2014年迎春杯五年级初赛试题及答案

合集下载

第15届北京市“迎春杯”竞赛试题

第15届北京市“迎春杯”竞赛试题

第15届”迎春杯”小学数学竞赛初赛一、填空题I:1. 计算:_______.________.2. 计算:99*(5/8)-0.625*68+6.25*0.1=3. 如右图,长方形ABCD的长为6厘米,宽为2厘米。

经过点A做一条线段AE把长方形分成两部分,一部分是直角三角形,另一部分是梯形.如果梯形的面积是直角三角形面积的3倍,则,梯形的周长与直角三角形周长的差是________厘米.4. 已知A,B,C,D和A+C,B+C,B+D,D+A分别表示1至8这八个自然数,且互不相等.如果A是A,B,C,D这四个数中最大的一个数,那么A是________.5. 有甲、乙两只手表,甲表每小时比乙表快2分钟,乙表每小时比标准时间慢2分钟.请你判断,甲表是否准确?________.(只填写¡°是¡±或¡°否¡±)6. 已知2008被一些自然数去除,得到的余数都是10.这些自然数共有______个.二、填空题II:7. 求满足下面等式的方框中的数:,□=________.8. 某种商品,如果进价降低10%,售价不变,那么毛利率(毛利率=)可增加12%,则原来这种商品售出的毛利率是________.9. 如右图,正方形DEOF在四分之一圆中,如果圆的半径为1厘米,那么,阴影部分的面积是________平方厘米.( 取3.14.)10. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到达C地.那么,乙车出发后________分钟时,甲车就超过乙车.11. 下面方阵中所有数的和是________.12. 把1,2.3,4,5,6,7.8,9按另一种顺序填在下表的第二行的空格中,使得每两个上、下对齐的数的和都是平方数.三、解答题:13. 甲、乙两辆清洁车执行车、西城间的公路清扫任务.甲车单独清扫需10小时,乙车单独清扫需15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米.问:东、西两城相距多少千米?14. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么,最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?(要求给出一种方案)。

北京市第13届迎春杯竞赛初赛试题

北京市第13届迎春杯竞赛初赛试题

北京市第13届迎春杯竞赛初赛试题一、填空题(每小题满分7分,共42分)1.计算:= 。

2.计算:1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19= 。

3.服装厂接到加工一批服装的任务,王师傅每天可以制作3套服装,李师傅每天可以制作5套服装。

如果王师傅单独完成制作这批服装的任务,比李师傅单独完成制作这批服装的任务要多用4天。

那么,要加工的这批服装共有套。

4.在田径运动场上,甲、乙、丙三人沿400米环行跑道进行800米跑比赛。

当甲跑完1圈时,乙比甲多跑圈,丙比甲少跑圈。

如果他们各自跑步的速度始终不变,那么当乙到达终点时,丙离终点还有米。

5.已知下列两个算式中,相同的字母代表相同的数字,不同的字母代表不同的数字。

那么,满足下列算式的A+B+C+D+E= 。

6.有一张等腰直角三角形的纸片,沿它的斜边上的高把这个三角形对折;再沿斜边上的高把它对折,这时,得到一个直角边的边长是2厘米的等腰直角三角形(如图中的阴影部分),那么,原来的等腰直角三角形纸片的面积是平方厘米。

二、填空题(每小题满分6分,共36分)1.在下面(1)、(2)、(3)这三算式中,各有一个□,请你指出,在第个算式中的2.在一张四边形的纸上共有10个点,如果把四边形的顶点算在一起,则一共有14个点,已知这些点中的任意三个点都不在同一直线上。

按下面规定把这张纸剪成一些三角形:(1)每个三角形的顶点都是这14个点中的3个;(2)每个三角形内,都不再有这些点。

那么,这张四边形的纸最多可以剪出个三角形。

3.红领巾春节慰问小组在确定去敬老院演出的节目单时,遇到如下问题:除夕夜的演出有唱歌、舞蹈、杂技、小品4个节目,如果要求唱歌不排在第4项,舞蹈不排在第3项,杂技不排在第2项,小品不排在第1项。

那么,满足上述要求的节目单,共有种不同的排法。

4.数学竞赛团体奖的奖品是10000本数学课外读物。

奖品发给前五名代表队所在的学校。

2014年迎春杯初赛模拟试卷_5年级_答案

2014年迎春杯初赛模拟试卷_5年级_答案
如图 1,将 1〜9 填入 33 的表格中,如果按行、列、对角线,再加上正反,我们共能读出以下 16 个三位数来:123,456,789,147,258,369,159,357,321,654,987,741,852,963, 951,753.现在请你将 2〜9 填入图 2 的 33 的表格中(1 已填入),使得读出的 16 个三位数中, 有 14 个 11 的倍数.填好后右下角的 A 是( ) . A、3 B 、2 C 、4 D、7 简答:根据能被 11 整除的特征试算可得答案如图 3. 1 4 7 2 5 8 图1 3 6 9 图2 A 1 1 8 7 5 3 9 图3 4 6 2
13、 如下图,一个正方形被分割成 24 个互不重叠的小长方形.这 24 个小长方形的周长总和为 120.原 正方形的面积是( )
A、36
B、72
C、90
D、120
简答: 除正方形周边各被计算了 1 次, 内部各线均被计箅了两次. 正方形的边长的 4+32+52=20 倍为 24 个小长方形周长总和 120,正方形边长为 6.所以,正方形面积为 36.
-4-
三.选择题(本题为单项选择题,每题只有一个 正确选项) (每题 12 分,共 4 题,共 48 分) ....
12、 从起点到终点,你只能沿箭头所指的方向前进.能够带你穿越这座八角形迷宫的 路线一共有( )条. A、15 B、16 C、18 D、20 简答:如下图所示,由标数法得迷宫的路线一共有 9+9=18 条. 起点 1 1 5 9 终点 9 4 1 终点 1 5 起点
简答:提取公因数: 原式 0.32 68 142 110 0.32 100 32 . 6、 若盒中有红球 1 个,黄球 100 个,白球 300 个,且前 16 次摸到的球的情况为:黄、白、白、白、 黄、白、白、白、黄、白、白、白、黄、白、白、白.那么第 16 次可能摸到( )颜色的球. A、一定是红 B、一定是黄 C、一定是白 D、以上都不对 简答:摸球是随机过程其实这个题目不存在周期性,红.黄.白球在第 16 次时均可能出现. 7、 小明的钱数比他的同学多 9 元,两人的钱数都是整数元,且他们钱数的积是 580,两人的钱数之和 是_______元. A、55 B、60 C、49 D、30 简答:580 刚好可以分成 20×29,两数恰好差 9,那么两人钱数之和是 49 元. 8、 学校买回 6 张桌子和 6 张椅子共用去 1920 元.已知 3 张桌子的价钱和 5 把椅子的价钱相等,每把 椅子( )元. A.80 B.100 C.120 D.180 简答:6 桌子+6 椅子=1920,3 桌子=6 椅子,那么 6 桌子=12 椅子,由此可得 18 椅子=1920,每个 椅子 120 元.

2014迎春杯复赛五六年级试卷答案以及分析

2014迎春杯复赛五六年级试卷答案以及分析

五年级试卷分析答案:1C、2A、3B、4D、5D、6B、7C、8B、9A、10A、11C、12B、13C、14D、15A试卷分析:第一题:计算。

计算与简单的最值结合,此题保留的是2.5,那么学生只要想到保留2.5最大是几就可以,就是2.55,那运用最基本的除法就可以得到正确答案了。

考察学生的计算功底。

第二题:几何图形的分割。

此题如果出现在填空题就完全是图形分割了,只要把原图分割成相同的小三角形或者三角形和四边形,那么就可以轻易的数出结果。

不过此题出现在选择题中,观察一下,发现阴影部分要比白色部分略少,也就是说阴影部分占总体应该小于一半,选项中只有1个小于一半,就可以轻易得出答案。

考察图形分割。

第三题:分数应用题。

对于分数百分的一系列问题,一定要找准单位1,对于单位1,我们可以设为1也可以设为N,此题将单位1设为4份会变得特别容易。

考察分数应用题和基本解法。

第四题:计算。

此题是课本教材内会涉及到的知识点,但是大多数都只说被除数和除数同时扩大或缩小,商会如何变化,但很少提及余数问题。

在整数范围内,余数是会随被除数和除数一起变化的,只要知道这个知识点,此题就会非常容易。

考察除法的性质。

第五题:计算。

此题有2种解法,第一种是利用同余,就是利用9的余数和11的余数来判断答案,比较简单;第二种解法是直接算,直接算也是比较容易得出答案的,因为数不大,而且和两个11相乘,只要连续写2次,错位相加就可以得到答案。

考察学生的计算能力、数论知识。

第六题:概念题。

此题是考察学生对分数概念的理解,分数中有真分数、假分数,还有真分数化简后的最简真分数,学生很容易弄混,此题也是基础知识的延伸,难度较小。

考察学生基础知识。

第七题:数字谜。

此题与六年级试题重复。

对于大多数的数字谜问题,都需要学生分类讨论,需要用代数的思想帮助解题,整体难度不大,但是有一些做题小技巧,平时数学基本功比较好的学生比较容易解决。

比如此题只问末尾和,很容易就从题中看出除数的末尾为1,这样就可以直接得到答案。

2010年-2015年迎春杯试卷汇总(小高组)

2010年-2015年迎春杯试卷汇总(小高组)

2010年“数学解题能力展示”读者评选活动五年级组初试试卷(测评时间:2010 年1月3日9:00—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议.签名:___________填空题:(每题10分,共120分)=+-+-++⨯+-⨯227213319)4131(12)3121(6.1 .2. 小张有200支铅笔,小李有20支钢笔.每次小张给小李6支铅笔,小李还给小张1支钢笔.经过 次这样的交换后,小张手中铅笔的数量是小李手中钢笔数量的11倍.3. 如图,长方形ABCD 中,BE=4,EC=4,CF=4,FD=1,则⊿AEF 的面积是 .5. 一个等差数列的第3项是14,第18项是23,那么这个数列的前2010项中有 项是整数.6. 甲、乙两车同时从A 城市出发驶向距离300千米远的B 城市.已知甲车比乙车晚出发1个小时,但提前1个小时到达B 城市.那么,甲车在距离B 城市 千米处追上乙车.7. 已知一个五位回文数等于45与一个四位回文数的乘积(即deed abcba ⨯=45),则这个五位回文数最大的可能值是 .8. 请从1, 2,3···,9,10 中选出若干个数,使得1,2,3···,19,20 中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出 个数.9. 如图,请沿虚线将7×7的方格表分割成若干个长方形,使得每个长方形中恰好包含一个数字,并且这个数字就是此长方形的面积.则第四列的小方格属于 个不同的长方形.10. 九个大小相等的小正方形拼成了右图.现从A 到B ,每次只能沿着小正方形的对角线从一个顶点到另一个顶点,不允许走重复路线,如图的虚线就是一种走法.共有 种不同的走法.11. 如图,等腰直角三角形DEF 的斜边在等腰直角三角形ABC 的斜边上,连接AE 、AD 、AF ,于是整个图形被分成五块小三角形.图中已标出其中三块的面积,则⊿ABC 的面积是 .12. C ,D 为AB 的三等分点;甲8点整时从A 出发匀速向B 行走,8点12分乙从B 点出发匀速向A 行走,再过几分钟后丙也从B 出发匀速向A 行走;甲,乙在C 点相遇时丙恰好走到D 点,甲,丙8:30相遇时乙恰好到A .那么,丙出发时是8点 分2010年“数学解题能力展示”读者评选活动六年级组初试试卷(测评时间:2010 年1月3日9:00—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议.签名:___________填空题:(每题10分,共120分)2. 小明带着一些钱去买签字笔,到商店后发现这种笔降价了12.5%,如果他带的钱恰好可以比原来多买13支,那么降价前这些钱可以买________支签字笔. 3. 满足图中算式的三位数abc 最小值是________.4. 三个半径为100厘米且圆心角为60o 的扇形如图摆放;那么,这个封闭图形的周长是________厘米.(π取3.14)5. 用0~9这10个数字组成若干个合数,每个数字都恰好用一次,那么这些合数之和的最小值是________.6. 梯形的上底为5,下底为10,两腰分别为3和4,那么梯形的面积为________.7. 有5个不同的正整数,它们中任意两数的乘积都是12的倍数,那么这5个数之和的最小值是________.8. 一个大正方体、四个中正方体、四个小正方体拼成如图的立体图形,已知大、中、小三个正方体的棱长分别为5厘米、2厘米、1厘米.那么,这个立体图形的表面积是________平方厘米.9. 九个大小相等的小正方形拼成了右图.现从A 点走到B 点,每次只能沿着小正方形的对角线从一个顶点到另一个顶点,不允许走重复路线(如图的虚线就是一种走法).那么从A 点走到B 点共有________种不同的走法. 10. 学校打算在1月4日或1月10日组织同学们看电影.确定好日期后,老师告诉了班长,但是由于“四”和“十”发音接近,班长有10%的可能性听错(把4听成10或者把10听成4).班长又把日期告诉了小明,小明也有10%的可能性听错.那么小明认为看电影的日期是正确日期的可能性为________%.11. 如图,C,D 为AB 的三等分点;8点整时甲从A 出发匀速向B 行走,8点12分乙从B 出发匀速向A行走,再过几分钟后丙也从B 出发匀速向A 行走;甲,乙在C 点相遇时丙恰好走到D 点,甲,丙8:30相遇时乙恰好到A .那么,丙出发时是8点________分.12. 图中是一个边长为1 的正六边形,它被分成六个小三角形.将4、6、8、10、12、14、16各一个填入7个圆圈之中.相邻的两个小正三角形可以组成6个菱形,把每个菱形的四个顶点上的数相加,填在菱形的中心A 、B 、C 、D 、E 、F 位置上(例如:a+b+g+f=A ).已知A 、B 、C 、D 、E 、F 依次分别能被2、3、4、5、6、7整除,那么a ×g ×d=___________.2010年“数学解题能力展示”读者评选活动小学高年级组复试试卷(测评时间:2010年2月6日8:30—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议.签名:___________一、填空题Ⅰ(每题8分,共40分)1.=⨯-⨯+1457266.22010 .2. 下表是人民币存款基准利率表?.小明现在有10000元人民币,如果他按照三年期整存整取的方式存款,三年后他连本带利一共能从银行拿到 元人民币.整存整取时间 三个月 半年 一年 三年 五年年利率(%)1.711.982.253.333.603. 如图所示,有大小不同的两个正方体,大正方体的棱长是小正方体棱长的6倍.将大正方体的6个面都染上红色,将小正方体的6个面都染上黄色,再将两个正方体粘合在一起.那么这个立体图形表面上红色面积是黄色面积的 倍.4. 有一块用于实验新品种水稻的试验田形状如图,面积共40亩,一部分种植新品种,另一部分种植旧品种(种植面积不一定相等),以方便比较成果.旧品种每亩产500千克;新的品种中有75%都没有成功,每亩只产400千克,但是另外25%试验成功,每亩产800千克.那么,这块试验田共产水稻 千克.5. 在每个方框中填入一个数字,使得乘法竖式成立.已知乘积有两种不同的得数,那么这两个得数的差是 . 二、填空题Ⅱ(每题10分,共50分)6. 直角边长分别为18厘米,10厘米的直角△ABC 和直角边长分别为14厘米,4厘米的直角△ADE 如图摆放.M 为AE 的中点,则△ACM 的面积为 平方厘米. 7. 黑板上一共写了10040个数字,包括2006个1,2007个2,2008个3,2009个4,2010个5.每次操作都擦去其中4个不同的数字并写上一个第5种数字(例如擦去1、2、3、4各1个,写上1个5;或者擦去2、3、4、5各一个,写上一个1;……). 如果经过有限次操作后,黑板上恰好剩下了两个数字,那么这两个数字的乘积是 .8. 蜜蜂王国为了迎接2010年春节的到来,特地筑了一个蜂巢如下.每个正六边形蜂窝中,有由蜂蜜凝结而成的数字0、1或2.春节到来之时,群蜂将在巢上跳起舞步,舞步的每个节拍恰好走过的四个数字:2010(从某个2出发最后走完四步后又回到2,如图中箭头所示为一个舞步),且蜜蜂每一步都只能从一个正六边形移动到与之有公共边的正六边形上.蜜蜂要经过四个正六边形且所得数字依次为2010,共有 种方法.9. 在反恐游戏中,一名“恐怖分子”隐藏在10个排成一行的窗户后面,一位百发百中的“反恐精英”使用狙击枪射击这名“恐怖分子”.“反恐精英”只需射中“恐怖分子”所在的窗户就能射中这名“恐怖分子”.每次射击完成后,如果“恐怖分子”没有被射中,他就会向右移动一个窗户.一旦他到了最右边的窗户,就停止移动.为了确保射中这名“恐怖分子”,“反恐精英”至少需要射击 次. 10. 如图所示,直线上并排放置着两个紧挨着的圆,它们的面积都等于1680平方厘米.阴影部分是夹在两圆及直线之间的部分.如果要在阴影部分内部放入一个尽可能大的圆,则这个圆的面积等于_________平方厘米.三、填空题Ⅲ(每题12分,共60分)11. 用1~9这9个数字各一次,组成一个两位完全平方数,一个三位完全平方数,一个四位完全平方数.那么,其中的四位完全平方数最小是 .12. 现有一块L 形的蛋糕如图所示,现在要求一刀把它切成3部分,因此只能按照如图的方式切,但不能斜着切或横着切.要使得到的最小的那块面积尽可能大,那么最小的面积为 平方厘米.13. 小李开车从甲地去乙地,出发后2小时,车在丙地出了故障,修车用了40分钟,修好后,速度只为正常速度的75%,结果比计划时间晚2小时到乙地.若车在行过丙地72千米的丁地才出故障,修车时间与修车后的速度分别还是40分钟与正常速度的75%,则比计划时间只晚1.5小时.那么,甲乙两地全程 千米. 14. 9000名同学参加一次数学竞赛,他们的考号分别是1000,1001,1002,…9999.小明发现他的考号是8210,新品种 25% 旧品种2 60 1 0A CBE D M10 4 414 1 0 00 0 0 0 222 222 2 22 2 2 2 10厘米 10厘米 10厘米20厘米 30厘米而他的朋友小强的考号是2180.他们两人的考号由相同的数字组成(顺序不一样),差为2010的倍数. 那么,这样的考号(由相同的数字组成并且差为2010的倍数)共有 15. 对.16. 小华编了一个计算机程序.程序运行后一分钟,电脑屏幕上首次出现一些肥皂泡,接下来每到整数分钟的时刻都会出现一些新的肥皂泡,数量与第一分钟出现的相同.第11次出现肥皂泡后半分钟,有一个肥皂泡破裂.以后每隔一分钟又会有肥皂泡破裂,且数量比前一分钟多1个(即第12次出现肥皂泡后半分钟,有2个肥皂泡破裂…).到某一时刻,已破裂的肥皂泡的总数恰好等于电脑屏幕上出现过的肥皂泡的总数,即此刻肥皂泡全部消失.那么在程序运行的整个过程中,在电脑屏幕上最多同时有 个肥皂泡出现.2011“数学解题能力展示”读者评选活动五年级组初试试卷(测评时间:2010年12月19日8:30—9:30)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题(每题8分,共40分)1. 算式12345678910⨯+⨯+⨯+⨯+⨯的计算结果是 .2. 十二月份共有31天,如果某年12月1日是星期一,那么该年12月19日是星期 .(星期一至星期日用数字1至7表示)3. 右图的等腰梯形上底长度等于3,下底长度等于9,高等于4,那么这个等腰梯形的周长等于 .4. 某乐团女生人数是男生人数的2倍,若调走24名女生,则男生人数是女生人数的2倍,那么该乐团原有男女学生一共 人. 5. 规定12010203=+=※...,232349=0+0+0=0※....,54567826=0+0+0+0=※......如果 15165a =※.,那么a 等于 .二.填空题(每题10分,共50分)6. 如图,蚂蚁从正方体的顶点A 沿正方体的棱爬到顶点B ,并且恰好经过正方体每个顶点一次,那么蚂蚁一共有 种不同的爬法.7. 在右图每个方框中填入一个数字,使得乘法竖式成立.那么两个乘数的和是 .8. 两个正方形如图放置,图中的每个三角形都是等腰直角三角形.若其中较小正方形的边长为12厘米,那么较大正方形的面积是 平方厘米.9. 如图的5×5的表格中有6个字母,请沿格线将右图分割为6个面积不同的小长方形(含正方形),使得每个长方形中恰好有一个字母,且每个字母都在小长方形角上的方格中.若这六个字母分别等于它所在小长方形的面积,那么五位数ABCDE = .10. 小人国有2011个小矮人,他们中的每个人不是戴红帽子就是戴蓝帽子.小矮人戴红帽子时说真话,戴蓝帽子时说假话;并且他们随时可以更换自己帽子的颜色.某一天,他们恰好每两人都见了一次面,并且都说对方戴蓝帽子.那么这一天他们总共最少改变了 次帽AB C DE FAB2 0 1 0子的颜色.三.填空题(每题12分,共60分)11. 如图,一个大长方形被分成8个小长方形,其中长方形A 、B 、C 、D 、E 的周长分别是26厘米、28厘米、30厘米、32厘米、34厘米.那么大长方形的面积最大是 平方厘米. 12. 如图是一个6×6的方格表,将数字1~6填入空白方格中,使得每一行、每一列数字1~6都只恰好出现一次,方格表还被粗线划分成了6块区域,每个区域数字1~6也恰好都只出现一次,那么最下面一行的 前4个数字组成的四位数ABCD 是 .13. 甲、乙两车同时从A 地出发开往B 地.出发的时候,甲车的速度比乙车的速度每小时快2.5千米.10分钟后,甲车减速了; 再过5分钟后,乙车也减速了,这时乙车比甲车每小时慢0.5千米.又过了25分钟后两车同时到达B 地.那么甲车当时速度每小时减少了 千米.14. 把同时满足下列两个条件的自然数称为“幸运数”:(1)从左往右数,第三位起,每一位的数字是它前面的两个数字的差(大数减去小数);(2)无重复数字.例如:132、871、54132都是“幸运数”;但8918(数字“8”重复)、990(数字“9”重复)都不是“幸运数”.那么最大“幸运数”从左往右的第二位数字是 . 15. 一个由某些非零自然数所组成的数组具有以下的性质:(1)这个数组中的每个数(除了1以外),都可被2、3、5中的至少一个数整除.(2)对于任意非零自然数n ,若此数组中包含有2n 、3n 、5n 中的一个,则此数组中必同时包含有n 、2n 、3n 和5n .如果此数组中数的个数在300和400之间,那么此数组包含 个数.2011“数学解题能力展示”读者评选活动六年级组初试试卷(测评时间:2010年12月19日8:30—9:30)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题(每题8分,共40分)1. 今天是2010年12月19日,欢迎同学们参加北京第27届“数学解题能力展示”活动.那么,2. 算式1027100121910002010++的计算结果的整数部分是 . 3. 某校有2400名学生,每名学生每天上5节课,每位教师每天教4节课,每节课是一位教师给30名学生讲授.那么该校共有教师 位.4. 张老师带着一些钱去买签字笔,到商店后发现这种笔降价了25%,结果他带的钱恰好可以比原来多买25支.那么降价前这些钱可以买签字笔 支.5. 右图为某婴幼儿商品的商标,由两颗心组成,每颗心都是由一个正方形和两个半圆拼成.若两个正方形的边长分别为40毫米、20毫米,则阴影图形的面积是 平方毫米.(π取3.14)6. 用 4.02乘以一个两位整数,得到的乘积是一个整数,这个乘积的10倍是 .A B DC EBACD 20 40二.填空题(每题10分,共50分)7. 某支球队现在的胜率为45%,接下来的8场比赛中若有6场获胜,则胜率将提高到50%.那么现在这支球队共取得了 场比赛的胜利.8. 定义运算:a ba b a b ⨯♥=+,算式920102010201020102010♥♥♥♥♥♥共颗“”的计算结果是 .(题中共9个“♥”,计算顺序从左到右)9. 在△ABC 中,BD =DE =EC ,CF : AC =1 : 3.若△ADH 的面积比△HEF 的面积多24平方厘米,则△ABC 的面积是 平方厘米.10. 一个正整数,它的2倍的约数恰好比它自己的约数多2个,它的3倍的约数恰好比它自己的约数多3个.那么这个正整数是 . 11. 如图,一个6×6的方格表,现将数字1~6填入空白方格中,使得每一行、每一列数字1~6都恰好出现一次.图中已经填了一些数字,那么剩余空格满足要求的填写方法一共有 种.三.填空题(每题12分,共60分)12. 有一个圆柱体,高是底面半径的3倍,将它如图分成大、小两个圆柱体.如果大圆柱体的表面积是小圆柱体的表面积的3倍,那么大圆柱体的体积是小圆柱体的体积的 倍.13.某岛国的一家银行每天9:00~17:00营业.正常情况下,每天9:00准备现金50万元,假设每小时的提款量都一样,每小时的存款量也都一样,到17:00下班时有现金60万元.如果每小时提款量是正常情况的4倍,而存款量不变的话,14:00银行就没现金了.如果每小时提款量是正常情况的10倍,而存款量减少到正常情况一半的话,要使17:00下班时银行还有现金50万元,那么9:00开始营业时需要准备现金 万元.14. 40根长度相同的火柴棍摆成右图,如果将每根火柴棍看作长度为1的线段,那么其中可以数出30个正方形来.拿走5根火柴棍后,A ,B ,C ,D ,E 五人分别作了如下的判断: 15. A :“1×1的正方形还剩下5个.” 16. B :“2×2的正方形还剩下3个.”17. C :“3×3的正方形全部保留下来了.” 18. D :“拿走的火柴棍所在直线各不相同.” 19. E :“拿走的火柴棍中有4根在同一直线上.”20. 已知这5人中恰有2人的判断错了,那么剩下的图形中还能数出 个正方形.21.甲、乙、丙三人同时从A 出发去B ,甲、乙到B 后调头回A ,并且调头后速度减少到各自原来速度的一半.甲最先调头,调头后与乙在C 迎面相遇,此时丙已行2010米;甲又行一段后与丙在AB 中点D 迎面相遇;乙调头后也在C 与丙迎面相遇.那么AB 间路程是 米.22. 如果算式19.1220102=-+-I GHF DE ABC 中的A ,B ,C ,D ,E ,F ,G ,H ,I 表示1~9中各不相同的数字,那么五位数ABCDE = .2011年“数学解题能力展示”读者评选活动小学高年级组复试试卷(测评时间:2011年1月30日8:00—9:30)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果,否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________1 2 3 4 56 25 3 4 4 3 5 26 5 4 3 2 1F ED CBA H一.填空题Ⅰ(每题8分,共40分)1. 定义一种新运算a ☆b 满足:a ☆b =b ×10+a ×2.那么2011☆130= .2. 从1999年到2010年的12年中,物价涨幅为150%(即1999年用100元能购买的物品,2010年要比原来多花150元才能购买).若某个企业的一线员工这12年来工资都没变,按购买力计算,相当于工资下降了 %.3. 右图中大圆的半径是20厘米,7个小圆的半径都是10厘米.那么阴影图形的面积是 平方厘米(π取3.14). 4. 某届“数学解题能力展示”读者评选活动初试共有12000名学生参加,分为初中、小学高年级、小学中年级三个组别.小学的两个组共占总人数的1615,不是小学高年级组的占总人数的21.那么小学中年级组参赛人数为 .5. 右图是一个除法竖式.这个除法竖式的被除数是 .二.填空题Ⅱ(每题10分,共50分)6. 算式1!×3-2!×4+3!×5-4!×6+…+2009!×2011-2010!×2012+2011!的计算结果是 .7. 春节临近,从2011年1月17日(星期一)起工厂里的工人陆续回家过年,与家人团聚.若每天离厂的工人人数相同,到1月31日,厂里还剩下工人121名,在这15天期间,统计工厂工人的工作量是2011个工作日(一人工作一天为1个工作日,工人离厂当天及以后不需要统计).其中周六、日休息,且无人缺勤.那么截至到1月31日,回家过年的工人共有 人.8. 有一个整数,它恰好是它的约数个数的2011倍.这个整数的最小值是 .9. 一个新建5层楼房的一个单元每层有东西2套房;各层房号如右图所示,现已有赵、钱、孙、李、周五家入住.一天他们5人在花园中聊天:10. 赵说:“我家是第3个入住的,第1个入住的就住我对门.” 11. 钱说:“只有我一家住在最高层.” 12. 孙说:“我家入住时,我家同侧的上一层和下一层都已有人入住了.”13. 李说:“我家是五家中最后一个入住的,我家楼下那一层全空着.” 14. 周说:“我家住在106号,104号空着,108号也空着.” 15. 他们说的话全是真话.设第1、2、3、4、5家入住的房号的个位数依次为A 、B 、C 、D 、E ,那么五位数ABCDE = .16. 6支足球队,每两队间至多比赛一场.如果每队恰好比赛了2场,那么符合条件的比赛安排共 有 种.三.填空题Ⅲ(每题12分,共60分)17. 0~9可以组成两个五位数A 和B ,如果A +B 的和是一个末五位数字相同的六位数,那么A ×B 的不同取值共有 个.18. 甲、乙两人分别从A 、B 两地同时出发,在AB 间往返行走;甲出发的同时,丙也从A 出发去B .当甲、乙两人第一次迎面相遇在C 地时,丙还有100米才到C ;当丙走到C 时,甲又往前走了108米;当丙到B 时,甲、乙正好第二次迎面相遇.那么A 、B 两地间的路程是 米.19. 如右图,大正方形被分成了面积相等的五块.若AB 长为3.6厘米,则大正方形的BA 五层四层 三层二层 109 110 107 108 105 106 103 104 101 102 一层20 1 11 3 0面积为 平方厘米.20. 用36个3×2×1的实心小长方体拼成一个6×6×6的大正方体.在各种拼法中,从大正方体外的某一点看过去最多能看到 个小长方体.21. 平面上有15个红点,在这些红点间连一些线段.一个红点连出了几条线段,就在这个红点上标几.已知所有标有相同数的红点之间互不连线,那么这15个红点间最多连了 条线段.2012“数学解题能力展示”读者评选活动五年级组初试试卷(测评时间:2011年12月17日9:00—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题(每小题8分,共32分)1. 算式50311111212012101÷÷⨯⨯的计算结果是 .2. 在右图中,BC = 10,EC = 6,直角三角形EDF 的面积比直角三角形F AB 的面积小5.那么长方形ABCD 的面积是 . 3. 龙腾小学五年级共有四个班.五年级一班有学生42人,五年级二班是一班人数的76,五年级三班是二班人数的65,五年级四班是三班人数的1.2倍.五年级共有 人.4. 在右图中,共能数出 个三角形.二.填空题(每小题10分,共40分)5. 一个电子钟表上总把日期显示为八位数,如2011年1月1日显示为.如果2011年最后一个能被101整除的日子是ABCD 2011,那么=ABCD .6. 在右图的除法竖式中,被除数是 .7. 五支足球队比赛,每两个队之间比赛一场;每场比赛胜者积3分,负者积0分,平局则各积1分.比赛完毕后,发现这五个队的积分恰好是五个连续的自然数.设第1、2、3、4、5名分别平了A 、B 、C 、D 、E 场,那么五位数ABCDE = .8. 今天是2011年12月17日,在这个日期中有4个1、2个2、1个0、1个7.用这8个数字组成若干个合数再求和(每个数字恰用一次,首位数字不能为0,例如21110与217的和是21327),这些合数的和的最小值是 .三.填空题(每小题12分,共48分)9. 甲、乙两人分别从A 、B 两地同时出发,相向而行.第一次迎面相遇在距离B 地100米处,相遇后甲的速度提高到原来的2倍;甲到B 后立即调头,追上乙时,乙还有50米才到A .那么,A 、B 间的路程长 米.10. 在右图中,线段AE 、FG 将长方形ABCD 分成了四块;已知其中两块的面积分别是2 cm 2、11cm 2,且E 是BC 的中点,O 是AE 的中点,那O GFEDCBA 2 11CFE BD A2 0 21 0么长方形ABCD 的面积是 cm 2.11. 在算式 2011=⨯⨯⨯+H G F E ABCD 中,A 、B 、C 、D 、E 、F 、G 、H 代表1~8中不同的数字(不同的字母代表不同的数字).那么四位数ABCD = . 12. 有一个6×6的正方形,分成36个1×1的正方形.选出其中一些1×1的正方形并画出它们的对角线,使得所画出的任何两条对角线都没有公共点,那么最多可以画出 条对角线.2012“数学解题能力展示”读者评选活动六年级组初试试卷(测评时间:2011年12月17日9:00—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题(每小题8分,共32分)1. 算式11111(97531)1226122030++++⨯的计算结果是_________.2. 将棱长为5的大正方体切割成125个棱长为1的小正方体.这些小正方体的表面积总和是原大正方体表面积的_________倍.3. 一辆玩具汽车,第一天按100%的利润定价,无人来买;第二天降价10%,还是无人买;第三天再降价360元,终于卖出.已知卖出的价格是进价的1.44倍,那么这辆玩具汽车的进价是_________元.4. 在右图中的竖式除法中,被除数为________.二.填空题(每小题10分,共40分)5. 一个电子钟表上总把日期显示为八位数,如2011年1月1日显示为.那么2011年最后一个能被101整除的日子是2011ABCD ,那么ABCD =_________.6. 一个n 位正整数x ,如果把它补在任意..两个正整数的后面,所得两个新数的乘积的末尾还是x ,那么称x 是“吉祥数”.例如:6就是一个“吉祥数”;但16不是,因为11621625056⨯=,末尾不再是16.所有位数不超过3位的“吉祥数”之和是_________.7. 有一个足够深的水槽,底面是长为16厘米、宽为12厘米的长方形,原本在水槽里盛有6厘米深的水和6厘米深的油(油在水的上方).如果在水槽中放入一个长、宽、高分别为8厘米、8厘米、12厘米的铁块,那么油层的层高是_________厘米.8. 有一个66⨯的正方形,分成36个11⨯的正方形.选出其中一些11⨯的正方形并画出它们的对角线,使得所画出的任何两条对角线都没有公共点,那么最多可以画出 条对角线.三.填空题(每小题12分,共48分)9. 甲车由A 地开往B 地,同时乙车也从B 地开往A 地.甲车速度是每小时802 021 0水油。

第1-29届历届小学“迎春杯”真题word版

第1-29届历届小学“迎春杯”真题word版

目录第1届“迎春杯”数学竞赛刊赛试题... .............................................................. . 1 第2届“迎春杯”数学竞赛决赛试题... .............................................................. . 5 第3届“迎春杯”数学竞赛决赛试题... .............................................................. . 8 第4届“迎春杯”数学竞赛决赛试题... ............................................................ .. 10 第5届“迎春杯”数学竞赛决赛试题... ............................................................ .. 11 第6届“迎春杯”数学竞赛决赛试题... ............................................................ .. 13 第7届“迎春杯”数学竞赛决赛试题... ............................................................ .. 16 第8届“迎春杯”数学竞赛决赛试题... ............................................................ .. 18 第9届“迎春杯”数学竞赛决赛试题... ............................................................ .. 20 第10 届“迎春杯”数学竞赛决赛试题... .......................................................... (23)第11 届“迎春杯”数学竞赛初赛试题... ........................................................... (25)第11 届“迎春杯”数学竞赛决赛试题... ........................................................... (27)第12 届“迎春杯”数学竞赛决赛试题... .......................................................... (29)第12 届“迎春杯”数学竞赛决赛试题... .......................................................... (31)第13 届“迎春杯”数学竞赛初赛试题... .......................................................... (33)第13 届“迎春杯”数学竞赛决赛试题... .......................................................... (35)第14 届“迎春杯”数学竞赛决赛试题... .......................................................... (37)第14 届“迎春杯”数学竞赛决赛试题... .......................................................... (39)第15 届“迎春杯”数学竞赛初赛试题... .......................................................... (41)第15 届“迎春杯”数学竞赛决赛试题... .......................................................... (43)第16 届“迎春杯”数学科普活动日区县邀请赛试题... .................................. (45)第17 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 47 第18 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 50 第19 届“迎春杯”数学科普活动日计机交流试题... ....................................... . 52 第19 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 54 第20 届“迎春杯”数学科普活动日试题... ....................................................... .. 55 第21 届“迎春杯”数学科普活动日解题能力展示初赛试题... ...................... (57)第21 届“迎春杯”数学解题能力展示读者评选活动复试计算机交流试题... (58)第22 届“迎春杯”数学解题能力展示读者评选活动中年级初试试题... ..... .. 60 第22 届“迎春杯”数学解题能力展示读者评选活动中年级复试试题... ..... .. 62 第22 届“迎春杯”数学解题能力展示评选活动高年级初试试题... .............. . 64第22 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 66第23 届“迎春杯”数学解题能力展示评选活动中年级初试试题... .............. . 69第23 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 71第23 届“迎春杯”数学解题能力展示评选活动高年级初试试题... .............. . 73第23 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 75第24 届“迎春杯”数学解题能力展示评选活动三年级初试试题... .............. . 77第24 届“迎春杯”数学解题能力展示评选活动四年级初试试题... .............. . 79第24 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 81第24 届“迎春杯”数学解题能力展示评选活动五年级初试试题... .............. . 83第24 届“迎春杯”数学解题能力展示评选活动六年级初试试题... .............. . 85第24 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 88第25 届“迎春杯”数学解题能力展示评选活动三年级初试试题... .............. . 90第25 届“迎春杯”数学解题能力展示评选活动四年级初试试题... .............. . 92第25 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 94第25 届“迎春杯”数学解题能力展示评选活动五年级初试试题... .............. . 96第25 届“迎春杯”数学解题能力展示评选活动六年级初试试题... .............. . 98第25 届“迎春杯”数学解题能力展示评选活动高年级复试试题... ........... .. 100 第26 届“迎春杯”数学解题能力展示评选活动三年级初试试题... ........... .. 102 第26 届“迎春杯”数学解题能力展示评选活动四年级初试试题... ........... .. 104 第26 届“迎春杯”数学解题能力展示评选活动中年级复试试题... ........... .. 106 第26 届“迎春杯”数学解题能力展示评选活动五年级初试试题... ........... .. 108 第26 届“迎春杯”数学解题能力展示评选活动六年级初试试题... ........... .. 110 第26 届“迎春杯”数学解题能力展示评选活动高年级复试试题... ........... .. 112 第27 届“迎春杯”数学解题能力展示评选活动三年级初试试题... ........... .. 114 第27 届“迎春杯”数学解题能力展示评选活动四年级初试试题... ........... .. 116 第27 届“迎春杯”数学解题能力展示评选活动中年级复试试题... ........... .. 118第 27届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 122 第 27届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 124 第 28届“迎春杯”数学解题能力展示评选活动三年级初试试题... .......... .. 126 第 28届“迎春杯”数学解题能力展示评选活动四年级初试试题... .......... .. 128 第 28届“迎春杯”数学解题能力展示评选活动中年级复试试题... .......... .. 130 第 28届“迎春杯”数学解题能力展示评选活动五年级初试试题... .......... .. 132 第 28届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 134 第 28届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 136 第 29届“迎春杯”数学解题能力展示评选活动三年级初试试题... .......... .. 138 第 29届“迎春杯”数学解题能力展示评选活动四年级初试试题... .......... .. 140 第 29届“迎春杯”数学解题能力展示评选活动中年级复试试题... .......... .. 141 第 29届“迎春杯”数学解题能力展示评选活动五年级初试试题... .......... .. 143 第 29届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 144 第 29届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 145第 1 届“迎春杯”数学竞赛刊赛试题1.天安门广场是世界上最大的广场,面积约44万平方米,合____亩。

2010年-2015年迎春杯试卷汇总(小高组)

2010年-2015年迎春杯试卷汇总(小高组)

2010年“数学解题能力展示”读者评选活动五年级组初试试卷(测评时间:2010 年1月3日9:00—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议.签名:___________填空题:(每题10分,共120分).2. 小张有200支铅笔,小李有20支钢笔.每次小张给小李6支铅笔,小李还给小张1支钢笔.经过 次这样的交换后,小张手中铅笔的数量是小李手中钢笔数量的11倍.3. 如图,长方形ABCD 中,BE=4,EC=4,CF=4,FD=1,则⊿AEF 的面积是 .5. 一个等差数列的第3项是14,第18项是23,那么这个数列的前2010项中有 项是整数.6. 甲、乙两车同时从A 城市出发驶向距离300千米远的B 城市.已知甲车比乙车晚出发1个小时,但提前1个小时到达B 城市.那么,甲车在距离B 城市 千米处追上乙车.7. 已知一个五位回文数等于45与一个四位回文数的乘积(即),则这个五位回文数最大的可能值是 .8. 请从1, 2,3···,9,10 中选出若干个数,使得1,2,3···,19,20 中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出 个数.9. 如图,请沿虚线将7×7的方格表分割成若干个长方形,使得每个长方形中恰好包含一个数字,并且这个数字就是此长方形的面积.则第四列的小方格属于 个不同的长方形.=+-+-++⨯+-⨯227213319)4131(12)3121(6.1deed abcba ⨯=4510. 九个大小相等的小正方形拼成了右图.现从A到B,每次只能沿着小正方形的对角线从一个顶点到另一个顶点,不允许走重复路线,如图的虚线就是一种走法.共有种不同的走法.11.如图,等腰直角三角形DEF的斜边在等腰直角三角形ABC的斜边上,连接AE、AD、AF,于是整个图形被分成五块小三角形.图中已标出其中三块的面积,则⊿ABC的面积是.12.C,D为AB的三等分点;甲8点整时从A出发匀速向B行走,8点12分乙从B点出发匀速向A行走,再过几分钟后丙也从B出发匀速向A行走;甲,乙在C点相遇时丙恰好走到D点,甲,丙8:30相遇时乙恰好到A.那么,丙出发时是8点分2010年“数学解题能力展示”读者评选活动六年级组初试试卷(测评时间:2010 年1月3日9:00—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议.签名:___________填空题:(每题10分,共120分)2.小明带着一些钱去买签字笔,到商店后发现这种笔降价了12.5%,如果他带的钱恰好可以比原来多买13支,那么降价前这些钱可以买________支签字笔.3.满足图中算式的三位数abc最小值是________.4. 三个半径为100厘米且圆心角为60º的扇形如图摆放;那么,这个封闭图形的周长是________厘米.(π取3.14)5.用0~9这10个数字组成若干个合数,每个数字都恰好用一次,那么这些合数之和的最小值是________.6.梯形的上底为5,下底为10,两腰分别为3和4,那么梯形的面积为________.7. 有5个不同的正整数,它们中任意两数的乘积都是12的倍数,那么这5个数之和的最小值是________.8.一个大正方体、四个中正方体、四个小正方体拼成如图的立体图形,已知大、中、小三个正方体的棱长分别为5厘米、2厘米、1厘米.那么,这个立体图形的表面积是________平方厘米.9. 九个大小相等的小正方形拼成了右图.现从A点走到B点,每次只能沿着小正方形的对角线从一个顶点到另一个顶点,不允许走重复路线(如图的虚线就是一种走法).那么从A点走到B点共有________种不同的走法.10. 学校打算在1月4日或1月10日组织同学们看电影.确定好日期后,老师告诉了班长,但是由于“四”和“十”发音接近,班长有10%的可能性听错(把4听成10或者把10听成4).班长又把日期告诉了小明,小明也有10%的可能性听错.那么小明认为看电影的日期是正确日期的可能性为________%.11. 如图,C,D为AB的三等分点;8点整时甲从A出发匀速向B行走,8点12分乙从B出发匀速向A行走,再过几分钟后丙也从B出发匀速向A行走;甲,乙在C点相遇时丙恰好走到D点,甲,丙8:30相遇时乙恰好到A.那么,丙出发时是8点________分.12.图中是一个边长为1 的正六边形,它被分成六个小三角形.将4、6、8、10、12、14、16各一个填入7个圆圈之中.相邻的两个小正三角形可以组成6个菱形,把每个菱形的四个顶点上的数相加,填在菱形的中心A、B、C、D、E、F 位置上(例如:a+b+g+f=A).已知A、B、C、D、E、F依次分别能被2、3、4、5、6、7整除,那么a×g×d=___________.2010年“数学解题能力展示”读者评选活动小学高年级组复试试卷(测评时间:2010年2月6日8:30—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议.签名:___________一、填空题Ⅰ(每题8分,共40分)1.=⨯-⨯+1457266.22010 .2. 下表是人民币存款基准利率表 .小明现在有10000元人民币,如果他按照三年期整存整取的方式存款,3. 如图所示,有大小不同的两个正方体,大正方体的棱长是小正方体棱长的6倍.将大正方体的6个面都染上红色,将小正方体的6个面都染上黄色,再将两个正方体粘合在一起.那么这个立体图形表面上红色面积是黄色面积的 倍.4. 有一块用于实验新品种水稻的试验田形状如图,面积共40亩,一部分种植新品种,另一部分种植旧品种(种植面积不一定相等),以方便比较成果.旧品种每亩产500千克;新的品种中有75%都没有成功,每亩只产400千克,但是另外25%试验成功,每亩产800千克.那么,这块试验田共产水稻千克.5.在每个方框中填入一个数字,使得乘法竖式成立.已知乘积有两种不同的得数,那么这两个得数的差是.二、填空题Ⅱ(每题10分,共50分)6. 直角边长分别为18厘米,10厘米的直角△ABC 和直角边长分别为14厘米,4厘米的直角△ADE 如图摆放.M 为AE的中点,则△ACM 的面积为 平方厘米.新品种25% 旧品种7. 黑板上一共写了10040个数字,包括2006个1,2007个2,2008个3,2009个4,2010个5.每次操作都擦去其中4个不同的数字并写上一个第5种数字(例如擦去1、2、3、4各1个,写上1个5;或者擦去2、3、4、5各一个,写上一个1;……). 如果经过有限次操作后,黑板上恰好剩下了两个数字,那么这两个数字的乘积是 .8. 蜜蜂王国为了迎接2010年春节的到来,特地筑了一个蜂巢如下.每个正六边形蜂窝中,有由蜂蜜凝结而成的数字0、1或2.春节到来之时,群蜂将在巢上跳起舞步,舞步的每个节拍恰好走过的四个数字:2010(从某个2出发最后走完四步后又回到2,如图中箭头所示为一个舞步),且蜜蜂每一步都只能从一个正六边形移动到与之有公共边的正六边形上.蜜蜂要经过四个正六边形且所得数字依次为2010,共有 种方法.9. 在反恐游戏中,一名“恐怖分子”隐藏在10个排成一行的窗户后面,一位百发百中的“反恐精英”使用狙击枪射击这名“恐怖分子”.“反恐精英”只需射中“恐怖分子”所在的窗户就能射中这名“恐怖分子”.每次射击完成后,如果“恐怖分子”没有被射中,他就会向右移动一个窗户.一旦他到了最右边的窗户,就停止移动.为了确保射中这名“恐怖分子”,“反恐精英”至少需要射击 次.10. 如图所示,直线上并排放置着两个紧挨着的圆,它们的面积都等于1680平方厘米.阴影部分是夹在两圆及直线之间的部分.则这个圆的面积等于_________平方厘米.三、填空题Ⅲ(每题12分,共60分)11. 用1~9这9个数字各一次,组成一个两位完全平方数,一个三位完全平方数,一个四位完全平方数.那么,其中的四位完全平方数最小是 .12. 现有一块L 形的蛋糕如图所示,现在要求一刀把它切成3部分,因此只能按照如图的方式切,但不能斜着切或横着切.要使得到的最小的那块面积尽可能大,那么最小的面积为 平方厘米.13. 小李开车从甲地去乙地,出发后2小时,车在丙地出了故障,修车用了40分钟,修好后,速度只为正常速度的75%,结果比计划时间晚2小时到乙地.若车在行过丙地72千米的丁地才出故障,修车时间与修车后的速度分别还是40分钟与正常速度的75%,则比计划时间只晚1.5小时.那么,甲乙两地全程 千米.10厘米 20厘米 3014.9000名同学参加一次数学竞赛,他们的考号分别是1000,1001,1002,…9999.小明发现他的考号是8210,而他的朋友小强的考号是2180.他们两人的考号由相同的数字组成(顺序不一样),差为2010的倍数.那么,这样的考号(由相同的数字组成并且差为2010的倍数)共有对.15.小华编了一个计算机程序.程序运行后一分钟,电脑屏幕上首次出现一些肥皂泡,接下来每到整数分钟的时刻都会出现一些新的肥皂泡,数量与第一分钟出现的相同.第11次出现肥皂泡后半分钟,有一个肥皂泡破裂.以后每隔一分钟又会有肥皂泡破裂,且数量比前一分钟多1个(即第12次出现肥皂泡后半分钟,有2个肥皂泡破裂…).到某一时刻,已破裂的肥皂泡的总数恰好等于电脑屏幕上出现过的肥皂泡的总数,即此刻肥皂泡全部消失.那么在程序运行的整个过程中,在电脑屏幕上最多同时有个肥皂泡出现.2011“数学解题能力展示”读者评选活动五年级组初试试卷(测评时间:2010年12月19日8:30—9:30)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题(每题8分,共40分)1. 算式12345678910⨯+⨯+⨯+⨯+⨯的计算结果是 .2. 十二月份共有31天,如果某年12月1日是星期一,那么该年12月19日是星期 .(星期一至星期日用数字1至7表示)3. 右图的等腰梯形上底长度等于3,下底长度等于9,高等于4,那么这个等腰梯形的周长等于 .4. 某乐团女生人数是男生人数的2倍,若调走24名女生,则男生人数是女生人数的2倍,那么该乐团原有男女学生一共 人.5. 规定12010203=+=※...,232349=0+0+0=0※....,54567826=0+0+0+0=※......如果 15165a =※.,那么a 等于 .二.填空题(每题10分,共50分)6. 如图,蚂蚁从正方体的顶点A 沿正方体的棱爬到顶点B ,并且恰好经过正方体每个顶点一次,那么蚂蚁一共有 种不同的爬法.7. 在右图每个方框中填入一个数字,使得乘法竖式成立.那么两个乘数的和是 .8. 两个正方形如图放置,图中的每个三角形都是等腰直角三角形.若其中小正方形的边长为12厘米,那么较大正方形的面积是 平方厘.19. 如图的5×5的表格中有6个字母,请沿格线将右图分割为6个面积不同的小长方形(含正方形),使得每个长方形中恰好有一个字母,且每个字母都在小长方形角上的方格中.若这六个字母分别等于它所在小长方形的面积,那么五位数ABCDE = .10. 小人国有2011个小矮人,他们中的每个人不是戴红帽子就是戴蓝帽子.小矮人戴红帽子时说真话,戴蓝帽子时说假话;并且他们随时可以更换自己帽子的颜色.某一天,他们恰好每两人都见了一次面,并且都说对方戴蓝帽子.那么这一天他们总共最少改变了 次帽子的颜色.三.填空题(每题12分,共60分)11. 如图,一个大长方形被分成8个小长方形,其中长方形A 、B 、C 、D 、E 的周长分别是26厘米、28厘米、30厘米、32厘米、34厘米.那么大长方形的面积最大是 平方厘米.12. 如图是一个6×6的方格表,将数字1~6填入空白方格中,使得每一行、每一列数字1~6都只恰好出现一次,方格表还被粗线划分成了6块区域,每个区域数字1~6也恰好都只出现一次,那么最下面一行的 前4个数字组成的四位数ABCD 是 .13. 甲、乙两车同时从A 地出发开往B 地.出发的时候,甲车的速度比乙车的速度每小时快2.5千米.10分钟后,甲车减速了; 再过5分钟后,乙车也减速了,这时乙车比甲车每小时慢0.5千米.又过了25分钟后两车同时到达B 地.那么甲车当时速度每小时减少了 千米.14. 把同时满足下列两个条件的自然数称为“幸运数”:(1)从左往右数,第三位起,每一位的数字是它前面的两个数字的差(大数减去小数);(2)无重复数字.例如:132、871、54132都是“幸运数”;但8918(数字“8”重复)、990(数字“9”重复)都不是“幸运数”.那么最大“幸运数”从左往右的第二位数字是 .15. 一个由某些非零自然数所组成的数组具有以下的性质:(1)这个数组中的每个数(除了1以外),都可被2、3、5中的至少一个数整除.(2)对于任意非零自然数n ,若此数组中包含有2n 、3n 、5n 中的一个,则此数组中必同时包含有n 、2n 、3n 和5n .如果此数组中数的个数在300和400之间,那么此数组包含 个数.A B DC EBAACD2011“数学解题能力展示”读者评选活动六年级组初试试卷(测评时间:2010年12月19日8:30—9:30)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题(每题8分,共40分)1. 今天是2010年12月19日,欢迎同学们参加北京第27届“数学解题能力展示”活动.那么,算式1027100121910002010++的计算结果的整数部分是 .2. 某校有2400名学生,每名学生每天上5节课,每位教师每天教4节课,每节课是一位教师给30名学生讲授.那么该校共有教师 位.3. 张老师带着一些钱去买签字笔,到商店后发现这种笔降价了25%,结果他带的钱恰好可以比原来多买25支.那么降价前这些钱可以买签字笔 支. 4. 右图为某婴幼儿商品的商标,由两颗心组成,每颗心都是由一个正方形和两个半圆拼成.若两个正方形的边长分别为40毫米、20毫米,则阴影图形的面积是 平方毫米.(π取3.14)5. 用4.02乘以一个两位整数,得到的乘积是一个整数,这个乘积的10倍是 .二.填空题(每题10分,共50分)6. 某支球队现在的胜率为45%,接下来的8场比赛中若有6场获胜,则胜率将提高到50%.那么现在这支球队共取得了 场比赛的胜利.7. 定义运算:a ba b a b ⨯♥=+,算式920102010201020102010♥♥♥♥♥♥共颗“”的计算结果是 .(题中共9个“♥”,计算顺序从左到右)8. 在△ABC 中,BD =DE =EC ,CF : AC =1 : 3.若△ADH 的面积比△HEF 的面积多24平方厘米,则△ABC 的面积是 平方厘米.9. 一个正整数,它的2倍的约数恰好比它自己的约数多2个,它的3倍的约数恰好比它自己的约数多3个.那么这个正整数是 .10. 如图,一个6×6的方格表,现将数字1~6填入空白方格中,使得每一行、每一列数字1~6都恰好出现一次.图中已经填了一些数字,那么剩余空格满足要求的填写方法一共有 种.三.填空题(每题12分,共60分)11. 有一个圆柱体,高是底面半径的3倍,将它如图分成大、小两个圆柱体.如果大圆柱体的表面积是小圆柱体的表面积的3倍,那么大圆柱体的体积是小圆柱体的体积的 倍.12. 某岛国的一家银行每天9:00~17:00营业.正常情况下,每天9:00准备现金50万元,假设每小时的提款量都一样,每小时的存款量也都一样,到17:00下班时有现金60万元.如果每小时提款量是正常情况的4倍,而存款量不变的话,14:00银行就没现金了.如果每小时提款量是正常情况的10倍,而存款量减少到正常情况一半的话,要使17:00下班时银行还有现金50万元,那么9:00开始营业时需要准备现金 万元.13. 40根长度相同的火柴棍摆成右图,如果将每根火柴棍看作长度为1的线段,那么其中可以数出30个正方形来.拿走5根火柴棍后,A ,B ,C ,D ,E 五人分别作了如下的判断: A :“1×1的正方形还剩下5个.” B :“2×2的正方形还剩下3个.”C :“3×3的正方形全部保留下来了.”D :“拿走的火柴棍所在直线各不相同.”E :“拿走的火柴棍中有4根在同一直线上.”已知这5人中恰有2人的判断错了,那么剩下的图形中还能数出 个正方形.14. 甲、乙、丙三人同时从A 出发去B ,甲、乙到B 后调头回A ,并且调头后速度减少到各自原来速度的一半.甲最先调头,调头后与乙在C 迎面相遇,此时丙已行2010米;甲又行一段后与丙在AB 中点D 迎面相遇;乙调头后也在C 与丙迎面相遇.那么AB 间路程是 米.15. 如果算式19.1220102=-+-I GHF DE ABC 中的A ,B ,C ,D ,E ,F ,G ,H ,I 表示1~9中各不相同的数字,那么五位数ABCDE = .2011年“数学解题能力展示”读者评选活动小学高年级组复试试卷(测评时间:2011年1月30日8:00—9:30)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果,否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题Ⅰ(每题8分,共40分)1. 定义一种新运算a ☆b 满足:a ☆b =b ×10+a ×2.那么2011☆130= .2. 从1999年到2010年的12年中,物价涨幅为150%(即1999年用100元能购买的物品,2010年要比原来多花150元才能购买).若某个企业的一线员工这12年来工资都没变,按购买力计算,相当于工资下降了 %.3. 右图中大圆的半径是20厘米,7个小圆的半径都是10厘米.那么阴影图形的面积是 平方厘米(π取3.14).4. 某届“数学解题能力展示”读者评选活动初试共有12000名学生参加,分为初中、小学高年级、小学中年级三个组别.小学的两个组共占总人数的1615,不是小学高年级组的占总人数的21.那么小学中年级组参赛人数为 .5. 右图是一个除法竖式.这个除法竖式的被除数是 .二.填空题Ⅱ(每题10分,共50分)6. 算式1!×3-2!×4+3!×5-4!×6+…+2009!×2011-2010!×2012+2011!的计算结果是 .7. 春节临近,从2011年1月17日(星期一)起工厂里的工人陆续回家过年,与家人团聚.若每天离厂的工人人数相同,到1月31日,厂里还剩下工人121名,在这15天期间,统计工厂工人的工作量是2011个工作日(一人工作一天为1个工作日,工人离厂当天及以后不需要统计).其中周六、日休息,且无人缺勤.那么截至到1月31日,回家过年的工人共有 人.8. 有一个整数,它恰好是它的约数个数的2011倍.这个整数的最小值是 .1 3 09. 一个新建5层楼房的一个单元每层有东西2套房;各层房号如右图所示,现已有赵、钱、孙、李、周五家入住.一天他们5人在花园中聊天:赵说:“我家是第3个入住的,第1个入住的就住我对门.”钱说:“只有我一家住在最高层.” 孙说:“我家入住时,我家同侧的上一层和下一层都已有人入住了.”李说:“我家是五家中最后一个入住的,我家楼下那一层全空着.”周说:“我家住在106号,104号空着,108号也空着.” 他们说的话全是真话.设第1、2、3、4、5家入住的房号的个位数依次为A 、B 、C 、D 、E ,那么五位数ABCDE = .10. 6支足球队,每两队间至多比赛一场.如果每队恰好比赛了2场,那么符合条件的比赛安排共 有 种.三.填空题Ⅲ(每题12分,共60分)11. 0~9可以组成两个五位数A 和B ,如果A +B 的和是一个末五位数字相同的六位数,那么A ×B 的不同取值共有 个.12. 甲、乙两人分别从A 、B 两地同时出发,在AB 间往返行走;甲出发的同时,丙也从A 出发去B .当甲、乙两人第一次迎面相遇在C 地时,丙还有100米才到C ;当丙走到C 时,甲又往前走了108米;当丙到B 时,甲、乙正好第二次迎面相遇.那么A 、B 两地间的路程是 米.13. 如右图,大正方形被分成了面积相等的五块.若AB 长为3.6厘米,则大正方形的面积为 平方厘米.14. 用36个3×2×1的实心小长方体拼成一个6×6×6的大正方体.在各种拼法中,从大正方体外的某一点看过去最多能看到 个小长方体.15. 平面上有15个红点,在这些红点间连一些线段.一个红点连出了几条线段,就在这个红点上标几.已知所有标有相同数的红点之间互不连线,那么这15个红点间最多连了 条线段.五层 四层 三层 二层一层2012“数学解题能力展示”读者评选活动五年级组初试试卷(测评时间:2011年12月17日9:00—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题(每小题8分,共32分)1. 算式50311111212012101÷÷⨯⨯的计算结果是 .2. 在右图中,BC = 10,EC = 6,直角三角形EDF 的面积比直角三角形F AB 的面积小5.那么长方形ABCD 的面积是 .3. 龙腾小学五年级共有四个班.五年级一班有学生42人,五年级二班是一班人数的76,五年级三班是二班人数的65,五年级四班是三班人数的1.2倍.五年级共有 人.4. 在右图中,共能数出 个三角形.二.填空题(每小题10分,共40分)5. 一个电子钟表上总把日期显示为八位数,如2011年1月1日显示为20110101.如果2011年最后一个能被101整除的日子是ABCD 2011,那么=ABCD .6. 在右图的除法竖式中,被除数是 .7. 五支足球队比赛,每两个队之间比赛一场;每场比赛胜者积3分,负者积0分,平局则各积1分.比赛完毕后,发现这五个队的积分恰好是五个连续的自然数.设第1、2、3、4、5名分别平了A 、B 、C 、D 、E 场,那么五位数ABCDE = .8.今天是2011年12月17日,在这个日期中有4个1、2个2、1个0、1个7.用这8个数字组成若干个合数再求和(每个数字恰用一次,首位数字不能为0,例如21110与217的和是21327),这些合数的和的最小值是.三.填空题(每小题12分,共48分)9.甲、乙两人分别从A、B两地同时出发,相向而行.第一次迎面相遇在距离B地100米处,相遇后甲的速度提高到原来的2倍;甲到B后立即调头,追上乙时,乙还有50米才到A.那么,A、B间的路程长米.10.在右图中,线段AE、FG将长方形ABCD分成了四块;已知其中两块的面积分别是2cm2、11cm2,且E是BC的中点,O是AE的中点,那么长方形ABCD的面积是cm2.11.在算式2011=⨯⨯⨯+HGFEABCD中,A、B、C、D、E、F、G、H代表1~8中不同的数字(不同的字母代表不同的数字).那么四位数ABCD=.12.有一个6×6的正方形,分成36个1×1的正方形.选出其中一些1×1的正方形并画出它们的对角线,使得所画出的任何两条对角线都没有公共点,那么最多可以画出条对角线.2012“数学解题能力展示”读者评选活动六年级组初试试卷(测评时间:2011年12月17日9:00—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题(每小题8分,共32分)1. 算式11111(97531)1226122030++++⨯的计算结果是_________.2. 将棱长为5的大正方体切割成125个棱长为1的小正方体.这些小正方体的表面积总和是原大正方体表面积的_________倍.3. 一辆玩具汽车,第一天按100%的利润定价,无人来买;第二天降价10%,还是无人买;第三天再降价360元,终于卖出.已知卖出的价格是进价的1.44倍,那么这辆玩具汽车的进价是_________元.4. 在右图中的竖式除法中,被除数为________.二.填空题(每小题10分,共40分)5. 一个电子钟表上总把日期显示为八位数,如2011年1月1日显示为20110101.那么2011年最后一个能被101整除的日子是2011ABCD ,那么ABCD =_________.6. 一个n 位正整数x ,如果把它补在任意..两个正整数的后面,所得两个新数的乘积的末尾还是x ,那么称x 是“吉祥数”.例如:6就是一个“吉祥数”;但16不是,因为11621625056⨯=,末尾不再是16.所有位数不超过3位的“吉祥数”之和是_________.7. 有一个足够深的水槽,底面是长为16厘米、宽为12厘米的长方形,原本在水槽里盛有6厘米深的水和6厘米深的油(油在水的上方).如果在水槽中放入一个长、宽、高分别为8厘米、8厘米、12厘米的铁块,那么油层的层高是_________厘米.水 油。

(仅供参考)2014年-迎春杯-四年级初赛试题及解析(高清无水印)

(仅供参考)2014年-迎春杯-四年级初赛试题及解析(高清无水印)

2014“数学解题能力展示”读者评选活动试题四年级组一.选择题(每小题8分,共32分)1.下面计算结果等于9的是()(A)3×3÷3+3(B)3÷3+3×3(C)3×3-3+3(D)3÷3+3÷32.如下图,每条边都相等,每个角都是直角,则根据信息下图的面积为()平方厘米.(A)16(B)20(C)24(D)323.亮亮早上8:00从甲地出发去乙地,速度是每小时8千米.他在中间休息了1小时,结果中午12:00到达乙地.那么,甲、乙两地之间的距离是()千米.(A)16(B)24(C)32(D)404.有四个数,它们的和是45,把第一个数加2,第二个数减2,第三个数乘2,第四个数除以2,得到的结果都相同.那么,原来这四个数依次是().(A)10,10,10,10(B)12,8,20,5(C)8,12,5,20(D)9,11,12,13二.选择题(每小题10分,共70分)5.动物园的饲养员把一堆桃子分给若干只猴子,如果每只猴子分6个,剩57个桃子;如果每只猴子分9个,就有5只猴子一个也分不到,还有一只猴子只分到3个.那么,有_______个桃子.(A)216(B)324(C)273(D)3016.大、中、小三个正方形,边长都是整数厘米,小正方形的周长比中正方形的边长大,把这两个正方形放在大正方形上(如右图),大正方形露出部分的面积是10平方厘米(图中阴影部分).那么,大正方形的面积是()平方厘米.(A)25(B)36(C)49(D)647.一些糖果,如果每天吃3个,十多天吃完,最后一天只吃了2个;如果每天吃4个,不到10天就吃完了,最后一天吃了3个.那么,这些糖果原来有()个.(A)32(B)24(C)35(D)368.有一种特殊的计算器,当输入一个10~49的自然数后,计算器会先将这个数乘以2,然后将所得结果的十位和个位顺序颠倒,再加2后显示出最后的结果.那么,下列四个选项中,()可能是最后显示的结果.(A)44(B)43(C)42(D)41三.选择题(每小题12分,共48分)9.有20间房间,有的开着灯,有的关着灯,在这些房间里的人都希望与大多数房间保持一致.现在,从第一间房间里的人开始,如果其余19间房间的灯开着的多,就把灯打开,否则就把灯关上.如果最开始开灯与关灯的房间各10间,并且第一间的灯开着.那么,这20间房间里的人轮完一遍后,关着灯的房间有()间.(A)0(B)10(C)11(D)2010.如图,一个长方体由四块拼成,每块都由4个小立方体粘合而成,4块中有3块都可以完全看见,但包含黑色形状的那块只能看见一部分.那么,下列四个选项中的_____是黑色块所在的形状.(A)(B)(C)(D)11.你能根据以下的线索找出百宝箱的密码吗?(1)密码是一个八位数;(2)密码既是3的倍数又是25的倍数;(3)这个密码在20000000到30000000之间;(4)百万位与十万位上的数字相同;(5)百位数字比万位数字小2;(6)十万位、万位、千位上数字组成的三位数除以千万位、百万位上数字组成的两位数,商是25.依据上面的条件,推理出这个密码应该是().(A)25526250(B)26650350(C)27775250(D)2887035012.下面的除法算式给出了部分数字,请将其补充完整.当商最大时,被除数()(A)21944(B)21996(C)24054(D)2411113.老师在黑板上将从1开始的计数连续地写下去:1,3,5,7,9,11……写好后,擦去了其中的两个数,将这些奇数隔成了3段,如果前两段的和分别是961和1001,那么,老师擦去的两个奇数之和是().(A)154(B)156(C)158(D)16014.甲乙两人合作打一份材料.开始甲每分钟打100个字,乙每分钟打200个字.合作到完成总量的一半时,甲速度变为原来的3倍,而乙休息了5分钟后继续按原速度打字.最后当材料完成时,甲、乙打字数相等.那么,这份材料共()个字.(A)3000(B)6000(C)12000(D)1800015.下图是一个立方体,六个面分别写着1、2、3、4、5、6.其中1的对面是6,2的对面是5,3的对面是4.开始时,写有6的面朝下.把立方体沿桌面翻滚,并记录下每次朝下的数字(从6开始).5次翻转后,记录的数字刚好是1、2、3、4、5、6各一次.那么,记录的这6个数字的排列顺序有()种.(A)36(B)40(C)48(D)601.2.【考点】几何,图形分割【难度】☆☆【答案】D【分析】经过分割,可以分成8个正方形,那么面积和为8⨯22=32平方厘米.3.4.5.【考点】几何,面积计算【难度】☆☆☆【答案】B【分析】一条阴影部分的面积为10÷2=5平方厘米.因为都是整数,所以只能为1⨯5.大正方形面积为6636.7.8.9.11.12.13.15.。

2014迎春杯五年级初赛详解

2014迎春杯五年级初赛详解


帅帅思维公众号:shuaiteacher 第 5 页 兴趣是最好的老师



学习有意思
快乐思维
11. 如下图所示,将 15 个点排成三角形点阵或者梯形点阵共有 3 种不同方法(规定:相邻两行的点数均
差 1) .那么将 2014 个点排成三角形点阵或者梯形点阵(至少两层)共有__________种不同的方法.
数都恰为 0、1、2、3 各一个,而除以 4 的商也恰为 0、1、2、3 各一个.表格中已经填好了几个 数,那么,这个表格中最下方一行的四个数的乘积是__________.
【答案】A 【专题】数字谜
【解析】可以把它给的数字转化成商几余几的形式,0~15 就是(0,0)~(3,3) .

所以,是 8 7 1 14 784 ,选 A.
【答案】B
【解析】分数大小比较,把分数化为小数.
2.
下面的四个图形中,第__________幅图只有 2 条对称轴.
A.图 1 【答案】C
【专题】几何
【解析】图 1 有 4 条对称轴,图 2 有 0 条对称轴,图 4 有 1 条对称轴.

A.18 B.19 【答案】C 【专题】应用题
现在要一次运走 48 吨煤, 那么至少需要__________辆这样的大卡车. 3. 一辆大卡车一次可以装煤 2.5 吨, C.20 D.21

帅帅思维公众号:shuaiteacher 第 2 页 兴趣是最好的老师

A.25
B.40
C.49

D.50

5. 如图,大正方形的边长为 14,小正方形的边长为 10,阴影部分的面积之和是__________.

2010-2015迎春杯试卷汇总(小高组)

2010-2015迎春杯试卷汇总(小高组)

2010年“数学解题能力展示”读者评选活动五年级组初试试卷(测评时间:2010 年1月3日9:00—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议.签名:___________填空题:(每题10分,共120分).2.小张有200支铅笔,小李有20支钢笔.每次小张给小李6支铅笔,小李还给小张1支钢笔.经过次这样的交换后,小张手中铅笔的数量是小李手中钢笔数量的11倍.3.如图,长方形ABCD中,BE=4,EC=4,CF=4,FD=1,则⊿AEF的面积是.5.一个等差数列的第3项是14,第18项是23,那么这个数列的前2010项中有项是整数.6.甲、乙两车同时从A城市出发驶向距离300千米远的B城市.已知甲车比乙车晚出发1个小时,但提前1个小时到达B城市.那么,甲车在距离B城市千米处追上乙车.7.已知一个五位回文数等于45与一个四位回文数的乘积(即),则这个五位回文数最大的可能值是.8.请从1, 2,3···,9,10 中选出若干个数,使得1,2,3···,19,20 中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出个数.9.如图,请沿虚线将7×7的方格表分割成若干个长方形,使得每个长方形中恰好包含一个数字,并且这个数字就是此长方形的面积.则第四列的小方格属于个不同的长方形.10. 九个大小相等的小正方形拼成了右图.现从A到B,每次只能沿着小正方形的对角线从一个顶点到另一个顶点,不允许走重复路线,如图的虚线就是一种走法.共有种不同的走法.11.如图,等腰直角三角形DEF的斜边在等腰直角三角形ABC的斜边上,连接AE、AD、AF,于是整个图形被分成五块小三角形.图中已标出其中三块的面积,则⊿ABC的面积是.12. C,D为AB的三等分点;甲8点整时从A出发匀速向B行走,8点12分乙从B点出发匀速向A行走,再过几分钟后丙也从B出发匀速向A行走;甲,乙在C点相遇时丙恰好走到D点,甲,丙8:30相遇时=+-+-++⨯+-⨯227213319)4131(12)3121(6.1deedabcba⨯=45乙恰好到A.那么,丙出发时是8点分2010年“数学解题能力展示”读者评选活动六年级组初试试卷(测评时间:2010 年1月3日9:00—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议.签名:___________填空题:(每题10分,共120分)2.小明带着一些钱去买签字笔,到商店后发现这种笔降价了12.5%,如果他带的钱恰好可以比原来多买13支,那么降价前这些钱可以买________支签字笔.3.满足图中算式的三位数abc最小值是________.4. 三个半径为100厘米且圆心角为60º的扇形如图摆放;那么,这个封闭图形的周长是________厘米.(π取3.14)5.用0~9这10个数字组成若干个合数,每个数字都恰好用一次,那么这些合数之和的最小值是________.6.梯形的上底为5,下底为10,两腰分别为3和4,那么梯形的面积为________.7. 有5个不同的正整数,它们中任意两数的乘积都是12的倍数,那么这5个数之和的最小值是________.8.一个大正方体、四个中正方体、四个小正方体拼成如图的立体图形,已知大、中、小三个正方体的棱长分别为5厘米、2厘米、1厘米.那么,这个立体图形的表面积是________平方厘米.9. 九个大小相等的小正方形拼成了右图.现从A点走到B点,每次只能沿着小正方形的对角线从一个顶点到另一个顶点,不允许走重复路线(如图的虚线就是一种走法).那么从A点走到B点共有________种不同的走法.10. 学校打算在1月4日或1月10日组织同学们看电影.确定好日期后,老师告诉了班长,但是由于“四”和“十”发音接近,班长有10%的可能性听错(把4听成10或者把10听成4).班长又把日期告诉了小明,小明也有10%的可能性听错.那么小明认为看电影的日期是正确日期的可能性为________%.11. 如图,C,D为AB的三等分点;8点整时甲从A出发匀速向B行走,8点12分乙从B出发匀速向A行走,再过几分钟后丙也从B出发匀速向A行走;甲,乙在C点相遇时丙恰好走到D点,甲,丙8:30相遇时乙恰好到A.那么,丙出发时是8点________分.12.图中是一个边长为1 的正六边形,它被分成六个小三角形.将4、6、8、10、12、14、16各一个填入7个圆圈之中.相邻的两个小正三角形可以组成6个菱形,把每个菱形的四个顶点上的数相加,填在菱形的中心A、B、C、D、E、F 位置上(例如:a+b+g+f=A).已知A、B、C、D、E、F依次分别能被2、3、4、5、6、7整除,那么a×g×d=___________.2010年“数学解题能力展示”读者评选活动小学高年级组复试试卷(测评时间:2010年2月6日8:30—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议.签名:___________一、填空题Ⅰ(每题8分,共40分)1.=⨯-⨯+1457266.22010 .2. 下表是人民币存款基准利率表 .小明现在有10000元人民币,如果他按照三年期整存整取的方式存款,3. 如图所示,有大小不同的两个正方体,大正方体的棱长是小正方体棱长的6倍.将大正方体的6个面都染上红色,将小正方体的6个面都染上黄色,再将两个正方体粘合在一起.那么这个立体图形表面上红色面积是黄色面积的 倍.4. 有一块用于实验新品种水稻的试验田形状如图,面积共40亩,一部分种植新品种,另一部分种植旧品种(种植面积不一定相等),以方便比较成果.旧品种每亩产500千克;新的品种中有75%都没有成功,每亩只产400千克,但是另外25%试验成功,每亩产800千克.那么,这块试验田共产水稻 千克.5.得数,那么这两个得数的差是 .二、填空题Ⅱ(每题10分,共50分)6. 直角边长分别为18厘米,10厘米的直角△ABC 和直角边长分别为14厘米,4厘米的直角△ADE 如图摆放.M 为AE 的中点,则△ACM 的面积为 平方厘米.7. 黑板上一共写了10040个数字,包括2006个1,2007个2,2008个3,2009个4,2010个5.每次操作都擦去其中4个不同的数字并写上一个第5种数字(例如擦去1、2、3、4各1个,写上1个5;或者擦去2、3、4、5各一个,写上一个1;……). 如果经过有限次操作后,黑板上恰好剩下了两个数字,那么这两个数字的乘积是 .8. 蜜蜂王国为了迎接2010年春节的到来,特地筑了一个蜂巢如下.每个新品种25%旧品种正六边形蜂窝中,有由蜂蜜凝结而成的数字0、1或2.春节到来之时,群蜂将在巢上跳起舞步,舞步的每个节拍恰好走过的四个数字:2010(从某个2出发最后走完四步后又回到2,如图中箭头所示为一个舞步),且蜜蜂每一步都只能从一个正六边形移动到与之有公共边的正六边形上.蜜蜂要经过四个正六边形且所得数字依次为2010,共有种方法.9.在反恐游戏中,一名“恐怖分子”隐藏在10个排成一行的窗户后面,一位百发百中的“反恐精英”使用狙击枪射击这名“恐怖分子”.“反恐精英”只需射中“恐怖分子”所在的窗户就能射中这名“恐怖分子”.每次射击完成后,如果“恐怖分子”没有被射中,他就会向右移动一个窗户.一旦他到了最右边的窗户,就停止移动.为了确保射中这名“恐怖分子”,“反恐精英”至少需要射击次.10.如图所示,直线上并排放置着两个紧挨着的圆,它们的面积都等于1680平方厘米.阴影部分是夹在两则这个圆的面积等于_________平方厘米.三、填空题Ⅲ(每题12分,共60分)11.用1~9这9个数字各一次,组成一个两位完全平方数,一个三位完全平方数,一个四位完全平方数.那么,其中的四位完全平方数最小是.12.现有一块L形的蛋糕如图所示,现在要求一刀把它切成3部分,因此只能按照如图的方式切,但不能斜着切或横着切.要使得到的最小的那块面积尽可能大,那么最小的面积为平方厘米.13.小李开车从甲地去乙地,出发后2小时,车在丙地出了故障,修车用了40分钟,修好后,速度只为正常速度的75%,结果比计划时间晚2小时到乙地.若车在行过丙地72千米的丁地才出故障,修车时间与修车后的速度分别还是40分钟与正常速度的75%,则比计划时间只晚1.5小时.那么,甲乙两地全程千米.14.9000名同学参加一次数学竞赛,他们的考号分别是1000,1001,1002,…9999.小明发现他的考号是8210,而他的朋友小强的考号是2180.他们两人的考号由相同的数字组成(顺序不一样),差为2010的倍数.那么,这样的考号(由相同的数字组成并且差为2010的倍数)共有对.15.小华编了一个计算机程序.程序运行后一分钟,电脑屏幕上首次出现一些肥皂泡,接下来每到整数分钟的时刻都会出现一些新的肥皂泡,数量与第一分钟出现的相同.第11次出现肥皂泡后半分钟,有一个肥皂泡破裂.以后每隔一分钟又会有肥皂泡破裂,且数量比前一分钟多1个(即第12次出现肥皂泡后半分钟,有2个肥皂泡破裂…).到某一时刻,已破裂的肥皂泡的总数恰好等于电脑屏幕上出现过的肥皂泡的总数,即此刻肥皂泡全部消失.那么在程序运行的整个过程中,在电脑屏幕上最多同时有个肥皂泡出现.10厘米20厘米302011“数学解题能力展示”读者评选活动五年级组初试试卷(测评时间:2010年12月19日8:30—9:30)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题(每题8分,共40分)1. 算式12345678910⨯+⨯+⨯+⨯+⨯的计算结果是 .2. 十二月份共有31天,如果某年12月1日是星期一,那么该年12月19日是星期 .(星期一至星期日用数字1至7表示)3. 右图的等腰梯形上底长度等于3,下底长度等于9,高等于4,那么这个等腰梯形的周长等于 .4. 某乐团女生人数是男生人数的2倍,若调走24名女生,则男生人数是女生人数的2倍,那么该乐团原有男女学生一共 人.5. 规定12010203=+=※...,232349=0+0+0=0※....,54567826=0+0+0+0=※......如果 15165a =※.,那么a 等于 .二.填空题(每题10分,共50分)6. 如图,蚂蚁从正方体的顶点A 沿正方体的棱爬到顶点B体每个顶点一次,那么蚂蚁一共有 种不同的爬法.7. 在右图每个方框中填入一个数字,使得乘法竖式成立.那么两个乘数的和是 .8. 两个正方形如图放置,图中的每个三角形都是等腰直角三角形.若其中方形的边长为12厘米,那么较大正方形的面积是 平方厘米.9. 如图的5×5的表格中有6个字母,请沿格线将右图分割为6个面积不同的小长方形(含正方形),使得每个长方形中恰好有一个字母,且每个字母都在小长方形角上的方格中.若这六个字母分别等于它所在小长方形的面积,那么五位数ABCDE = .10. 小人国有2011个小矮人,他们中的每个人不是戴红帽子就是戴蓝帽子.小矮人戴红帽子时说真话,戴蓝帽子时说假话;并且他们随时可以更换自己帽子的颜色.某一天,他们恰好每两人都见了一次面,并且都说对方戴蓝帽子.那么这一天他们总共最少改变了 次帽子的颜色.三.填空题(每题12分,共60分)11. 如图,一个大长方形被分成8个小长方形,其中长方形A 、B 、C 、D 、别是26厘米、28厘米、30厘米、32厘米、34方厘米.12. 如图是一个6×6的方格表,将数字1~6填入空白方格中,使得每一行、每一列数字1~6都只恰好出现一次,方格表还被粗线划分成了6块区域,每个区域数字1~6也恰好都只出现一次,那么最下面一行的 前4个数字组成的四位数ABCD 是 .13. 甲、乙两车同时从A 地出发开往B 地.出发的时候,甲车的速度比乙车的速度每小时快2.5千米.10分钟后,甲车减速了; 再过5分钟后,乙车也减速了,这时乙车比甲车每小时慢0.5千米.又过了25分钟后两车同时到达B 地.那么甲车当时速度每小时减少了 千米.14. 把同时满足下列两个条件的自然数称为“幸运数”:(1)从左往右数,第三位起,每一位的数字是它前面的两个数字的差(大数减去小数);(2)无重复数字.例如:132、871、54132都是“幸运数”;但8918(数字“8”重复)、990(数字“9”重复)都不是“幸运数”.那么最大“幸运数”从左往右的第二位数字是 .15. 一个由某些非零自然数所组成的数组具有以下的性质:(1)这个数组中的每个数(除了1以外),都可被2、3、5中的至少一个数整除.(2)对于任意非零自然数n ,若此数组中包含有2n 、3n 、5n 中的一个,则此数组中必同时包含有n 、2n 、3n 和5n .如果此数组中数的个数在300和400之间,那么此数组包含 个数.A B C D E FABDC EBA AACA D2011“数学解题能力展示”读者评选活动六年级组初试试卷(测评时间:2010年12月19日8:30—9:30)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题(每题8分,共40分)1. 今天是2010年12月19日,欢迎同学们参加北京第27届“数学解题能力展示”活动.那么,算式1027100121910002010++的计算结果的整数部分是 .2. 某校有2400名学生,每名学生每天上5节课,每位教师每天教4节课,每节课是一位教师给30名学生讲授.那么该校共有教师 位.3. 张老师带着一些钱去买签字笔,到商店后发现这种笔降价了25%,结果他带的钱恰好可以比原来多买25支.那么降价前这些钱可以买签字笔 支.4. 右图为某婴幼儿商品的商标,由两颗心组成,每颗心都是由一个正方形和两个半圆拼成.若两个正方形的边长分别为40毫米、20毫米,则阴影图形的面积是 平方毫米.(π取3.14)5. 用 4.02乘以一个两位整数,得到的乘积是一个整数,这个乘积的10倍是 .二.填空题(每题10分,共50分)6. 某支球队现在的胜率为45%,接下来的8场比赛中若有6场获胜,则胜率将提高到50%.那么现在这支球队共取得了 场比赛的胜利.7. 定义运算:a b a b a b ⨯♥=+,算式920102010201020102010♥♥♥♥♥♥共颗“”的计算结果是 .(题中共9个“♥”,计算顺序从左到右)8. 在△ABC 中,BD =DE =EC ,CF : AC =1 : 3.若△ADH 的面积比△HEF 的面积多24平方厘米,则△ABC 的面积是 平方厘米. 9. 一个正整数,它的2倍的约数恰好比它自己的约数多2个,它的3倍的约数恰好比它自己的约数多3个.那么这个正整数是 .10. 如图,一个6×6的方格表,现将数字1~6填入空白方格中,使得每一行、每一列数字1~6都恰好出现一次.图中已经填了一些数字,那么剩余空格满足要求的填写方法一共有 种.三.填空题(每题12分,共60分)11.有一个圆柱体,高是底面半径的3倍,将它如图分成大、小两个圆柱体.如果大圆柱体的表面积是小圆柱体的表面积的3倍,那么大圆柱体的体积是小圆柱体的体积的倍.12.某岛国的一家银行每天9:00~17:00营业.正常情况下,每天9:00准备现金50万元,假设每小时的提款量都一样,每小时的存款量也都一样,到17:00下班时有现金60万元.如果每小时提款量是正常情况的4倍,而存款量不变的话,14:00银行就没现金了.如果每小时提款量是正常情况的10倍,而存款量减少到正常情况一半的话,要使17:00下班时银行还有现金50万元,那么9:00开始营业时需要准备现金万元.13.40根长度相同的火柴棍摆成右图,如果将每根火柴棍看作长度为1的线段,那么其中可以数出30个正方形来.拿走5根火柴棍后,A,B,C,D,E五人分别作了如下的判断:A:“1×1的正方形还剩下5个.”B:“2×2的正方形还剩下3个.”C:“3×3的正方形全部保留下来了.”D:“拿走的火柴棍所在直线各不相同.”E:“拿走的火柴棍中有4根在同一直线上.”已知这5人中恰有2人的判断错了,那么剩下的图形中还能数出个正方形.14.甲、乙、丙三人同时从A出发去B,甲、乙到B后调头回A,并且调头后速度减少到各自原来速度的一半.甲最先调头,调头后与乙在C迎面相遇,此时丙已行2010米;甲又行一段后与丙在AB中点D迎面相遇;乙调头后也在C与丙迎面相遇.那么AB间路程是米.15.如果算式19.1220102=-+-IGHFDEABC中的A,B,C,D,E,F,G,H,I表示1~9中各不相同的数字,那么五位数ABCDE=.2011年“数学解题能力展示”读者评选活动小学高年级组复试试卷(测评时间:2011年1月30日8:00—9:30)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果,否则愿接受本次成绩无效的处罚.我同意遵守以上协议签名:____________________一.填空题Ⅰ(每题8分,共40分)1.定义一种新运算a☆b满足:a☆b=b×10+a×2.那么2011☆130=.2.从1999年到2010年的12年中,物价涨幅为150%(即1999年用100元能购买的物品,2010年要比原来多花150元才能购买).若某个企业的一线员工这12年来工资都没变,按购买力计算,相当于工资下降了 %.3.右图中大圆的半径是20厘米,7个小圆的半径都是10厘米.那么阴影图形的面积是 平方厘米(π取3.14).4. 某届“数学解题能力展示”读者评选活动初试共有12000名学生参加,分为初中、小学高年级、小学中年级三个组别.小学的两个组共占总人数的1615,不是小学高年级组的占总人数的21.那么小学中年级组参赛人数为 .5. 右图是一个除法竖式.这个除法竖式的被除数是 .二.填空题Ⅱ(每题10分,共50分)6. 算式1!×3-2!×4+3!×5-4!×6+…+2009!×2011-2010!×2012+2011!的计算结果是 .7. 春节临近,从2011年1月17日(星期一)起工厂里的工人陆续回家过年,与家人团聚.若每天离厂的工人人数相同,到1月31日,厂里还剩下工人121名,在这15天期间,统计工厂工人的工作量是2011个工作日(一人工作一天为1个工作日,工人离厂当天及以后不需要统计).其中周六、日休息,且无人缺勤.那么截至到1月31日,回家过年的工人共有 人.8. 有一个整数,它恰好是它的约数个数的2011倍.这个整数的最小值是 .9. 一个新建5层楼房的一个单元每层有东西2套房;各层房号如右图所示,现已有赵、钱、孙、李、周五家入住.一天他们5人在花园中聊天:赵说:“我家是第3个入住的,第1个入住的就住我对门.” 钱说:“只有我一家住在最高层.”孙说:“我家入住时,我家同侧的上一层和下一层都已有人入住了.”李说:“我家是五家中最后一个入住的,我家楼下那一层全空着.” 周说:“我家住在106号,104号空着,108号也空着.”他们说的话全是真话.设第1、2、3、4、5家入住的房号的个位数依次为A 、BC 、D 、E ,那么五位数ABCDE = .10. 6支足球队,每两队间至多比赛一场.如果每队恰好比赛了2场,那么符合条件的比赛安排共 有 种.三.填空题Ⅲ(每题12分,共60分)11. 0~9可以组成两个五位数A 和B ,如果A+B 的和是一个末五位数字相同的六位数,那么A×B 的不同取值共有 个.12. 甲、乙两人分别从A 、B 两地同时出发,在AB 间往返行走;甲出发的同时,丙也从A 出发去B .当甲、乙两人第一次迎面相遇在C 地时,丙还有100米才到C ;当丙走到C 时,甲又往前走了108米;当丙到B 时,甲、乙正好第二次迎面相遇.那么A 、B 两地间的路程是 米.13. 如右图,大正方形被分成了面积相等的五块.若AB 长为3.6厘米,则大正方形的面积为 平方厘米.五层 四层三层 二层 一层1 3 014. 用36个3×2×1的实心小长方体拼成一个6×6×6的大正方体.在各种拼法中,从大正方体外的某一点看过去最多能看到 个小长方体.15. 平面上有15个红点,在这些红点间连一些线段.一个红点连出了几条线段,就在这个红点上标几.已知所有标有相同数的红点之间互不连线,那么这15个红点间最多连了 条线段.2012“数学解题能力展示”读者评选活动五年级组初试试卷(测评时间:2011年12月17日9:00—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题(每小题8分,共32分)1. 算式50311111212012101÷÷⨯⨯的计算结果是 .2. 在右图中,BC = 10,EC = 6,直角三角形EDF 的面积比直角三角形FAB 的面积小5.那么长方形ABCD 的面积是 .3. 龙腾小学五年级共有四个班.五年级一班有学生42人,五年级二班是一班人数的76,五年级三班是二班人数的65,五年级四班是三班人数的1.2倍.五年级共有 人.4. 在右图中,共能数出 个三角形.二.填空题(每小题10分,共40分)5. 一个电子钟表上总把日期显示为八位数,如2011年1月1日显示为.如果2011年最后一个能被101整除的日子是ABCD 2011,那么=ABCD . 6. 在右图的除法竖式中,被除数是 . 7. 五支足球队比赛,每两个队之间比赛一场;每场比赛胜者积3分,负者积0分,平局则各积1分.比赛完毕后,发现这五个队的积分恰好是五个连续的自然数.设第1、2、3、4、5名分别平了A 、B 、C 、D 、E 场,那么五位数= .8. 今天是2011年12月17日,在这个日期中有4个1、2个2、1个0、1个7.用这8个数字组成若干个合数再求和(每个数字恰用一次,首位数字不能为0,例如21110与217的和是21327),这些合数的和的最小值是 .三.填空题(每小题12分,共48分)9. 甲、乙两人分别从A 、B 两地同时出发,相向而行.第一次迎面相遇在距离B 地100米处,相遇后甲的速度提高到原来的2倍;甲到B 后立即调头,追上乙时,乙还有50米才到A .那么,A 、B 间的路程长 米.10. 在右图中,线段AE 、FG 将长方形ABCD 分成了四块;已知其中两块的面积分别是2 cm 2、11cm 2,且E 是BC 的中点,O 是AE 的中点,那么长方形ABCD 的面积是 cm 2.11. 在算式 2011=⨯⨯⨯+H G F E ABCD 中,A 、B 、C 、D 、E 、F 、G 、H 代表1~8中不同的数字(不同的字母代表不同的数字).那么四位数ABCD = .12. 有一个6×6的正方形,分成36个1×1的正方形.选出其中一些1×1的正方形并画出它们的对角线,使得所画出的任何两条对角线都没有公共点,那么最多可以画出 条对角线.2012“数学解题能力展示”读者评选活动六年级组初试试卷(测评时间:2011年12月17日9:00—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题(每小题8分,共32分)1. 算式11111(97531)1226122030++++⨯的计算结果是_________.2. 将棱长为5的大正方体切割成125个棱长为1的小正方体.这些小正方体的表面积总和是原大正方体表面积的_________倍.3. 一辆玩具汽车,第一天按100%的利润定价,无人来买;第二天降价10%,还是无人买;第三天再降价360元,终于卖出.已知卖出的价格是进价的1.44倍,那么这辆玩具汽车的进价是_________元.4. 在右图中的竖式除法中,被除数为________.二.填空题(每小题10分,共40分)。

“迎春杯”数学花园探秘初赛试卷(五年级c卷)

“迎春杯”数学花园探秘初赛试卷(五年级c卷)

2016年“迎春杯”数学花园探秘初赛试卷(五年级C卷)一、填空题(共4小题,每小题8分,满分32分)1.(8分)算式(9×9﹣2×2)÷(﹣)的计算结果是.2.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.若经过5小时后细胞的个数记为164.最开始的时候有个细胞.3.(8分)如图,一道乘法竖式已经填出了2、0、1、6,那么乘积是.4.(8分)彤彤和林林分别有若干张卡片:如果彤彤拿6张给林林,林林变为彤彤的3倍;如果林林给彤彤2张,则林林变为彤彤的2倍.那么,林林原有.二、填空题(共4小题,每小题10分,满分40分)5.(10分)四位数的约数中,恰有3个是质数,39个不是质数,四位数的值是.6.(10分)图中,A、B、C、D、E是正五边形各边的中点,那么,图中共有个梯形.7.(10分)对于自然数N,如果1﹣9这九个自然数中至少有八个数可以整除N,则称N是一个“八仙数”,则在大于2000的自然数中,最小的“八仙数”是.8.(10分)如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.三、填空题(共3小题,每小题12分,满分36分)9.(12分)图中,四边形ABCD和EFGH都是正方形,△AEH、△BEF、△CFG 和△DHG都是等边三角形,其中正方形ABCD的面积是360,那么梯形BEHD 的面积是.10.(12分)变形金刚擎天柱以机器人的形态从A地出发向B地,可按时到达B地;如果一开始就变形为汽车,速度比机器人的形态提高,可以提前1小时到达B地;如果以机器人的形态行驶150千米,再变形为汽车,并且速度比机器人形态提高,则可以提前40分钟到达.那么,A、B两地相距千米.11.(12分)在空格中填入数字1﹣5,使得每行和每列数字不重复,每个除法从上向下或者从左到右运算都能够整除.那么第二行的前三个数字依次组成的三位数是.2016年“迎春杯”数学花园探秘初赛试卷(五年级C卷)参考答案与试题解析一、填空题(共4小题,每小题8分,满分32分)1.(8分)算式(9×9﹣2×2)÷(﹣)的计算结果是2508 .【解答】解:(9×9﹣2×2)÷(﹣)=(81﹣4)÷=77×=2508故答案为:2508.2.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.若经过5小时后细胞的个数记为164.最开始的时候有9 个细胞.【解答】解:第5小时开始时有:164÷2+2=84(个)第4小时开始时有:84÷2+2=44(个)第3小时开始时有:44÷2+2=24(个)第2小时开始时有:24÷2+2=14(个)第1小时开始时有:14÷2+2=9(个)答:最开始的时候有 9个细胞.故答案为:9.3.(8分)如图,一道乘法竖式已经填出了2、0、1、6,那么乘积是6156 .【解答】解:依题意可知乘数中的三位数乘以2结果是一个四位数,那么百位数字是大于4的数字,再根据数字0得知结果是1000多是数字那么乘数中的百位数字是5.而且乘数的三位数的十位数字乘以2没有进位.同时这三位数乘以一个数还是结果是三位数推理出乘数中2前面的数字是1,即乘数的两位数是12.再根据结果中的尾数是6,那么三位数的乘数的个位是3.再根据数字1得0+1=1,那么这个三位乘数是513故答案为:61564.(8分)彤彤和林林分别有若干张卡片:如果彤彤拿6张给林林,林林变为彤彤的3倍;如果林林给彤彤2张,则林林变为彤彤的2倍.那么,林林原有66张.【解答】解:彤彤给林林6张,林林有总数的;林林给彤彤2张,林林有总数的;所以总数:(6+2)÷(﹣)=96,林林原有:96×﹣6=66,故答案为:66.二、填空题(共4小题,每小题10分,满分40分)5.(10分)四位数的约数中,恰有3个是质数,39个不是质数,四位数的值是6336 .【解答】解:根据奇数偶数位数和相等,所以一定是11的倍数,因数个数是3+39=42个.四位数含有3个质数,需要将42分解成3个数字相乘.42=2×3×7.所以可以写成a×b2×c6.那么看一下质数是最小的是什么情况.11×32×26=6336.当质数再打一点b=5时,c=2时,11×52×26=17600(不满足是四位数的条件).故答案为:6336.6.(10分)图中,A、B、C、D、E是正五边形各边的中点,那么,图中共有15 个梯形.【解答】解:根据分析可得,3×5=15(个)答:图中共有 15个梯形.故答案为:15.7.(10分)对于自然数N,如果1﹣9这九个自然数中至少有八个数可以整除N,则称N是一个“八仙数”,则在大于2000的自然数中,最小的“八仙数”是2016 .【解答】解:依题意可知:在数字1﹣9中的八仙数一定是4和3的倍数,大于2000并且是12的倍数的最小数字是2004(1,2,3,4,6的倍数)不满足条件.2004+12=2016,2016是(1,2,3,4,6,7,8,9的倍数)满足题意.故答案为:20168.(10分)如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是120 .【解答】解:依题意可知:2个偶数中间间隔是2个奇数.发现只有数字10,11,9,12是符合条件的数字.乘积为10×12=120.故答案为:120三、填空题(共3小题,每小题12分,满分36分)9.(12分)图中,四边形ABCD和EFGH都是正方形,△AEH、△BEF、△CFG 和△DHG都是等边三角形,其中正方形ABCD的面积是360,那么梯形BEHD的面积是90 .【解答】解:如图延长BE交AH于M,设正方形EFGH的边长为a.易知S△ABE=S△AHD=•a a=a2,∴S△ABE+S△ADH=a2=S四边形ENKH,∵S△ENB+S△DJK=S△AEH,∴S梯形EBDH=S△ABD=S正方形ABCD=×360=90.故答案为9010.(12分)变形金刚擎天柱以机器人的形态从A地出发向B地,可按时到达B地;如果一开始就变形为汽车,速度比机器人的形态提高,可以提前1小时到达B地;如果以机器人的形态行驶150千米,再变形为汽车,并且速度比机器人形态提高,则可以提前40分钟到达.那么,A、B两地相距750 千米.【解答】解:依题意可知:将速度提高,原来的速度和现在的速度比为1:(1+)=4:5.时间之比与速度成反比即是5:4,提前1小时1÷(5﹣4)=1小时,那么原来的时间就是5小时,后来的时间就是4小时.如果速度提高,那么原来的速度和后来的速度比为1:(1+)=5:6.那么时间成反比就是6:5.提前40分钟就是小时,÷(6﹣5)=,那么原来就是=4小时.和之前的5小时相比差1小时,也就是1小时行驶150千米,那么5小时的路程为150×5=750千米.故答案为:750.11.(12分)在空格中填入数字1﹣5,使得每行和每列数字不重复,每个除法从上向下或者从左到右运算都能够整除.那么第二行的前三个数字依次组成的三位数是531 .【解答】解:首先根据已知数字5下面的数字不能是偶数只能是3,那么5上面的数字只能是1.再根据第三行的数字3只能和1一组,那么前边是4÷2后面是3除以1.再根据第一行的数字规律最后只能填写数字3.即42÷3.继续推理得:故答案为:531声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/5 18:16:20;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。

2014年数学解题能力展示(原迎春杯):五年级初赛试卷(含答案

2014年数学解题能力展示(原迎春杯):五年级初赛试卷(含答案

2014年数学解题能力展示(原迎春杯):五年级初赛试卷(含答案2014年“数学解题能力展示”读者评选活动试题五年级组一、选择题(每小题8分,共32分)1.在所有分母小于10的最简分数中,最接近20.14的分数是(。

)A。

2/5.B。

1/2.C。

3/7.D。

4/9考点】计算,分小互化。

【答案】B。

【分析】可观察分数,进行估算;或进行精算,易知2/5+0.14=2/5+14/100=54/100≈1/22.下面的四个图形中,第(。

)幅图只有2条对称轴A。

图1.B。

图2.C。

图3.D。

图4考点】几何。

【答案】C。

【分析】如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴。

观察易知,符合题意的是(C)图3.3.一辆大卡车一次可以装煤2.5吨,现在要一次运走48吨煤,那么至少需要(。

)辆这样的大卡车。

A。

18.B。

19.C。

20.D。

21考点】应用题。

【答案】C。

【分析】48÷2.5=19.2,向上取整即为20.4.已知a、b、c、d四个数的平均数是12.345,a>b>c>d,那么b(。

)。

A。

大于12.345.B。

小于12.345.C。

等于12.345.D。

无法确定考点】计算,平均数。

【答案】D。

【分析】排除法,(A)(B)(C)三个选项均可找到反例,故无法确定。

二、选择题(每小题10分,共70分)5.如图,大正方形的边长为14,小正方形的边长为10,阴影部分的面积之和是(。

)A。

25.B。

40.C。

49.D。

50考点】几何,弦图。

【答案】C。

【分析】如下图所示,图①逆时针旋转90°,阴影部分可拼成一等腰直角三角形,其面积为(10×10)÷2=50/2=25,加上小正方形的面积14×14=196,所以阴影部分的面积之和为196-25=171.6.甲、乙、丙、XXX四人拿出同样多的钱,一起订购同样规格的若干件新年礼物,礼物买来后,甲、乙、丙分别比XXX拿了3,7,14件礼物,最后结算时,乙付给了丁14元钱,并且乙没有付给甲钱。

迎春杯五年级初赛试卷及答案详解

迎春杯五年级初赛试卷及答案详解

2015年“数学花园探秘”科普活动五年级组初试试卷A解析一、填空题Ⅰ(每小题8分,共32分)1.算式5⨯(2014-12)⨯20的计算结果是930-8302.数学小组原计划将72个苹果发给学生,每人发的苹果数量一样多,后来又有6人加入小组,这样每个学生比原计划少发了1个苹果.那么,原来有_________名学生.3.在如图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是_______.4.右图六角星的6个顶点恰好是一个正六边形的6个顶点.那么阴影部分面积是空白部分面积的倍.二、填空题Ⅱ(每小题10分,共40分)5.A和B是两个非零自然数,A是B的24倍,A的因数个数是B的4倍,那么A与B的和最小是________.6.珊珊和希希各有若干张积分卡.珊珊对希希说:“如果你给我3张,我的张数就是你的3倍.”希希对珊珊说:“如果你给我4张,我的张数就是你的4倍.”珊珊对希希说:“如果你给我5张,我的张数就是你的5倍.”这三句话中有一句话是错的.那么,原来希希有________张积分卡.7.将1至8填入方格中,使得数列□□,9,□□,□□,□□从第三个项开始,每一项都等于前面两项的和,那么这个数列的所有项之和是________.8.甲、乙、丙三户人家打算订阅报纸,共有5种不同的报纸可供选择,已知每户人家都订两份不同的报纸,并且知道这三户人家每两户所订的报纸恰好有一份相同,那么三户人家共有________种不同的订阅方式.三、填空题Ⅲ(每小题12分,共48分)9.如图,A、B为圆形轨道一条直径的两个端点.甲、乙、丙三个微型机器人在环行导轨上同时出发,作匀速圆周运动.甲、乙从A出发,丙从B出发;乙顺时针运动,甲、丙逆时针运动.出发后12秒钟甲到达B,再过9秒钟甲第一次追上丙时恰好也和乙第一次相遇;那么当丙第一次到达A后,再过__________秒钟,乙才第一次到达B.10.如图,分别以一个面积为169的正方形的四条边为底,做4个面积为101.4平方厘米的等腰三角形.图中阴影部分的面积是_________平方厘米.11.如果一个数的数字和与它3倍的数字和相同,却与它2倍的数字和不同,我们称这种数为“奇妙数”,那么,最小的“奇妙数”是________.12.请参考《2015年“数学花园探秘”科普活动初赛试题评选方法》作答.2015年“数学花园探秘”科普活动初赛试题答案解析1.2.3.4.5.6.7.8.9.10.11.。

迎春杯五年级试题及答案

迎春杯五年级试题及答案

迎春杯五年级试题及答案Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-199981.计算:+-÷2+2×--9×=2.某班女同学人数是男同学的2倍,如果女同学的平均身高是150厘米,男同学的平均身高是162厘米.那么全班同学的平均身高是厘米.3.如果两个合数互质,它们的最小公倍数是126,那么,它们的和是 .4.图中三角形共有个.5.从l,2,3,4,5,6中选取若干个数(可以只选取一个),使得它们的和是3的倍数,但不是5的倍数.那么共有种不同的选取方法.6.某城市的交通系统由若干个路口(图中线段的交点)和街道(图中的线段)组成,每条街道都连接着两个路口.所有街道都是双向通行的,且每条街道都有一个长度值(标在图中相应的线段处)一名邮递员传送报纸和信件,要从邮局出发经过他所管辖的每一条街道最后返回邮局(每条街道可以经过不止一次).他合理安排路线,可以使得自己走过最短的总长度是7.如图,一个面积为2009平方厘米的长方形,被分割成了一个长方形、两个等腰直角三角形、三个梯形.已知除了阴影长方形外,其它的五块面积都相等,且B是AC的中点;那么阴影长方形的面积是平方厘米。

8.将数字4,5,6,7,8,9各使用一次,组成一个被667整除的6位数,那么,这个6位数除以667的结果是。

9.计算:1155×(4325⨯⨯+5437⨯⨯+…+109817⨯⨯+1110919⨯⨯)=名同学编为1至200号面向南站成一排.第1次全体同学向右转 (转后所有的同学面朝西):第2次编号为2的倍数的同学向右转;第3次编号为3的倍数的同学向右转;……;第200次编号为200的倍数的同学向右转;这时,面向东的同学有 名.11.有一位奥运会志愿者,向看台上的一百名观众按顺序发放编号1,2,3,……100,同时还向每位观众赠送单色喇叭.他希望如果两位观众的编号之差是质数,那么他们拿到的喇叭就是不同颜色的.为了实现他自己的愿望,他最少要准备 种颜色的喇叭.12.一些棋子被摆成了一个四层的空心方阵(下图是一个四层空心方阵的示意图).后来小林又添入28个棋子,这些棋子恰好变成了一个五层的空心方阵(不能移动原来的棋子),那么最开始最少有 个棋子.13.请将l 个1,2个2,3个3,…,8个8,9个9 填入右图的表格中,使得相同的数所在的方格都连在一起(相连的两个方格必须有公共边).现在已经给出了其中8个方格中的数,并且知道A,B,C,D,E,F,G 各不相同;那么,五位数CDEFG -----------是 .地位于河流的上游,B 地位于河流的下游.每天早上,甲船从A 地、乙船从B 地同时出发相向而行.从12月1号开始,两船都装上了新的发动机,在静水中的速度变为原来的倍,这时两船的相遇地点与平时相比变化了1千米.由于天气原因,今天(12月6号)的水速变为平时的2倍,那么今天两船的相遇地点与12月2号相比,将变化 千米.15如图,长方形ABCD 中被嵌入了6个相同的正方形.已知 AB=22厘米,BC=20厘米,那么每一个正方形的面积为 平方厘米.答案: 题号 答案 1 520 2 154 3 23 4 20 5 19 6 46 7 861 8 1434 9 651 10 8 11 4 12112。

历年迎春杯高年级决赛(5年级)经典试题汇编

历年迎春杯高年级决赛(5年级)经典试题汇编

数论
21. (2009 年数学解题能力展示中年级组初试试题)将 1、2、3、4、5、6、7、8、9 这九个数排成一 行,使得第一个数是第二个数的整数倍,前两个数的和是第三个数的整数倍,前三个数的和是第 四个数的整数倍,……,前八个数的和是第九个数的整数倍.如果第一个数是 6,第四个数是 2, 第五个数是 1,最后一个数是_____________.
22. (2009 年迎春杯高年级决赛试题)三个两两不同的正整数,和为 126,则它们两两最大公约数之 和的最大值为 .
23. (1993 年第 9 届迎春杯决赛试题) 设 a 与 b 是两个不相等的自然数, 如果它们的最小公倍数是 72, 那么 a 与 b 之和可以有 种不同的值.
9 历年数学解题能力展示高年级经典试题汇编(1984?~2010)
11 历年数学解题能力展示高年级经典试题汇编(1984?~2010)
31. 从甲地到乙地,需先走一段下坡路,再走一段平路,最后再走一段上坡路。其中下坡路与上坡路 的距离相等。陈明开车从甲地到乙地共用了 3 小时,其中第一小时比第二小时多走 15 千米,第二 小时比第三小时多走 25 千米。如果汽车走上坡路比走平路每小时慢 30 千米,走下坡路比走平路 每小时快 15 千米。那么甲乙两地相距多少千米?
C
B
A
E D
4 历年数学解题能力展示高年级经典试题汇编(1984?~2010)
11. (迎春杯模拟题)如图,求 x 的度数。
80° 20°
20° 20°
12. (2010 年数学解题能力高年级复试试题)现有一块 L 形的蛋糕如图所示,现在要求一刀把它切成 3 部分,因此只能按照如图的方式切,但不能斜着切或横着切.要使得到的最小的那块面积尽可能 大,那么最小的面积为 平方厘米. 10 厘米

北京迎春杯初赛试题及答案(小学组).doc

北京迎春杯初赛试题及答案(小学组).doc

北京迎春杯初赛试题及答案(小学组)
北京迎春杯初赛于12月3日结束,对于很多参加迎春杯的学生目前最关心得就是北京迎春杯初赛答案了,下面是北京迎春杯初赛试题及答案,包括三年级、四年级、五年级和六年级的初赛试题及答案。

北京迎春杯初赛试题及答案(小学组)
【三年级】|【北京迎春杯三年级初赛试题(含答案)】
【四年级】|【级初赛试题及答案】
【五年级】|【级)】
【六年级】|【北京迎春杯六年级初赛试题及答案】
热点推荐:小学竞赛考试时间(各种热门杯赛)
迎春杯作为北京小学生关注度最高的杯赛,每年参与度都很高。

大家提供的北京迎春杯初赛试题及答案供大家参考,北京迎春杯初赛的复赛名单、获奖信息等内容请查看【迎春杯】栏目!。

迎春杯五年级试题(部分参考)

迎春杯五年级试题(部分参考)

2008年(迎春杯)五年级初试试卷一、填空题Ⅰ(每题8分,共40分)1. 小华在计算3.69除以一个数时,由于商的小数点向右多点了一位,结果得24.6,这道题的除数是。

2. 下图中平行四边形的面积是1080m2,则平行四边形的周长为m。

3. 当a= 时,下面式子的结果是0?当a= 时,下面式子的结果是1?(36-4a)÷84. 箱子里装有同样数量的乒乓球和羽毛球。

每次取出5个乒乓球和3个羽毛球,取了几次之后,乒乓球恰好没有了,羽毛球还有6个,则一共取了次,原来有乒乓球和羽毛球各个。

5.在下边的竖式中,相同字母代表相同数字,不同字母代表不同数字,则四位数tavs = 。

二、填空题Ⅱ(每题10分,共50分)6. 一个五位数恰好等于它各位数字和的2007倍,则这个五位数是。

7. 一个等腰直角三角形和一个正方形如图摆放,①、②、③这三块的面积分别是2、8、58,则④、⑤这两块的面积差是。

8. 在纸上写着一列自然数1,2,…,98,99。

一次操作是指将这列数中最前面的三个数划去,然后把这三个数的和写在数列的最后面。

例如第一次操作后得到4,5,…,98,99,6;而第二次操作后得到7,8,…,98,99,6,15。

这样不断进行下去,最后将只剩下一个数,则最后剩下的数是。

9. 甲、乙二人要从网上下载同一个100兆大小的软件,他们同时用各自家中的电脑开始下载,甲的网速较快,下载速度是乙的5倍,但是当甲下载了一半时,由于网络故障出现断网的情况,而乙家的网络一直正常。

当甲的网络恢复正常后,继续下载到99兆时(已经下载的部分无需重新下载),乙已经下载完了,则甲断网期间乙下载了兆。

10. 如图,5×5方格被分成了五块;请你在每格中填入1、2、3、4、5中的一个,使得每行、每列、每条对角线的五个数各不相同,且每块上所填数的和都相等。

现有两个格子已分别填入1和2,请在其它格子中填上适当的数,则是。

三、填空题Ⅲ(每题12分,共60分)11. 在右图的每个方框中填入一个数字,使得除法算式成立。

“迎春杯”竞赛试题(五年级)

“迎春杯”竞赛试题(五年级)

2014年“迎春杯”竞赛试题(五年级)一、填空.(每空3分,共45分.)1.(6分)甲、乙两数的和是13.2,甲数的小数点向右移动一位正好等于乙数,甲数是,乙数是.2.(3分)一个三角形的一条高是2厘米.如果高增加6厘米,底不变,则面积增加12平方厘米,原三角形的面积是平方厘米.3.(3分)王强买了6个本子和4支铅笔共付了9.2元,周军买了同样的3个本子和1支铅笔,共付了3.8元.那么买一个本子和一支铅笔应共付元.4.(3分)某商店一种牌子的袜子售价为每双4.86元,现在开展促销活动,袜子“买五送一”,现在一双袜子实际价格是元.5.(6分)已知(□+△)×0.3=4.2,而且△÷0.4=12,则△=,□=.6.(6分)一个两位数取近似值后是3.8,这个数最大是,最小是.7.(6分)丁小乐上周练习了4天慢跑,他一天中最远跑了3.3千米,最短跑了2.4千米.那么可以推算出这4天,丁小乐最多跑了千米,最少跑了千米.8.(3分)五名裁判给一名体操运动员评分,如果去掉一个最高分后平均分是9.46分,如果去掉一个最低分后平均分是9.66分,那么最高分比最低分多了分.9.(3分)甲、乙两数的积是1.6,如果甲数扩大5倍,乙数也扩大5倍,那么,甲、乙两数的积是.10.(3分)小明和小红拿出同样多的钱合买作业本,结果小明拿了8本,小红拿了12本,这样,小红就给小明1.1元.每本作业本的单价是元.11.(3分)暑假小明去游园,遇到了甲、乙、丙、丁四位同学,小明和四位同学都握了手,甲和3个人握了手,乙和2个人握了手,丙和1个人握了手,那么丁和个人握了手.二、解答题(共1小题,满分12分)12.(12分)计算.9.5×10112.5×8.838.4×187﹣15.4×384+3.3×165.29×73+52.9×2.7.三、解决问题.(共43分.)13.(6分)已知篮球、足球、排球平均每个36元.篮球比排球每个贵10元,足球比排球每个贵8元,每个足球多少元?14.(6分)如图,在三角形ABC中,线段EC的长度是线段BE的2倍,线段CD的长度是线段AD的2倍,已知三角形BDE的面积是14平方厘米,那么三角形ABC的面积是多少平方厘米?15.(6分)一辆摩托车以平均每小时20千米的速度行完60千米的路程,在回来的时候,它的平均速度是每小时30千米,这辆摩托车在整个来回的旅程中,平均速度是多少?16.(6分)张师傅以1元4个苹果的价格买进苹果若干个,又以2元5个苹果的价格把这些苹果卖出,如果他要赚得15元的利润,那么他必须卖出苹果个.17.(6分)实验小学统计五(1)班数学考试成绩,平均分是87.26分.复查试卷时,发现把明明的成绩98分误看成89分计算,经重新计算后,该班平均成绩是87.44分,问该班有多少学生?18.(6分)已知如图中每个小正方形的边长是4厘米,求阴影部分的面积?19.(7分)王明放学回家,距家门300米时,妹妹和小狗一齐向他奔来,王明和妹妹的速度都是每分钟50米,小狗的速度是每分钟200米,小狗遇到王明后用同样的速度不停往返于王明与妹妹之间.当王明与妹妹相距10米时,小狗一共跑了多少米?2014年“迎春杯”竞赛试题(五年级)参考答案与试题解析一、填空.(每空3分,共45分.)1.(6分)甲、乙两数的和是13.2,甲数的小数点向右移动一位正好等于乙数,甲数是 1.2 ,乙数是12 .【解答】解:甲数:13.2÷(10+1)=13.2÷11=1.2乙数:1.2×10=12.答:甲数是1.2,乙数是12.故答案为:1.2,12.2.(3分)一个三角形的一条高是2厘米.如果高增加6厘米,底不变,则面积增加12平方厘米,原三角形的面积是 4 平方厘米.【解答】解:设三角形的底为a厘米a×(2+6)÷2﹣2a÷2=124a﹣a=123a=12a=4;原三角形的面积是4×2÷2=4(平方厘米)答:原三角形的面积是4平方厘米.故答案为:4.3.(3分)王强买了6个本子和4支铅笔共付了9.2元,周军买了同样的3个本子和1支铅笔,共付了3.8元.那么买一个本子和一支铅笔应共付1.8 元.【解答】解:一支铅笔的钱数:(9.2﹣3.8×2)÷2,=1.6÷2,=0.8(元),一个本子的钱数:(3.8﹣0.8)÷3,=3÷3,=1(元),买一个本子和一支铅笔共付的钱数:0.8+1=1.8(元),故答案为:1.8.4.(3分)某商店一种牌子的袜子售价为每双4.86元,现在开展促销活动,袜子“买五送一”,现在一双袜子实际价格是 4.05 元.【解答】解:4.86×5÷6=24.3÷6=4.05(元)答:现在一双袜子实际价格是 4.05元.故答案为:4.05.5.(6分)已知(□+△)×0.3=4.2,而且△÷0.4=12,则△= 4.8 ,□=9.2 .【解答】解:因为△÷0.4=12,所以△=0.4×12=4.8;因为(□+△)×0.3=4.2,所以△+□=4.2÷0.3=14,所以□=14﹣4.8=9.2.故答案为:4.8、9.2.6.(6分)一个两位数取近似值后是3.8,这个数最大是 3.84 ,最小是3.75 .【解答】解:一个两位数取近似值后是3.8,这个数最大是3.84,最小是3.75.故答案为:3.84、3.75.7.(6分)丁小乐上周练习了4天慢跑,他一天中最远跑了3.3千米,最短跑了2.4千米.那么可以推算出这4天,丁小乐最多跑了12.3 千米,最少跑了10.5 千米.【解答】解:丁小乐最多跑了:3.3×3+2.4=9.9+2.4=12.3(千米)丁小乐最少跑了:2.4×3+3.3=7.2+3.3=10.5(千米)答:丁小乐最多跑了12.3千米,最少跑了10.5千米.故答案为:12.3、10.5.8.(3分)五名裁判给一名体操运动员评分,如果去掉一个最高分后平均分是9.46分,如果去掉一个最低分后平均分是9.66分,那么最高分比最低分多了0.8 分.【解答】解:9.66×4﹣9.46×4=(9.66﹣9.46)×4=0.2×4=0.8(分);答:最高分比最低分多了0.8分.故答案为:0.8.9.(3分)甲、乙两数的积是1.6,如果甲数扩大5倍,乙数也扩大5倍,那么,甲、乙两数的积是40 .【解答】解:1.6×(5×5)=1.6×25=40答:甲、乙两数的积是40.故答案为:40.10.(3分)小明和小红拿出同样多的钱合买作业本,结果小明拿了8本,小红拿了12本,这样,小红就给小明1.1元.每本作业本的单价是0.55 元.【解答】解:1.1÷[(12﹣(8+12)÷2],=1.1÷[12﹣10],=1.1÷2,=0.55(元);答、:每本作业本的单价是0.55.故答案为:0.55.11.(3分)暑假小明去游园,遇到了甲、乙、丙、丁四位同学,小明和四位同学都握了手,甲和3个人握了手,乙和2个人握了手,丙和1个人握了手,那么丁和 2 个人握了手.【解答】解:如果两两之间都握手那么每人需要握4次,小明和四位同学握了手,包括了丁和丙;丙和1个人握手,他只和小明握了手,没和甲握;甲和3人握了手,只有一人没握,那就只和丙没握,他和乙、丁都握了手;乙和2个人握了手,是和甲以及小明握的手,没和丁握手.由此可见:丁只和甲、小明两个人握了手.故答案为:2.二、解答题(共1小题,满分12分)12.(12分)计算.9.5×10112.5×8.838.4×187﹣15.4×384+3.3×165.29×73+52.9×2.7.【解答】解:(1)9.5×101=9.5×(100+1)=9.5×100+9.5×1=950+9.5(2)12.5×8.8=12.5×8×1.1=100×1.1=110(3)38.4×187﹣15.4×384+3.3×16=38.4×187﹣154×38.4+3.3×16=38.4×(187﹣154)+3.3×16=38.4×33+3.3×16=38.4×33+33×1.6=(38.4+1.6)×33=40×33=1320(4)5.29×73+52.9×2.7=52.9×7.3+52.9×2.7=52.9×(7.3+2.7)=52.9×10=529三、解决问题.(共43分.)13.(6分)已知篮球、足球、排球平均每个36元.篮球比排球每个贵10元,足球比排球每个贵8元,每个足球多少元?【解答】解:(36×3﹣10﹣8)÷3+8=(108﹣18)÷3+8=30+8=38(元)答:每个足球38元.14.(6分)如图,在三角形ABC中,线段EC的长度是线段BE的2倍,线段CD的长度是线段AD的2倍,已知三角形BDE的面积是14平方厘米,那么三角形ABC的面积是多少平方厘米?【解答】解:由题意,线段BC的长度是线段BE的3倍,三角形ABC的高是三角形BDE的高的倍,∴三角形ABC的面积是三角形BDE的面积的倍,∵三角形BDE的面积是14平方厘米,∴三角形ABC的面积是14×=63平方厘米,答:三角形ABC的面积是63平方厘米.15.(6分)一辆摩托车以平均每小时20千米的速度行完60千米的路程,在回来的时候,它的平均速度是每小时30千米,这辆摩托车在整个来回的旅程中,平均速度是多少?【解答】解:60×2÷(60÷20+60÷30)=120÷(3+2)=120÷5=24(千米/时)答:这辆摩托车在整个来回的旅程中,平均速度是24千米/时.16.(6分)张师傅以1元4个苹果的价格买进苹果若干个,又以2元5个苹果的价格把这些苹果卖出,如果他要赚得15元的利润,那么他必须卖出苹果100 个.【解答】解:15÷(2÷5﹣1÷4)=15÷(0.4﹣0.25),=15÷0.15,=100(个);答:他必须卖出苹果100个.故答案为:100.17.(6分)实验小学统计五(1)班数学考试成绩,平均分是87.26分.复查试卷时,发现把明明的成绩98分误看成89分计算,经重新计算后,该班平均成绩是87.44分,问该班有多少学生?【解答】解:(98﹣89)÷(87.44﹣87.26)=9÷0.18=50(人)答:该班有学生50人.18.(6分)已知如图中每个小正方形的边长是4厘米,求阴影部分的面积?【解答】解:长方形的面积(4×4)×(2×4)=128(平方厘米)左上空白三角形的面积4×(2×4)÷2=16(平方厘米)右上空白三角形的面积4×4÷2=8(平方厘米)右下空白三角形的面积4×(4×4)÷2=32(平方厘米)阴影部分的面积128﹣16﹣8﹣32=72(平方厘米)答:阴影部分的面积是72平方厘米.19.(7分)王明放学回家,距家门300米时,妹妹和小狗一齐向他奔来,王明和妹妹的速度都是每分钟50米,小狗的速度是每分钟200米,小狗遇到王明后用同样的速度不停往返于王明与妹妹之间.当王明与妹妹相距10米时,小狗一共跑了多少米?【解答】解:王明和妹妹的相遇时间是:(300﹣10)÷(50+50)=2.9分钟小狗跑的时间,就等于王明和妹妹相距10米时所用的时间,小狗跑了:200×2.9=580米,答:当王明与妹妹相距10米时,小狗一共跑了580米.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/5 18:04:24;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。

2014年迎春杯五年级复赛试题及解析

2014年迎春杯五年级复赛试题及解析
A
F B
C
D
E
A.1325
B.1400
C.1475
D.1500
11.三位数N,分别减3、加4、除以5、乘6,得到四个整数,已知这四个数的数字和恰好是4 个连续的自然数,那么满足条件的三位数N有( A.8 B.6 C. 4 D.2 )个.
三、选择题(每题12分,共48分) 12.右图是由15个点组成的三角形点阵,在右图中至少去掉( )个点,就不会再出现以图中的点为顶点的正三角形了.
A. 28
B.32
C.36
D.40
3.过年的时候,康康给客人倒啤酒,一瓶啤酒可以倒满4杯,球球倒酒的时候总是每杯中有 半杯泡沫,啤酒倒成泡沫的体积会涨成原来的3倍,那么球球倒啤酒时,一瓶酒可以倒( )杯. A.5 B.6 C. 7 D.8 ).
4.整数除法算式: a b cL L r ,若 a 和 b 同时扩大3倍,则( A. r 不变 B. c 扩大3倍 C. c 和 r 都扩大3倍
A
F B
C
D
E
A.1325 【考点】几何 【难度】☆☆☆ 【答案】A
B.1400
C.1475
D.1500
【解析】作正方形 ABCD 的“弦图”,如右图所示,
7 / 12
A I B G
F
H C
D
E
假设 CD 的长度为 3a , DE 的长度为 2a , 那么 BG 3a , DG 2a ,根据勾股定理可得 BD 2 BG 2 DG 2 9a 2 4a 2 13a 2 ,所以,正方形 ABDF 的面积为 13a 2 ;因为 CD EF , BC DE ,所以三角形 BCD 和三角形 DEF 的面积相等为 3a 2 ; 又因为五边形 ABCEF 面积是2014平方厘米,所以
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6/9
【考点】几何,图形的分割与剪拼 【难度】☆☆ 【答案】D 【分析】A、B、C如图所示:
Hale Waihona Puke D中的长条只有5种位置可放,但无论是哪种,T字形总是无法给其他碎片留出合适的位置. 如下图所示, 将15个点排成三角形点阵或者梯形点阵共有3种不同方法 (规定: 相邻两行的点数均差1) . 那 11. 么将2014个点排成三角形点阵或者梯形点阵(至少两层)共有( )种不同的方法.
3 + 7 + 14 = a + 6 件礼物, 实际情况: 4
)元钱. B.28 C.56 D.70
【考点】应用题 【难度】☆☆☆
丁少拿了6件,乙多拿了1件,给丁14元,则货物单价14元, 丙多拿了 14 − 6 = 8 件,3件给甲,5件 给丁, 5 × 14=70 元. 7.在下列算式的空格中填入互不相同的数字:
5 101

B.
7 141
C.
9 181
D.
8 161
【考点】计算,分小互化 【难度】☆ 【答案】B 【分析】可观察分数,进行估算;或进行精算,易知
141 ≈ 20.14 7
2.下面的四个图形中,第(
)幅图只有2条对称轴
A.图 1 【答案】C
B.图 2
C.图 3
D.图 4
【考点】几何 【难度】☆ 【分析】如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直 线叫做这个图形的对称轴.观察易知,符合题意的是 C.
A.784
B.560
C.1232
D.528
3/9
2014“数学解题能力展示”读者评选活动 笔试试题 小学五年级参考答案
1 B 9 无 2 C 10 D 3 C 11 A 4 D 12 D 5 C 13 D 6 D 14 D 7 C 15 A 8 D
部分解析
一、选择题(每小题8分,共32分) 1.在所有分母小于10的最简分数中,最接近20.14的分数是( A.
么一定是2.即 a × b × 2 = a + b + 2 + 11 ,此时,根据奇偶性, a 、 b 中也必有一个偶数为2,解得 a 、
b 、 c 、 d 为2、2、5、11和为20.选项中ABC均不符合条件,故选D.
9.为了减少城市交通拥堵的情况,某城市拟定从2014年1月1日起开始试行新的限行规则,规定尾号为1、6 的车辆周一、周二限行,尾号2、7的车辆周二、周三限行,尾号3、8的车辆周三、周四限行,尾号4、 9的车辆周四、周五限行,尾号5、0的车辆周五、周一限行,周六、周日不限行.由于1月31日是春节, 因此,1月30日和1月31日两天不限行.已知2014年1月1日是周三并且限行,那么2014年1月份( 组尾号可出行的天数最多. A.1、6 【考点】应用题 【答案】 【分析】1月份共31天,由于1月1日是周三,所以1月份周三、周四、周五共5天,周一、周二共4天.其中1 月30日周四、1月31日周五.所以只看周三即可.周三2、7 以及3、8 限行.所以此题B 组尾号可 出行的天数最少. 10.4个选项之中各有4个碎片,用碎片将下图铺满选项( 片可以旋转、翻转). )是不能将下图恰好不重不漏地铺满的(碎 B.2、7 C.4、9 【难度】☆☆ D.5、0 )
D. 无法确定
二、选择题(每小题10分,共70分) 5.如图,大正方形的边长为14,小正方形的边长为10,阴影部分的面积之和是( )
A.25
B.40
C.49
D.50
6.甲、乙、丙、丁四人拿出同样多的钱,一起订购同样规格的若干件新年礼物,礼物买来后,甲、乙、丙 分别比丁多拿了3,7,14件礼物,最后结算时,乙付给了丁14元钱,并且乙没有付给甲钱.那么丙应 该再付给丁( A.6 )元钱. B.28 C.56 D.70
A.25 【答案】C
B.40
C.49
D.50
【考点】几何,弦图 【难度】☆☆ 【分析】如下图所示,图①逆时针旋转90°,阴影部分可拼成一等腰直角三角形, S= 142 ÷ 4= 49 .
6.甲、乙、丙、丁四人拿出同样多的钱,一起订购同样规格的若干件新年礼物,礼物买来后,甲、乙、丙 分别比丁多拿了3,7,14件礼物,最后结算时,乙付给了丁14元钱,并且乙没有付给甲钱.那么丙应该 再付给丁( A.6 【答案】D 【分析】设丁拿了 a 件礼物,则四人花同样的钱,每人可以拿到 a +
A.3 【答案】A
B.7
C.4
D.9
【考点】组合,整数分拆【难度】☆☆☆
n × (n + 1) ,经尝试,没有 2
【分析】 2014=2 × 19 × 53 ,若摆成三角形点阵,需要满足 1+2+3+3 +n ,即 2014=
符合要求的结果.若摆成梯形点阵,那么需要将2014 写成等差数列求和的形式.若为奇数层,那 么中间层可以为106,38,两种情况.若为偶数层,中间两层可以为26、27,一种情况共3种. 三、选择题(每小题12分,共48分) 12. 今天是2013年12月21日, 七位数 ABCDEFG 恰好满足: 前五位数字组成的五位数 ABCDE 是2013的倍数, 后五位数字组成的五位数 CDEFG 是1221的倍数.那么四位数 ABFG 的最小值是( A.1034 【考点】数论,倍数 【难度】☆☆☆☆ 【答案】D B.2021 C.2815 D.3036 ).
×
7.在下列算式的空格中填入互不相同的数字: 和最大是( A.15 ) B.24 C.30
(
+
)×(
+ + +
) =2014 .其中五个一位数的
D.35
1/9
8.已知4个质数的积是它们和的11倍,则它们的和为( A.46 B.47 C.48

D.没有符合条件的数
9.为了减少城市交通拥堵的情况,某城市拟定从2014年1月1日起开始试行新的限行规则,规定尾号为1、6 的车辆周一、周二限行,尾号2、7的车辆周二、周三限行,尾号3、8的车辆周三、周四限行,尾号4、 9的车辆周四、周五限行,尾号5、0的车辆周五、周一限行,周六、周日不限行.由于1月31日是春节, 因此,1月30日和1月31日两天不限行.已知2014年1月1日是周三并且限行,那么2014年1月份( 组尾号可出行的天数最多. A.1、6 B.2、7 C.4、9 D.5、0 )是不能将下图恰好不重不漏地铺满的(碎 )
8.已知4个质数的积是它们和的11倍,则它们的和为( A.46 【答案】D B.47 C.48 【考点】数论,质数 【难度】☆☆
).
D.没有符合条件的数
【分析】由已知条件,4个质数中一定有11,那么则满足 a × b × c = a + b + c + 11 ,其中 a 、b 、c 都是质数.若
a 、 b 、 c 都是奇数,那么等式左边是奇数,右边为偶数,矛盾.若 a 、 b 、 c 中有1 个偶数,那
A.图 1
B.图 2
C.图 3
D.图 4 )辆这样的大卡车.
3.一辆大卡车一次可以装煤2.5吨,现在要一次运走48吨煤,那么至少需要( A.18 B.19 C.20 D.21 )
4.已知 a 、 b 、 c 、 d 四个数的平均数是12.345, a > b > c > d ,那么 b ( A.大于 12.345 B.小于 12.345 C.等于 12.345
13. 甲、 乙两人比赛折返跑, 同时从A 出发, 到达B 点后, 立即返回, 先回到A 点的人获胜. 甲先到达B 点, 在距离B 点24 米的地方遇到乙.相遇后,甲的速度减为原来的一半,乙的速度保持不变.在距离终点 48 米的地方,乙追上甲.那么,当乙到达终点时,甲距离终点还有( A.6 【答案】D 【分析】注意到第一次遇到时乙走了一个全程少24米,而两次加起来,乙一共走了两个全程少48米,则第 二次遇到时乙也是走了一个全程少24米,而乙的速度不变,所以两人这两次相遇追及时间是相同 的,而甲两次的路程分别为全程多24米和全程少72米,两次甲的路程差了96米,速度比2:1,则路 程比 2:1,说明甲第二次走了96米,乙走了 96+24 × 2=144 米,甲乙速度比 2 : 3 ,所以乙走完剩下 的48米时甲应该只走了 48 ÷ 3 × 2=32 米,剩16米. 14.如图,一只蚂蚁从中心 A 点出发,连走5步后又回到 A 点,且中间没有回到过 A 点.有( 同的走法.(每一步只能从任意一点走到与它相邻的点,允许走重复路线.) )种不 B.8 C.12 D.16 【考点】应用题,行程 【难度】☆☆☆☆ )米.
14.如图,一只蚂蚁从中心 A 点出发,连走5步后又回到 A 点,且中间没有回到过 A 点.有____种不同的走 法.(每一步只能从任意一点走到与它相邻的点,允许走重复路线.)
A.144
B.156
C.168
D.180
15.如图,请将 0、1、2、……、14、15填入一个的表格中,使得每行每列的四个数除以4的余数都恰为0、 1、2、3各一个,而除以4的商也恰为0、1、2、3各一个.表格中已经填好了几个数,那么,这个表格 中最下方一行的四个数的乘积是( ).
3.一辆大卡车一次可以装煤2.5吨,现在要一次运走48吨煤,那么至少需要( A.18 B.19 C.20 D.21 【考点】应用题 【难度】☆
4/9
)辆这样的大卡车.
【答案】C 【分析】 48 ÷ 2.5=19 0.5 , 19+1=20 (辆) 4.已知 a 、 b 、 c 、 d 四个数的平均数是12.345, a > b > c > d ,那么 b ( A.大于 12.345 【答案】D 【分析】排除法,A.B.C.三个选项均可找到反例,故无法确定 二、选择题(每小题10分,共70分) 5.如图,大正方形的边长为14,小正方形的边长为10,阴影部分的面积之和是( ) B.小于 12.345 C.等于 12.345 D. 无法确定 【考点】计算,平均数 【难度】☆ )
相关文档
最新文档