圆锥曲线测试卷
(word完整版)圆锥曲线综合试题(全部大题目)含答案,文档.docx
1.平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线x2 2 py 外一点 P(x0 , y0 ) 的任一直线与抛物线的两个交点为C、 D ,与抛物线切点弦 AB的交点为 Q。
(1)求证:抛物线切点弦的方程为x0 x p( y+ y0 ) ;(2)求证:112.PC| PD || PQ |2. 已知定点F( 1,0 ),动点 P 在 y 轴上运动,过点 P 作 PM 交 x 轴于点 M ,并延长MP 到点 N,且PM PF 0,| PM | | PN |.(1)动点 N 的轨迹方程;(2)线 l 与动点 N 的轨迹交于 A,B 两点,若OA OB4, 且4 6| AB | 4 30 ,求直线 l 的斜率 k 的取值范围 .3. 如图,椭圆C1:x2y21的左右顶点分别为A、B,P 为双曲线C2: x 2y 21右支4343上( x 轴上方)一点,连AP 交 C1于 C,连 PB 并延长交1于 D,且△ ACD与△ PCD的面积C相等,求直线 PD 的斜率及直线CD 的倾斜角 .4. 已知点M ( 2,0), N (2,0),动点P满足条件| PM || PN | 2 2 .记动点 P 的轨迹为W.(Ⅰ)求 W 的方程;uuur uuur(Ⅱ)若 A, B 是W上的不同两点,O 是坐标原点,求OA OB 的最小值.5.已知曲线 C的方程为 : kx2+(4-k)y2=k+1,(k∈ R)(Ⅰ)若曲线 C是椭圆,求 k的取值范围;(Ⅱ)若曲线 C是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程;(Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P,Q关于直线 l: y=x-1对称,若存在,求出过 P,Q的直线方程;若不存在,说明理由。
6. 如图( 21)图,M(-2,0)和 N( 2,0)是平面上的两点,动点P满足:PM PN 6.(1)求点 P 的轨迹方程;2(2)若PM·PN=1 cos MPN,求点 P 的坐标 .x2y21 (a b x 2y217. 已知F为椭圆b20) 的右焦点,直线l过点 F 且与双曲线b2a2a 的两条渐进线 l1, l2分别交于点M , N,与椭圆交于点A, B.(I)若MON,双曲线的焦距为4。
圆锥曲线测试题及答案
圆锥曲线测试题及答案一、选择题(每题3分,共15分)1. 椭圆的离心率定义为:A. 长轴与短轴的比值B. 长轴的一半与焦距的比值C. 焦距与长轴的比值D. 焦距与长轴的一半的比值2. 抛物线的标准方程是:A. \( x^2 = 4py \)B. \( y^2 = 4px \)C. \( x^2 = 2py \)D. \( y^2 = 2px \)3. 双曲线的渐近线方程是:A. \( y = \pm \frac{b}{a}x \)B. \( y = \pm \frac{a}{b}x \)C. \( x = \pm \frac{a}{b}y \)D. \( x = \pm \frac{b}{a}y \)4. 椭圆上任意一点到两个焦点的距离之和是:A. 长轴的长度B. 短轴的长度C. 焦距的两倍D. 不确定5. 对于双曲线,如果 \( a > b \),则它是:A. 垂直轴双曲线B. 水平轴双曲线C. 焦点在x轴上D. 焦点在y轴上二、填空题(每题2分,共10分)6. 椭圆的方程 \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) 中,\( a \) 和 \( b \) 分别代表______和______。
7. 抛物线 \( y^2 = 4px \) 的焦点坐标是______。
8. 双曲线 \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) 的焦距是______。
9. 椭圆 \( \frac{x^2}{4} + \frac{y^2}{3} = 1 \) 的离心率是______。
10. 如果一个点 \( P(x, y) \) 在双曲线 \( \frac{x^2}{a^2} -\frac{y^2}{b^2} = 1 \) 上,那么 \( x \) 和 \( y \) 满足的关系是______。
三、简答题(每题5分,共20分)11. 描述椭圆的基本性质。
圆锥曲线测试题1
高二数学圆锥曲线与方程测试题一.选择题:〔本大题共12小题,每题5分,共60分.〕1.曲线121022=++-k y k x 是焦点在x 轴上的椭圆,那么〔 〕 21,F F 是椭圆1925:22=+y x C 的左、右焦点,点M 是椭圆C 上一点,且321π=∠MF F ,那么21MF F ∆的面积为〔 〕3抛物线的顶点在坐标原点,准线方程是,2=x 那么该抛物线标准方程为〔 〕4.双曲线)0,0(12222>>=-b a by a x 的一条渐近线是x y 3=,那么双曲线离心率是〔 〕5.抛物线241x y =的准线方程是〔 〕6.设21,F F 是双曲线169:22=-y x C 的左、右焦点,点M 在C 上且101=MF ,那么 2MF 〔 〕4.A 16.B 4.C 或16 12.D7.F 是抛物线y x C 4:2=的焦点,过F 的直线交抛物线于B A ,两点,且线段AB 中点纵坐标为3,那么AB 等于〔 〕8设21,F F 是椭圆)0(1:2222>>=+b a by a x C 的左、右焦点,假设椭圆C 上存在一点M 使,120021=∠MF F 那么椭圆C 的离心率的取值范围是〔 〕9.双曲线)0,0(1:2222>>=-b a by a x C 的一条渐近线平行直线,102:+=x y l双曲线的一个焦点在直线l 上,那么双曲线的方程为( )1205.22=-y x A 1520.22=-y x B C.2233125100x yD.2233110025x y10.21,F F 是双曲线)0,0(1:2222>>=-b a by a x C 的左、右焦点,双曲线上存在一点P 使,3)(2221ab b PF PF -=-那么该双曲线的离心率为〔 〕 11. F 是抛物线x y C 4:2=的焦点,过F 的直线l 交抛物线于A,B 两点,假设BF AF 3=,那么直线l 的方程为〔 〕12. 椭圆)0(1:2222>>=+b a by a x E 的右焦点为),0,3(F 过F 的直线交E 于A,B 两点,假设AB 的中点坐标为)1,1(-,那么E 的方程为〔 〕 二填空题:(本大题共4小题,每题5分,共20分.) 13.抛物线y 2=38x 的焦点到双曲线x 2-23y =1的渐近线的距离是________;14设双曲线C 经过点()2,2,且与2214y x -=具有一样渐近线,那么C 的方程为________;15双曲线)0,0(1:2222>>=-b a by a x C 的离心率为2,焦点为1F 、2F ,点A在C 上,假设12||2||F A F A =,那么21cos AF F ∠=________.16椭圆)0(1:2222>>=+b a by a x E 的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .假设|AB |=10,|AF |=6,cos ∠ABF =45,那么C 的离心率e =__________.三.解答题〔共6个小题,共70分,要求写出必要的证明或解答过程〕 17(10分)动点M 到定点)0,1(F 的距离与它到定直线1:-=x l 的距离相等.(1)求动点M 的轨迹方程;(2)过点F 斜率2的直线l 交点M 的轨迹于B A ,两点,求AB 的长.18(12分)椭圆)0(1:2222>>=+b a by a x E 的离心率,23=e 且E 过点)1,0(.(1)求椭圆E 的方程;(2)定点A 的坐标为)2,0(,M 是椭圆E 上一点,求AM 的最大值.19(12分)21,F F 是双曲线)0,0(1:2222>>=-b a by a x C 的左、右焦点.(1)求证:双曲线C 上任意一点M 到双曲线两条渐近线的距离之积为常数;(2)过1F 垂直于x 轴的直线交C 于点P ,,212PF PF =且E 过点)0,1(,求双曲线E 的方程.20(12分)设椭圆)0(1:2222>>=+b a by a x E 的左、右焦点分别为2123F F AB =. (1) 求椭圆E 的离心率;(2) 设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点,经过点的直线与该圆相切与点M ,=.求椭圆的方程.21(12分)如图,点)1,0(-P 是椭圆22122:1x y C a b+=〔0a b >>〕的一个顶点,1C 的长轴是圆222:4C x y +=的直径.1l ,2l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于A ,B 两点,2l 交椭圆1C 于另一点D . 〔Ⅰ〕求椭圆1C 的方程;〔Ⅱ〕求ABD ∆面积取最大值时直线1l 的方程.22(12分)如图,抛物线2:4C x y =,过点(0,2)M 任作一直线与C 相交于,A B 两点,过点B 作y 轴的平行线与直线AO 相交于点D 〔O 为坐标原点〕.(1)证明:动点D 在定直线上; (2)作C 的任意一条切线l〔不含x 轴〕与直线2y =相交于点1N ,与〔1〕中的定直线相交于点2N ,证明:2221||||MN MN -为定值,并求此定值.23(12分)抛物线2:2(0)C y px p =>的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有||||FA FD =.当点A 的横坐标为3时,ADF∆为正三角形.〔Ⅰ〕求C 的方程;〔Ⅱ〕假设直线1//l l ,且1l 和C 有且只有一个公共点E , 〔ⅰ〕证明直线AE 过定点,并求出定点坐标;〔ⅱ〕ABE ∆的面积是否存在最小值?假设存在,请求出最小值;假设不存在,请说明理由.高二数学圆锥曲线与方程测题试答题卡姓名: ;得分 ;一.选择题〔本大题共12个小题,每题5分,共60分〕二.填空题〔本大题共4个小题,每题5分,共20分〕13 ; 14 ; 15 ; 16 .三.解答题〔本大题6个小题,共70分,要求写出必要的证明、演算或推理过程〕 117(10分) 18(12分) 19(12分) 20(12分) 21(12分) 22〔12分〕高二数学2021-2021 学年度第一学期期中考试〔理科〕参考答案 一选择题:1-5 CABBD 6-10 DBCDA 11-12 AC 二填空题:1613-; 54 13.3 323 三解答题:17〔10分〕〔1〕在ABC 中,因为c b a ,.成等比数列∴ac b =2 ……2分又∵.22bc a c ac =-+∴ bc a c b =-+222 ……3分根据余弦定理得:.0,212cos 222π<<=-+=A bc a c b A 且 所以: 3π=A ……5分〔2〕由〔1〕得 ac b =2 根据正弦定理得:C A B sin sin sin 2= …… 7分所以:23sin sin sin sin sin sin sin 2====A C C A C B B c b …… 10分18(1)设等差数列}{n a 的公差为d .∴3615652{11=+=+d a d a …… 3分 解得: 2,11==d a所以:12-=n a n …… 6分(2) 1222-==n a n nb 得 122)12(-+-=+n n n n b a …… 8分∴数列}{n n b a +的前n 项和为)2222()12531()212()25()23()21(12531253--+++++-++++=+-+++++++=n n n n n T 2)14(3241)41(22)121(n n n n n +-=--+-+= ……12分19 证明:ABC ∆中,AD AB DAB 2,600==∠ 根据余弦定理:AD DAB AB AD AB AD BD 3cos 222=∠⋅-+=∴ 090=∠ADB 即:AD BD ⊥ …… 3分 又∵ABCD PD 平面⊥所以: BD PA ⊥ …… 6分〔2〕因为BC ∥AD∴PCB ∠是异面直线PC AD 与所成的角. …… 8分由BC ∥AD ,BD AD ⊥ 得BD BC ⊥ 又∵ABCD PD 平面⊥ ∴PB BC ⊥ (10)分在AD BD PA PB AD BC PBC Rt 2,22=+==∆中, 所以:异面直线PC AD 与所成的角的余弦值为.55…… 12分20∵2.2605286276257246236,5597531=++++==++++=y t (3)分∴5.6420)2()4(8.2548.152)3.3(0)2.14)(2()4)(2.24(ˆ22222=+++-+-+⨯+⨯+-⨯+--+--=b…… 6分 所以:所求的回归直线方程为:7.2275.6ˆ+=t y…… 8分 (2)当11=t 时,2.2997.227115.6ˆ=+⨯=y…… 11分 所以:2021年该地区的粮食需求量约为299.2万吨。
圆锥曲线检测题.doc
A. 2一、选择题:1. A8是抛物线尸=2尤的一条焦点弦,|A8|=4,则人8中点C 的横坐标是1八35 B. — C. — D.—2 2 2 2. 己知双曲线=1(6/>0)的一条准线与抛物线)『=—6x 的准线重合,则该双曲线的离心率为cr4 V3 八376 八 2的 A. -- B. — C. ----- Z). ----------------------- 22 2 32 2 3. 己知双曲线二一七=1色>0,人>0)的实轴长、虚轴长、焦距长成等差数列,则双曲线的离心率。
为CT b~4 5 A. 2 B. 3 C. T D. T4. 若抛物线),2=2px(〃>0)上一点到准线和抛物线的对称轴的距离分别为10和6,则该点横坐标为A. 10B. 9C. 8D. 65. 己知动点P (x, _y)满足5j(x-l),+ (y-2)2 =| 3x + 4.y +121,则户点的轨迹是A.两条相交直线B.抛物线C.双曲线 。
.椭圆 6. 是以比、卜2为焦点的椭圆上一点,过焦点旦作ZF l PF 2外角平分线的垂线,垂足为则点M 的轨迹是()A.圆B.椭圆C.双曲线D.抛物线7. 直线y=kx+2与双曲线?-/=6的右支交于不同两点,则上的取值范围是A. (―乂厂,毛—)B.(Of 方~)C. 0)D. —1)8. 已知直线/交椭圆4?+5y 2 = 80于M 、N 两点,3是椭圆与y 轴正半轴的交点,若的重心恰好为椭圆 的右焦点,则直线/的方程是A. 5工+6丁一28=0B. 5尤一6),一28=()C. 6人+5),一28=0D. 6少一5),一28=09. 若动点P (%,),)与两定点M (一〃,0), N (①0)连线的斜率之积为常数上(如尹0),则P 点的轨迹一定 不可能是圆锥曲线检测题 第一卷选择题A.除M、N两点外的圆B.除M、N两点外的椭圆C.除M、N两点外的双曲线D.除M、N两点外的抛物线C. 2h = —p—qD. 2h=q_p10.若抛物线y2=2px(p>0)与抛物线y2=2q(x—h)(q>0)有公共焦点,贝ij()A. 2h=p—qB. 2h=p+q12.下列命题正确的是%1动点M至两定点A、B的距离之比为常数A(A>。
直线和圆、圆锥曲线综合测试卷(新高考专用)(解析版)—2025年高考数学一轮复习
直线和圆、圆锥曲线综合测试卷专练(考试时间:120分钟;满分:150分)注意事项:1.本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
则由椭圆的中心对称性可知可知AF1BF2为平行四边形,则可得△ABF2的周长为|AF当AB位于短轴的端点时,当围成的等腰三角形底边在x轴上时,当围成的等腰三角形底边在直线l因为tanα=2tanα21―tan2α2=2,且tanα2>所以k=tanθ=tanα2=5―12,或故选:B.5.(5分)(2024·西藏拉萨的最小值为()A.1453【解题思路】先设点的坐标,结合轨迹方程求参,再根据距离和最小值为两点间距离求解即可6.(5分)(2024·湖南邵阳点B在C上且位于第一象限,B.8 A.453【解题思路】由点A―1,8由点A―1,8在抛物线y23所以抛物线C的方程为y2设B(x0,y0),则x0>0,y0>由题意知F p2,0,又OP 显然直线AB的斜率不为由y2=2pxx=ty+p2,得y2―2pty显然直线BD的斜率不为由y2=2pxλp,得y2故选:C.二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。
如图,因为K OA=∠PDA=∠ODB,所以×|PA|⋅S△PAB=12故选:ABD.11.(6分)(2024·福建龙岩|AB|=8.过焦点F的直线C的准线与坐标轴的交点,则(A.若MF=3FN,则直线C.∠MON为钝角设M(x1,y1),N(x2,y 得y2―8my―16=所以y1y2=―16,x1∴x1x2+y1y2=4⟨⟩三、填空题:本题共3小题,每小题5分,共15分。
圆锥曲线测试.doc
高二数学同步测试——圆锥曲线一、选择题:1.在同一坐标系中,方程a 2x 2+b 2y 2=1与ax +by 2=0(a >b >0)的曲线大致是( )2.已知椭圆222253n y m x +和双曲线222232n y m x -=1有公共的焦点,那么双曲线的渐近线方程是( )A .x =±y 215 B .y =±x 215 C .x =±y 43D .y =±x 433.过抛物线y =ax 2(a >0)的焦点F 用一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则qp 11+等于 ( )A .2aB .a21 C .4a D .a4 4.若椭圆)0(12222〉〉=+b a by a x 的左、右焦点分别为F 1、F 2,线段F 1F 2被抛物线y 2=2bx 的焦点分成5:3两段,则此椭圆的离心率为( )A .1716B .17174 C .54D .552 5.椭圆31222y x +=1的一个焦点为F 1,点P 在椭圆上.如果线段PF 1的中点M 在y 轴上,那么点M 的纵坐标 A .±43B .±23 C .±22 D .±43 6.设F 1和F 2为双曲线-42x y 2=1的两个焦点,点P 在双曲线上,且满足∠F 1PF 2=90°,则△F 1PF 2的面积 A .1B .25C .2D .57.已知F 1、F 2是两个定点,点P 是以F 1和F 2为公共焦点的椭圆和双曲线的一个交点,并且PF 1⊥PF 2,e 1和e 2分别是椭圆和双曲线的离心率,则有 ( )A .221≥e eB .42221≥+e eC .2221≥+e eD .2112221=+e e8.已知方程1||2-m x +my -22=1表示焦点在y 轴上的椭圆,则m 的取值范围是( )A .m<2B .1<m<2C .m<-1或1<m<2D .m<-1或1<m<23 9.已知双曲线22a x -22b y =1和椭圆22m x +22by =1(a >0,m>b >0)的离心率互为倒数,那么以a 、b 、m 为边长的三角形是( ) A .锐角三角形B .直角三角形C .钝角三角形D .锐角或钝角三角形10.椭圆13422=+y x 上有n 个不同的点: P 1, P 2, …, P n , 椭圆的右焦点为F. 数列{|P n F|}是公差大于1001的等差数列, 则n 的最大值是 ( )A .198B .199C .200D .201 二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.已知点(-2,3)与抛物线y 2=2px (p >0)的焦点的距离是5,则p =___ __.12.设圆过双曲线16922y x -=1的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是 . 13.双曲线16922y x -=1的两个焦点为F 1、F 2,点P 在双曲线上,若PF 1⊥PF 2,则点P 到x 轴的距离为 . 14.若A 点坐标为(1,1),F 1是5x 2+9y 2=45椭圆的左焦点,点P 是椭圆的动点,则|PA|+|P F 1|的最小值是_______ ___.三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分).15.(12分)已知F 1、F 2为双曲线12222=-by a x (a >0,b >0)的焦点,过F 2作垂直于x 轴的直线交双曲线于点P ,且∠PF 1F 2=30°.求双曲线的渐近线方程.16.(12分)已知椭圆)0(12222>>=+b a by a x 的长、短轴端点分别为A 、B ,从此椭圆上一点M 向x 轴作垂线,恰好通过椭圆的左焦点1F ,向量AB 与OM 是共线向量. (1)求椭圆的离心率e ;(2)设Q 是椭圆上任意一点, 1F 、2F 分别是左、右焦点,求∠21QF F 的取值范围;17.(12分)如图椭圆12222=+bya x (a >b >0)的上顶点为A ,左顶点为B , F 为右焦点, 过F 作平行与AB 的直线交椭圆于C 、D 两点. 作平行四边形OCED, E 恰在椭圆上.(Ⅰ)求椭圆的离心率;(Ⅱ)若平行四边形OCED 的面积为6, 求椭圆方程.18.(12分)双曲线12222=-by a x (a >1,b >0)的焦距为2c,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥54c.求双曲线的离心率e 的取值范围.19.(14分)如图,直线l 1和l 2相交于点M ,l 1⊥l 2,点N ∈l 1.以A 、B 为端点的曲线段C 上的任一点到l 2的距离与到点N 的距离相等.若△AMN 为锐角三角形,|AM |=17,|AN |=3,且|BN |=6.建立适当的坐标系,求曲线段C 的方程20.(14分)已知圆C 1的方程为(x -2)2+(y -1)2=320,椭圆C 2的方程为22a x +22by =1(a >b >0),C 2的离心率为22,如果C 1与C 2相交于A 、B 两点,且线段AB 恰为圆C 1的直径,求直线AB 的方程和椭圆C 2的方程.参考答案图一、1.D ;解析一:将方程a 2x 2+b 2y 2=1与ax +by 2=0转化为标准方程:x b ay b y a x -==+22222,111.因为a >b>0,因此,ab 11>>0,所以有:椭圆的焦点在y 轴,抛物线的开口向左,得D 选项. 解析二:将方程ax +by 2=0中的y 换成-y ,其结果不变,即说明:ax +by 2=0的图形关于x 轴对称,排除B 、C ,又椭圆的焦点在y 轴.故选D.评述:本题考查椭圆与抛物线的基础知识,即标准方程与图形的基本关系.同时,考查了代数式的恒等变形及简单的逻辑推理能力.2.D ;解析:由双曲线方程判断出公共焦点在x 轴上,∴椭圆焦点(2253n m -,0),双曲线焦点(2232n m +,0),∴3m 2-5n 2=2m 2+3n 2∴m 2=8n 2又∵双曲线渐近线为y =±||2||6m n ⋅·x ∴代入m 2=8n 2,|m |=22|n |,得y =±43x . 3.C ;解析:抛物线y =ax 2的标准式为x 2=a 1y ,∴焦点F (0,a41). 取特殊情况,即直线PQ 平行x 轴,则p =q . 如图,∵PF =PM ,∴p =a21,故a p p p q p 421111==+=+. 4.D ;5.A ;解析:由条件可得F 1(-3,0),PF 1的中点在y 轴上,∴P 坐标(3,y 0),又P 在31222y x +=1的椭圆上得y 0=±23,∴M 的坐标(0,±43),故选A . 评述:本题考查了椭圆的标准方程及几何性质,中点坐标公式以及运算能力.6.A ;解法一:由双曲线方程知|F 1F 2|=25,且双曲线是对称图形,假设P (x ,142-x ),由已知F 1P ⊥F 2 P ,有151451422-=+-⋅--x x x x ,即1145221,52422=-⋅⋅==x S x ,因此选A . 评述:本题考查了双曲线的标准方程及其性质、两条直线垂直的条件、三角形面积公式以及运算能力. 7.D ; 8.D ; 9.B ; 10.C ; 二、11.4;解析:∵抛物线y 2=2px (p >0)的焦点坐标是(2p ,0),由两点间距离公式,得223)22(++p =5.解得p =4.12.316;解析:如图8—15所示,设圆心P (x 0,y 0),则|x 0|=2352+=+a c =4,代入16922y x -=1,得y 02=9716⨯,∴|OP |=3162020=+y x .评述:本题重点考查双曲线的对称性、两点间距离公式以及数形结合的思想. 13.516;解析:设|PF 1|=M ,|PF 2|=n (m >n ),a =3、b =4、c =5,∴m -n =6 m 2+n 2=4c 2,m 2+n 2-(m -n )2=m 2+n 2-(m 2+n 2-2mn )=2mn =4×25-36=64,mn =32. 又利用等面积法可得:2c ·y =mn ,∴y =516. 14.26-;三、15.解:(1)设F 2(c ,0)(c >0),P (c ,y 0),则2222b y a c -=1.解得y 0=±a b 2,∴|PF 2|=ab 2,在直角三角形PF 2F 1中,∠PF 1F 2=30°解法一:|F 1F 2|=3|PF 2|,即2c =ab 23,将c 2=a 2+b 2代入,解得b 2=2a 2解法二:|PF 1|=2|PF 2|,由双曲线定义可知|PF 1|-|PF 2|=2a ,得|PF 2|=2a .∵|PF 2|=a b 2,∴2a =a b 2,即b 2=2a 2,∴2=ab故所求双曲线的渐近线方程为y =±2x .16.解:(1)∵a b y c x c F M M 21,),0,(=-=-则,∴acb k OM 2-=.∵AB OM a b k AB 与,-=是共线向量,∴ab ac b -=-2,∴b =c,故22=e .(2)设1122121212,,,2,2,FQ r F Q r F QF r r a F F c θ==∠=∴+==22222221212122121212124()24cos 11022()2r r c r r r r c a a r r r r r r r r θ+-+--===-≥-=+当且仅当21r r =时,cos θ=0,∴θ]2,0[π∈.说明:由于共线向量与解析几何中平行线、三点共线等具有异曲同工的作用,因此,解析几何中与平行线、三点共线等相关的问题均可在向量共线的新情景下设计问题.求解此类问题的关键是:正确理解向量共线与解析几何中平行、三点共线等的关系,把有关向量的问题转化为解析几何问题.17.解:(Ⅰ) ∵焦点为F(c, 0), AB 斜率为a b , 故CD 方程为y=ab(x -c). 于椭圆联立后消去y 得2x 2-2c x -b 2=0. ∵CD 的中点为G(a bc c 2,2-), 点E(c, -a bc )在椭圆上, ∴将E(c, -abc)代入椭圆方程并整理得2c 2=a 2, ∴e=22=a c . (Ⅱ)由(Ⅰ)知CD 的方程为y=22(x -c), b =c, a =2c. 与椭圆联立消去y 得2x 2-2c x -c 2=0. ∵平行四边形OCED 的面积为 S=c|y C -y D |=22c D C D C x x x x 42-+)(=22c 6262222==+c c c , ∴c=2, a =2, b =2. 故椭圆方程为12422=+y x 18.解:直线l 的方程为bx +a y -ab =0.由点到直线的距离公式,且a >1,得到点(1,0)到直线l 的距离d 1 =22)1(ba ab +-.同理得到点(-1,0)到直线l 的距离d 2 =22)1(b a a b ++.s= d 1 +d 2=22b a ab +=cab2. 由s ≥54c,得cab 2≥54c,即5a 22a c -≥2c 2. 于是得512-e ≥2e 2.即4e 2-25e+25≤0.解不等式,得45≤e 2≤5. 由于e>1>0,所以e 的取值范围是525≤≤e . 19.解法一:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点.依题意知:曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一段,其中A 、B 分别为C 的端点. 设曲线段C 的方程为,y 2=2px (p >0),(x A ≤x ≤x B ,y >0) 其中x A 、x B 分别为A 、B 的横坐标,p =|MN |.所以M (2p -,0),N (2p,0) 由|AM |=17,|AN |=3得:(x A +2p )2+2px A =17①(x A 2p -)2+2px A =9 ②由①②两式联立解得x A =p 4,再将其代入①式并由p >0,解得⎩⎨⎧==14A x p 或⎩⎨⎧==22A x p因为△AMN 是锐角三角形,所以2p>x A ,故舍去⎩⎨⎧==22A x p所以p =4,x A =1.由点B 在曲线段C 上,得x B =|BN |2p-=4. 综上得曲线段C 的方程为y 2=8x (1≤x ≤4,y >0).解法二:如图建立坐标系,分别以l 1、l 2为x 、y 轴,M 为坐标原点.作AE ⊥l 1,AD ⊥l 2,BF ⊥l 2,垂足分别为E 、D 、F .设A (x A ,y A )、B (x B ,y B )、N (x N ,0) 依题意有x A =|ME |=|DA |=|AN |=3,y A =|DM |=22||||22=-DA AM由于△AMN 为锐角三角形,故有 x N =|ME |+|EN |=|ME |+22||||AE AN -=4,x B =|BF |=|BN |=6.设点P (x ,y )是曲线段C 上任一点,则由题意知P 属于集合 {(x ,y )|(x -x N )2+y 2=x 2,x A ≤x ≤x B ,y >0} 故曲线段C 的方程为y 2=8(x -2)(3≤x ≤6,y >0).评述:本题考查根据所给条件选择适当的坐标系,求曲线方程的解析几何的基本思想,考查了抛物线的概念和性质、曲线和方程的关系以及综合运用知识的能力. 20.由e=22,得a c =22,a 2=2c 2,b 2=c 2. 设椭圆方程为222b x +22by =1.又设A (x 1,y 1),B (x 2,y 2).由圆心为(2,1),得x 1+x 2=4,y 1+y 2=2.又2212b x +221b y =1,2222b x +222b y =1,两式相减,得 222212b x x -+22221b y y -=0.∴1)(221212121-=++-=--y y x x x x y y ∴直线AB 的方程为y -1= -(x -2),即y= -x +3.将y= -x +3代入222b x +22by =1,得3x 2-12x +18-2b 2=0又直线AB 与椭圆C 2相交,∴Δ=24b 2-72>0. 由|AB |=2|x 1-x 2|=2212214)(x x x x -+=3202,得2·372242-b =320. 解得 b 2=8,故所求椭圆方程为162x +82y =1.。
圆锥曲线单元测试题
圆 锥 曲 线 单 元 测 试 题四川省邻水中学(国家级示范高中) 特级教师 杨才荣 638500一、选择题 (每小题3分,共36分) .1、双曲线x a 22-y b22=1的两条渐近线互相垂直,则此双曲线的离心率是 ( ) (A)2 (B)2 (C)22 (D)32、方程mx 2+ny 2+mn=0 (m<n<0) 所表示的曲线的焦点坐标是 ( ) (A) (0,±-m n ) (B) (0,±-n m) (C) (±-m n ,0) (D) (±-n m,0) 3、椭圆)0(12222>>=+b a b y a x 与双曲线)(12222+∈=-R n m ny m x 、有公共焦点,P 是椭圆与双曲线的交点,则|PF 1|·|PF 2|的值为 ( )(A) a 2+m 2 (B) b 2-n 2 (C) a 2-m 2 或b 2+n 2 (D) a 2+m 2 或b 2-n 24、设x 2-y 2=4,则xy x -21的取值范围是 ( ) (A)(-∞,0)∪(0,+∞) (B)(-1,1)(C)(-8,45) (D)(-∞,-2)∪[2,+∞] 5、设双曲线的左、右焦点是F 1、F 2,左、右顶点为M 、N ,若△PF 1F 2的顶点P 在双曲线上,则△PF 1F 2的内切圆与边F 1F 2的切点位置 ( )(A)不能确定 (B)在线段MN 的内部(C)在线段F 1M 内部或在线段NF 2内部 (D)是点M 或点N6、方程11662222=--+-+k k y k k x 表示双曲线的必要但非充分条件是 ( )(A)21<k <2 (B)-3<k <-31 (C) 21<k <2 或-3<k <-31 (D)-3<k <2 7、直线x -y -1=0与实轴在y 轴上的双曲线x 2-y 2=m 的交点在以原点为中心,边长为2且边平行于坐标轴的正方形内部,那么m 的取值范围是 ( )(A) 0<m <1 (B) m >-1 (C) m <0 (D) -1<m <08、过点P(-3,-4)的直线与双曲线116922=-y x 有一个公共点,则直线l 的方程为 ( ) (A) 4x -3y=0 (B) 4x +3y +24=0(C) x +3=0 (D) x +3=0或4x +3y +24=09、双曲线1251622=-y x 的两条渐近线所夹的锐角是 ( ) (A) 45arctg (B) 45arctg -π (C) 245arctg (D) 452arctg -π 10、过点A(1,1)作双曲线1222=-y x 的弦MN ,使A 为MN 的中点,则直线MN 的方程是 ( ) (A) 2x -y -1=0 (B )x -2y +1=0(C) 2x +y -3=0 (D) 不存在11、焦点在x 轴上,实轴长为8,一条渐近线方程是3x -2y=0的双曲线的标准方程是 ( ) (A) 191622=-y x (B) 11441622=-y x (C) 1361622=-y x (D) 1163622=-y x 12、以椭圆)0(12222>>=+b a by a x 的顶点为焦点、焦点为顶点的双曲线方程为 ( ) (A) 12222=-by a x (B) 122222=--b y b a x(C) 122222=--b a y a x (D) 12222=-ay b x 二、填空题(每小题4分,共24分).13、双曲线离心率为2,则渐近线夹角为________。
圆锥曲线测试题(含答案)
圆锥曲线测试题姓名:__________班级:__________考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、单项选择1. 如果方程121||22=---m y m x 表示双曲线,那么实数m 的取值范围是( )A. 2>mB. 1<m 或2>mC. 21<<-mD. 11<<-m 或2>m 【答案】D 【解析】2. 若双曲线22221x y a b-=则其渐近线方程为( )A .y=±2xB .y=C .12y x =±D .y x = 【答案】B 【解析】3. 如图,1F 、2F 是椭圆221:14x C y +=与双曲线2C 的公共焦点,A 、B 分别是1C 、2C 在第二、四象限的公共点,若四边形12AF BF 为矩形,则2C 的离心率是( )A . BC .32D【答案】D 【解析】4. 已知直线l 与抛物线y 2=8x 交于A 、B 两点,且l 经过抛物线的焦点F ,A 点的坐标为(8,8),则线段AB 的中点到准线的距离是( ) A .254 B .252C .174D .25【答案】A 【解析】5. 已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,若在双曲线的右支上存在一点P ,使得123PF PF =,则双曲线的离心率e 的取值范围是( )A .)+∞B .[)2,+∞C .(D . (]1,2【答案】D 【解析】6. 已知双曲线的顶点与焦点分别是椭圆的22221y x a b+=(0a b >>)焦点与顶点,若双曲线的两条渐近线与椭圆的交点构成的四边形恰为正方形,则椭圆的离心率为( ) A .13 B .12C .【答案】D 【解析】7. 已知抛物线:的焦点与双曲线:的右焦点的连线交于第一象限的点, 若在点处的切线平行于的一条渐近线,则( )A.B.C.D.【答案】D【解析】 由已知可得抛物线的焦点,双曲线的右焦点为,两个点连线的直线方程为。
圆锥曲线考试试卷(有详解)
.
三、解答题(共 6 小题;共 78 分)
17. 已知曲线 ������: (3 − ������)������2 + 2������������2 = ������(3 − ������)(������ ∈ ������) 是焦点在 ������ 轴上的椭圆,求实数 ������ 的取值 范围.
18. 若抛物线 ������2 = −2������������(������ > 0) 上一点 ������ 的横坐标为 −9,它到焦点的距离为 10,求抛物线的方
圆锥曲线考试试卷
一、选择题(共 12 小题;共 60 分)
1. 抛物线 ������ = − 1 ������2 的准线方程是 ( )
8
A.
������
=
1 32
B. ������ = 2
C.
�����
=
1 32
D. ������ = −2
2. 若抛物线 ������2 = 2������������ 的焦点与椭圆 ������2 + ������2 = 1 的右焦点重合,则 ������ 的值为 ( )
21.
已知双曲线与椭圆
������2 9
+ ������2
6
=
1
有相同的焦点
������1,������2,且两曲线的一个公共点
������
满足:△
������������1������2
是直角三角形且 ∠������1������������2 = 60∘,求双曲线的标准方程.
22. 如图,已知双曲线 ������ 的两条渐近线过坐标原点,一个顶点 ������(0, √2),且渐近线与以点 ������(√2, 0)
高二数学圆锥曲线测试题以及详细答案(完整资料).doc
即A、B的坐标分别为(-1,0)和(3,4)
由CD垂直平分AB,得直线CD的方程为y=-(x-1)+2,即 y=3-x ,代入双曲线方程,整理,
得 x2+6x-11=0②
记C(x3,y3),D(x4,y4),以及CD中点为M(x0,y0),则x3、x4是方程②的两个的实数根,所以
A. B. C. D.
6.双曲线 离心率为2,有一个焦点与抛物线 的焦点重合,则mn的值为()
A. B. C. D.
7.若双曲线 的左焦点在抛物线y2=2px的准线上,则p的值为 ()
(A)2(B)3(C)4(D)4
8.如果椭圆 的弦被点(4,2)平分,则这条弦所在的直线方程是( )
A B C D
9、无论 为何值,方程 所表示的曲线必不是( )
20在平面直角坐标系 中,点P到两点 , 的距离之和等于4,设点P的轨迹为 .(Ⅰ)写出C的方程;
(Ⅱ)设直线 与C交于A,B两点.k为何值时 ?此时 的值是多少?
21.A、B是双曲线x2- =1上的两点,点N(1,2)是线段AB的中点
(1)求直线AB的方程;
(2)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
(Ⅱ)设 ,其坐标满足
消去y并整理得 , 故 .
,即 . 而 ,
于是 .
所以 时, ,故 .
当 时, , .
,
而 ,
所以 .
21A、B是双曲线x2- =1上的两点,点N(1,2)是线段AB的中点
(1)求直线AB的方程;
(2)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
圆锥曲线测试卷(含解析)
(1)求椭圆 ������ 的焦距;
(2)如果 ���⃗⃗���⃗⃗���⃗⃗���⃗2⃗ = 2���⃗⃗���⃗2⃗⃗⃗���⃗⃗���,求椭圆 ������ 的方程.
20.
设椭圆
������:
������2 ������2
+
������2 ������2
=
1(������
>
������
>
0)
的右焦点为
2019 年 12 月 5 日数学试卷
一、选择题【1-8 单选】【9-12 多选】
1. 设 ���⃗���,���⃗⃗��� 是非零向量,“ ���⃗��� ⋅ ���⃗⃗��� = ∣���⃗���∣∣∣���⃗⃗���∣∣ ”是“ ���⃗���∥���⃗⃗��� ”的 ( )
A. 充分而不必要条件
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件
3.
曲线
������1:
������2 ������
+
������2 ������
=
1(������
>
������
>
0),曲线
������2:
������2 ������
−
������2 ������
=
1(������
>
.
三、解答题
17. 平面直角坐标系 ������������������ 中,点 ������(−2,0),������(2,0),直线 ������������,������������ 相交于点 ������,且它 们的斜率之积是 − 3.
圆锥曲线综合测试题(含答案)
圆锥曲线综合测试题一、选择题(每题5分)1、双曲线x 2-5y 2=0的焦距为( ) A.6 B.26 C.23 D.432、顶点在原点,且过点(-4,4)的抛物线的标准方程是( )A.y 2=-4xB.x 2=4yC. y 2=-4x 或x 2=4yD.y 2=4x 或x 2=-4y3、若椭圆19222=+m y x (m>0)的一个焦点坐标为(1,0),则m 的值为( ) A.5 B.3 C.23 D.224、已知方程11122=--+ky k x 表示双曲线,则k 的取值范围是( ) A.-1<k<1 B.k>0 C.k ≥0 D.k>1或k<-15、已知双曲线15222=-y a x 的右焦点为(3,0)则该双曲线的离心率为( ) A.14143 B.423 C.23 D.34 6、如果点P (2,y 0)在以点F 为焦点的抛物线y 2=4x 上,则PF=( )A.1B.2C.3D.47、双曲线12222=-b y a x 与椭圆12222=+by m x (a >0,m>b>0)的离心率互为倒数,那么以a 、b 、m 为边长的三角形一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形8、已知椭圆E 的中心在坐标原点,离心率为21,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则AB=( )A.3B.6C.9D.129、已知双曲线12222=-by a x (a >0,b>0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点,若双曲线的离心率为2,∆AOB 的面积为3,则p=( )A.1B.23 C.2 D.3 10、已知F 1,F 2为椭圆191622=+y x 的两个焦点,过点F 2的直线交椭圆与A ,B 两点,在∆A F 1B 中,若有两边之和等于10,则第三边的长度为( )A.6B.5C.4D.311、已知动圆P 过定点A (-3,0),并且与定圆B :(x -3)2+y 2=64内切,则动圆的圆心P 的轨迹是( )A.线段B.直线C.圆D.椭圆12、若直线mx +ny=4与圆O: x 2+y 2=4没有交点,则过点P(m ,n)的直线与椭圆14922=+y x 的交点个数为( )A.至多一个B.2C.1D.0二、填空题(每题5分)13、抛物线x 2=4y 上一点P 到焦点的距离为3,则点P 到y 轴的距离为 。
(完整版)圆锥曲线大题综合测试(含详细答案)
圆锥曲线1.设椭圆222:12x y M a +=(a >的右焦点为1F ,直线2:22-=a a x l 与x 轴交于点A ,若112OF F A =u u u r u u u r(其中O为坐标原点).(1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆()12:22=-+y x N 的任意一条直径(E 、F 为直径的两个端点),求⋅的最大值.2 . 已知椭圆E :()222210x y a b a b +=>>的一个焦点为()1F ,而且过点12H ⎫⎪⎭.(Ⅰ)求椭圆E 的方程;(Ⅱ)设椭圆E 的上下顶点分别为12,A A ,P 是椭圆上异于12,A A 的任一点,直线12,PA PA 分别交x 轴于点,N M ,若直线OT 与过点,M N 的圆G 相切,切点为T .证明:线段OT 的长为定值,并求出该定值.3、已知圆O:222=+y x 交x 轴于A,B 两点,曲线C 是以AB 为长轴,离心率为22的椭圆,其左焦点为F,若P 是圆O上一点,连结PF,过原点O 作直线PF 的垂线交直线x=-2于点Q.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若点P 的坐标为(1,1),求证:直线PQ 与圆O 相切; (Ⅲ)试探究:当点P 在圆O 上运动时(不与A 、B 重合),直线PQ 与圆O 是否保持相切的位置关系?若是,请证明;若不是,请说明理由.4设)0(1),(),,(22222211>>=+b a b x x y y x B y x A 是椭圆上的两点,满足0),(),(2211=⋅a y b x a y b x ,椭圆的离心率,23=e 短轴长为2,0为坐标原点.(1)求椭圆的方程; (2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值;(3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.5 、直线l :y = mx + 1,双曲线C :3x 2 - y 2 = 1,问是否存在m 的值,使l 与C 相交于A , B 两点,且以AB 为直径的圆过原点6 已知双曲线C :22221(0,0)x y a b a b-=>>的两个焦点为F 1(-2,0),F 2(2,0),点P 在曲线C 上。
圆锥曲线测试题
圆锥曲线测试题(测试时间90分钟,满分100分一、选择题(每题5分,共40分)1. 已知△ABC的顶点B、C在椭圆x3+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()A. 2 3B. 6C. 4 3D. 122. 已知双曲线2239x y-=,则双曲线右支上的点P到右焦点的距离与点P到右准线的距离之比等于()B.3C. 2D. 43. 方程22520x x-+=的两个根可分别作为()A.一椭圆和一双曲线的离心率B.两抛物线的离心率C.一椭圆和一抛物线的离心率D.两椭圆的离心率4. 若抛物线22y px=的焦点与椭圆22162x y+=的右焦点重合,则p的值为()A.2- B.2 C.4- D.45. 平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A.B为焦点的椭圆”,那么()A.甲是乙成立的充分不必要条件B.甲是乙成立的必要不充分条件C.甲是乙成立的充要条件 D.甲是乙成立的非充分非必要条件6. 已知双曲线x2a2-y2b2=1的一条渐近线方程为y=43x,则双曲线的离心率为()A.53 B.43 C.54 D.327. 曲线221(6)106x ymm m+=<--与曲线221(59)59x ymm m+=<<--的()A.焦距相等 B.离心率相等 C.焦点相同 D.准线相同8.已知双曲线)0,0(12222>>=-babyax的实轴长、虚轴长、焦距长成等差数列,则双曲线的离心率e为 ( )A.2 B.3 C.43 D.53二、填空题(每题4分,共20分)。
9.焦点在直线01243=--yx上,且顶点在原点的抛物线标准方程为_____ ___。
10. 双曲线221mx y+=的虚轴长是实轴长的2倍,则m=。
11. 与椭圆22143x y+=具有相同的离心率且过点(2,_____ ___ 。
完整版)圆锥曲线综合练习题(有答案)
完整版)圆锥曲线综合练习题(有答案)圆锥曲线综合练1.已知椭圆 $x^2/a^2+y^2/b^2=1$ 的长轴在 $y$ 轴上,焦距为 4,则 $m$ 等于()A。
4B。
5C。
7D。
82.直线 $x-2y+2=0$ 经过椭圆$x^2/a^2+y^2/b^2=1(a>b>0)$ 的一个焦点和一个顶点,则该椭圆的离心率为frac{\sqrt{5}}{2}3.设双曲线 $x^2/a^2-y^2/b^2=1(a>0)$ 的渐近线方程为$3x\pm 2y=0$,则 $a$ 的值为24.若 $m$ 是 2 和 8 的等比中项,则圆锥曲线$x^2/a^2+y^2/b^2=1$ 的离心率是frac{\sqrt{5}}{2}5.已知双曲线 $x^2/a^2-y^2/b^2=1(a>b>0)$,$N$ 两点,$O$ 为坐标原点,过其右焦点且垂直于实轴的直线与双曲线交于 $M$ 点。
若 $OM\perp ON$,则双曲线的离心率为frac{\sqrt{5}+1}{2}6.已知点$F_1,F_2$ 是椭圆$x^2/2+y^2/2=1$ 的两个焦点,点 $P$ 是该椭圆上的一个动点,则 $|PF_1+PF_2|$ 的最小值是sqrt{2}7.双曲线 $x^2/a^2-y^2/b^2=1$ 上的点到一个焦点的距离为 12,则到另一个焦点的距离为2\sqrt{5}8.$P$ 为双曲线 $x^2/a^2-y^2/b^2=1$ 的右支上一点,$M$,则 $|PM|-|PN|$ 分别是圆 $(x+5)^2+y^2=4$ 和 $(x-5)^2+y^2=1$ 上的点,的最大值为99.已知点 $P(8,a)$ 在抛物线 $y^2=4px$ 上,且 $P$ 到焦点的距离为 10,则焦点到准线的距离为210.在正三角形 $ABC$ 中,$D\in AB$,$E\in AC$,$\overrightarrow{DE}=\overrightarrow{BC}$,则以 $B$,$C$ 为焦点,且过 $D$,$E$ 的双曲线离心率为frac{3+\sqrt{5}}{2}11.两个正数 $a$,$b$ 的等差中项是 $5$,一个等比中项是 $25$,且 $a>b$,则抛物线 $y^2=-x$ 的焦点坐标是left(-\frac{5\sqrt{21}}{21},0\right)12.已知 $A_1$,$A_2$ 分别为椭圆$x^2/a^2+y^2/b^2=1(a>b>0)$ 的左右顶点,椭圆 $C$ 上异于$A_1$,$A_2$ 的点 $P$ 恒满足 $k\cdot PA_1\cdot k\cdotPA_2=-1$,则椭圆 $C$ 的离心率为frac{3}{5}13.已知椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的左、右焦点分别为 $F_1,F_2$,点 $A$ 在第一象限内且在椭圆上,点 $B$ 也在椭圆上。
高中数学——圆锥曲线试卷试题精选含含答案
.高考圆锥曲线试题优选一、选择题:(每题5 分,计 50 分)1、 (2008 海南、宁夏文 ) 双曲线x 2y21 的焦距为()1022B. 4 2C. 33D. 43(全国卷Ⅰ文、理)椭圆x 22的两个焦点为 1 、 2,过 1 作垂直于 x轴的2. 20044y1FFF直线与椭圆订交,一个交点为P ,则 | PF 2|= ()3B . 37A .C .D . 4223.( 2006 辽宁文) 方程 2x25x2 0的两个根可分别作为()A.一椭圆和一双曲线的离心率B.两抛物线的离心率C.一椭圆和一抛物线的离心率D.两椭圆的离心率4.( 2006 四川文、理)直线y=x-3 与抛物线 y 24x 交于 A 、 B 两点,过A 、B 两点向抛物线的准线作垂线,垂足分别为P 、 Q,则梯形 APQB 的面积为()( A ) 48.( B )56(C )64( D )72.5.(2007 福建理 )以双曲线x 2y 21的右焦点为圆心,且与其渐近线相切的圆的方程是916()A.B.C .D.6.( 2004 全国卷Ⅳ理)已知椭圆的中心在原点,离心率e1,且它的一个焦点与抛物线y224x 的焦点重合,则此椭圆方程为()A . x2y21B . x 2 y 21 C . x2y21D. x2y21438 6247.( 2005 湖北文、理)x 2y21(mn 0)离心率为2 ,有一个焦点与抛物线双曲线y2mn4x 的焦点重合,则mn 的值为()A .3B .3C .16D . 8168x2338. (2008重庆文 )若双曲线16 y 21 的左焦点在抛物线y2=2 px 的准线上,则p的值为3p2()(A)2(B)3(C)4(D)429.( 2002 北京文)已知椭圆x 2y2和双曲线x2y 2有公共的焦点,那么3m25n212m23n21双曲线的渐近线方程是()A.x 15y B .y15x C.x3y D.y3x 2244..10 .( 2003 春招北京文、 理)在同一坐标系中,x 2y 2与方程2a 2b21 axby0(a b 0)的曲线大概是( )yyyyOOOOxxxxAB C D二、填空题:(每小题 5 分,计 20 分)11. ( 2005上海文) 若椭圆长轴长与短轴长之比为 2 ,它的一个焦点是2 15,0 ,则椭圆的标准方程是_________________________12 . (2008 江西文 ) 已知双曲线x 2y 23a2b21(a 0, b 0)的两条渐近线方程为y3若极点到渐近线的距离为1 ,则双曲线方程为.x ,x 2y 21的中心为极点,且以该双曲线的右焦点为焦点的13. ( 2007 上海文) 以双曲线45抛物线方程是.y x.14.( 2008 )y24x的焦点对于直线对称 直线天津理 已知圆 C 的圆心与抛物线4x3y 2 0 与圆 C 订交于 A, B两点,且AB6 ,则圆 C 的方程为.三、解答题:( 15 —18题各 13 分, 19 、 20 题各 14 分)x 2y 21(ab0)的两个焦点为 F 1,F 2,点 P 在椭圆 C 上,15. ( 2006 北京文) 椭圆 C:b2a2且 PF 1F 1F 2 ,| PF 1 |414 .,| PF 2 |(Ⅰ)求椭圆 C 的方程;33(Ⅱ)若直线 l 过圆 x 2+y 2+4x-2y=0 的圆心 M,交椭圆 C 于 A,B 两点 , 且 A 、 B 对于点 M 对称 ,求直线 的方程 .l .16 .( 2005 重庆文)已知中心在原点的双曲线 C 的右焦点为(2,0 ),右极点为(3,0) ..( 1)求双曲线 C 的方程;(2)若直线l : y kx 2 与双曲线 C 恒有两个不同的交点 A 和 B,且OA OB 2 (此中O 为原点) . 求 k 的取值范围.17. (2007安徽文 )设是抛物线: 2=4 的焦点 .F G xy(Ⅰ)过点P( 0 , -4 )作抛物线G 的切线,求切线方程:(Ⅱ)设、为抛物线上异于原点的两点,且知足 FA·FB0,延伸、分别交抛物线A B G AF BFG 于点 C ,D,求四边形ABCD 面积的最小值.18 .(2008辽宁文)在平面直角坐标系xOy 中,点P到两点 (0,3) , (0 , 3) 的距离之和等于 4 ,设点P 的轨迹为 C .(Ⅰ )写出 C 的方程;..(Ⅱ)设直线y kx 1 与C交于A,B两点.k为何值时OA OB?此时AB 的值是多少?..2y19. ( 2002 广东、河南、江苏) A 、B 是双曲线x2-=1上的两点,点N(1,2) 是线段AB2的中点(1)求直线 AB 的方程;(2) 假如线段AB 的垂直均分线与双曲线订交于C、 D 两点,那么A、 B、 C 、 D 四点能否共圆?为何?20. ( 2007福建理)如图,已知点F( 1, 0),直线l :x=- 1 ,P 为平面上的动点,过P 作直线 l 的垂线,垂足为点Q,且=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线章末测试(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求)1.已知A (0,-5),B (0,5),|P A |-|PB |=2a (a >0),当a =3和5时,点P 的轨迹为( )A .双曲线和一条直线B .双曲线和两条射线C .双曲线的一支和一条直线D .双曲线的一支和一条射线解析:当2a <|AB |时,表示双曲线的一支;当2a =|AB |时,表示一条射线. 答案:D2.抛物线y =4x 2的准线方程是( )A .x =1B .x =-1C .y =116D .y =-116解析:由抛物线方程x 2=14y ,可知抛物线的准线方程是y =-116.答案:D3.如果方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是( )A .a >3B .a <-2C .a >3或a <-2D .a >3或-6<a <-2答案:D4.已知双曲线kx 2-y 2=1的一条渐近线与直线2x +y +1=0垂直,则双曲线的离心率是( )A.52B.32C. 3D.5解析:由题意知,渐近线方程为kx ±y =0,所以k =14,所以e =52.答案:A5.已知焦点在x 轴上的椭圆的离心率为12,且它的长轴长等于圆C :x 2+y 2-2x -15=0的半径,则椭圆的标准方程是( )A.x 24+y 23=1 B.x 216+y 212=1 C.x 24+y 2=1 D.x 216+y 24=1解析:由x 2+y 2-2x -15=0,知r =4=2a ⇒a =2. 又e =c a =12,c =1,b =3,椭圆方程为x 24+y 23=1.答案:A6.若以椭圆上一点和两个焦点为顶点的三角形面积的最大值为1,则椭圆长轴的最小值为( )A .1 B.2 C .2D .22解析:设椭圆x 2a 2+y 2b 2=1(a >b >0),则三角形面积最大时,三角形在椭圆上的顶点为椭圆短轴的端点,所以S =12×2c ×b =bc =1≤b 2+c 22=a 22.所以a 2≥2.所以a ≥ 2.所以长轴长2a ≥22,故选D. 答案:D7.已知点P 是双曲线x 29-y 216=1右支上的一点,点M ,N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM |-|PN |的最大值为( )A .6B .7C .8D .9答案:D8.直线y =kx +1与椭圆x 25+y 2m=1总有公共点,则m 的取值范围是( )A .m >1B .m ≥1或0<m <1C .m ≥1且m ≠5D .0<m <5且m ≠1 解析:直线y =kx +1过定点(0,1),只需该点落在椭圆内或椭圆上,所以025+1m ≤1,解得m ≥1.又m ≠5,故选C.答案:C9.中心在原点,实轴在x 轴上,一个焦点在直线3x -4y +18=0上的等轴双曲线的方程为( )A .x 2-y 2=6B .x 2-y 2=-6C .x 2-y 2=18D .x 2-y 2=-18解析:依据题意可知双曲线的一个焦点为(-6,0),又因为双曲线为等轴双曲线,所以2a 2=36,a 2=18,所以双曲线的方程为x 2-y 2=18.故选C.答案:C10.已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为145,则双曲线的方程是( )A.x 212-y 24=1 B.x 24-y 212=1 C .-x 212+y 24=1D .-x 24+y 212=1解析:因为椭圆x 29+y 225=1的焦点为(0,±4),离心率e =45,所以双曲线的焦点为(0,±4),离心率为145-45=105=2,所以c =4,ca =2,所以a =2,所以a 2=4,b 2=c 2-a 2=12.所以双曲线方程为y 24-x 212=1.答案:C11.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足,如果直线AF 的斜率为-3,那么|PF |等于( )A .4 3B .8C .8 3D .16解析:由抛物线方程y 2=8x ,可得准线l :x =-2,焦点F (2,0),设点A (-2,n ), 所以-3=n -0-2-2,所以n =4 3.所以P 点纵坐标为4 3. 由(43)2=8x ,得x =6, 所以P 点坐标为(6,43),所以|PF |=|P A |=|6-(-2)|=8,故选B. 答案:B12.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交抛物线C 于A ,B 两点,则|AB |=( )A.303B .6C .12D .73答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.设集合A =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪x 24+y 216=1,B ={(x ,y )|y =2x },则A ∩B 的子集的个数是________.解析:因为集合A =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪x 24+y 216=1,B ={(x ,y )|y =2x },且(0,1)在椭圆内,所以两曲线有两个交点,所以A ∩B 有两个元素,所以A ∩B 的子集的个数是22=4. 答案:414.设F 1,F 2分别是双曲线x 2-y 29=1的左、右焦点,若点P 在双曲线上,且PF 1→·PF 2→=0,则|PF 1→+PF 2→|=________.答案:21015.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为________.解析:设椭圆的长半轴为a , 由2a =12知a =6, 又e =c a =32,故c =33,所以b 2=a 2-c 2=36-27=9. 所以椭圆G 的标准方程为x 236+y 29=1.答案:x 236+y 29=116.椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c ,若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.解析:由直线方程y =3(x +c )⇒直线与x 轴的夹角为π3,且过点F 1(-c ,0),因为∠MF 1F 2=2∠MF 2F 1,且三角形内角和为π,所以∠MF 2F 1<π3,所以∠MF 1F 2=2∠MF 2F 1=π3,所以∠MF 2F 1=π6,所以∠F 1MF 2=π2,所以F 1M ⊥F 2M ,所以在Rt △F 1MF 2中,F 1F 2=2c ,F 1M =c ,F 2M =3c , 所以由椭圆的定义可得2a =c +3c , 所以c a =21+3=3-1.答案:3-1三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分)椭圆的两个焦点的坐标分别为F 1(-2,0),F 2(2,0),且椭圆经过点⎝⎛⎭⎫52,-32.(1)求椭圆标准方程;(2)求椭圆长轴长、短轴长、离心率.解:(1)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),则2a =⎝⎛⎭⎫52+22+⎝⎛⎭⎫-322+⎝⎛⎭⎫52-22+⎝⎛⎭⎫-322= 210,即a =10,又因为c =2,所以b 2=a 2-c 2=6, 故椭圆的标准方程为x 210+y 26=1.(2)由(1)得:椭圆的长轴长为210,短轴长为26,离心率e =210=105.18.(本小题满分12分)设双曲线C :x 2a 2-y 2=1(a >0)与直线l :x +y =1相交于两个不同的点A ,B .求双曲线C 的离心率e 的取值范围.解:由双曲线C 与直线l 相交于两个不同的点,知方程组 ⎩⎪⎨⎪⎧x 2a 2-y 2=1,x +y =1,有两个不同的实数解. 消去y 并整理,得(1-a 2)x 2+2a 2x -2a 2=0.所以⎩⎪⎨⎪⎧1-a 2≠0,4a 4+8a 2(1-a 2)>0.解得0<a <2且a ≠1.所以双曲线的离心率e =1+a 2a =1a 2+1. 因为0<a <2且a ≠1,所以e >62且e ≠ 2. 故离心率e 的取值范围为⎝⎛⎭⎫62,2∪(2,+∞). 19.(本小题满分12分)已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,右焦点为(22,0),斜率为1的直线l 与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(1)求椭圆G 的方程; (2)求△P AB 的面积.解:(1)由已知得c =22,c a =63.解得a =23,又b 2=a 2-c 2=4. 所以椭圆G 的方程为x 212+y 24=1.(2)设直线l 的方程为y =x +m .由⎩⎪⎨⎪⎧y =x +m ,x 212+y 24=1,得4x 2+6mx +3m 2-12=0.① 设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2)(x 1<x 2), AB 中点为E (x 0,y 0),则x 0=x 1+x 22=-3m 4,y 0=x 0+m =m 4;因为AB 是等腰△P AB 的底边,所以PE ⊥AB .所以PE 的斜率k =2-m4-3+3m 4=-1.解得m =2.此时方程①为4x 2+12x =0.解得x 1=-3,x 2=0.所以y 1=-1,y 2=2. 所以|AB |=3 2.此时,点P (-3,2)到直线AB :x -y +2=0的距离d =|-3-2+2|2=322,所以△P AB 的面积S =12|AB |·d =92.20.(本小题满分12分)已知F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,O 为坐标原点,点P ⎝⎛⎭⎫-1,22在椭圆上,且PF 1→·F 1F 2→=0,⊙O 相切,并且与椭圆交于不同的两点A ,B .(1)求椭圆的标准方程;(2)当OA →·OB →=23时,求k 的值.解:(1)依题意,可知PF 1⊥F 1F 2,所以c =1. 把点P 的坐标代入椭圆方程,得1a 2+12b 2=1,又因为a 2=b 2+c 2, 解得a 2=2,b 2=1,c 2=1.所以椭圆的标准方程为x 22+y 2=1. (2)直线l :y =kx +m 与⊙O :x 2+y 2=1相切,则|m |k 2+1=1, 即m 2=k 2+1.由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +m 得(1+2k 2)x 2+4kmx +2m 2-2=0.因为直线l 与椭圆交于不同的两点A ,B , 设A (x 1,y 1),B (x 2,y 2),所以x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-21+2k 2=2k 21+2k 2,y 1y 2=(kx 1+m )(kx 2+m )=1-k 21+2k 2,所以OA →·OB →=x 1x 2+y 1y 2=1+k 21+2k 2=23,所以k =±1.21.(本小题满分12分)如图所示,已知直线l :y =kx -2与抛物线C :x 2=-2py (p >0)交于A ,B 两点,O 为坐标原点,OA →+OB →=(-4,-12).(1)求直线l 和抛物线C 的方程;(2)抛物线上一动点P 从点A 到点B 运动时,求△ABP 面积的最大值.解:(1)由⎩⎪⎨⎪⎧y =kx -2,x 2=-2py得x 2+2pkx -4p =0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk , y 1+y 2=k (x 1+x 2)-4=-2pk 2-4.因为OA →+OB →=(x 1+x 2,y 1+y 2)=(-2pk ,-2pk 2-4)=(-4,-12),所以⎩⎪⎨⎪⎧-2pk =-4,-2pk 2-4=-12,解得⎩⎪⎨⎪⎧p =1,k =2. 所以直线l 的方程为y =2x -2, 抛物线C 的方程为x 2=-2y .(2)设点P (x 0,y 0),依题意,抛物线过点P 的切线与直线l 平行时,△ABP 的面积最大.设切线方程是y =2x +t ,由⎩⎪⎨⎪⎧y =2x +t ,x 2=-2y 得x 2+4x +2t =0,所以Δ=42-4×2t =0,所以t =2. 此时,点P 到直线l 的距离为两平行线间的距离,d =|2+2|5=455.由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y 得x 2+4x -4=0,|AB |=1+k 2·(x 1+x 2)2-4x 1·x 2= 1+22×(-4)2-4×(-4)=410. 所以△ABP 面积的最大值为12×410×455=8 2.22.(本小题满分12分)过抛物线C :x 2=2py (p >0)的焦点F 作直线l 与抛物线C 交于A 、B 两点,当点A 的纵坐标为1时,|AF |=2.(1)求抛物线C 的方程.(2)若直线l 的斜率为2,问抛物线C 上是否存在一点M ,使得MA ⊥MB ?并说明理由. 解:(1)由抛物线的定义得|AF |等于点A 到准线y =-p 2的距离,所以1+p2=2,所以p =2,所以抛物线C 的方程为x 2=4y .(2)抛物线C 的焦点为F (0,1),直线l 的方程y =2x +1, 设点A 、B 、M 的坐标分别为⎝⎛⎭⎫x 1,x 214、⎝⎛⎭⎫x 2,x 224、⎝⎛⎭⎫x 0,x 204,由方程组⎩⎪⎨⎪⎧x 2=4y ,y =2x +1,消去y 得:x 2=4(2x +1),即x 2-8x -4=0,由韦达定理得x 1+x 2=8,x 1x 2=-4. 因为MA ⊥MB ,所以MA →·MB →=0, 所以(x 1-x 0)(x 2-x 0)+⎝⎛⎭⎫x 214-x 204⎝⎛⎭⎫x 224-x 204=0,所以(x 1-x 0)(x 2-x 0)+116(x 1-x 0)(x 2-x 0)(x 1+x 0)(x 2+x 0)=0.因为M 不与A ,B 重合,所以(x 1-x 0)(x 2-x 0)≠0, 所以1+116(x 1+x 0)(x 2+x 0)=0,x 1x 2+(x 1+x 2)x 0+x 20+16=0,所以x 20+8x 0+12=0,因为Δ=64-48>0,所以方程x 20+8x 0+12=0有解,即抛物线C 上存在一点M ,使得MA⊥MB.。