2max ,35x x x x x −=−=−−,即2250x x −−=,解得:11x =,21x =综上:x 的值是5或1 故选:B .【点睛】本题主要考查了新定义下的运算和解一元二次方程,解题的关键是正确理解题目所给新定义的运算法则,熟练掌握解一元二次方程的方法和步骤.【变式】在正数范围内定义运算“※”,其规则为2a b a b =+※,则方程()15x x +=※的解是( ) A .4x =或1x = B .2x =C .1x =或4x =−D .1x =【答案】D【分析】根据规则可得:()215x x ++=,再解此方程,即可求解.【详解】解:根据题意得:()()2115x x x x +=++=※,得2340x x +−=,得()()410x x +−=,故40x +=或10x −=,解得14x =−(舍去),21x =, 所以,原方程的解为1x =, 故选:D .【点睛】本题考查了新定义,一元二次方程的解法,理解题意,得到方程并求解是解决本题的关键.【答案】3【分析】先通过因式分解法解方程260x x −−=,求出12x x ,,根据新定义的运算规则,12x x ※的值为1x 和2x 中较大的那个数,由此可解.【详解】解:方程260x x −−=,分解因式得:()()320x x −+=,解得:3x =或=2x −, 则()12323x x =−=※※或()233−=※.故答案为:3.【点睛】本题考查新定义运算和解一元二次方程,读懂题意,理解新定义的运算规则是解题的关键. 题型7:因式分解综合应用(1)问梯子的长是多少?(2)若梯子的长度保持不变,梯子的顶端从A 处沿墙AC 下滑的距离与点B 向外移动的距离有可能相等吗?为什么?请你利用学过的知识解答上面的问题. 【答案】(1)2.69m (2)有可能,理由见解析【分析】(1)根据梯子长度不变进而得出等式求出即可;(2)设梯子顶端从A 处下滑y 米,点B 向外也移动y 米代入(1)中方程,求出y 的值符合题意. 【详解】(1)解:设A C '的长是m x ,根据题意得出:2222A C B C BC AC ''+=+,2222(0.41)1(0.2)x x ∴++=++,解得: 2.3x =,2.69m AB ∴≈,答:梯子的长是2.69m ; (2)有可能.设梯子顶端从A 处下滑y 米,点B 向外也移动y 米,则有22(1)(2.5)7.25y y ++−=,解得:1 1.5y =或20y =(舍)∴当梯子顶端从A 处下滑1.5米时,点B 向外也移动1.5米,即梯子顶端从A 处沿墙AC 下滑的距离与点B 向外移动的距离有可能相等.【点睛】本题考查的是勾股定理的应用,根据题意得出关于y 的一元二次方程是解答此题的关键. 【变式1】(2023·河北石家庄·统考二模)老师就式子39⨯+−,请同学们自己出问题并解答. (1)小磊的问题:若W 代表()22−,代表()31−,计算该式的值;(2)小敏的问题:若398⨯+−=□,W 代表某数的平方,代表该数与1的和的平方,求该数.【答案】(1)22 (2)0或1【分析】(1)根据代数式代入值进行计算即可; (2)设该数为a ,则()22391=8a a ⨯+−+,再进行求解即可.【详解】(1)解:由题意可得:原式()()233291=⨯−+−−()3491=⨯+−−22=;(2)解:设该数为a ,则()22391=8a a ⨯+−+,解得:10a =,21a =,∴求该数为0或1.【点睛】本题考查代数值求值、解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键. 【变式2】(2023·河北石家庄·校考一模)发现:存在三个连续整数使得这三个连续整数的和等于这三个连续整数的积;验证:连续整数1−,2−,3−______(填“满足”或“不满足”)这种关系; 连续整数2,3,4,______(填“满足”或“不满足”)这种关系; 延伸:设中间整数为n(1)列式表示出三个连续整数的和、积,并分别化简; (2)再写出一组符合“发现”要求的连续整数(直接写结果).【答案】验证:满足;不满足;(1)和为3n ,积为3n n −;(2)1−,0,1(答案不唯一)【分析】先分别计算123−−−和()()()123−⨯−⨯−的值,比较两组值是否相等;再分别计算234++和234⨯⨯的值,比较两组值是否相等即可;(1)设中间整数为n ,则三个连续整数可表示为:n 1−,n ,1n +,将n 1−,n ,1n +三数相加得其和;将n 1−,n ,1n +三数相乘得其积;(2)令(1)中的和等于积,解方程,求得n 的值,从而可得符合要求的连续整数.【详解】验证:解:1236−−−=−,()()()1236−⨯−⨯−=− ()()()123123∴−−−=−⨯−⨯−1∴−,2−,3−满足这种关系;2349++=,23424⨯⨯=,924≠, 234234∴++≠⨯⨯,∴2,3,4不满足这种关系.延伸:设中间整数为n ,则三个连续整数可表示为:n 1−,n ,1n +, (1)三个连续整数的和可表示为:()()113−+++=n n n n ,三个连续整数的积可表示为:()()311−⋅⋅+=−n n n n n ,(2)当33=−n n n 时,340−=n n ()()220∴+−=n n n解得:0n =,2n =−或2n =,∴符合要求的一组连续整数为:1−,0,1.【点睛】本题考查了探究某类数的规律性问题,其中涉及到了因式分解方法的运用,按照要求写出相关数或式子,按照规则计算,是解答本题的关键.【过关检测】一、单选题【答案】D【分析】变形后利用因式分解法解一元二次方程即可. 【详解】解:()()2131x x x −=−移项,得2(1)3(1)0x x x −−−=, 因式分解,得()()2310x x −−=,则10x −=或230x −=,解得2131,2x x ==.故选:D【点睛】此题考查了一元二次方程的解法,熟练掌握因式分解法是解题的关键. 2.(2023·全国·九年级假期作业)已知20x ax b +−=的解是11x =,24x =−,则方程()()223230x a x b +++−=的解是( )A .11x =−,2 3.5x =−B .11x =,2 3.5x =−C .11x =−,2 3.5x =D .11x =,2 3.5x =【答案】A【分析】由这两个方程结合整体思想,可得231x +=,234x +=−,解这两个一元一次方程即得方程()()223230x a x b +++−=的解.【详解】解:令23x y +=,∵方程20x ax b +−=的解是11x =,24x =−,∴方程20y ay b +−=的解是11y =,24y =−,∴对于方程方程()()223230x a x b +++−=而言,231x +=或234x +=−,解得=1x −或 3.5x =−,故选A .【点睛】本题考查了一元二次方程的解,整体思想解一元二次方程,关键是把方程()()22332340m x x +++−=中的23x +当作一个整体,则此方程与²340mx x +−=毫无二致.3.(2023·全国·九年级假期作业)方程29180x x −+=的两个根是等腰三角形的底和腰,则这个三角形是周长是( ) A .12 B .15 C .12或15 D .9或15或18【答案】B【分析】利用因式分解法求出方程的解得到x 的值,分类讨论腰与底,利用三角形边角关系判断即可确定出周长.【详解】解:29180x x −+=,(3)(6)0x x −−=,30x −=,60x −=,13x =,26x =,有两种情况:①三角形的三边为3,3,6,此时不符合三角形三边关系定理,②三角形的三边为3,6,6,此时符合三角形三边关系定理,此时三角形的周长为36615++=, 故选:B .【点睛】此题考查了因式分解法解一元二次方程,等腰三角形的定义,熟练掌握分解因式的方法是解本题的关键.【答案】C【分析】利用换元法求解即可.【详解】解:设33x m y +=,∵()()3333130x y x y +−++=,∴()()130m m −+=,∴10m −=或30m +=, 解得1m =或3m =−,∴331x y +=或333x y +=−,故选C .【点睛】本题主要考查了换元法解一元二次方程,熟知换元法是解题的关键.【答案】D【分析】利用因式分解法求出两个根,再从中找出较小的根即可.【详解】解:提公因式,得:331()()0442x x x −−+−=, 整理得:35()(2)044x x −−=,∴123548x x ==,, ∵3548>,∴较小的根是58,故选:D .【点睛】本题考查了因式分解法解一元二次方程,解题的关键是通过提取公因式将等号左边的式子进行因式分解.【答案】B【分析】由2212m m +=可得42210m m −+=,则有21m =,即1m =,然后问题可求解.【详解】解:∵2212m m +=,∴42210m m −+=,解得:21m =,∵0m >, ∴1m =,∴2251254m m −+=−+=;故选B .【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键. 7.(2023·全国·九年级假期作业)实数x 满足方程222()()20x x x x +++−=,则2x x +的值等于( ) A .2− B .1 C .2−或1 D .2或1−【答案】B【分析】运用换元法解方程,再根据根的判别式判断根的情况,由此即可求解.【详解】解:根据题意,设2x x M +=,则原式变形得220M M +−=,因式分解法解一元二次方程得,22(1)(2)0M M M M +−=−+=, ∴12M =−,21M =,当2M =−时,22x x +=−,变形得,220x x ++=,根据判别式24141270b ac ∆=−=−⨯⨯=−<,无实根;当1M =时,21x x +=,变形得,210x x +−=,根据判别式24141(1)50b ac ∆=−=−⨯⨯−=>,方程有两个实根;∴21x x +=,故选:B .【点睛】本题主要考查换元法解高次方程,掌握换元法解方程的方法,根的判别式判断根的情况等知识是解题的关键.8.(2023·全国·九年级假期作业)若关于x 的一元二次方程()230x k x k +++=的一个根是2−,则另一个根是( ) A .1 B .1−C .3−D .2【答案】A【分析】将2x =−代入方程得:()4230k k −++=,解得:2k =−,再把2k =−代入原方程求解.【详解】解:将2x =−代入方程得:()4230k k −++=,解得:2k =−,∴原方程为:220x x +−=,则()2(1)0x x +−=,解得:2x =−或1x =, ∴另一个根为1. 故选:A .【点睛】本题考查了一元二次方程的根,因式分解法解一元二次方程,属于基础题.【答案】D【分析】设221x y x −=,则原方程可变形为15y y +=,再化为整式方程即可得出答案.【详解】解:设221x y x −=,则原方程可变形为15y y +=,即2510y y −+=;故选:D.【点睛】本题考查了利用换元法解方程,正确变形是关键,注意最后要化为整式方程.10.(2023春·重庆合川·九年级重庆市合川中学校考阶段练习)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图)就是一例.这个三角形给出了()()12345na b n +=⋯,,,,,的展开式的系数规律(其中,字母按a 的降幂排列,b 的升幂排列).例如,在三角形中第2行的三个数1,2,1,恰好对应()2222a b a ab b +=++展开式中各项的系数;第三行的的4个数1,3,3,1,恰好对应()3322333a b a a b ab b +=+++展开式中各项的系数;第4行的五个数1,4,6,4,1;恰好对应着()4432234464a b a a b a b ab b +=++++展开式中各项的系数,有如下结论:①()3322333b a b a a ab b −−+=−; ②“杨辉三角”中第9行所有数之和1024; ③“杨辉三角”中第20行第3个数为190; ④32993993991+⨯+⨯+的结果是610;⑤当代数式4328243216a a a a ++++的值是1时,实数a 的值是1−或3−,上述结论中,正确的有( )A .2个B .3个C .4个D .5个【答案】C【分析】把()3322333a b a a b ab b +=+++中b 换成b −后可得,()()()()3233233a b a a b a b b −−+−⋅+−=+,由此即可判断①;观察并计算可以发现第n 行所有数字之和为2n,由此即可判断②;观察并计算可以发现第n 行(n 大于2)第三个数诶为()12n n −,由此即可判断③;991a b ==,时,()326399139939999110=+++=+⨯⨯,即可判断④;当2b =时,()443228243216a a a a a +=++++,再由4328243216a a a a ++++的值为1,得到()421a +=,解方程即可判断⑤.【详解】解:∵()3322333a b a a b ab b +=+++,∴把上述式子中的b 换成b −后可得,()()()()3233233a b a a b a b b −−+−⋅+−=+,∴()3322333b a b a a ab b −−+=−,故①正确;第1行的所有数字之和为11122+==,第2行的所有数字之和为212124++==,第3行的所有数字之和为3133128+++==,第4行的所有数字之和为414641216++++==,……,∴可以得到规律第n 行所有数字之和为2n,∴“杨辉三角”中第9行所有数之和92512=,故②错误;第2行第三个数为()22112⨯−=, 第3行第三个数为()33132⨯−=,第4行第三个数为()44162⨯−=,第5行第三个数为()551102⨯−=,……,∴第n 行(n 大于2)第三个数为()12n n −, ∴“杨辉三角”中第20行第3个数为()202011902−=,故③正确;∵()3322333a b a a b ab b +=+++,∴当991a b ==,时,()326399139939999110=+++=+⨯⨯,故④正确;∵()4432234464a b a a b a b ab b +=++++,∴当2b =时,()443228243216a a a a a +=++++,∵4328243216a a a a ++++的值为1,∴()421a +=, ∴()221a +=,∴21a +=±, ∴1213a a =−=−,,故⑤正确;故选C .【点睛】本题主要考查了多项式乘法中得规律探索,正确理解题意找到规律是解题的关键.二、填空题11.(2023·全国·九年级假期作业)若关于x 的一元二次方程230ax bx +−=(0a ≠)有一个根为5x =,则方程()213a x bx b −+−=必有一根为______. 【答案】6x = 【分析】把()213a x bx b−+−=化为()2(1)130,a xb x −+−−=再结合题意得到15,x −=解出即可.【详解】解:()213a x bx b−+−=,()2(1)130a xb x ∴−+−−=.令1x t −=,则230,at bt +−=∵方程230ax bx +−=(0a ≠)有一个根为5x =,∴方程230at bt +−=有一根为5t =,()2(1)130a xb x ∴−+−−=有一根为15x −=,15,x ∴−=6.x ∴=故答案为: 6.x =【点睛】本题主要考查了一元二次方程的根的含义,掌握利用整体未知数求解方程的根是解此题的关键. 12.(2023·全国·九年级假期作业)一元二次方程220x x +−=的解是________. 【答案】122,1x x =−= 【分析】原方程可转化为()()210x x +−=,再化为两个一次方程即可.【详解】解:∵220x x +−=,∴()()210x x +−=,∴20x +=或10x −=, 解得122,1x x =−=.故答案为:122,1x x =−=.【点睛】本题考查的是一元二次方程的解法,熟练的掌握因式分解的方法解一元二次方程是解本题的关键. 13.(2023·全国·九年级假期作业)一元二次方程()()23121x x =−−的解是________.【答案】12531,x x ==【分析】先移项,再提取公因式分解因式,把原方程化为两个一次方程,再解一次方程即可. 【详解】∵()()23121x x =−−,∴()()231201x x −−−=.∴()()13120x x −−−⎤⎣⎦=⎡.∴10x −=或()3120x −−=,解得12531,x x ==.故答案为:12531,x x ==.【点睛】本题考查的是一元二次方程的解法,熟练的利用因式分解的方法解方程是解本题的关键. 14.(2023·河南信阳·校考三模)小明在解方程2320x x −+=时,发现用配方法和公式法计算量都比较大,因此他又想到了另外一种方法,快速解出了答案: 方法如下: 2320x x −+=2220x x x −−+= 第①步222x x x −=− 第②步()22x x x −=− 第③步1x = 第④步老师看到后,夸小明很聪明,方法很好,但是有一步做错了,请问小明出错的步骤为________(填序号). 【答案】④ 【分析】由()22x x x −=−,()()120x x −−=,解得1x =或2x =,进而判断作答即可.【详解】解:()22x x x −=−,()()120x x −−=,解得1x =或2x =,∴第④步错误, 故答案为:④.【点睛】本题考查了解一元二次方程.解题的关键在于正确的解一元二次方程.15.(2023秋·湖南常德·九年级统考期末)若()()22222340x y x y +−+−=,则22x y +=______.【答案】4【分析】设22t x y =+,则0t >,根据换元法解一元二次方程,即可求解.【详解】解:设22t x y =+,则0t >,∴原方程可以化为2340t t −−=,解得:4t =或1t =−(舍去)即22x y +=4 故答案为:4.【点睛】本题考查了换元法解一元二次方程,掌握换元法解一元二次方程是解题的关键.16.(2022秋·甘肃平凉·九年级校考阶段练习)已知实数x 满足2220()(23)x x x x −−−−=,则代数式22020x x −+的值为_______.【答案】2023【分析】设2t x x =−,则原方程转化为关于t 的一元二次方程2230t t −−=,利用因式分解法解该方程即可求得t 的值;然后整体代入所求的代数式进行解答,注意判断方程的根的判别式0≥,方程有解.【详解】解:设2t x x =−,由原方程,得2230t t −−=,整理,得()()310t t −+=,所以3t =或1t =−.当3t =时,23−=x x ,则220202023x x −+=;当1t =−时,21x x −=−即210x x −+=时,()214110∆=−−⨯⨯<,方程无解,此种情形不存在.故答案是:2023.【点睛】本题考查了换元法解一元二次方程.换元的实质是转化,关键是构造元和设元,理论依据是等量代换.三、解答题17.(2023·江苏·九年级假期作业)用适当的方法解下列各一元二次方程: (1)(2)15x x −=;(2)23680x x +−=(用配方法); (3)2(2)10(2)210x x +−++=; (4)23520x x −+=;(5)22(2)(1)6x x ++−=. 【答案】(1)15a =,23a =−(2)11x =−,21x =−(3)15=x ,21x = (4)123x =,21x =(5)1x =,2x =【分析】(1)(4)用因式分解的十字相乘法求解比较简便;(2)先把常数项移到等号的另一边,把二次项系数化为1,配方,利用直接开平方法求解; (3)把(2)x +看成一个整体,利用因式分解的十字相乘法求解比较简便; (5)先整理方程,用公式法比较简便. 【详解】(1)解:(2)15x x −=,整理,得22150a a −−=,(5)(3)0a a ∴−+=.50a ∴−=或30a +=.15a ∴=,23a =−;(2)23680x x +−=(用配方法),移项,得2368x x +=,二次项系数化为1,得2823x x +=,配方,得211213x x ++=,211(1)3x ∴+=.1x ∴+=.11x ∴=−,21x =−;(3)2(2)10(2)210x x +−++=,[(2)7][(2)3]0x x ∴+−+−=,即(5)(1)0x x −−=.50x ∴−=或10x −=.15x ∴=,21x =;(4)23520x x −+=,(32)(1)0x x −−=,320x −=或10x −=,123x ∴=,21x =;(5)22(2)(1)6x x ++−=,方程整理,得22210x x +−=,x ===.1x ∴=,2x =. 【点睛】本题考查了解一元二次方程,掌握一元二次方程的直接开平方法、配方法、因式分解法、公式法是解决本题的关键.18.(2023·全国·九年级假期作业)已知()()22222150a b a b +++−=,求22a b +的值. 【答案】3【分析】先用换元法令22(0)a b x x +=>,再解关于x 的一元二次方程即可. 【详解】解:令22(0)a b x x +=>,则原等式可化为:(2)150x x +−=,解得:123,5x x ==−,0x >,3x ∴=,即223a b +=.22a b +的值为3.【点睛】本题考查了换元法、一元二次方程的解法,注意22a b +为非负数是本题的关键.【答案】2x = 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:2211x x x =+−方程两边同乘()()11x x +−, 得()12x x −=,整理得,220x x −−=,∴()()120x x +−=,解得:11x −=,22x =,检验:当=1x −时,()()110x x +−=,=1x −是增根, 当2x =时,()()1130x x +−=≠,∴原方程的解为2x =.【点睛】本题考查了分式方程的解法,属于基本题型,熟练掌握解分式方程的方法是解题关键.【答案】,21x −+【分析】先对分式进行化简,然后求出一元二次方程的解,进而代值求解即可.【详解】2222421121x x x x x x x −−−÷+−−+()()()()222121112x x x x x x x −−=−⋅++−−()21211x x x x −=−++, 2221x x x −+=+ 21x =+解方程220x x +−=得:2x =−或1x =,如果已知分式有意义,必须x 不等于2,1−,1,∵x 为方程220x x +−=的根,∴x 只能为2−,∴当2x =−时,原式2221−+==−.【点睛】本题主要考查分式的化简求值及一元二次方程的解法,解题的关键是熟练掌握各个运算方法. 21.(2023·陕西榆林·校考模拟预测)已知数字A 为负数,将其加6得到数字B ,若数字A 与数字B 的积为7,求数字A .【答案】7A =−【分析】根据题意得()67A A +=,解一元二次方程即可求解.【详解】解:由题意得6A B +=,7A B ⨯=,∴()67A A +=,∴2670A A +−=,即()()710A A +−=, 解得7A =−或1A =,∵数字A 为负数,∴7A =−.【点睛】本题考查了一元二次方程的应用,掌握“因式分解法”解一元二次方程是解题的关键.22.(2023·全国·九年级假期作业)阅读下面的材料:【答案】(1)1x =,2x =,3x ,4x =;(2)5【分析】(1)设2y x x =+,则2540y y −+=,整理,得(1)(4)0y y −−=,解关于y 的一元二次方程,然后解关于x 的一元二次方程即可求解;(2)设22x a b =+,则23100x x −−=,整理,得−+=(5)(2)0x x ,解一元二次方程即可求解.【详解】(1)解:设2y x x =+,则2540y y −+=,整理,得(1)(4)0y y −−=,解得11y =,24y =,当21x x +=即210x x +−=时,解得x = ;当24x x +=即240x x +−=时,解得x ;∴原方程的解为112x −=, 212x −=, 312x −=, 412x −=;(2)设22x a b =+,则23100x x −−=,整理,得−+=(5)(2)0x x ,解得15y =,2(2y =−舍去),225a b +=.【点睛】本题考查了换元法解一元二次方程,熟练掌握换元法是解题的关键.【答案】(1)1x =±(2)114x =−,21x =【分析】(1)设2x y =,则由已知方程得到:2560y y −=+,利用因式分解法求得该方程的解,然后解关于x 的一元二次方程;(2)设1x y x +=,则由已知方程得到:260y y +−=,利用因式分解法求得该方程的解,然后进行检验即可.【详解】(1)令2x y =∴2560y y −=+∴(6)(1)0y y +−=∴16y =−,21y =∴26x =−(舍去),21x =∴1x =±;(2)令1x y x += ∴610y y −+=∴260y y +−=∴(3)(2)0y y +−=∴13y =−,22y = ∴13x x +=−,12x x += ∴114x =−,21x = 经检验,114x =−,21x =为原方程的解.【点睛】本题主要考查了换元法解一元二次方程,分式方程,即把某个式子看作一个整体,用一个字母去代替它,实行等量替换.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.任务:(1)判断:方程2560x x −+= ______ “邻根方程”(填“是”或“不是”);(2)已知关于x 的一元二次方程()210(x m x m m +++=是常数)是“邻根方程”,求m 的值.【答案】(1)是(2)0m =或2m =【分析】(1)先利用因式分解法解一元二次方程,然后根据“邻根方程”的定义进行判断;(2)先利用因式分解法解一元二次方程得到1x m =,21x =−,再根据“邻根方程”的定义得到11m −=−或11+=−m ,然后解关于m 的方程即可.【详解】(1)解方程2560x x −+=得13x =,22x =, 3比2大1,∴方程是“邻根方程”;(2)()210x m x m +++=, ()()10x m x ∴++=, 0x m ∴+=或10x +=,1x m ∴=−,21x =−,方程()210(x m x m m +++=是常数)是“邻根方程”,11m ∴−−=−或11m −+=−,0m ∴=或2m =.【点睛】本题考查了因式分解法解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键.【答案】14x =,214x =m =m =代入方程得22520m m −+=,求出m 的值,再求出x 即可.m .原方程化为:22520m m −+=,解得:12m =,212m =.当2m =2,解得:14x =;当12m =12=,解得:214x =. 【点睛】本题主要考查了解一元二次方程,解题的关键是正确理解题意,会根据题目所描述的换元法求解方程.。
一元二次方程的解法因式分解法知识点总结
一元二次方程的解法--公式法,因式分解法—知识讲解(基础)【学习目标】1.理解一元二次方程求根公式的推导过程,了解公式法的概念,能熟练应用公式法解一元二次方程;2.正确理解因式分解法的实质,熟练运用因式分解法解一元二次方程;3.通过求根公式的推导,培养学生数学推理的严密性及严谨性,渗透分类的思想.【要点梳理】要点一、公式法解一元二次方程1.一元二次方程的求根公式一元二次方程,当时,.2.一元二次方程根的判别式一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式; ②确定a 、b 、c 的值(要注意符号); ③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选择.(2)一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+=.①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:21,242b b acx a -±-=.②当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a =-.③当240b ac ∆=-<时,右端是负数.因此,方程没有实根.要点二、因式分解法解一元二次方程 1.用因式分解法解一元二次方程的步骤 (1)将方程右边化为0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解. 2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等. 要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式. 【典型例题】类型一、公式法解一元二次方程1.用公式法解下列方程.(1)x 2+3x+1=0;(2)2241x x =-; (3)2x 2+3x-1=0.【答案与解析】(1)a=1,b=3,c=1∴x==.∴x 1=,x 2=.(2)原方程化为一般形式,得22410x x -+=.∵2a =,4b =-,1c =,∴224(4)42180b ac -=--⨯⨯=>.∴42221222x ±==±⨯,即1212x =+,2212x =-.(3)∵a=2,b=3,c=﹣1∴b 2﹣4ac=17>0∴x=∴x 1=,x 2=.【总结升华】用公式法解一元二次方程的关键是对a 、b 、c 的确定.用这种方法解一元二次方程的步骤是:(1)把方程化为一元二次方程的一般形式;(2)确定a ,b ,c 的值并计算24b ac -的值;(3)若24b ac -是非负数,用公式法求解. 举一反三:【变式】用公式法解方程:(2014•武汉模拟)x 2﹣3x ﹣2=0.【答案】解:∵a=1,b=﹣3,c=﹣2;∴b 2﹣4ac=(﹣3)2﹣4×1×(﹣2)=9+8=17;∴x==, ∴x 1=,x 2=.2.用公式法解下列方程: (1)(2014•武汉模拟)2x 2+x=2;(2)(2014秋•开县期末)3x 2﹣6x ﹣2=0 ;(3)(2015•黄陂区校级模拟)x 2﹣3x ﹣7=0.【思路点拨】针对具体的试题具体分析,不是一般式的先化成一般式,再写出a,b,c 的值,代入求值即可.【答案与解析】解:(1)∵2x 2+x ﹣2=0,∴a=2,b=1,c=﹣2,∴x===,∴x 1=,x 2=.(2)∵a=3,b=﹣6,c=﹣2,∴b 2﹣4ac=36+24=60>0,∴x=, ∴x 1=,x 2=(3)∵a=1,b=﹣3,b=﹣7.∴b 2﹣4ac=9+28=37.x==,解得 x 1=,x 2=.【总结升华】首先把每个方程化成一般形式,确定出a 、b 、c 的值,在240b ac -≥的前提下,代入求根公式可求出方程的根. 举一反三:【变式】用公式法解下列方程: 2221x x +=; 【答案】解:移项,得22210x x +-=.∵ 2a =,2b =,1c =-,224242(1)120b ac -=-⨯⨯-=>,∴ 21213222x -±-±==⨯, ∴ 1132x --=,2132x -+=.类型二、因式分解法解一元二次方程3.用因式分解法解下列方程:(1)3(x+2)2=2(x+2); (2)(2x+3)2-25=0; (3)x (2x+1)=8x ﹣3.【思路点拨】 用因式分解法解方程,一定要注意第1小题,等号的两边都含有(x+2)这一项,切不可在方程的两边同除以(x+2),化简成3(x+2)=2,因为你不知道(x-2)是否等于零.第2小题,运用平方差公式可以,用直接开方也可以.第3小题化成一般式之后,再运用分解因式法解方程. 【答案与解析】(1)移项.得3(x+2)2-2(x+2)=0,(x+2)(3x+6-2)=0.∴ x+2=0或3x+4=0,∴ x 1=-2,243x =-. (2)(2x+3-5)(2x+3+5)=0,∴ 2x-2=0或2x+8=0, ∴ x 1=1,x 2=-4.(3)去括号,得:2x 2+x=8x ﹣3,移项,得:2x 2+x ﹣8x+3=0合并同类项,得:2x 2﹣7x+3=0, ∴(2x ﹣1)(x ﹣3)=0, ∴2x﹣1=0或 x ﹣3=0,∴,x 2=3.【总结升华】(1)中方程求解时,不能两边同时除以(x+2),否则要漏解.用因式分解法解一元二次方程必须将方程右边化为零,左边用多项式因式分解的方法进行因式分解.因式分解的方法有提公因式法、公式法、二次三项式法及分组分解法.(2)可用平方差公式分解.4.解下列一元二次方程: (1)(2x+1)2+4(2x+1)+4=0; (2)(31)(1)(41)(1)x x x x --=+-.【答案与解析】(1)(2x+1)2+4(2x+1)+4=0,(2x+1+2)2=0.即2(23)0x +=, ∴ 1232x x ==-. (2)移项,得(3x-1)(x-1)-(4x+1)(x-1)=0,即(x-1)(x+2)=0,所以11x =,22x =-.【总结升华】解一元二次方程时,一定要先从整体上分析,选择适当的解法.如 (1)可以用完全平方公式.用含未知数的整式去除方程两边时,很可能导致方程丢根,(2)容易丢掉x =1这个根. 举一反三:【变式】(1)(x+8)2-5(x+8)+6=0 (2)3(21)42x x x +=+【答案】(1)(x+8-2)(x+8-3)=0(x+6)(x+5)=0 X 1=-6,x 2=-5. (2)3x(2x+1)-2(2x+1)=0(2x+1)(3x-2)=01212,23x x =-=.5.探究下表中的奥秘,并完成填空:一元二次方程 两个根 二次三项式因式分解 x 2﹣2x+1=0 x 1=1,x 2=1 x 2﹣2x+1=(x ﹣1)(x ﹣1) x 2﹣3x+2=0 x 1=1,x 2=2 x 2﹣3x+2=(x ﹣1)(x ﹣2) 3x 2+x ﹣2=0 x 1=,x 2=﹣1 3x 2+x ﹣2=3(x ﹣)(x+1) 2x 2+5x+2=0x 1=﹣,x 2=﹣2 2x 2+5x+2=2(x+)(x+2)4x 2+13x+3=0 x 1= ,x 2= 4x 2+13x+3=4(x+ )(x+ )将你发现的结论一般化,并写出来.【思路点拨】利用因式分解法,分别求出表中方程的解,总结规律,得出结论. 【答案与解析】填空:﹣,﹣3;4x 2+13x+3=4(x+)(x+3).发现的一般结论为:若一元二次方程 ax 2+bx+c=0的两个根为x 1、x 2,则 ax 2+bx+c=a (x ﹣x 1)(x ﹣x 2).【总结升华】考查学生综合分析能力,要根据求解的过程,得出一般的结论,解一元二次方程——因式分解法.一元二次方程的解法--公式法,因式分解法—巩固练习(基础)【巩固练习】 一、选择题 1.(2014•泗县校级模拟)下列方程适合用因式方程解法解的是( ) A .x 2﹣3x+2=0 B .2x 2=x+4 C .(x ﹣1)(x+2)=72 D .x 2﹣11x ﹣10=02.方程(1)2x x -=的解是( )A .1x =-B .2x =-C .11x =-,22x =D .11x =,22x =-3.一元二次方程2340x x +-=的解是( ) A .11x =;24x =- B .11x =-;24x = C .11x =-;24x =- D .11x =;24x =4.方程x 2-5x-6=0的两根为( )A .6和1B .6和-1C .2和3D .-2和3 5.方程(x-5)(x-6)=x-5的解是 ( )A .x =5B .x =5或x =6C .x =7D .x =5或x =7 6.已知210x x --=,则3222012x x -++的值为 ( )A . 2011B .2012C . 2013D .2014 二、填空题7.(2015•厦门)方程x 2+x =0的解是___ _____; 8.方程(x-1)(x+2)(x-3)=0的根是_____ ___.9.请写一个两根分别是1和2的一元二次方程___ _____.10.若方程x 2-m =0的根为整数,则m 的值可以是_____ ___.(只填符合条件的一个即可) 11.已知实数x 、y 满足2222()(1)2x y x y ++-=,则22x y +=________.12.已知y =(x-5)(x+2).(1)当x 为 值时,y 的值为0; (2)当x 为 值时,y 的值为5.三、解答题 13.(2014秋•宝坻区校级期末)解方程 (1)2(x ﹣3)2=8(直接开平方法)(2)4x 2﹣6x ﹣3=0(运用公式法)(3)(2x ﹣3)2=5(2x ﹣3)(运用分解因式法) (4)(x+8)(x+1)=﹣12(运用适当的方法)14.用因式分解法解方程(1)x 2-6x-16=0.(2)(2x+1)2+3(2x+1)+2=0.15(2)请观察上表,结合24b ac -的符号,归纳出一元二次方程的根的情况. (3)利用上面的结论解答下题.当m 取什么值时,关于x 的一元二次方程(m-2)x 2+(2m+1)x+m-2=0, ①有两个不相等的实数根; ②有两个相等的实数根; ③没有实数根.【答案与解析】 一、选择题 1.【答案】C ;【解析】解:根据分析可知A 、B 、D 适用公式法.而C 可化简为x 2+x ﹣72=0,即(x+9)(x ﹣8)=0, 所以C 适合用因式分解法来解题.故选C .2.【答案】C ;【解析】整理得x 2-x-2=0,∴ (x-2)(x+1)=0.3.【答案】A ;【解析】可分解为(x-1)(x+4)=04.【答案】B ;【解析】要设法找到两个数a ,b ,使它们的和a+b =-5,积ab =-6,∴ (x+1)(x-6)=0,∴ x+1=0或x-6=0. ∴ x 1=-1,x 2=6. 5.【答案】D ;【解析】此方程左右两边含有相同的因式(x-5),应移项后用因式分解法求解.即(x-5)(x-6)-(x-5)0.∴ (x-5)(x-6-1)=0,∴ 15x =,27x =6.【答案】C ;【解析】由已知得x 2-x =1,∴ 322222012()20122012120122013x x x x x x x x 2-++=--++=-++=+=.二、填空题 7.【答案】x 1=0,x 2=-1.【解析】可提公因式x ,得x(x+1)=0.∴ x =0或x+1=0,∴ x 1=0,x 2=-1. 8.【答案】x 1=1,x 2=-2,x 3=3.【解析】由x-1=0或x+2=0或x-3=0求解. 9.【答案】2320x x -+=;【解析】逆用因式分解解方程的方法,两根为1、2的方程就是(x-1)(x-2)=0,然后整理可得答案. 10.【答案】4;【解析】 m 应是一个整数的平方,此题可填的数字很多. 11.【答案】2;【解析】由(x 2+y 2)2-(x 2+y 2)-2=0得(x 2+y 2+1)(x 2+y 2-2)=0又由x ,y 为实数,∴ x 2+y 2>0,∴ x 2+y 2=2. 12.【答案】 (1) x =5或x =-2;(2) 3692x +=或3692x -=. 【解析】(1)当y =0时(x-5)(x+2)=0,∴ x-5=0或x+2=0,∴ x =5或x =-2.(2)当y =5时(x-5)(x+2)=5,∴ 23150x x --=,3941(15)369212x ±-⨯⨯-±==⨯,∴ 3692x +=或3692x -=. 三、解答题13.【解析】解:(1)(x ﹣3)2=4x ﹣3=2或x ﹣3=﹣2, 解得,x 1=1或x 2=5; (2)a=4,b=﹣6,c=﹣3,b 2﹣4ac=(﹣6)2﹣4×4×(﹣3)=84,x==,,;(3)移项得,(2x ﹣3)2﹣5(2x ﹣3)=0,因式分解得,(2x ﹣3)(2x ﹣3﹣5)=0,,x 2=4;(4)化简得,x 2+9x+20=0,(x+4)(x+5)=0,解得,x 1=﹣4,x 2=﹣5.14.【解析】(1)(x-8)(x+2)=0,∴ x-8=0或x+2=0,∴ 18x =,22x =-.(2)设y =2x+1,则原方程化为y2+3y+2=0,∴ (y+1)(y+2)=0,∴ y+1=0或y+2=0, ∴ y =-1或y =-2.当1y =-时,211x +=-,1x =-;当2y =-时,212x +=-,32x =-. ∴ 原方程的解为11x =-,232x =-.15.【解析】(2)①当240b ac ->时,方程有两个不相等的实数根; ②当240b ac -=时,方程有两个相等的实数根;③当240b ac -<时,方程没有实数根. (3)242015b ac m -=-,①当原方程有两个不相等的实数根时,2420150b ac m -=->,即34m >且m ≠2; ②当原方程有两个相等的实数根时,b 2 -4ac =20m -15=0,即34m =; ③当原方程没有实数根时, 2420150b ac m -=-<,即34m <.一元二次方程的解法--公式法,因式分解法—知识讲解(提高)【学习目标】1.理解一元二次方程求根公式的推导过程,了解公式法的概念,能熟练应用公式法解一元二次方程;2.正确理解因式分解法的实质,熟练运用因式分解法解一元二次方程;3.通过求根公式的推导,培养学生数学推理的严密性及严谨性,渗透分类的思想.【要点梳理】要点一、公式法解一元二次方程 1.一元二次方程的求根公式一元二次方程,当时,.2.一元二次方程根的判别式一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤 用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式; ②确定a 、b 、c 的值(要注意符号); ③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用.(2)一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+= ①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:21,242b b acx a--=②当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a=-③当240b ac ∆=-<时,右端是负数.因此,方程没有实根. 要点二、因式分解法解一元二次方程1.用因式分解法解一元二次方程的步骤(1)将方程右边化为0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、公式法解一元二次方程1.解关于x 的方程2()(42)50m n x m n x n m ++-+-=.【答案与解析】(1)当m+n =0且m ≠0,n ≠0时,原方程可化为(42)50m m x m m +--=.∵ m ≠0,解得x =1.(2)当m+n ≠0时,∵ a m n =+,42b m n =-,5c n m =-,∴ 2224(42)4()(5)360b ac m n m n n m m -=--+-=≥,∴ 2243624|6|2()2()n m m n m m x m n m n -±-±==++, ∴ 11x =,25n m x m n-=+. 【总结升华】解关于字母系数的方程时,应该对各种可能出现的情况进行讨论.举一反三:【高清ID 号:388515关联的位置名称(播放点名称):用公式法解含有字母系数的一元二次方程---例2练习】【变式】解关于x 的方程2223(1)x mx mx x m ++=+≠;【答案】原方程可化为2(1)(3)20,m x m x -+-+= ∵1,3,2,a m b m c =-=-=∴ 2224(3)8(1)(1)0b ac m m m -=---=+≥,∴ 23(1)3(1),2(1)2(1)m m m m x m m -±+-±+==-- ∴ 122, 1.1x x m==- 2. 用公式法解下列方程: (m-7)(m+3)+(m-1)(m+5)=4m ;【答案与解析】方程整理为224214540m m m m m --++--=,∴ 22130m m --=,∴ a =1,b =-2,c =-13,∴ 224(2)41(13)56b ac -=--⨯⨯-=,∴ 24(2)56221b b ac m a -±---±==⨯22141142±==±, ∴ 1114m =+,2114m =-.【总结升华】先将原方程化为一般式,再按照公式法的步骤去解.举一反三:【高清ID 号:388515关联的位置名称(播放点名称):用因式分解法解含字母系数的一元二次方程---例5(3)】【变式】用公式法解下列方程:【答案】∵21,3,2,a b m c m ==-= ∴22224(3)4120b ac m m m -=--⨯⨯=≥ ∴23322m m m m x ±±== ∴122,.x m x m ==类型二、因式分解法解一元二次方程3.(2015•东西湖区校级模拟)解方程:x 2﹣1=2(x+1).【答案与解析】解:∵x 2﹣1=2(x+1),∴(x+1)(x ﹣1)=2(x+1),∴(x+1)(x ﹣3)=0,∴x 1=﹣1,x 2=3.【总结升华】本题主要考查了因式分解法解一元二次方程的知识,左边先平方差公式分解,然后提取公因式(x+1),注意不要两边同除(x+1),这样会漏解.举一反三:【变式】解方程(2015·茂名校级一模)(1)x 2-2x-3=0; (2)(x-1)2+2x(x-1)=0.【答案】解:(1)分解因式得:(x-3)(x+1)=0∴x-3=0,x+1=0∴x 1=3,x 2=-1.(2)分解因式得:(x-1)(x-1+2x )=0∴x-1=0,3x-1=0∴x 1=1,x 2=13.4.如果2222()(2)3x y x y ++-=,请你求出22x y +的值.【答案与解析】设22x y z +=,∴ z(z-2)=3.整理得:2230z z --=,∴ (z-3)(z+1)=0.∴ z 1=3,z 2=-1.∵ 220z x y =+>,∴ z =-1(不合题意,舍去)∴ z =3.即22x y +的值为3.【总结升华】如果把22x y +视为一个整体,则已知条件可以转化成一个一元二次方程的形式,用因式分解法可以解这个一元二次方程.此题看似求x 、y 的值,然后计算22x y +,但实际上如果把22x y +看成一个整体,那么原方程便可化简求解。
一元二次方程的解法及应用
一元二次方程的解法及应用一元二次方程是数学中常见的二次多项式方程,其一般形式为ax²+bx+c=0,其中a、b、c为实数且a≠0。
解一元二次方程的方法通常有因式分解法、配方法和求根公式法等。
本文将依次介绍这几种解法,并探讨一元二次方程在实际生活中的应用。
一、因式分解法对于一元二次方程ax²+bx+c=0,当其可以因式分解成两个一次因式的乘积时,可以直接利用因式分解法求解。
具体步骤如下:1. 将方程转化为标准形式,即将方程两边移项合并同类项,使等式右边为0;2. 对方程进行因式分解,将二次项拆分为两个一次项的乘积;3. 令得到的每个一次项等于0,解出方程;4. 检查解是否满足原方程,若满足则为方程的解,若不满足则舍去。
例如,对于方程3x²+7x+2=0,可以进行因式分解得到(3x+1)(x+2)=0,解得x=-1/3和x=-2。
二、配方法配方法是通过变形将一元二次方程转化为一个完全平方的形式,进而求解方程。
其主要步骤如下:1. 将方程转化为标准形式;2. 将方程的一次项系数b通过添加或减去一个适当的常数c/2a使其成为一个完全平方;3. 将方程的左边转化为一个完全平方,即将一次项的系数与1/2a相乘后平方;4. 将方程的两边开平方,解出方程。
例如,对于方程x²+4x-3=0,可以通过配方法将其变形为(x+2)²-7=0,进而解得x=-2+√7和x=-2-√7。
三、求根公式法求根公式法也称为根号公式法,适用于任何一元二次方程的解法。
一元二次方程ax²+bx+c=0的解可通过求根公式x=(-b±√(b²-4ac))/2a得到。
具体步骤如下:1. 将方程的系数代入求根公式,并计算出方程的两个解;2. 验证解是否满足原方程,若满足则为方程的解,若不满足则舍去。
例如,对于方程2x²-5x+2=0,代入求根公式得到x=1和x=2/2。
一元二次方程的解法(因式分解法)
解:1)方程左边分解因式,得χ(χ-3)=0.
5 解得 χ1=- 4
5 ,χ2= 。 4
用你喜欢的方法解下列方程:
(1)(χ+2)2-16=0; (2) χ2-2χ+1=49; (3)(χ-2)2-χ+2=0 (4)(2χ+1)2-χ2=0
小张和小林一起解方程 χ(3χ+2)-6(3χ+2)=0. 小张将方程左边分解因式,得 (3χ+2)(χ-6)=0, ∴ 3χ+2=0,或χ-6=0. 方程的两个解为 χ1=- ,χ2=6. 小林的解法是这样的: 移项,得 χ(3χ+2)=6(3χ+2). 方程两边都除以(3χ+2),得 χ=6. 小林说:“我的方法多简单!”可另一个解χ=- 哪里去了?小林的解法对吗?你能解开这个谜吗?
☞
用分解因式法解方程:
(1)5x2=4x; (2)x-2=x(x-2); (3)x2+6x-7=0
1.解下列方程
(1) x x 0
2
(2) x 2 3x 0
2
(3)3x 6x 3
2
(4)4 x 2 121 0
(5)3x(2 x 1) 4 x 2
(6)(x 4)2 (5 2x)2
采用因式分解法解方程的一般步骤:
(1)将方程右边的各项移到方程的左边,使方程右边为0; (2)将方程左边分解为两个一次因式的乘积形式: (3)令每个因式分别为零,得到两个一元一次方程:
(4)解这两个一元一次方程,它们的解就是原方程的解。
1、利用因式分解法解下列方程: 1) χ2-3χ=0; 2) 16χ2=25; 3)(2χ+3)2-25=0. ∴ χ=0,或χ-3=0, 解得 χ1=0,χ2=3. 2) 方程移项,得16χ2-25=0 方程左边分解因式,得 (4χ+5)(4χ-5)=0 ∴ 4χ+5=0,或4χ-5=0,
一元二次方程计算方法
一元二次方程计算方法一元二次方程:ax²+bx+c=0(a≠0)是方程的一次拓展,也是二次函数。
在解一元二次方程时,大家要注意仔细观察方程系数的特点和结构特征,学会灵活选择适当的方法,力求解题过程简捷明快。
下面,教大家三种解法,再遇到一元二次方程时,不妨套用下试试。
1、因式分解法例题:一元二次方程x(x-2)=x-2的根是__________。
分析:方程两边都有因式x-2,所以可以考虑用因式分解来解。
解:x(x-2)=x-2移项,得x(x-2)-(x-2)=0因式分解,得(x-2)(x-1)=0所以,x-2=0或x-1=0得,x1=2,x2=1答案:x1=2,x2=12、配方法配方法是一种很重要的数学方法,对于二次项系数和一次项系数较小,而常数项较大,特别是二次项系数为1,一次项系数为偶数的一元二次方程,应用配方法较简单。
例题:2(x-3)²=x²-9分析:首先把方程展开化为一般形式,然后变形,最后用配方法解方程的根。
解:2(x-3)²=x²-9展开,得2(x²-6x+9)=x²-92x²-12x+18=x²-9x²-12x+27=0(x-6)²=9解得,x-6=±3所以,x-6=3或者x-6=-3,解得,x1=9,x2=33、公式法公式法是有两个典型的特征,一个是系数或者是常数项含有二次根式,二化简后二次项系数不为1。
例题:3x²-7x+4=0根据公式ax²+bx+c=0(a≠0),得a=3,b=-7,c=4△=b²-4ac=(-7)²-4×3×4=49-48=1>0得,=−V2−4a2=−(−7)±12×3=7±164解得,x1=1,x2=3。
一元二次方程的解法,配方法,因式分解法
一元二次方程的解法-配方法、因式分解法(复习)一元二次方程解法回顾:1、直接开平方法;(2x-6)2=62、配方法;(方程各项系数比较简单可以考虑用配方法来做)3、公式法;x=aac b b 242-±-(ac b 42-0≥) 4、因式分解法。
(能直接因式分解)因式分解的几种方法:提公因式法、运用公式法、十字相乘法.一、配方法例题分析:1、配方法步骤:(1)化二次项系数为:两边同除以二次项系数;(2)移项:使方程左边只有二次项和一次项;(3)配方:等号两边都加上一次项系数一半的平方;(4)变形为(x+m)2=n 的形式,如果n≥0,得x+m=±n ,x=-m±n .所以x 1=-m+n ,x 2=-m-n 。
2、理论依据:222)(2b a b ab a ±=+±3、例题讲解:(1)41x 2+1=x (配方法)(2)用配方法解关于x 的一元二次方程ax 2+bx+c=0(a≠0,a,b,c 为常数),(3)、试说明代数式-3x2_x-121的值不大于0(4)x2+y 2+2x-4y+5=0,则.x y =__________(5)已知:a,b,c ,是△ABC 的三边,且满足0222=---++ac bc ab c b a ,求证△ABC 是等边三角形类题演练、(1)2x2-4x-3=0.(用配方法)(2)求证:不论m 为何值,解关于x 的一元二次方程x2+(m-1)x+m-3=0总有两个不等实数根(3)4x2+4xy+|x-1|+y2=0,则2x-y=________中考链接、(2009•资阳)已知关于x的一元二次方程x2+kx-3=0.(1)求证:不论k为何实数,方程总有两个不相等的实数根;(2)当k=2时,用配方法解此一元二次方程二、因式分解法例题分析1、因式分解法解一元二次方程步骤①将一元二次方程化成一般形式,即方程右边为0,(ax2+bx+c=0)②将方程左边式子分解因式,由一元二次方程转化成两个一元一次方程。
一元二次方程的解法(二)--公式法,因式分解法 (基础)
要点一、公式法解一元二次方程1.一元二次方程的求根公式一元二次方程,当时,.2.一元二次方程根的判别式一元二次方程根的判别式:.①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤用公式法解关于x的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定 a、b、c的值(要注意符号);③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用.(2)一元二次方程,用配方法将其变形为:①当时,右端是正数.因此,方程有两个不相等的实根:②当时,右端是零.因此,方程有两个相等的实根:③当时,右端是负数.因此,方程没有实根.要点二、因式分解法解一元二次方程1.用因式分解法解一元二次方程的步骤(1)将方程右边化为0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.类型一、公式法解一元二次方程1.用公式法解下列方程.(1); (2).答案与解析举一反三【答案与解析】(1) ∵,,,∴,∴,∴,.(2)原方程化为一般形式,得.∵,,,∴.∴,即,.【总结升华】用公式法解一元二次方程的关键是对a、b、c的确定.用这种方法解一元二次方程的步骤是:(1)把方程化为一元二次方程的一般形式;(2)确定a,b,c的值并计算的值;(3)若是非负数,用公式法求解.【变式】用公式法解方程答案与解析【答案】原方程化为一般形式,得.∵∴∴, 即2.用公式法解下列方程:(1);(2).答案与解析举一反三【答案与解析】(1)∵,,,,∴.∴,.(2)原方程可化为.∵,,,,∴,∴,.【总结升华】首先把每个方程化成一般形式,确定出a、b、c的值,在的前提下,代入求根公式可求出方程的根.【变式】用公式法解下列方程:;答案与解析【答案】移项,得.∵,,,,∴,∴,.类型二、因式分解法解一元二次方程3.用因式分解法解下列方程:(1)3(x+2)2=2(x+2);(2)(2x+3)2-25=0.答案与解析【答案与解析】(1)移项.得3(x+2)2-2(x+2)=0,(x+2)(3x+6-2)=0.∴ x+2=0或3x+4=0,∴ x1=-2,.(2)(2x+3-5)(2x+3+5)=0,∴2x-2=0或2x+8=0,∴ x1=1,x2=-4.【总结升华】(1)中方程求解时,不能两边同时除以(x+2),否则要漏解.用因式分解法解一元二次方程必须将方程右边化为零,左边用多项式因式分解的方法进行因式分解.因式分解的方法有提公因式法、公式法、二次三项式法及分组分解法.(2)可用平方差公式分解.4.解下列一元二次方程:(1)(2x+1)2+4(2x+1)+4=0; (2).答案与解析举一反三【答案与解析】(1)(2x+1)2+4(2x+1)+4=0,(2x+1+2)2=0.即,∴.(2) 移项,得(3x-1)(x-1)-(4x+1)(x-1)=0,即(x-1)(x+2)=0,所以,.【总结升华】解一元二次方程时,一定要先从整体上分析,选择适当的解法.如 (1)可以用完全平方公式.用含未知数的整式去除方程两边时,很可能导致方程丢根,(2)容易丢掉x=1这个根【变式】(2)答案与解析【答案】(1)(x+8-2)(x+8-3)=0(x+6)(x+5)=0X1=-6,x2=-5.(2)3x(2x+1)-2(2x+1)=0(2x+1)(3x-2)=0.巩固练习一、选择题1.方程的根是( )A. B., C. D.,2.方程的解是( )A. B. C., D.,3.一元二次方程的解是( )A.; B.;C.; D.;4.方程x2-5x-6=0的两根为( )A.6和1 B.6和-1 C.2和3 D.-2和35.方程(x-5)(x-6)=x-5的解是 ( )A.x=5 B.x=5或x=6 C.x=7 D.x=5或x=76.已知,则的值为 ( )A. 2011 B.2012 C. 2013 D.2014二、填空题7.方程x2-4x=0的解是___________;8.方程(x-1)(x+2)(x-3)=0的根是___________.9.请写一个两根分别是1和2的一元二次方程___________.10.若方程x2-m=0的根为整数,则m的值可以是___________.(只填符合条件的一个即可) 11.已知实数x、y 满足,则________.12.已知y=(x-5)(x+2).(1)当x为___值时,y的值为0;(2)当x为___值时,y的值为5.三、解答题13.用公式法解方程(1);(2);14. 用因式分解法解方程(1)x2-6x-16=0.(2) (2x+1)2+3(2x+1)+2=0.的符号的关系的值(2)请观察上表,结合的符号,归纳出一元二次方程的根的情况.(3)利用上面的结论解答下题.当m取什么值时,关于x的一元二次方程(m-2)x2+(2m+1)x+m-2=0,①有两个不相等的实数根;②有两个相等的实数根;③没有实数根.答案与解析一、选择题1.【答案】D;【解析】可分解为2.【答案】C;【解析】整理得x2-x-2=0,∴ (x-2)(x+1)=0.3.【答案】A ;【解析】可分解为(x-1)(x+4)=04.【答案】B;【解析】要设法找到两个数a,b,使它们的和a+b=-5,积ab=-6,∴(x+1)(x-6)=0,∴ x+1=0或x-6=0.∴x1=-1,x2=6.5.【答案】D;【解析】此方程左右两边含有相同的因式(x-5),应移项后用因式分解法求解.即(x-5)(x-6)-(x-5)0.∴(x-5)(x-6-1)=0,∴,6.【答案】C;【解析】由已知得x2-x=1,∴.二、填空题7.【答案】x1=0,x2=4.【解析】可提公因式x,得x(x-4)=0.∴ x=0或x-4=0,∴ x1=0,x2=4.8.【答案】x1=1,x2=-2,x3=3.【解析】由x-1=0或x+2=0或x-3=0求解.9.【答案】;【解析】逆用因式分解解方程的方法,两根为1、2的方程就是(x-1)(x-2)=0,然后整理可得答案.10.【答案】4;【解析】 m应是一个整数的平方,此题可填的数字很多.11.【答案】2;【解析】由(x2+y2)2-(x2+y2)-2=0得(x2+y2+1)(x2+y2-2)=0又由x,y为实数,∴x2+y2>0,∴x2+y2=2.12.【答案】 (1) x=5或x=-2;(2) 或.【解析】(1)当y=0时(x-5)(x+2)=0,∴x-5=0或x+2=0,∴x=5或x=-2.(2)当y=5时(x-5)(x+2)=5,∴,,∴或.三、解答题13.【答案与解析】(1)原方程化为一般形式,得∵∴∴∴(2)∵∴∴∴14.【答案与解析】(1)(x-8)(x+2)=0,∴ x-8=0或x+2=0,∴,.(2)设y=2x+1,则原方程化为y2+3y+2=0,∴ (y+1)(y+2)=0,∴y+1=0或y+2=0,∴y=-1或y=-2.当时,,;当时,,.∴原方程的解为,.15.【答案与解析】,的的符号(2)①当时,方程有两个不相等的实数根;②当时,方程有两个相等的实数根;③当时,方程没有实数根.(3),①当原方程有两个不相等的实数根时,,即且m≠2;②当原方程有两个相等的实数根时,,即;③当原方程没有实数根时,,即.。
一元二次方程的6种解法
一元二次方程的6种解法
一元二次方程的6种解法如下:
1、因式分解法:将一元二次方程化成 ax^2+bx+c=0 的形式,先将两边同乘以a后,即a(x^2+ b/ax + c/a),然后将此形式拆解为(x+())(x+(/))的形式,得到两个一元一次方程,求出x的值,即可求出原方程的解。
2、公式法:用公式法求解一元二次方程,即通过求解公式:x=(-
b±√(b^2-4ac))/2a来求解,此公式中,b和c为方程的系数,a为系数前的系数。
3、图像法:使用图像法求解一元二次方程,即作出ax^2+bx+c=0方程图象,然后根据图象上的交点判断出方程的解。
4、判别式法:此法根据一元二次方程的判别式来求解,即当判别式b^2-4ac>0时,方程有两个不等实根;当判别式b^2-4ac=0时,方程有一个实根;当判别式b^2-4ac<0时,方程没有实根。
5、求根公式法:此法可以用来求解一元二次方程的实根,即用求根公式x1=(-b+ √(b2- 4ac))÷2a和x2=(-b-√(b2- 4ac))÷2a,其中,b 为系数前的系数,a和c分别为方程的系数。
6、特殊值法:此法适用于一元二次方程中特殊的系数或解。
如当
a=0,系数b和c任意时,可将该方程化为一元一次方程,求解即可;当a=b=0时,可直接算出方程的解。
一元二次方程的解法(4)因式分解法课件全面版
两因式 各求解
布置作业 1、家庭作业:练习册17.2(5) 2、课堂作业:课本习题17.2第4题; 3、预学下一课时内容。
只要我们坚持了,就没有克服不了的困难。或许,为了将来,为了自己的发展,我们会把一件事情想得非常透彻,对自己越来越严,要求越来越高,对任何机会都不曾错过,其 目的也只不过是不让自己随时陷入逆境与失去那种面对困难不曾屈服的精神。但有时,“千里之行,始于足下。”我们更需要用时间持久的用心去做一件事情,让自己其中那小 小的浅浅的进步,来击破打破突破自己那本以为可以高枕无忧十分舒适的区域,强迫逼迫自己一刻不停的马不停蹄的一直向前走,向前看,向前进。所有的未来,都是靠脚步去 丈量。没有走,怎么知道,不可能;没有去努力,又怎么知道不能实现?幸福都是奋斗出来的。那不如,生活中、工作中,就让这“幸福都是奋斗出来的”完完全全彻彻底底的 渗入我们的心灵,着心、心平气和的去体验、去察觉这一种灵魂深处的安详,侧耳聆听这仅属于我们自己生命最原始最动人的节奏。但,这种聆听,它绝不是仅限于、执着于 “我”,而是观察一种生命状态能够扩展和超脱到什么程度,也就是那“幸福都是奋斗出来的”深处又会是如何?生命不止,奋斗不息!又或者,对于很多优秀的人来说,我们 奋斗了一辈子,拼搏了一辈子,也只是人家的起点。可是,这微不足道的进步,对于我们来说,却是幸福的,也是知足的,因为我们清清楚楚的知道自己需要的是什么,隐隐约 约的感觉到自己的人生正把握在自己手中,并且这一切还是通过我们自己勤勤恳恳努力,去积极争取的!“宝剑锋从磨砺出,梅花香自苦寒来。”当我们坦然接受这人生的终局, 或许,这无所皈依的心灵就有了归宿,这生命中觅寻处那真正的幸福、真正的清香也就从此真正的灿烂了我们的人生。一生有多少属于我们的时光?陌上的花,落了又开了,开 了又落了。无数个岁月就这样在悄无声息的时光里静静的流逝。童年的玩伴,曾经的天真,只能在梦里回味,每回梦醒时分,总是多了很多伤感。不知不觉中,走过了青春年少, 走过了人世间风风雨雨。爱过了,恨过了,哭过了,笑过了,才渐渐明白,酸甜苦辣咸才是人生的真味!生老病死是自然规律。所以,面对生活中经历的一切顺境和逆境都学会 了坦然承受,面对突然而至的灾难多了一份从容和冷静。这世上没有什么不能承受的,只要你有足够的坚强!这世上没有什么不能放下的,只要你有足够的胸襟! 一生有多少 属于我们的时光?当你为今天的落日而感伤流泪的时候,你也将错过了明日的旭日东升;当你为过去的遗憾郁郁寡欢,患得患失的时候,你也将忽略了沿途美丽的风景,淡漠了 对未来美好生活的憧憬。没有十全十美的生活,没有一帆风顺的旅途。波平浪静的人生太乏味,抑郁忧伤的人生少欢乐,风雨过后的彩虹最绚丽,历经磨砺的生命才丰盈而深刻。 见过了各样的人生:有的轻浮,有的踏实;有的喧哗,有的落寞;有的激扬,有的低回。肉体凡胎的我们之所以苦恼或喜悦,大都是缘于生活里的际遇沉浮,走不出个人心里的 藩篱。也许我们能挺得过物质生活的匮乏,却不能抵挡住内心的种种纠结。其实幸福和欢乐大多时候是对人对事对生活的一种态度,一花一世界,一树一菩提,就是一粒小小的 沙子,也有自己精彩的乾坤。如果想到我们终有一天会灰飞烟灭,一切象风一样无影亦无踪,还去争个什么?还去抱怨什么?还要烦恼什么?未曾生我谁是我?生我之时我是谁? 长大成人方是我,合眼朦胧又是谁?一生真的没有多少时光,何必要和生活过不去,和自己过不去呢。你在与不在,太阳每天都会照常升起;你愁与不愁,生活都将要继续。时
用因式分解法解一元二次方程
用因式分解法解一元二次方程【主体知识归纳】1 •因式分解法若一元二次方程的一边是0,而另一边易于分解成两个一次因式时,例如,X2—9 = 0,这个方程可变形为(x + 3)( X—3) = 0,要(x + 3)( X—3)等于0,必须并且只需(x+ 3)等于0或(x —3) 等于0,因此,解方程(x+ 3)( x —3) = 0就相当于解方程x+ 3 = 0或x —3= 0 了,通过解这两个一次方程就可得到原方程的解•这种解一元二次方程的方法叫做因式分解法.2•因式分解法其解法的关键是将一元二次方程分解降次为一元一次方程. 其理论根据是:若A-B= 0=A=0 或B= 0.【基础知识讲解】1 •只有当方程的一边能够分解成两个一次因式,而另一边是0的时候,才能应用因式分解法解一元二次方程•分解因式时,要根据情况灵活运用学过的因式分解的几种方法.2 •在一元二次方程的四种解法中,公式法是主要的,公式法可以说是通法,即能解任何一个一元二次方程•但对某些特殊形式的一元二次方程,有的用直接开平方法简便,有的用因式分解法简便•因此,在遇到一道题时,应选择适当的方法去解.配方法解一元二次方程是比较麻烦的,在实际解一元二次方程时,一般不用配方法•而在以后的学习中,会常常用到因式分解法,所以要掌握这个重要的数学方法.【例题精讲】例1:用因式分解法解下列方程:2(1) y + 7y+ 6 = 0; (2) t(2t —1) = 3(2 t —1); ⑶(2 x —1)( x—1) = 1.解:(1)方程可变形为(y+1)( y + 6) = 0, y+ 1 = 0 或y+ 6 = 0,二y1 = —1, y2=—6•1(2) 方程可变形为t(2t —1) —3(21 —1) = 0, (2t —1)( t —3) = 0, 2t —1 = 0 或t —3 = 0,二t =2 12=3.2(3) 方程可变形为2x —3x = 0 • x(2x —3) = 0, x = 0 或2x—3= 0 •3…X1= 0, X2=2说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2) 应用因式分解法解形如(x —a)( x —b) = c的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x—e)( x —f) = 0的形式,这时才有X1 = e, X2 = f,否则会产生错误,如(3)可能产生如下的错解:原方程变形为:2x— 1 = 1 或X—1 = 1 X1 = 1, X2= 2.(3) 在方程(2)中,为什么方程两边不能同除以(2t —1),请同学们思考?例2:用适当方法解下列方程:;2 ' 2 2 2(1) ,3(1 —X) = 27 ;⑵x —6x —19= 0; (3)3 x = 4x+ 1; (4) y —15= 2y; (5)5 x(x —3) —(x —3)( x+ 1) = 0 ;2 2(6)4(3 x+ 1) = 25( x—2).剖析:方程(1)用直接开平方法,方程(2)用配方法,方程(3)用公式法,方程(4)化成一般式后用因式分解法,而方程(5)、(6)不用化成一般式,而直接用因式分解法就可以了.2 移项,得x2—6x= 19,配方,得x2—6x+ ( —3)2= 19+ ( —3)2, (X —3) 2= 28, X—3 =± 27 ,解:(1)(1 —x) 2= . 9 , (x—1) 2= 3, x—1 = ± \ 3 ,二X1= 1 + ••. 3 , X2= 1 —, 3 .X i = 2 ,73^(y —5)( y+ 3) = 0;• X1 = b -a a bX i= 3 + 2 , 7 , X2 = 3—2、L7 .2⑶移项,得3x —4x— 1 = 0,■/ a= 3, b=—4, c =—1,—(⑷2一4 3(_i)2^3⑷移项,得y2—2y—15= 0,把方程左边因式分解,得• y — 5 = 0 或y + 3= 0,二y i = 5, y2= —3.⑸将方程左边因式分解,得(x —3) :5x—(x + 1) ]= 0, (x—3)(4 X—1) = 0,• x — 3 = 0 或4x— 1 = 0, • X1= 3, X2 = 1.4(6)移项,得4(3x+ 1) —25(x—2) = 0,2 2[2(3 x + 1): —[ 5(x—2): = 0,:2(3 x + 1) + 5( x —2): • : 2(3 x + 1) —5( x —2) ]= 0,(11 x —8)( x + 12) = 0,8• 11X—8= 0 或x + 12= 0, • X1= , X2=—12.11说明:(1)对于无理系数的一元二次方程解法同有理数一样,只不过要注意二次根式的化简.(2)直接因式分解就能转化成两个一次因式乘积等于零的形式,对于这种形式的方程就不必要整理成般式了.例3:解关于x 的方程:(a2—b2)x2—4abx= a2—b2.解:(1)当a2—b2= 0,即 | a | = | b | 时,方程为一4abx= 0.当a= b = 0时,x为任意实数.当| a | = | b |工0时,x = 0.(2)当a2—b2^ 0,即a+ 0且a—b* 0时,方程为一元二次方程.分解因式,得[(a+ b)x+ (a—b) ] [(a—b)x —(a+ b) ]= 0,a +b 工0 且a —b* 0,a +bX2 =a -b说明:解字母系数的方程,要注意二次项系数等于零和不等于零的不同情况分别求解.本题实际上是分三种情况,即① a = b= 0;②| a | = | b |* 0;③| a |*| b | .例4:已知x2—xy —2y2= 0,且x* 0, y *0,求代数式剖析:要求代数式的值,只要求出x、y的值即可,但从已知条件中显然不能求出,要求代数式的分子、分母是关于x、y的二次齐次式,所以知道x与y的比值也可.由已知x2—xy —2y2= 0因式分解即可得x与y的比值.2 2解:由x —xy —2y = 0,得(x —2y)( x + y) = 0, • x —2y= 0 或x+ y = 0, • x= 2y 或x = —y.当x= 2y时,x2 -2xy -5y2 =(2y)2 -2 2y y - 5y2=-5y2 = 一5 x2 +2xy +5y2(2y)2 +2 2y y+5y213y2 131A. . x = —B . x = 22方程 5x ( x + 3) = 3( x + 3)解为()33 A . X 1 =, X 2= 3B . x =C.55方程(y — 5)( y + 2) = 1的根为() A . y 1 = 5, y 2=— 2B. y = 5方程(x — 1)2— 4(x + 2)2= 0 的根为()A . X 1 = 1, X 2=— 5 B. X 1=—1, X =— 5 C. x = 1 X 1=— 3 , X 2=— 35 D. x =— 1D. X 1 = — , X 2= — 35C. y =— 2D.以上答案都不对 C. X 1 = 1, X 2 = 5D. X 1 =— 1, X 2= 52m x — 3x + 2= 0较小的根设为 n ,则m^ n 的值为( 2⑶ X = 7x ;当x — y 时,与2Xy驾二超2("y 5y筠x +2xy +5y(_y) +2 .(_y) ,y +5y 亠4y说明:因式分解法体现了“降次” “化归”的数学思想方法,它不仅可用来解一元二次方程,而且在 「元高次方程、二元二次方程组及有关代数式的计算、证明中也有着广泛的 应用.【同步达纲练习】 选择题方程(x — 16)( x + 8) = 0的根是() A . X i =— 16, X 2= 8B . x i = 16, X 2=— 8C. x i = 16, X 2= 8D.x i = — 16, X 2=— 8下列方程 4x — 3x — 1 = 0, 5x — 7x + 2= 0, 13x — 15x + 2 = 0 中,有一个公共解是 () A . 1 B . 2 C.— 4 D. 4已知三角形两边长为 4和7 ,第三边的长是方程x 2— 16X + 55= 0的一个根,则第三边长是()A . 5B . 5 或 11 C. 6D. 11方程x 2— 3| X — 1| = 1的不同解的个数是()A . 0B . 1C. 2D. 3填空题2方程 t (t + 3) = 28 的解为 _________ . (2)方程(2x + 1) + 3(2x + 1) = 0 的解为 ______________方程(2y + 1)2+ 3(2y + 1) + 2 = 0 的解为 ____________ .关于x 的方程x + (耐n )x + mn= 0的解为 _____________. 方程x (x —J5) = J5 — x 的解为 ______________ .用因式分解法解下列方程:2 2(1) x + 12x = 0; (2)4 X — 1= 0;2解- 1.⑴ ⑵⑶ ⑷ ⑸ ⑹ ⑺ (8)2.(1)⑶⑷ ⑸ 3.2(4) X —4x—21 = 0;(5)( x—1)( x + 3) = 12;2(6)3 x + 2x—1 = 0;2(7)10 x —X—3= 0;4 .用适当方法解下列方程:2(1)x —4x+ 3 = 0;2(2)( x—2) = 256;2(3) x —3x + 1 = 0;2(9)2 x — 8x = 7(精确到 0.2 2 (3) x — 2mx- 8m = 0;(8) ,5x 2 — (5 ,2 + 1)x + ,10 = 0;201) ; (10)( x + 5) — 2( x + 5) — 8= 0.5 .解关于x 的方程:2 2 2 2(1) x — 4ax + 3a = 1 — 2a ; (2) x + 5x + k = 2kx + 5k + 6;2 2(4) x + (2 m + 1) x + m + m = 0.6 .已知x 2+ 3xy — 4y 2= 0( y 丰0),试求 m 的值. x + y7.已知(x 2+ y 2)( x 2— 1 + y 2) — 12 = 0.求 x 2 + y 2 的值.8•请你用三种方法解方程: x (x + 12) = 864.9.已知x 2+ 3x + 5的值为9,试求3x 2 + 9x — 2的值.10 .一跳水运动员从 10米高台上跳水,他跳下的高度 h (单位:米)与所用的时间t (单位:秒)的关系式h =— 5( t — 2)( t + 1).求运动员起跳到入水所用的时间.11.为解方程(X 2— 1)2— 5(x 2— 1) + 4= 0,我们可以将x 2— 1视为一个整体,然后设 x 2 — 1 = y ,贝U y 2=(x 2— 1)2,原方程化为y 2— 5y + 4= 0,解此方程,得 y 1= 1, y 2= 4.22当 y = 1 时,x — 1 = 1, x = 2 ,••• x =± 2 . 当 y = 4 时,x — 1 = 4, x = 5, • x =± \ 5 .•原方程的解为 X 1 =—、、2 , X 2 = -.2 , X 3=— . 5 , X 4= 5 .⑷ X 2— 2x — 3 = 0;⑸(2 t + 3)2= 3(21 + 3);2 2(6)(3 — y ) + y = 9 ;(7)(1+ , 2 ) x — (1 —、、2 ) x = 0;以上方法就叫换元法,达到了降次的目的,体现了转化的思想.(1) 运用上述方法解方程:X4—3X2—4 = 0.(2) 既然可以将x2—1看作一个整体,你能直接运用因式分解法解这个方程吗当x = — 4y 时, 参考答案【同步达纲练习】1. ⑴B (2)C (3)D (4)D (5)B (6)A (7)A (8)D132. (1) 11 = — 7, 12= 4(2) x i = — — , X 2 =— 2(3) y i =— 1 , y 2=——⑷ x i = — m X 2=—n (5) x i=^5 , X 2=— 12 2113. (1) X 1 = 0, X 2 =— 12; (2)X 1=——,X 2=; (3) X 1= 0, X 2 = 7; (4) X 1 = 7, X 2=— 3; (5)X 1=— 5, X 2 = 3; (6)X 1 =22—1 , X 2 =13(7) X 1 =3 X =一 1; (8) X 1 = 8 , X 2 =— 2523 . . 53 ― '54.(1) X 1 = 1, X 2= 3; (2) X 1 =18, X 2=— 14; (3)为= ,X 2= ;(4) X 1= 3, X 2=— 1 ;2 2(5) 11 = 0, 12=— — ; (6) y 1 = 0, y 2 = 3; (7)为=0, X 2 = 2 . 2 — 3;2(8) X 1=5, X 2= ,10 ; (9) X 1~ 7.24 , X 2=— 3.24 ; (10) X 1=— 1, X 2=— 7. 55. (1) x 2 — 4ax + 4a 2 = a 2— 2a + 1, (x — 2a )2 = (a — 1)2,二 x — 2a =± (a — 1), 二 X 1 = 3a — 1, X 2= a +1.(2) x 2+ (5 — 2k ) x + k 2— 5k — 6= 0,2x + (5 — 2k ) x + (k + 1)( k — 6) = 0, :x — (k + 1)] :x — (k — 6)]= 0,•:X 1 = k + 1, X 2= ( k — 6).(3) x 2— 2m 才 m = 9m , (x —m 2=(3 m 2二 X 1 = 4 m, X 2=— 2m2⑷ x + (21)x +1) =0 ,(x + m [x + (计 1) ]= 0 ,--X 1 = — m X 2= — ir — 16. (x +4y )( x — y ) = 0 ,x =— 4y 或 x = yx — y = -4y _ y _ 5x y -4y y 37. (x 2 + y 2)( x 2+ y 2— 1) —12 = 0 , 2 2 2 2 2(x + y ) — (x + y ) — 12= 0 , (x 2 + y 2— 4)( x 2 + y 2+ 3) = 0 ,x2+ y2= 4 或x2+ y2=—3(舍去)8. X1=—36 , X2= 242 29. v x+3x+ 5 = 9, . x+ 3x= 4 ,.3x2+ 9x—2 = 3( x2+ 3x) —2 = 3 X 4—2 = 1010. 10=- 5( t —2)( t + 1),二t = 1(t = 0 舍去)11. (1) x i=—2, X2 = 2(2)( x2—2)( x2—5) = 0,(x+ , 2 )( x — .、2)(x+ ...5)(x—、. 5) = 0出师表两汉:诸葛亮先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。
用因式分解法解一元二次方程详细
用因式分解法解一元二次方程【主体知识概括】1.因式分解法 若一元二次方程的一边是 0,而另一边易于分解成两个一次因式时,比如,x 2- 9=0,这个方程可变形为 ( + 3)( - 3) = 0,要 ( x + 3)( x -3) 等于 0,一定并且只需 ( x + 3) 等于 0 或( x - 3) 等于 0,x x所以,解方程 ( x + 3)( x - 3) = 0 就相当于解方程 x + 3= 0 或 x -3= 0 了,经过解这两个一次方程便可获得 原方程的解.这类解一元二次方程的方法叫做因式分解法.2.因式分解法其解法的重点是将一元二次方程分解降次为一元一次方程.其理论依据是:若A ·B =0 A = 0 或B = 0.【基础知识解说】1.只有当方程的一边能够分解成两个一次因式,而另一边是0 的时候, 才能应用因式分解法解一元二 次方程.分解因式时,要依据状况灵巧运用学过的因式分解的几种方法.2.在一元二次方程的四种解法中,公式法是主要的,公式法能够说是通法,即能解任何一个一元二次 方程.但对某些特别形式的一元二次方程,有的用直接开平方法简易,有的用因式分解法简易.所以,在碰到一道题时, 应选择适合的方法去解. 配方法解一元二次方程是比较麻烦的,在实质解一元二次方程时, 一般不用配方法.而在此后的学习中,会经常用到因式分解法,所以要掌握这个重要的数学方法.【例题精讲】例 1:用因式分解法解以下方程:(1)y 2+7 + 6= 0; (2)t (2 t - 1) = 3(2 t - 1) ;(3)(2 x -1)( x - 1) = 1.y解:(1) 方程可变形为 ( y + 1)( y + 6) = 0, y + 1= 0 或 y + 6= 0,∴ y 1=- 1, y 2=- 6. (2) 方程可变形为 t (2 t -1)-3(2 t -1)=0,(2 t -1)( t -3)=0,2t -1=0或 t -3=0,∴ t 1=1, t 22= 3.(3) 方程可变形为 2x 2- 3x =0.x (2 x - 3) = 0,x = 0 或 2x - 3= 0. ∴ x 1=0, x 2=3.2说明: (1) 在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,假如左侧的代数式能够 分解为两个一次因式的乘积,而右侧为零时,则可令每一个一次因式为零,获得两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如 ( x-a)( x-b) =c的方程,其左侧是两个一次因式之积,但右侧不是零,所以应转变为形如( x-e)( x-f ) =0 的形式,这时才有x1= e, x2= f ,不然会产生错误,如(3) 可能产生以下的错解:原方程变形为:2x- 1=1 或x- 1= 1.∴x1= 1,x2= 2.(3) 在方程 (2) 中,为何方程两边不可以同除以(2 t-1) ,请同学们思虑?例 2:用适合方法解以下方程:(1) 3 (1- x)2= 27 ;(2) x2-6x-19=0;(3)3 x2=4x+1;(4) y2-15=2y;(5)5 x( x-3)-( x-3)( x+1) = 0;(6)4(3 x+ 1) 2= 25( x- 2) 2.解析:方程 (1) 用直接开平方法,方程(2) 用配方法,方程(3) 用公式法,方程(4) 化成一般式后用因式分解法,而方程(5) 、 (6) 不用化成一般式,而直接用因式分解法就能够了.2 =9 ,( x-1) 2 = 3,x- 1=±3 ,∴ x =1+ 3 , x =1- 3 .解: (1)(1 - x)1 2(2) 移项,得x 2- 6 = 19,配方,得x2- 6x+ ( - 3) 2= 19+( - 3) 2, ( - 3) 2= 28,- 3=± 27,x x x∴ x1=3+2 7 , x2=3-2 7 .(3)移项,得 3x2-4x- 1=0,∵ a=3, b=-4, c=-1,∴ x=( 4)( 4)2 43 ( 1) 2 7 ,2 3 3∴ x1=2 7,x2=27 .3 3(4) 移项,得y2- 2y- 15=0,把方程左侧因式分解,得( y- 5)( y+ 3) = 0;∴ y-5=0或 y+3=0,∴ y1=5, y2=-3.(5)将方程左侧因式分解,得 ( x- 3) [ 5x-( x+ 1) ]= 0, ( x- 3)(4 x- 1) = 0,∴ x-3=0或4x-1=0,∴x1=3, x2=1.4(6)移项,得 4(3 x+ 1) 2- 25( x- 2) 2= 0,[ 2(3 x+ 1) ]2-[ 5( x- 2) ]2= 0,[2(3 x+ 1) + 5( x- 2) ]·[ 2(3 x+ 1) - 5( x-2) ]= 0,(11 x-8)( x+ 12) = 0,∴11x- 8= 0 或x+ 12= 0,∴x1=8,x2=- 12.11说明: (1) 对于无理系数的一元二次方程解法同有理数同样,只可是要注意二次根式的化简.(2) 直接因式分解就能转变成两个一次因式乘积等于零的形式,对于这类形式的方程就不用要整理成一般式了.例 3: 解对于x的方程: ( a2-b2) x2- 4abx=a2-b2.解: (1) 当a2-b2=0,即|a|=|b|时,方程为-4abx= 0.当 a=b=0时, x 为随意实数.当|a|=| b|≠0时, x=0.(2)当 a2- b2≠0,即 a+ b≠0且 a- b≠0时,方程为一元二次方程.分解因式,得[ ( a+b) x+ ( a-b) ][ ( a-b) x- ( a+b) ]= 0,∵ a+ b≠0且 a- b≠0,∴ x1=b a, x2=ab .a b a b说明:解字母系数的方程,要注意二次项系数等于零和不等于零的不一样状况分别求解.此题其实是分三种状况,即①a= b=0;②| a|=| b|≠0;③| a|≠| b|.2 2x 2 2xy 5 y 2例 4: 已知x-xy- 2y= 0,且x≠ 0,y≠ 0,求代数式x 2 2xy 5 y 2 的值.解析:要求代数式的值,只需求出 x、y 的值即可,但从已知条件中明显不可以求出,要求代数式的分子、分母是对于 x、 y 的二次齐次式,所以知道x 与 y 的比值也可.由已知x2- xy-2y2=0因式分解即可得 x 与 y 的比值.解:由 x2- xy-2y2=0,得( x-2y)( x+y)=0,∴ x-2y=0或 x+y=0,∴ x=2y 或 x=- y.当 x=2y 时,x22xy 5y 2 (2y) 2 2 2y y 5y 2 5y 2 5 .x 2 2xy 5y 2 (2y ) 2 2 2y y 5y 2 13y 2 13当 x=- y 时,x 2 2xy 5y 2 ( y) 2 2 ( y ) y 5y 2 2y 2 1.x 2 2xy 5y 2 ( y) 2 2 ( y ) y 5y 4y 2 2说明:因式分解法表现了“降次”“化归”的数学思想方法,它不单可用来解一元二次方程,并且在解一元高次方程、二元二次方程组及相关代数式的计算、证明中也有着宽泛的应用.【同步达纲练习】 1.选择题(1) 方程 ( x - 16)(x +8)=0的根是 ()A .x 1=- 16,x 2= 8B .x 1= 16,x 2=- 8C .x 1=16,x 2= 8D .x 1=- 16,x 2=- 8(2) 以下方程 4x 2-3x - 1=0, 5x 2- 7x + 2= 0,13x 2- 15x +2= 0 中,有一个公共解是 ( )A .. x =1B . x = 2C . x = 1D .x =- 12(3) 方程 5 x ( x +3) = 3( x + 3) 解为 ( )1= 3 2B . x = 3A . x 5 , x = 35C . x 1=- 3, x 2=- 3D . x 1= 3, x 2=- 355(4) 方程 ( y - 5)( y + 2) =1 的根为 ( )A . y 1=5, y 2=- 2B . y = 5C . y =- 2D .以上答案都不对(5) 方程 ( x - 1) 2-4( x + 2) 2= 0 的根为 ( )A . x 1=1, x 2=- 5B . x 1=- 1, x 2=- 5C . x 1= 1, x 2= 5D . x 1=- 1, x 2= 5(6) 一元二次方程 x 2+ 5x = 0 的较大的一个根设为 m , x 2- 3x + 2= 0 较小的根设为 n ,则 m + n 的值为( )A . 1B . 2C .- 4D . 4(7) 已知三角形两边长为4 和 7,第三边的长是方程x 2- 16x + 55= 0 的一个根,则第三边长是( ) A . 5 B . 5 或 11 C . 6D . 11(8) 方程 x 2-3| x -1|=1的不一样解的个数是( ) A . 0B . 1C . 2D . 3 2.填空题(1) 方程 t ( t +3)=28的解为_______.(2) 方程 (2 x + 1) 2+ 3(2 x +1) = 0 的解为 __________ . (3) 方程 (2 y + 1) 2+ 3(2 y +1) + 2= 0 的解为 __________.(4)对于 x 的方程 x2+( m+n) x+ mn=0的解为__________.(5)方程 x( x- 5 )= 5 - x 的解为__________.3.用因式分解法解以下方程:(1) x2+12x= 0;(2)4 x2- 1= 0;(3) x2= 7x;(4) x2-4x- 21=0;(5)(x-1)( x+3)=12;(6)3 x2+ 2x- 1= 0;(7)10 x2-x- 3=0;(8)(x-1)2-4( x-1)-21=0.4.用适合方法解以下方程:(1) x2-4x+ 3= 0;(2)(x-2)2=256;(3) x2- 3x+ 1=0;(4) x2-2x- 3= 0;(5)(2 t+ 3) 2= 3(2 t+ 3) ;(6)(3 -y) 2+y2= 9;(7)(1 +2 ) x2-(1-2 ) x=0;(8) 5 x2- (5 2+ 1) x+10 =0;(9)2 x2-8x= 7( 精准到 0.01) ; (10)( x+ 5) 2-2( x+ 5) - 8= 0.5.解对于x 的方程:(1) x 2-4ax +3a 2=1-2a ;(2) x 2+5x +k 2=2kx +5k +6;2222(3) x -2mx - 8m = 0; (4) x + (2 m + 1) x + m + m =0. 6.已知x 2+ 3xy -4y 2= 0( y ≠ 0) ,试求x y的值.x y7.已知 ( x 2+y 2)( x 2- 1+y 2) - 12= 0.求x 2+y 2的值. 8.请你用三种方法解方程:x ( x +12)=864.9.已知x 2+ 3x + 5 的值为 9,试求 3x 2+ 9x - 2 的值.10.一跳水运动员从 10 米高台上跳水,他跳下的高度h (单位:米)与所用的时间t (单位:秒)的关系 式 h =-5( t -2)( t +1).求运动员起跳到入水所用的时间.11.为解方程 ( x 2- 1) 2- 5( x 2-1) + 4=0,我们能够将 x 2-1 视为一个整体,而后设x 2- 1= y ,则 y 2=( x 2- 1) 2,原方程化为2- 5 + 4=0,解此方程,得y 1= 1, y 2= 4.y y当 y =1时, x 2-1=1, x 2=2,∴ x =±2 .当 y=4时, x2-1=4, x2=5,∴ x=± 5 .∴原方程的解为 x1=- 2 , x2= 2 , x3=- 5 , x4= 5 .以上方法就叫换元法,达到了降次的目的,表现了转变的思想.(1)运用上述方法解方程: x4-3x2-4=0.(2)既然能够将 x2-1看作一个整体,你能直接运用因式分解法解这个方程吗参照答案【同步达纲练习】1. (1)B (2)C (3)D (4)D (5)B (6)A (7)A (8)D2. (1) t 1=- 7,t 2= 4(2) x 1=-1 2, 2=-2(3) y 1=-1, y 2=-3 (4) x 1=- , 2=- n (5) x 1= 5 , 2=-1 x 2m x x3.(1) x 1=0,x 2=- 12;(2) x 1=-1,x 2=1;(3) x 1=0,x 2= 7;(4) x 1= 7,x 2=- 3;(5) x 1=- 5,x 2=3;(6) x 1=- 1,22x 2=1;3(7) x 1=3,x 2=-1;(8) x 1=8, x 2=-2.524. (1) x 1= 1, x 2= 3; (2) x 1= 18, x 2=- 14; (3) x 1=35, x 2 =35; (4) x 1 =3, x 2=- 1;22(5) t 1=0, t 2=-3; (6) y 1= 0,y 2 = 3; (7) x 1= 0,x 2= 22 - 3;2(8) x1=5 x2= 10; (9) x 1≈, x 2=-; (10)xx=- 7. ,1=- 1,255. (1) x 2- 4ax +4a 2=a 2-2a +1,( x - 2a ) 2= ( a - 1) 2, ∴ x -2a =±( a -1),∴ x 1=3a -1, x 2= a +1.(2) x 2+(5-2k ) x + k 2-5k -6=0, x 2+(5-2k ) x +( k +1)( k -6)=0, [ x -( k +1)][ x -( k -6)]=0, ∴ x 1= k +1,x 2=( k -6).(3) x 2-2 + 2= 9 2 ,( x - ) 2= (3 ) 2mx m m m m ∴ x 1=4m , x 2=-2m(4) x 2+(2 m +1) x +m ( m + 1) = 0, ( x +m ) [x + ( m + 1) ]= 0,∴ x 1=- m ,x 2=- m -16. ( x + 4y )( x -y ) = 0,x =-4y 或 x =y当 x=-4y 时,xy = 4 y y 5 ;x y 4 y y 3当 x= y 时,xy = yy= 0.x y y y7. ( x2+y2)( x2+y2- 1) - 12= 0,( x2+y2 ) 2- ( x2+y2) -12=0,( x2+y2- 4)( x2+y2+ 3) = 0,∴ x2+ y2=4或 x2+ y2=-3(舍去)8.x1=- 36,x2= 249.∵x2+ 3x+ 5=9,∴x2+ 3x= 4,∴3x2+9x-2= 3( x2+ 3x) - 2= 3×4- 2= 10 10. 10=- 5( t- 2)(t +1),∴ t =1( t =0舍去) 11. (1)x1=-2,x2=2(2)(x2-2)( x2-5)=0,( x+2 )(x- 2 )(x+ 5 )(x-5 )=0。
一元二次方程的解法(因式分解法)
因式分解法的示例
例如,对于方程 x²+ 5x + 6 = 0,可以将其写成 (x + 2)(x + 3) = 0,然后将两个因式分别设置为零,得到 x = -2 和 x = -3 作为解。 这种方法可以适用于更复杂的方程,并且非常灵活和易于应用。
优点和适用范围
简单直观
因式分解法易于理解和掌握,可以通过观察和代数运算求解方程。
一元二次方程的解法(因 式分解法)
一元二次方程是一个二次多项式,被广泛应用于数学和科学领域。因式分解 法是一种解决一元二次方程的有效方法。
一元二次方程的定义
一元二次方程是一种形如 ax²+ bx + c = 0 的方程,其中 a、b、c 是实数,且 a ≠ 0。 一元二次方程的解是指能使方程成立的 x 值。
因式分解法的基本原理
因式分解法基于这样的思想:将一个二次多项式拆分成两个或更多简单的一次多项式相乘的形式。 这样可以将复杂的二次方程转化为多个一次方程,从而更容易求解。
因式分解法步骤
1. 将一元二次方程写成二项式相乘的形式 2. 通过观察找出符合要求的两个因式 3. 将两个因式分别设置为零,求解得到解集
结论和总结
因式分解法是解决一元二次方程的重要方法,它简单直观,适用范围广,能够提供方程的全部解。 通过掌握因式分解法,我们可以轻松解决各种与二次方程相关的问题。
广泛适用
因式分解法适用于各种类型的一元二次方程,包括实数根和复数根。
提供多个解
因式分解法能够一次性得到方程的全部解,可以帮助我们全面了解方程的性质。
常见误区和注意事项
• 注意检查方程是否已经写成了二项式相乘的形式。 • 当方程无法因式分解时,可能需要使用其他解法,如配方法或求根公式。 • 在代数计算过程中要注意符号的处理,避免出现错误的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
首选因式分解法和直接开平方,其次选 公式法,最后选 配方法
练一练
1.用因式分解法解下列方程: (1) (2y+1)(y-3)=0 (2) x2=-4x (3) 9x2+6x+1=0 (4) x2-6x-16=0 (5) 4x(2x-1)=3(2x-1)
(6) 2x 32 32x 3 4 0
(1) 2x2 x
(2) x2 16 y 2
(3) 9a2 24a 16
(4) (x 2)2 16
(5) x2 3x 10
(6) 3x2 10x 3
例1.解方程 (1) 2x2-x =0
(2) x+3-x(x+3)=0 (3) (2x-1)2-x2=0
(4) 9 y2 12 y 4 0
(4)2x 1x 4 5
归纳:
用因式分解法解一元二次方程的一般步骤:
(1)通过移项把一元二次方程右边化为0 (2)将方程左边分解为两个一次因式的积 (3)令每个因式分别为0,得到两个一元一次 方程 (4)解这两个一元一次方程,它们的解就是原 方程的解
探究:
思考:在解方程(x+2)2 = 4(x+2)时,
(5) x2 4x 12 0
(6) 7x2 13x 6 0
概括总结
这种解一元二次方程的方法叫做因式分解法
可见,能用因式分解法解的一元二次方程须满足什么 样的条件 ?
(1)方程的一边为0 (2)另一边能分解成两个一次因式的积
,x2=2
概念巩固
1.一元二次方程(x-1)(x-2)=0可化为两个一次 方程为 和 ,方程的根是 . 2.已知方程4x2=3x,下列说法正确的是( )
4.已知关于x的方程
m 2 xm25m5 m 3x 5 0
当m取何值时,(1)它是一元二次方程;(2)它 是一元一次方程。
归纳总结
1.用因式分解法解一元二次方程的一般步骤:
(1)通过移项把一元二次方程右边化为0 (2)将方程左边分解为两个一次因式的积 (3)令每个因式分别为0,得到两个一元一次 方程 (4)解这两个一元一次方程,它们的解就是 原方程的解
A.只有一个根x= 3 4
B.只有一个根x=0 C.有两个根x1=0,x2=
3 4
D.有两个根x1=0,x2= - 3 4
典型例题
例 2 用因式分解法解下列方程
(1)( x 1)2 6(x 1) 9 0
(2)2x 32 9 x2
(3)x2 (a 1)x a 0(a为常数)
初中数学八年级下册
(苏科版)
4.2一元二次方程的解法 因式分解法
知识回顾
1、我们已经学习了一元二次方程的哪些解法? 2、解下列一元二次方程:
(1) (x 2)2 16 0
(2) t 2 4t 1
(3) x2 2x 9 0
知识回顾
3、式子ab=0说明了什么?
4、把下列各式因式分解.
2. 解一元二次方程有哪几种方法?如何选用?
在方程两边都除以(x+2),得x+2=4,
于是解得x =2,这样解正确吗?为什么?
典型例题
例 3用适当方法解下列方程 (1)4(2x-1)2-9(x+4)2=0 (2)x2-4x-5=0 (3) (x-1)2=3 (4) x2-2x=4 (5)(x-1)2-6(x-1)+9=0 (6)4y(y-5)+25=0
巩固练习:
2.用十字相乘法解下列一元二次方程:
(1)x2-8x+15=0
(2) -y2 -4y+12=0
(3)2x2-5x+2=0
(4)6x2+x-2=0
(5) x2 2 5x 5 0
(6) (2x-1)2+3(2x-1)+2=0
(7) x2+ax-2a2=0(a为常数)
探索发现
3.已知一个数的平方等于这个数的5倍。求这个。