初一数学上册角的练习题(最新整理)

合集下载

人教版数学七年级上册4.3.1《角》同步练习(有答案)

人教版数学七年级上册4.3.1《角》同步练习(有答案)

人教版数学七年级上册 4.3.1《角》同步练习(有答案)《角》同步练习一、选择题1.下列关于角的说法正确的是( )A .两条射线组成的图形叫角B .角的大小与这个角的两边长短无关C .延长一个角的两边D .角的两边是射线,所以角不可以度量2.关于平角、周角的说法正确的是( )A .平角是一条直线B .周角是一条射线C .反向延长射线OA ,就成一个平角D .两个锐角的和不一定小于平角3.在钝角∠AOB 内部引出两条射线OC 、OD ,则图中共有角( )A .3个B .4个C .5个D .6个4.如图所示,下列表示β∠的方法中,正确的是( )A .C ∠B .D ∠C .ADB ∠D .BAC ∠5.下列各角中,是钝角的是( )A .41平角B .32平角C .31平角D .41周角 6.如图下列表示角的方法,错误的是( ).A .1∠与AOB ∠表示同一个角B .AOC ∠也可用O ∠来表示C .图中AOB ∠、AOC ∠、BOC ∠D .β∠表示的是BOC ∠5.用度、分、秒表示52.73°为____度____分____秒.6.15°48′36″=_____________°.7.在图中,用三个大写字母表示1 ∠为________;2 ∠为________;3 ∠为________;4 ∠为________.8.在AOB ∠内部过顶点O 引3条射线,则共有___________个角,如果引出99条射线,则共有_____________个角.9.计算90°-57°34′44″的结果为_______________.10.如图,AOB ∠是直角,2:1:,38=∠∠︒=∠COB COD AOC ,则____=∠DOB 度.11.在图中,A 、B 、C 三点分别代表邮局,医院、 学校中的某一处,邮局和医院分别在学校的北偏 西方向,邮局又在医院的北偏东方向,那么图中A 点应该是___________,B 点是_________,C 点是_________.三、解答题1.钟表2时15分时,你知道时针与分针的夹角是多少度吗?2.用剪刀沿直线剪掉长方形的一个角,数一数,还剩多少个角?3.如图,从一点O 出发引射线OA 、OB 、OC 、OD 、OE ,请你数一数图中有多少个角.4.计算:(1)77°52′+32°43′-21°17′;(2)37°15′×3;(3)175°52′÷3.(4)23°45′+24°16′(5)53°25′28″×5(6)15°20′÷65.如图,在AOB∠内部,从顶点O引出3条射线OC、OD、OE,则图形中共有几个角?如果从O点引出几条射线,有多少个角?你能找出规律吗?6.如图,已知OE是AOC∠的平分线.∠的角平分线,OD是BOC(1)若︒,AOC,求DOE∠20110BOC==∠︒∠的度数;(2)若︒∠的度数.AOB,求DOE∠90=7.如图,指出OA表示什么方向的一条射线?并画出表示下列方向的射线:(1)南偏东60°(2)北偏西40°(3)南北方向8.时钟的时针从2点半到2点54分共转了多大角度?9.已知线段a、b、∠α用尺规画一个△ABC,使αBCaAB,,.b=B=∠=∠10.小明在宾馆大厅内看到反映世界几个大城市当前时刻的时钟如下(如图),请你分别写出每个钟面上时针和分针的夹角.11.一天24小时,时钟的分针与时针共组成多少次平角?多少次周角?12.如图,若放置一枝铅笔,使笔尖朝AB方向并重合于AB,以A为旋转中心,按逆时针方向旋转∠A的大小,与AF重合;再以F为中心,按逆时针方向旋转F的大小,与EF重合……这样连续都按逆时针方向旋转过去,最后与AB重合,这时笔尖的方向仍是朝向AB,你知道铅笔一共转过了多少度吗?这个实验能说明六边形内角和的度数吗?13.你知道下图中有多少三角形吗?参考答案一、选择题1.B 2.C 3.D 4.C 5.B 6.B 7.C 8.B 9.C 10.D11.D二、填空题1.1°,60′,60″2.153.954.4,45,05.52,43,486.15.817.∠BDE ;∠DBE ;∠ABC ;∠ACB8.10 50509.32°25′16″10.26°11.邮局,医院,学校三、解答题1.22.5°2.3个或4个或5个3.10个4.(1)89°18′;(2)112°45′;(3)58°38′(4)48°1′ (5)267°7′20″ (6)2°33′20″5.共有10个角;从O 点出发引出几条射线,能组)1(-n 个基本角,则共有角的个数为:)1(21123)2()1(-=++++-+-n n n n 个角. 6.(1)先求︒=∠=∠︒=∠1021,55BOC COD COE 故︒=︒-︒=∠451055DOE (2)有BOC COD AOC COE ∠=∠∠=∠21,21 则︒=∠=∠-∠=∠4521)(21AOB BOC AOC DOE 7.北偏东60°(图略)8.12°9.略10.从左至右依次为:150°、120°、30°,120°、90°、60°11.22次,22次12.720°,六边形内角和为720°13.78个《角的度量》典型例题例1 如图,你知道以A为顶点的角有哪些吗?除了以A为顶点的角外,图中还有哪些角?你会将它们表示出来吗?例2(1)下图中能用一个大写字母表示的角是___________.(2)以A为顶点的角有_____________个,它们是________________.例3 (1)把25.72°分别用度、分、秒表示.(2)把45°12′30″化成度.例4 计算:(1)53°39′+36°40′;(2)92°3′-48°34′;(3)53°25′28″×5;(4)15°20′÷6.例5 当时钟表面3时25分时,你知道时针与分针所夹角的度数是多少?参考答案例1解:以A为顶点的角有∠∠∠、、、,其他的角有∠、、DACEAC∠DAEBACBAD∠BAEα∠β、2、1C、B.∠∠∠∠、∠、说明:(1)在数以A为顶点的角的个数时,先选定一边为始边(如AB),确定以始边为一边的角的个数,再依次把后面的边看作起始边,数出角的个数,相加即可得角的总数.本题中以AB为始边的角有3个(如图1),以AD为始边的角有两个(如图2),以AE为始边的角有1个(如图3),在数角时注意要向同一个方向数,以免重复,这与线段的数法类似;(2)目前我们所说的角一般都是指小于平角的角.所以以D为顶点的平角和以E为顶点的平角不包括在内.(3)角的表示方法共有四种,可根据需求灵活选定;①用三个大写字母表示角,此时表示角的顶点的字母应写在中间(如∠BAD);②用一个大写字母表示角,适用于以某一点为顶点的角只有一个(如∠B或∠C);③用希腊字母α、γβ、等表示角,此时要在所表示的角的顶点处加上连接两边的弧线,以明确所表示的是图中的哪个角(如∠α或∠β);④用数字表示角(如∠1或∠2).图1 图2 图3例2 分析:第(1)题中,能用一个大写字母表示的这个角必须是独立的一个角,所以只能是C∠、;第(2)题中,以A为顶点的角,必须含A,而且AB∠为公共端点,这样的角有6个,以AC为一边的角:CAB∠、,∠、CAE∠CAD以AE为边且不重复的角:EAB∠、,以AD为边且不重复的角:DABEAD∠∠.答案:(1)C∠、;B∠(2)6个DAB EAB EAD CAB CAD CAE ∠∠∠∠∠∠、、、、、.说明:要正确写出答案,首先要弄清角的定义是什么,其次是熟悉表示角的方法,特别对于(2),还要仔细、认真地找出所有的角.例3 分析:第(1)题中25.72°含有两部分25°和0.72°,只要把0.72°化成分、秒即可,第(2)题中,45°21′30″含有三部分45°,12′和30″,其中45°已经是度,只要把12′和30″化成度即可.解:(1)0.72°=0.72×61′=43.2′0.2′=0.2×60″=12″所以25.72°=25°43′12″(2)5.0)601(3003'='⨯='' 21.0)601(5.125.12≈⨯=' 所以45°12′30″=45.21°说明:①是由高级单位向低级单位化:②是由低级单位向高级单位化.它们都必须是逐级进行的,“越级”化单位容易出错而且还要熟记他们之间的换算关系.例4 解:(1)53°39′+36°40′=89°+79=90°19′;(2)92°3′-48°34′=91°63′-48°34′=43°29′;(3)53°25′28″×5=265°+125′+140″=267°7′20″;(4)15°20′÷6=2°+(3×60′+20′)÷6=2°33′20″.说明:角度的运算规律为:(1)加减法时将同一单位进行加减,加法够60进1,减法不够减要借1为60;(2)乘法时将数与度、分、秒分别相乘,然后从小到大逢60进1;(3)除法时用度先除,把余数化为分,再加上原来的分,用这个数除以除数,把余数化成秒,再加上原来的秒,再用这个数除以除数,如果除不尽就按题意要求,进行四舍五入;(4)度、分、秒之间的互化有:由低级单位向高级单位转化,使用的公式是'⎪⎭⎫ ⎝⎛=''︒⎪⎭⎫ ⎝⎛='6011,6011.例如30°42′,可化为30.7°;另一种是由高级单位向低级单位转化,使用的公式是1°=60′,11 / 111′=60″,例如2.45°可化为2°27′,在度、分、秒的互化过程中要逐级进行,不要“跳级”,以免出错.例5 解:法一:从3时整开始,分针转过了6°×25=150°,时针转过了0.5°×25= 5.12,因为3点整时两针夹角为90°,所以3时25分时两针夹角为150°-90°-12.5°= 5.47.法二:3时25分时,分针在钟面“5”字上,时针从“3”字转过了0.5°×25= 5.12.又“3”、“5”两字之间夹角为60°,所以3时25分时两针夹角为60°-12.5°= 5.47.法三:设所求夹角度数为x °,将分针视作在追赶并超过时针,它们的速度分别是 6/min 和0.5°/min ,则由题意,得方程x +=⨯-9025)5.06(,5.47=x .说明:(1)此题是角的度量的实际应用,它能加深我们对角的意义的理解.解题的关键是明确钟面上分针1分钟转过的角度是6°,时针1分钟转过的角度是分针转过角度的121,即0.5°;(2)解题时要注意分针在运动时,时针也在运动,而不能认为时针静止;(3)这类题型可视作时针和分针在作相对运动,可以参照环形线路上的行程问题列方程(组)求解,也可以以钟面上“格”作单位,即分针和时针每分钟走1格和121格.。

初一上册数学角度题30道

初一上册数学角度题30道

初一上册数学角度题30道以下是30道初一上册数学角度题,涵盖了角度的基本概念、角度的计算、角度与直线的关系等内容。

请注意,这些题目可能需要根据具体的数学教材和教学大纲进行调整。

1. 一个角的补角比这个角的余角的3倍大10°,求这个角的度数。

2. 已知∠AOB = 70°,∠BOC = 30°,OM 平分∠AOC,求∠BOM 的度数。

3. 已知∠AOB = 90°,∠BOC = 30°,求∠AOC的度数。

4. 已知∠AOB = ∠COD = 90°,∠AOC = 30°,求∠BOD的度数。

5. 一个角的余角比这个角的补角的1/4还小10°,求这个角的度数。

6. 已知∠AOB = 120°,∠BOC = 30°,求∠AOC的度数。

7. 已知∠AOB = ∠COD,∠AOC = ∠BOD,求证:∠A = ∠D。

8. 一个角的补角是这个角的余角的4倍,求这个角的度数。

9. 已知∠AOB = 60°,∠BOC = ∠AOD,求∠COD的度数。

10. 已知∠AOB = ∠COD,∠AOC = ∠BOD,求证:∠A = ∠D。

11. 一个角的余角比这个角的补角的1/3大10°,求这个角的度数。

12. 已知∠AOB = 150°,∠BOC = 60°,求∠AOC的度数。

13. 已知∠AOB = ∠COD,∠AOC + ∠BOD = 90°,求证:∠AOC = ∠BOD。

14. 一个角的补角比这个角的余角的2倍小30°,求这个角的度数。

15. 已知∠AOB = 80°,∠BOC = ∠AOD,求∠COD的度数。

16. 已知∠AOB = ∠COD,且∠AOC = ∠BOD,求证:OC平分∠AOD。

17. 一个角的余角比这个角的补角的1/2大20°,求这个角的度数。

七年级数学上册《角》练习题及答案

七年级数学上册《角》练习题及答案

七年级数学上册《角》练习题1.下列说法中正确的是().(A ) 两条射线组成的图形叫做角(B ) 角的两边都可以延长(C) 平角的两边构成一条直线(D) 由射线OA、OB 组成的角,可以记作∠OAB2.下列四个图形中,能用∠1,∠AOB,∠O 三种方法表示同一个角的是(). 3.用三个字母表示图中所标注的∠1,∠2,∠3 和∠4:∠1 是____________;∠2 是____________;∠3 是____________;∠4 是____________.4.计算:(1) 0.4º =______';(2) 0.6ʹ =______ʺ;(3) 36ʹ =_______º;(4) 48ʺ =______ʹ;(5) 57.32º =______º ______ʹ______ʺ;(6) 17º 14ʹ24ʺ=________º =__________ʺ.5.(1)时钟的时针1 小时旋转多少度? 时钟的分针1 分钟旋转多少度?(2) 5 点整时,时钟的时针与分针之间的夹角是多少度?(3)时钟在8:30 时,时针与分针的夹角为多少度?6.如下图,在横线上填上适当的角:(1) ∠AOC=______+______;(2) ∠AOD-∠BOD=______;(3) ∠BOC=______-∠COD;(4) ∠BOC=∠AOC+∠BOD-______.7.按下图填空:(1) ∠ABC = ______+______;(2) ∠BDC=______-______.8.如图,(1)若∠AOB=∠COD,则∠AOC=∠______.(2)若∠AOC=∠BOD,则∠______=∠______.9.在小于平角的∠AOB 的内部取一点C,并作射线OC,则一定存在( ).(A)∠AOC>∠BOC (B)∠AOC=∠BOC(C)∠BOC>∠AOC (D)∠AOB>∠AOC10.不能用一副三角板拼出的角是( ).(A) 120°(B) 105°(C) 100°(D) 75°11.已知α、β 是两个钝角,计算1/6(α+β),四位同学算出了四种不同的答案,分别为24°,48°,76°,86°,其中只有一个答案是正确的,那么你认为正确的是( )(A) 24°(B) 48°(C) 76°(D) 86°12.已知∠AOB=70°,∠BOC=40°,求∠AOC 的度数.13.如图,若OC 是∠AOB 的平分线,则_____=_____=1/2_____;或_____=2_____=2_____.14.如图,OM 是∠AOB 的平分线,且∠AOM=30°,则∠BOM=______;∠AOB=______.15.射线OC 在∠AOB 的内部,下列四个式子中不能判定OC 是∠AOB 的平分线的是( ).(A)∠AOB=2∠AOC (B)∠BOC=∠AOC(C)∠AOC=1/2∠AOB (D)∠AOC+∠BOC=∠AOB16.如图,如果OT 平分∠AOB,同时平分∠COD,那么∠AOT=∠______,∠AOC=∠______,∠AOD=∠______17.如图,射线OD,OE 分别是∠AOC 和∠BOC 的平分线,∠AOD=40°,∠BOE=25°,求∠AOB 的度数.解:因为OD 平分∠AOC,OE 平分∠BOC,所以∠AOC=2∠AOD,∠BOC=2∠______.()因为∠AOD=40°,∠BOE=25°,所以∠AOC=____________=______,∠BOC=____________=______.所以∠AOB=∠______+∠______=_______.18.已知:如图,∠ADC=∠ABC,DE 是∠ADC 的平分线,BF 是∠ABC 的平分线. 求证:∠2=∠3.证明:因为DE 是∠ADC 的平分线,所以∠2=______.()所以BF 是∠ABC 的平分线,所以∠3=______.()又因为∠ADC=∠ABC,所以∠2=∠3.()19.已知,AOB 是直线,∠AOC=∠EOD=90°,写出图中互余的角.参考答案:1.C;2.B ;3.∠CAD;∠CAB;∠ACB;∠ACD;4. (1) 24; (2) 36; (3) 0.6; (4) 0.8;(5) 57, 19, 12; (6) 17.24, 62064;5.(1) 30, 6; (2) 150; (3) 75.6. (1)∠AOB,∠BOC;(2)∠AOB;(3)∠BOD;(4)∠AOD;7. (1)∠ABD,∠CBD;(2)∠ADC,∠ADB;8. (1)∠BOD;(2)∠AOB,∠COD;9. D;10. C;11. B;12. 110°或30°.13. (1)∠AOC,∠BOC,∠AOB,∠AOB,∠AOC,∠BOC;14. 30º,60º;15. D;16. ∠BOT, ∠BOD,∠BOC;17. ∠BOE,角平分线的定义,2×40°,80°,2×25°,50°,80°,50°,130°;18. 1/2∠ADC,角平分线的定义,1/2∠ABC,角平分线的定义,等量代换.19. ∠1 与∠2 互余,∠1 与∠4 互余,∠2 与∠3 互余,∠3 与∠4 互余.。

人教版七年级数学上册第四章《角》课时练习题(含答案)

人教版七年级数学上册第四章《角》课时练习题(含答案)

人教版七年级数学上册第四章《4.3角》课时练习题(含答案)一、单选题1.下列各度数的角,能借助一副三角尺画出的是( )A .55°B .65°C .75°D .85°2.如图所示,正方形网格中有α∠和∠β,如果每个小正方形的边长都为1,估测α∠与∠β的大小关系为( )A .αβ∠<∠B .αβ∠=∠C .αβ∠>∠D .无法估测3.下列换算中,正确的是( )A .23123623.48'''︒=︒B .22.252215'︒=︒C .18183018.183'''︒=︒D .47.1147736︒︒'=''4.已知6032α'∠=︒,则α∠的余角是( )A .2928'︒B .2968'︒C .11928'︒D .11968'︒5.已知∠A =38°,则∠A 的补角的度数是( )A .52°B .62°C .142°D .162° 6.如图,在同一平面内,90AOB COD ∠=∠=︒,AOF DOF ∠=∠,点E 为OF 反向延长线上一点(图中所有角均指小于180︒的角).下列结论:①COE BOE ∠=∠;②180AOD BOC ∠+∠=︒;③90BOC AOD ∠-∠=︒;④180COE BOF ∠+∠=︒.其中正确结论的个数有( )A .1个B .2个C .3个D .4个7.如图,68AOB ∠=︒,OC 平分AOD ∠且15COD ∠=︒,则BOD ∠的度数为( ).A .28︒B .38︒C .48︒D .53︒8.一个角的补角为138︒,则这个角的余角为( )A .38︒B .42︒C .48︒D .132︒二、填空题9.如图,过直线AB 上一点O 作射线OC ,∠BOC =29°18′,则∠AOC 的度数为_____.10.如图,直线,AB CD 相交于O ,OE 平分,∠⊥AOC OF OE ,若46BOD ∠=︒,则DOF ∠的度数为______︒.11.已知,如图,A 、O 、B 在同一直线上,OF 平分AOB ∠,12∠=∠,3=4∠∠.(1)射线OD 是_______的角平分线;(2)AOC ∠的补角是_______;(3)AOC ∠的余角是_______;(4)_______是2∠的余角;(5)DOB ∠的补角是_______;(6)_______是COF ∠的补角.12.如图,若OC 、OD 三等分AOB ∠,则AOB ∠=_______AOC ∠=_______AOD ∠,COD ∠=_______AOB ∠,BOC ∠=∠_______.13.如图,已知∠AOB =90°,射线OC 在∠AOB 内部,OD 平分∠AOC ,OE 平分∠BOC ,则∠DOE =_____°.14.如图,将一副三角尺的两个锐角(30°角和45°角)的顶点P 叠放在一起,没有重叠的部分分别记作∠1和∠2,若∠1与∠2的和为61°,则∠APC 的度数是 _____.三、解答题15.如图,点P 是直线l 外一点,过点P 画直线P A ,PB ,PC ,…,分别交直线l 于点A ,B ,C ,….用量角器量出1∠,2∠,3∠的度数,并量出P A ,PB ,PC 的长度,你发现了什么?16.如图,两个直角三角形的直角顶点重合,∠AOC =40°,求∠BOD 的度数.结合图形,完成填空:解:因为∠AOC+∠COB = °,∠COB+∠BOD = ①所以∠AOC = .②因为∠AOC =40°,所以∠BOD = °.在上面①到②的推导过程中,理由依据是: .17.如图①,已知线段AB=18cm,CD=2cm,线段CD在线段AB上运动,E,F分别是AC,BD的中点.(1)若AC=4cm,则EF=cm;(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变,请求出EF的长度,如果变化,请说明理由.(3)a.我们发现角的很多规律和线段一样,如图②,已知∠COD在∠AOB内部转动,OE,OF分别平分∠AOC和∠BOD,若∠AOB=140°,∠COD=40°,求∠EOF.b.由此,你猜想∠EOF,∠AOB和∠COD会有怎样的数量关系.(直接写出猜想即可)18.如图1,点O为直线AB上一点,过O点作射线OC,使∠BOC=120°.将一块直角三角板的直角顶点放在点O处,边OM与射线OB重合,另一边ON位于直线AB的下方.(1)将图1的三角板绕点O逆时针旋转至图2,使边OM在∠BOC的内部,且恰好平分∠BOC,问:此时ON所在直线是否平分∠AOC?请说明理由;(2)将图1中的三角板绕点O以每秒6°的速度沿逆时针方向旋转一周,设旋转时间为t秒,在旋转的过程中,ON所在直线或OM所在直线何时会恰好平分∠AOC?请求所有满足条件的t值;(3)将图1中的三角板绕点O顺时针旋转至图3,使边ON在∠AOC的内部,试探索在旋转过程中,∠AOM和∠CON的差是否会发生变化?若不变,请求出这个定值;若变化,请求出变化范围.19.已知:160AOD ∠=︒,OB 、OM 、ON 是AOD ∠内的射线.(1)如图1,若OM 平分AOB ∠,ON 平分BOD ∠.当射线OB 绕点O 在AOD ∠内旋转时,求MON ∠的度数.(2)OC 也是AOD ∠内的射线,如图2,若20BOC ∠=︒,OM 平分AOC ∠,ON 平分BOD ∠,当射线OB 绕点O 在AOD ∠内旋转时,求MON ∠的大小.20.【阅读理解】定义:在一条直线同侧的三条具有公共端点的射线之间若满足以下关系,其中一条射线分别与另外两条射线组成的角恰好满足2倍的数量关系,则称该射线是另外两条射线的“双倍和谐线”.如图1,点P 在直线l 上,射线PR ,PS ,PT 位于直线l 同侧,若PS 平分∠RPT ,则有∠RPT =2∠RPS ,所以我们称射线PR 是射线PS ,PT 的“双倍和谐线”.【迁移运用】(1)如图1,射线PS(选填“是”或“不是”)射线PR,PT的“双倍和谐线”;射线PT(选填“是”或“不是”)射线PS,PR的“双倍和谐线”;(2)如图2,点O在直线MN上,OA MN,∠AOB=40°,射线OC从ON出发,绕点O以每秒4°的速度逆时针旋转,运动时间为t秒,当射线OC与射线OA重合时,运动停止.①当射线OA是射线OB,OC的“双倍和谐线”时,求t的值;②若在射线OC旋转的同时,∠AOB绕点O以每秒2°的速度逆时针旋转,且在旋转过程中,射线OD平分∠AOB.当射线OC位于射线OD左侧且射线OC是射线OM,OD的“双倍和谐线”时,求∠CON的度数。

初一上册数学角试题及答案

初一上册数学角试题及答案

初一上册数学角试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项不是角的分类?A. 锐角B. 直角C. 钝角D. 线段答案:D2. 一个角的度数是60°,这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:A3. 一个角的度数是180°,这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:D4. 一个角的度数是90°,这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:B5. 一个角的度数是360°,这个角是:A. 锐角B. 直角C. 钝角D. 周角答案:D6. 一个角的度数是120°,这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:C7. 一个角的度数是30°,这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:A8. 如果一个角的度数是45°,那么它的补角是:A. 45°B. 90°C. 135°D. 180°答案:B9. 如果一个角的度数是75°,那么它的余角是:A. 15°B. 45°C. 75°D. 90°答案:A10. 如果一个角的度数是150°,那么它的补角是:A. 30°B. 45°C. 60°D. 90°答案:A二、填空题(每题2分,共20分)1. 一个角的度数是90°,它是一个________。

答案:直角2. 一个角的度数是180°,它是一个________。

答案:平角3. 一个角的度数是360°,它是一个________。

答案:周角4. 如果一个角的度数是120°,那么它的补角是________。

答案:60°5. 如果一个角的度数是45°,那么它的余角是________。

答案:45°6. 锐角是指度数小于________的角。

新人教版七年级数学上册专题训练:角的计算(含答案)

新人教版七年级数学上册专题训练:角的计算(含答案)

新人教版七年级数学上册专题训练:角的计算(含答案)专题训练角的计算类型1 利用角度的和、差关系要求求解的角与已知角之间有和、差关系,可以利用角度和、差来计算。

1.如图,已知 $\angle AOC=\angle BOD=75°$,$\angle BOC=30°$,求 $\angle AOD$ 的度数。

解:因为 $\angle AOC=75°$,$\angle BOC=30°$,所以$\angle AOB=\angle AOC-\angle BOC=75°-30°=45°$。

又因为$\angle BOD=75°$,所以 $\angle AOD=\angle AOB+\angle BOD=45°+75°=120°$。

2.将一副三角板的两个顶点重叠放在一起(两个三角板中的锐角分别为45°、45°和30°、60°)。

1) 如图1所示,在此种情形下,当 $\angle DAC=4\angle BAD$ 时,求 $\angle CAE$ 的度数。

2) 如图2所示,在此种情形下,当 $\angle ACE=3\angle BCD$ 时,求 $\angle ACD$ 的度数。

解:(1) 因为 $\angle BAD+\angle DAC=90°$,$\angle DAC=4\angle BAD$,所以 $5\angle BAD=90°$,即 $\angle BAD=18°$。

所以 $\angle DAC=4\times18°=72°$。

因为 $\angle DAE=90°$,所以 $\angle CAE=\angle DAE-\angle DAC=18°$。

2) 因为 $\angle BCE=\angle DCE-\angle BCD=60°-\angle BCD$,$\angle ACE=3\angle BCD$,所以 $\angle ACB=\angle ACE+\angle BCE=3\angle BCD+60°-\angle BCD=90°$。

七年级数学上册《角》练习题

七年级数学上册《角》练习题

七年级数学上册《角》练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.1︒等于()A.10'B.12'C.60'D.100'2.“V”字手势表达胜利,必胜的意义.它源自于英国,“V”为英文Victory(胜利)的首字母.现在“V"字手势早已成为世界用语了.如图的“V”字手势中,食指和中指所夹锐角a的度数为()A.25B.35C.45D.553.下列说法中正确的是()A.射线AB与射线BA是同一条射线B.两条射线组成的图形叫做角C.各边都相等的多边形是正多边形D.连接两点的线段的长度叫做两点之间的距离4.下列角中,能用1∠,ACB∠三种方法表示同一个角的是()∠,CA.B.C.D.5.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,12740'∠=︒,则2∠的余角是( )A .1720'︒B .3220︒'C .3320'︒D .5820︒'6.如图,下列说法中错误的是( ).A .OA 方向是北偏东20︒B .OB 方向是北偏西15︒C .OC 方向是南偏西30︒D .OD 方向是东南方向二、填空题7.如图所示,120AOD ∠=︒,50AOB ∠=︒,OC 平分BOD ∠,那么BOC ∠=__________.8.计算:45396541︒'︒'+=________.9.计算:(1)1003441'︒-︒=_________;(2)23252455''︒+︒=_________;(3)1366435428''''︒-︒=_________. 10.如图,写出图中以A 为顶点的角______.三、解答题A B C是同一平面内三个点,借助直尺、刻度尺、量角器完成(以答题卡上印刷的11.读句画图如图,点,,图形为准):(1)画图:①画射线AB;①画直线BC;=.①连接AC并延长到点D,使得CD CA∠约为_________°(精确到1︒).(2)测量:ABC12.【观察思考】如图,五边形ABCDE内部有若干个点,用这些点以及五边形ABCDE的顶点ABCDE把原五边形分割成一些三角形(互相不重叠).【规律总结】(1)填写下表:(2)【问题解决】原五边形能否被分割成2022个三角形?若能,求此时五边形ABCDE内部有多少个点;若不能,请说明理由.参考答案:1.C【分析】根据1°=60′即可得到答案.【详解】解:1°=60′,故选:C.【点睛】本题考查了度、分、秒之间的换算,能正确进行度、分、秒之间的换算是解此题的关键,注意:1°=60′.2.B【分析】根据图形和各个角度的大小得出即可.【详解】解:根据图形可以估计①α约等于35°,故选:B.【点睛】本题考查了估算角的度数的大小的应用,主要考查学生观察图形的能力.3.D【分析】直接利用角的定义以及正多边形的定义、两点之间距离定义分别分析得出答案.【详解】解:A、射线AB与射线BA不是同一条射线,故此选项错误;B、有公共端点是两条射线组成的图形叫做角,故此选项错误;C、各边都相等、各角都相等的多边形是正多边形,故此选项错误;D、连接两点的线段的长度叫做两点之间的距离,故此选项正确.故选:D.【点睛】此题主要考查了角的定义以及正多边形的定义、两点之间距离定义,正确掌握相关定义是解题关键.4.C【分析】根据角的表示方法,顶点只存在一个角时,可以用一个字母表示角,据此分析即可【详解】根据角的表示方法,顶点只存在一个角时,可以用一个字母表示角,A、B、D选项中,点C为顶点的角存在多个,故不符合题意故选C【点睛】本题考查了角的表示方法,掌握角的表示方法是解题的关键.角的表示方法有三种:(1)用三个字母及符号“①”来表示.中间的字母表示顶点,其它两个字母分别表示角的两边上的点.(2)用一个数字表示一个角.(3)用一个字母表示一个角.具体用哪种方法,要根据角的情况进行具体分析,总之表示要明确,不能使人产生误解.5.B【分析】根据余角的定义可得①2的余角即①EAC ,然后利用角的运算列式计算求解,注意1°=60′.【详解】解:由题意可得:①2+①EAC =90°①①2的余角是①EAC①①EAC =601602740'3220'︒-∠=︒-︒=︒故选:B .【点睛】本题考查余角的概念及角的和差运算,掌握概念及角度制的运算是解题关键. 6.A【分析】由方位角的含义逐一判断各选项即可得出答案.【详解】解:OA 方向是北偏东70︒,故A 错误;OB 方向是北偏西15︒,故B 正确;OC 方向是南偏西30︒,故C 正确;OD 方向是东南方向,故D 正确;故选:A .【点睛】本题考查的是方位角,掌握方位角的含义是解题的关键.7.35°【分析】由已知可求BOD ∠的大小,根据角平分线的概念可求BOC ∠的大小.【详解】①120AOD ︒∠=,50AOB ︒∠=,①70BOD AOD AOB ︒∠=∠-∠=,①OC 平分BOD ∠, ①1352BOC BOD ︒∠=∠=, 故答案为:35︒.【点睛】本题主要考查了角的认识,角平分线的概念,熟练掌握角的相关概念是解题的关键. 8.111°20´.【分析】两个度数相交,度与度,分与分对应相加,分的结果若满60,则转化为度.【详解】45°39´+65°41´=111°20´,故答案为111°20´.【点睛】本题考查度角分的换算,学生们要知道角度之间的运算是60进制.9. 6519'︒ 4820'︒ 921132'''︒【分析】(1)根据角的各单位之间的是60进位,可以把100︒写成9060'︒,然后再用度减度,分减分,进行计算即可;(2)按照度加度,分加分计算即可;(3)根据角的各单位之间的是60进位,可以把1366'︒写成13565'60''︒,然后再用度减度,分减分,秒减秒进行计算即可【详解】(1)1003441'9960'3441'6519'︒-︒=︒-︒=︒;(2)2325'2455'4780'4820'︒+︒=︒=︒;(3)1366'4354'28''︒-︒=13565'60''4354'28''︒-︒9211'32''=︒.故答案为:①6519'︒,①4820'︒,①921132'''︒.【点睛】本题考查的度、分、秒的计算,掌握度、分、秒的换算方法是解题关键. 10.①DAC ①DAB ①CAB【分析】根据角的表示方法即可求解.【详解】写出图中以A 为顶点的角①DAC 、①DAB 、①CAB.故答案为①DAC ,①DAB ,①CAB.【点睛】此题考查的是角的表示方法,角可用三个大写字母表示,顶点字母写在中间,每边上的点写在两旁;也可以用一个大写字母表示,在角的顶点处有多个角时,不可以用一个字母表示这个角.11.(1)①见解析;①见解析;①见解析;(2)50【分析】(1)根据题目要求结合概念作图可得;(2)利用量角器测量可得.【详解】解:(1)如图所示: ①射线AB 即为所求;①直线BC 即为所求;①线段CD=CA 即为所求(2)ABC ∠约为50°故答案为:50【点睛】本题主要考查作图,解题的关键是掌握直线、射线、线段的概念及角的定义和测量.12.(1)11,2n+3;(2)不能,理由见解析.(1)根据图形特点找出五边形ABCDE内点的个数与分割成的三角形的个数的关系,【分析】总结规律即可;(2)根据规律列出方程,解方程得到答案.(1)有1个点时,内部分割成5个三角形;有2个点时,内部分割成5+2=7个三角形;有3个点时,内部分割成5+2×2=9个三角形;有4个点时,内部分割成5+2×3=11个三角形;…以此类推,有n个点时,内部分割成5+2×(n−1)=(2n+3)个三角形;故答案为11,2n+3;(2)令2n+3=2022,即2n=2019,显然这个方程没有整数解,①原五边形不能被分割成2022个三角形.【点睛】本题考查图形类规律探索,熟练掌握不完全归纳的方法及求一元一次方程整数解的方法是解题关键.。

人教版数学初一上《角》测试题(含答案及解析)

人教版数学初一上《角》测试题(含答案及解析)

人教版数学初一上《角》测试题(含答案及解析)时间:60分钟总分:100题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.一副三角板按如图所示的方法摆放,且∠1的度数是∠2的3倍,则∠2的度数为()A. 20∘B. 22.5∘C. 25∘D. 67.5∘2.如图所示,能用∠AOB,∠O,∠1三种要领表示联合个角的图形是()A. B.C. D.3.下列说法正确的是()A. 平角是一条直线B. 角的边越长,角越大C. 大于直角的角叫做钝角D. 两个锐角的和不一定是钝角4.下列说法中正确的个数有()①议决一点有且只有一条直线;②相连两点的线段叫做两点之间的隔断;③射线比直线短;④ABC三点在联合直线上且AB=BC,则B是线段AC的中点;⑤在联合平面内,两条直线的位置干系有两种:平行与相交;⑥在8:30时,时钟上时针和分针的夹角是75∘.A. 1个B. 2个C. 3个D. 4个5.下图中能用一个字母表示的角()A. 三个B. 四个C. 五个D. 没有6.甲、乙两人都从A地出发,分别沿北偏东30∘、60∘的偏向抵达C地,且BC⊥AB,则B地在C地的()A. 北偏东30∘的偏向上B. 北偏西30∘的偏向上C. 南偏东30∘的偏向上D. 南偏西30∘的偏向上第 1 页7.钟表盘上指示的时间是10时40分,此刻时针与分针之间的夹角为()A. 60∘B. 70∘C. 80∘D. 85∘8.下列四个图形中,能同时用∠1,∠ABC,∠B三种要领表示联合个角的图形是()A. B.C. D.9.在8点30分时,时针上的时针与分针之间的夹角为()A. 85度B. 75度C. 70度D. 60度10.在时刻9:30时,时钟上的时针与分针间的夹角是()A. 75∘B. 90∘C. 105∘D. 120∘二、填空题(本大题共10小题,共30.0分)11.如图,∠1=∠2,则∠1+∠3=______度.12.如图,锐角的个数共有______个.13.如图,A岛在B岛的北偏东30∘偏向,C岛在B岛的北偏东80∘偏向,A岛在C岛北偏西40∘偏向,从A岛看B,C两岛的视角∠BAC是______ 度.14.如图,∠AOB=90∘,以O为极点的锐角共有______个.15.如图所示,能用一个字母表示的角有______个,以A为极点的角有______个,图中所有角有______个.16.如图,用字母A、B、C表示∠α、∠β.则∠α=______,∠β=______.17.把一个周角7平分,每一份是______ 度______ 分(准确到1分).18.如图,把一根小棒OC一端钉在点O,旋转小木棒,使它落在不同的位置上形成不同的角,此中∠AOC为______,∠AOD为______,∠AOE为______,木棒转到OB时形成的角为______.(回答钝角、锐角、直角、平角)19.当时针指向2:30时,时针与分针的夹角是______ 度.20.已知一个锐角为(5x−35)∘,则x的取值范畴是______.三、谋略题(本大题共4小题,共24.0分)21.钟面上的角的标题.(1)3点45分,时针与分针的夹角是几多?(2)在9点与10点之间,什么时候时针与分针成100∘的角?22.如图所示,直线AB上有一点O,恣意画射线OC,已知OD,OE分别是∠AOC,∠BOC的中分线,求∠DOE的度数.23.如图所示,OM是∠AOC的中分线,ON是∠BOC的中分线,(1)要是∠AOC=28∘,∠MON=35∘,求出∠AOB的度数;(2)要是∠MON=n∘,求出∠AOB的度数;(3)要是∠MON的巨细改变,∠AOB的巨细是否随之改变?它们之间有怎样的巨细干系?请写出来.24.如图,直线AB、CD相交于点O,∠EOD=∠AOC,OF中分∠AOE,若∠AOC=28∘,求∠EOF的度数.第 3 页四、解答题(本大题共2小题,共16.0分)25. 请将图中的角用不同要领表示出来,并填写下表:∠ABE∠1∠2∠326. 图中,以B 为极点的角有几个?把它们表示出来.以D 为极点的角有几个?把它们表示出来.答案和剖析【答案】 1. B 2. D 3. D 4. C5. A6. C7. C8. B 9. B 10. C11. 180 12. 5 13. 70 14. 515. 0;4;1516. ∠CAB 或∠BAC 表示∠α;∠CBA 或∠ABC 17. 51;2618. 锐角;直角;钝角;平角 19. 10520. 7<x <2521. 解:(1)如图,∵由3点到3点45分,分针转了270∘,时针转了270∘×112,∴时针与分针的夹角是:180∘−270∘×112=157.5∘;(2)设分针转的度数为x ,则时针转的度数为x 12, 得①90∘+x −x12=100∘, 解得,x =12011∘,12011∘÷6∘=2011(分);②90∘+x12−(x −180∘)=100∘,第 5 页解得,x =204011∘,204011∘÷6∘=34011(分);∴9点过2011或34011分钟时,时针与分针成100∘的角.22. 解:∵OD ,OE 分别是∠AOC ,∠BOC 的中分线,∴∠AOD =∠COD =12∠AOC ,∠BOE =∠COE =12∠BOC ,∵∠AOC +∠BOC =180∘,即2∠COD +2∠COE =180∘,∴∠DOE =∠DOC +∠COE =90∘.23. 解:(1)∵OM 是∠AOC 的中分线,∠AOC =28∘, ∴∠COM =12∠AOC =14∘,∵∠MON =35∘,∴∠CON =∠MON −∠COM =35∘−14∘=21∘, ∵ON 是∠BOC 的中分线,∴∠BOC =2∠CON =2×21∘=42∘,∴∠AOB =∠AOC +∠BOC =28∘+42∘=70∘;(2)∵OM 是∠AOC 的中分线,ON 是∠BOC 的中分线, ∴∠COM =12∠AOC ,∠CON =12∠BOC ,∴∠MON =∠COM +∠CON =12∠AOC +12∠BOC =12(∠AOC +∠BOC)=12∠AOB , ∵∠MON =n ∘,∴∠AOB =2∠MON =2n ∘;(3)根据(2)的推导,∠AOB 随∠MON 巨细的改变而改变,∠AOB =2∠MON . 24. 解:∵∠AOC =28∘, ∴∠BOD =∠AOC =28∘,∴∠AOE =180∘−56∘=124∘, 又∵OF 中分∠AOE , ∴∠EOF =62∘. 故答案为62∘.25. 解:由图可知,∠ABE =∠α,∠1=∠ABC ,∠2=∠ACB ,∠3=∠ACF . 故答案为∠α,∠ABC ,∠ACB ,∠ACF .26. 解:以B 为极点的角有3个,分别是:∠ABD 、∠ABC 、∠DBC ,以D 为极点的角有6个,分别是∠ADE 、∠EDC 、∠ADB 、∠BDC.∠ADC ,∠BDE 【剖析】1. 【剖析】本题主要考察了余角、补角和角的概念,能根据图形求出∠1+∠2=90∘是解此题的要害.求出∠1+∠2=90∘,根据∠1的度数是∠2的3倍得出4∠2=90∘,即可求出答案. 【解答】解:根据图形得出:∠1+∠2=180∘−90∘=90∘, ∵∠1的度数是∠2的3倍, ∴∠2+3∠2=90∘, 即4∠2=90∘,∴∠2=22.5∘.故选B.2. 解:A、以O为极点的角不止一个,不能用∠O表示,故A选项错误;B、以O为极点的角不止一个,不能用∠O表示,故B选项错误;C、以O为极点的角不止一个,不能用∠O表示,故C选项错误;D、能用∠1,∠AOB,∠O三种要领表示联合个角,故D选项正确.故选:D.根据角的四种表示要领和具体要求回答即可.本题考察了角的表示要领的应用,掌握角的表示要领是解题的要害.3. 解:A、平角是两条射线组成的一条直线,故此选项错误;B、角的边越长,与角的巨细无关,故此选项错误;C、大于直角且小于180∘的角叫做钝角,故此选项错误;D、两个锐角的和不一定是钝角,正确.故选:D.直接利用角的定义以及钝角的定义分别剖析得出答案.此题主要考察了角的定义以及钝角的定义,正确把握定义是解题要害.4. 解:①议决两点有且只有一条直线,故本小题错误;②应为相连两点的线段的长度叫做两点的隔断,故本小题错误;③射线与直线不能比较长短,故本小题错误;④因为A、B、C三点在联合直线上,且AB=BC,所以点B是线段AC的中点,故本小题正确;⑤在联合平面内,两条直线的位置干系有两种:平行,相交,故本小题正确;⑥在8:30时,时钟上时针和分针的夹角是75∘,正确.综上所述,正确的有④⑤⑥共3个.故选C.根据直线的性质,两点间隔断的概念,射线与直线的意义,线段中点的概念,联合平面内两条直线的位置干系,钟面角的谋略,对各小题逐一剖析鉴别后,利用消除法求解.本题考察了直线的性质,两点间隔断的定义,射线与直线的意义,线段中点的定义,两条直线的位置干系,钟面角,是基础题,熟记性质与概念是解题的要害.5. 解:∵只有在极点处只有一个角的环境,才可用极点处的一个字母来记这个角,∴图中能用一个字母表示的角有三个:∠A、∠B、∠C.故选:A.只有在极点处只有一个角的环境,才可用极点处的一个字母来记这个角,不然分不清这个字母结局表示哪个角,据此鉴别出图中能用一个字母表示的角有几个即可.此题主要考察了角的表示要领,要熟练掌握,解答此题的要害是要明确:角可以用一个大写字母表示,也可以用三个大写字母表示.此中极点字母要写在中间,唯有在极点处只有一个角的环境,才可用极点处的一个字母来记这个角,不然分不清这个字母结局表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.6. 解:∵∠1=30∘,BC⊥AB,∴∠2=30∘,∴∠3=∠2=30∘,∴B地在C地的南偏东30∘的偏向上,故选C.此题考察了学生对偏向角的理解及直角三角形的鉴定等知识点的掌握环境.7. 解:10×30+40×0.5−6×40=320−240=80(∘),故选:C.可画出草图,利用钟表表盘的特性解答.本题考察钟表时针与分针的夹角.在钟表标题中,常利用时针与分针转动的度数干系:)∘,而且利用开始时间时针和分针的位置干系建立分针每钟转动6∘,时针每分钟转动(12角的图形.8. 解:A、由于B为极点的角有四个,不可用∠B表示,故本选项错误;B、由于B为极点的锐角有一个,可用∠ABC,∠B,∠1三种要领表示联合个角,故本选项正确;C、由于B为极点的锐角有三个,不可用∠B表示,故本选项错误;D、由于B为极点的有二个,不可用∠B表示,故本选项错误.故选:B.根据角的表示要领对四个选项逐个举行剖析即可.本题考察了角的概念,要熟悉角的三种表示要领所适用的条件.9. 解:8点30分,时针和分针中间相差2.5个大格.∵钟表12个数字,每相邻两个数字之间的夹角为30∘,∴8点30分分针与时针的夹角是2.5×30∘=75∘.故选:B.根据钟表上12个数字,每相邻两个数字之间的夹角为30∘谋略得到答案.本题考察了钟面角,用到的知识点为:钟表上12个数字,每相邻两个数字之间的夹角为30∘.−6×30∘=105∘,10. 解:9:30时,时钟上的时针与分针间的夹角9×30∘+30∘×12故选:C.根据时针旋转的速度乘以时针旋转的时间,可得时针的旋转角,根据分针旋转的速度成分针旋转的时间,即是分针旋转的角度;再根据时针的角减去分针旋转的角即是时针与分针的夹角,可得答案.本题考察了钟面角,利用了时针的旋转角减去分针的旋转的角即是时针与分针的夹角.11. 解:∵∠2与∠3是邻补角,∴∠2+∠3=180∘,又∵∠1=∠2,∴∠1+∠3=180∘.充分运用邻补角的数量干系及等量代换解题.本题利用了两个补角的和为180∘和等量代换.12. 解:以OA为一边的角∠AOB=20∘,∠AOC=20∘+30∘=50∘,∠AOD=20∘+30∘+ 50∘=100∘(钝角舍去),以OB为一边的角∠BOC=30∘,∠BOD=50∘+30∘=80∘,以OC为一边的角∠COD=50∘.共有∠AOB,∠AOC,∠BOC,∠BOD,∠COD.故答案为5个.分别以OA、OB、OC为一边,数出所有角,相加即可.此题考察了角的数法,要以每条边为始边,数出所有角,要注意,不能漏数,也不能多数.13. 解:∵A岛在B岛的北偏东30∘偏向,即∠DBA=30∘,∵C岛在B岛的北偏东80∘偏向,即∠DBC=80∘;第 7 页∵A岛在C岛北偏西40,即∠ACE=40∘,∴∠ACB=180∘−∠DBC−∠ACE=180∘−80∘−40∘=60∘;在△ABC中,∠ABC=∠DBC−∠DBA=80∘−30∘=50∘,∠ACB=60∘,∴∠BAC=180∘−∠ABC−∠ACB=180∘−50∘−60∘=70∘.利用方位角的概念连合图形解答.解答此类题需要从运动的角度,正确画出方位角,再连合三角形的内角和定理与平行线的性质解答.14. 解:以OA为一边的角,∠AOD,∠AOC;以OD为一边的角,∠DOC,∠DOB;以OC为一边的角,∠COB.共5个角.故答案是:5.明确角的概念,依次数出以OA、OD、OC为一边的角的个数即可.此题考察了角的概念,首先要明白图中所示的角,再依次数出图中的角,要注意不要漏数,也不要多数.15. 解:能用一个字母表示的角有0个,以A为极点的角有4个,图中所有角有15个,故答案为:0,4,15.根据角的概念逐个得出即可.本题考察了角的概念,能数出相符的所有角是解此题的要害.16. 解:由图可知,∠α=∠CAB或∠BAC;∠β=∠CBA或∠ABC.故答案为∠CAB或∠BAC,∠CBA或∠ABC.根据角的定义找到图中角,用三个字母表示角时,将表示极点的字母置于三个字母中间.此题考察了角的多种表示要领,当极点处只有一个角时,此角可用多种要领表示,如有多个角,则不能只用一个字母表示,以免混淆.17. 解:由题意,得360∘÷7=51∘26′,故答案为:51,26.根据度分秒的除法,可得答案.本题考察了度分秒的换算,利用度分秒的除法是解题要害.18. 解:根据角的定义,∠AOC为锐角,∠AOD为直角,∠AOE为钝角,木棒转到OB时形成的角为平角.利用角的概念求解.互相垂直时,夹角是直角,即90∘;大于90∘小于180∘是钝角,小于90∘大于0∘是锐角,即是180度叫平角.由一点放射出两条射线,要是两条射线的夹角为90度叫直角,大于90度小于180度的叫钝角,在0度到90度之间的叫锐角,即是180度叫平角.19. 解:2:30时,时针与分针相距3.5份,2:30时,时针与分针的夹角是30∘×3.5=105∘,故答案为:105.根据钟面均匀分成12份,可得每份是30∘,根据时针与分针相距的份数乘以每份的度数,可得答案.本题考察了钟面角,利用了时针与分针相距的份数乘以每份的度数.20. 解:由题意可知:0<5x−35<90解得:7<x<25故答案为:7<x<25根据锐角的概念即可求出x的范畴.本题考察角的概念,解题的要害是根据锐角的定义列出不等式,本题属于基础题型.第 9 页21. (1)由图知,由3点到3点45分,分针转了270∘,时针转了270∘×112,180∘减去时针转的度数,即为夹角;(2)设分针转的度数为x ,则时针转的度数为x12,可根据干系式,①90∘+x −x12=100∘,②90∘+x12−(x −180∘)=100∘,求得x 值,根据分针走1分,其转动6∘,可得到时间; 本题考察了钟表分针所转过的角度谋略.在钟表标题中,常利用时针与分针转动的度数干系:分针每转动1∘时针转动(112)∘,而且利用开始时间时针和分针的位置干系建立角的图形.22. 由OD ,OE 分别为角中分线,利用角中分线定义得到两对角相等,而这四个角之和为一个平角,等量代换即可求出∠DOE 的度数.此题考察了角中分线定义,熟练掌握角中分线定义是解本题的要害.23. (1)根据角中分线的定义求出∠COM 的度数,再求出∠CON 的度数,然后根据角中分线的定义求出∠BOC 的度数,与∠AOC 相加即可得解; (2)根据角中分线的定义,用∠NOC 表示出∠BOC ,用∠COM 表示出∠AOC ,然后即可得解; (3)根据(2)的推导得解.本题考察了角中分线的定义以及角的谋略,熟记角中分线的定义是解题的要害.24. 先根据∠EOD =∠AOC =28∘,连合平角定义,求出∠EOA 的度数,再由角中分线的性质求出∠EOF 的度数即可.本题主要考察角中分线的概念,需要熟练掌握.25. 图中角的表示有多种,一个大写英文字母;三个大写英文字母;一个阿拉伯数字;一个希腊字母,择其适合者填表. 此题考察了角的表示要领,根据图形特点将每个角用合适的要领表示表现了一个别的数学基本功,必须重视这方面的训练.26. 先找到图中角的极点,再找到角的双方,从而找到角,以各极点为切入点,不要漏数也不要多数.此题考察了角的定义,也考察了角的表示,除用三个大写字母表示外,也可用数字或希腊字母来表示,但需在靠近极点处加上弧线.。

七年级数学上册角同步练习含解析新版新人教版

七年级数学上册角同步练习含解析新版新人教版

角一. 选择题.1.钟表在1点30分时,它的时针和分针所成的角度是().A.135° B.125° C.145° D.115°【答案】A【分析】根据钟表上的指针确定出所求角度数即可,时针每分钟走0.5°,钟面每小格的角度为6°.【详解】根据题意得:钟表在1点30分时,它的时针和分针所成的角度是135°,故选:A.2. 12点15分,钟表上时针与分针所成的夹角的度数为.A.B.C.D.【答案】C【分析】:时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12小时15分,求出时针与分针的夹角即可.【详解】12点15分时,时钟的时针与分针的夹角是6°×15−0.25×30°=82.5度.故选:C.【名师点睛】本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每分钟转动6°,时针每小时转动30°,并且利用起点时间时针和分针的位置关系建立角的图形.3.已知,,则与的大小关系是A.B.C.D.无法确定【答案】A【解析】:分析:一度等于60′,知道分与度之间的转化,统一单位后比较大小即可求解.详解:∵∠α=21′,∠β=0.35°=21′,∴∠α=∠β.故选:A.4.如图,下列说法中不正确的是()A.∠1与∠AOB是同一个角B.∠AOC也可以用∠O表示C.∠β=∠BOC D.图中有三个角【答案】B【分析】:根据角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示进行分析即可.【详解】A、∠1与∠AOB是同一个角,说法正确;B、∠AOC也可用∠O来表示,说法错误;C、∠β与∠BOC是同一个角,说法正确;D、图中共有三个角:∠AOB,∠AOC,∠BOC,说法正确;故选:B.5.如图所示,从O点出发的五条射线,可以组成小于平角的角的个数是 ( )A.4个B.8个C.9个D.10个【答案】D【分析】:先以OA为角的一边,最大角为∠AOB,依次得到以OD、OC、OE、OB为另一边的五个角;然后利用同样的方法得到其他角,最后计算所有角的和即可求解.【详解】点O出发的五条射线,可以组成的小于平角的角有:∠AOB,∠AOC,∠AOD,∠AOE,∠BOC,∠BOD,∠BOE,∠COD,∠COE,∠DOE.故答案选D.6.钟表4点30分时,时针与分针所成的角的度数为( )A.45°B.30°C.60°D.75°【答案】A【分析】钟表上按小时算分12个格,每个格对应的是30度,分针走一圈时针走一格,30分钟走半格,4点30分时针和分针的夹角是45度。

与角度有关的计算问题(35题提分练)(原卷版)—七年级数学上册(北师大版2024)

与角度有关的计算问题(35题提分练)(原卷版)—七年级数学上册(北师大版2024)

与角度有关的计算问题(解答题35题)(基础题&提升题&压轴题)题型一基础题1.(2023秋•同安区期末)如图,点O在直线AB上,∠BOC=20°,∠COD=90°,OE是∠BOD的角平分线,求∠COE的度数.2.(2023秋•吉安期末)如图,已知∠1:∠3:∠4=1:2:4,∠2=80°,求∠1、∠3、∠4的度数.3.(2023秋•西峡县期末)如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE 的度数.4.(2023秋•天心区期末)如图,O为直线AB上一点,OC平分∠AOD,∠AOC=60°,∠BOD=3∠DOE,求∠DOE的度数.5.(2023秋•泉港区期末)如图,∠COD=45°,∠BOD=13∠COD,OC是∠AOB的平分线,求∠AOD的度数.6.(2023秋•泸县校级期末)如图,OE是∠COA的平分线,∠AOB=∠COD.(1)若∠AOE=50°,∠COD=18°,求∠BOC的度数;(2)比较∠AOC和∠BOD7.(2023秋•南沙区期末)如图,将一副三角尺叠放在一起.三角尺ABC的三个角是45°,45°,90°,三角尺ADE的三个角是30°,60°,90°.(1)若∠CAE=58°,求∠BAE的度数;(2)若∠CAE=2∠BAD,求∠CAD的度数.8.(2023秋•大荔县期末)将一副直角三角板ABC和BDE的一个顶点B重合在一起,按如图所示方式摆放,其中∠ACB=∠DBE=90°,∠ABC=30°,三角板ABC在∠DBE内可任意转动.(1)以点B为顶点的所有锐角有 个.(2)求以点B9.(2023秋•九龙坡区校级期末)如图,∠AOB:∠BOC=1:4,OM平分∠AOB,∠BON:∠NOC=3:1,若∠MON=91°.(1)∠AOB ∠NOC(填“>”或“<”或“=”)(2)求∠AOC的度数.10.(2023秋•娄底期末)如图,点O在直线AB上,∠COD=60°,∠AOE=2∠DOE.(1)若∠BOD=60°,求∠COE的度数;(2)试猜想∠BOD和∠COE的数量关系,并说明理由.11.(2023秋•瑶海区校级期末)已知点O为直线AB上一点,∠MON=90°,在∠MON内部作射线OC,且OC恰好平分∠MOB.(1)若∠CON=20°,求∠AOM的度数;(2)若∠BON=2∠NOC,求∠AOM的度数.12.(2023秋•高安市期末)如图,已知∠AOB=80°,OC是∠AOB的平分线,OD是∠BOC的平分线.(1)求∠AOD的度数;(2)若∠COE=14∠COB,求∠的度数.题型二提升题13.(2023秋•福田区校级期末)如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数;(3)如果∠COD:∠COE=3:2,求∠AOE的度数.14.(2023秋•慈溪市期末)如图,直角三角板DOE的直角顶点O在直线AB上,OD平分∠AOF.(1)比较∠EOF和∠EOB的大小,并说明理由;(2)若OF平分∠AOE,求∠的度数.15.(2023秋•武昌区期末)已知∠AOB=50°,∠COD=20°.(1)如图1,若∠AOD=80°,∠COD在OB的左侧,则∠BOC= ;(2)如图2,OP平分∠AOD,OQ平分∠BOC,求∠POQ.16.(2023秋•无为市期末)利用折纸可以作出角平分线,如图1折叠,则OC为∠AOB的平分线,如图2、图3,折叠长方形纸片,OC,OD均是折痕,折叠后,点A落在点A',点B落在点B',连接OA′.(1)如图2,若点B'恰好落在OA′上,且∠AOC=32°,则∠BOD= ;(2)如图3,当点B'在∠COA'的内部时,连接OB′,若∠AOC=44°,∠BOD=61°,求∠A'OB'的度数.17.(2023秋•彭水县期末)已知∠AOB内部有三条射线OD,OC,OE且在同一个平面内,∠AOC=2∠BOC,射线OD始终在射线OE的上方,∠AOB=108°,∠DOE=36°.(1)如图1,当OE平分∠BOC时,求∠AOD的度数;(2)如图2,若∠AOD=5∠COE时,求∠BOE的度数.18.(2023秋•沙坪坝区校级期末)如图1,已知∠AOC=160°,OB是∠AOC内的射线,且∠AOB=3 5∠BOC,射线OD、OE将∠AOC分割,使得∠AOD:∠BOD:∠COE=1:2:3.(1)求∠DOE.(2)如图2,作∠BOD,∠EOC的平分线OM,ON.求∠MON的值.19.(2023秋•渝北区期末)OC ,OD ,OE 在∠AOB 内,∠AOC =2∠BOC ,∠AOB =108°,∠DOE =66°.(1)如图1,当OE 为∠BOC 的角平分线时,求∠AOD 的度数;(2)如图2,当∠AOD =53∠COE ,求∠BOE 的度数.20.(2023秋•汉中期末)如图,已知∠AOB =120°,从∠AOB 的顶点O 引出一条射线OC ,射线OC 在∠AOB 的内部,将射线OC 绕点O 逆时针旋转到OD ,且∠COD =60°.(1)如图①,若∠AOD =90°,试判断∠AOC 与∠BOD 之间的大小关系并说明理由;(2)如图②,作射线OE ,射线OE 为∠AOD 的平分线,设∠AOC =α,当0°<α<60°时,若射线OC 恰好平分∠AOE ,求∠BOD 的度数.21.(2023秋•宿豫区期末)已知,将一副三角板的直角顶点O按如图所式叠放在一起.(1)若∠BOD=55°,则∠BOC= ,∠BOC ∠AOD(填>、<、=);(2)①若∠BOD=50°,则∠AOC= ;若∠AOC=120°,则∠BOD= ;②猜想∠BOD与∠AOC之间的数量关系,并说明理由.22.(2023秋•庄河市期末)如图,点O为直线上AB一点,∠COD=90°,∠BOD=18°,若OE是∠BOC 的平分线,(1)求∠BOE的度数;(2)若点F是平面内一点,连接射线OF,且∠AOF=13∠AOC,求∠COF的度数.23.(2023秋•黄陂区校级期末)将三角板COD的直角顶点O放置在直线AB上.(1)如图,且∠AOC=40°射线OE平分∠BOC,则∠BOE的大小为 ;(2)在(1)的条件下,射线OE平分∠BOC,射线OF平分∠BOD,求∠EOF的度数;(3)若将三角板COD绕点O旋转,射线OE平分∠BOC,射线OF平分∠BOD.请写出∠COD与∠EOF 度数的等量关系: .题型二压轴题24.(2023秋•斗门区期末)如图①,OC是∠AOE内部的一条射线,OB、OD分别平分∠AOC,∠EOC.(1)若∠AOE=140°,∠COD=30°,求∠BOC= ;(2)∠AOE与∠BOD的大小有什么关系,写出你的结论并说明理由.(3)如图②,如果OC是∠AOE外部的一条射线,OB、OD分别平分∠AOC,∠EOC.那么(2)中∠AOE与∠BOD的大小关系还成立吗?请说明理由.25.(2023秋•海陵区校级期末)已知∠AOB=2∠COD=140°,OE平分∠AOD.(1)如图①,若∠COE=10°,求∠AOC的度数;(2)将∠COD绕顶点O按逆时针方向旋转至如图②的位置,∠BOD和∠COE有怎样的数量关系?请说明理由;(3)将∠COD绕顶点O按逆时针方向旋转至如图③的位置,(2)中的关系是否成立?请说明理由.26.(2023秋•思明区校级期末)如图,点M,O,N在同一条直线上,将一直角三角板的60°锐角顶点放在点O处,一边OA在射线OM上,另一边OB在直线MN的上方.OC平分∠BON,OD平分∠CON.(1)求∠BOD的度数;(2)把三角板绕点O沿逆时针方向旋转,当OB转到射线OM上时停止,若在旋转过程中,∠AOM=(x﹣120)°,同时在∠BOC内部有一条射线OE,使得∠BOE=(34x―90)°,试探究在旋转过程中,射线OE始终是哪个角的平分线?27.(2023秋•宝安区期末)将一副三角板如图1放置(∠AOB=90°,∠A=45°,∠OCD=90°,∠COD =30°),在∠BOD、∠AOC(∠BOD≤180°、∠AOC≤180°)内作射线OM、ON,且∠MOB=2∠DOM,∠NOA=2∠NOC,将三角板OCD绕着点O顺时针旋转.(1)如图1,当点O、A、C在一条直线上时,∠MON= ;(2)如图2,若旋转角为α(0°<α<90°),∠MON的度数是否会发生改变?若不变,求其值;若变化,说明理由.(3)如图3,当三角板OCD旋转到∠AOB内部时,求∠MON的值.28.(2024•两江新区校级开学)将一副三角板的两个锐角顶点重合,∠AOB=45°,∠COD=30°,OM,ON分别是∠AOC,∠BOD(1)如图①所示,当OB与OC重合时,则∠MON的大小为 ;(2)当∠COD绕着点O旋转至如图②所示,当∠BOC=14°,则∠MON的大小为多少?(3)当∠COD绕着点O旋转至如图③所示,当∠BOC=α时,求∠MON的大小.29.(2023秋•于洪区期末)【提出问题】已知点O是直线AB上一点,∠COD=90°,射线OE是∠AOD的平分线.(1)如图1,若∠BOD=110°,求∠COE的度数.请补充完成下列解答过程:解:∵∠AOB=180°,∠BOD=110°,∴∠AOD= °.∵∠COD=90°,∴∠AOC=∠COD﹣∠AOD= °.∵OE是∠AOD的平分线,∴∠AOE= ∠AOD= °.∴∠COE=∠AOC+ = °.【类比分析】(2)如图2,设∠COE=α,求∠BOD的度数(用含α的代数式表示).【变式探索】(3)如图3,若3∠COE﹣2∠BOD=78°,求∠COE的度数.30.(2023秋•渑池县期末)如图.已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB.(1)在图①中.若∠AOC=40°,则∠BOC= °.∠NOB= °;(2)在图①中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在图①中,当∠AOB绕着点O顺时针转动到如图②的位置时,(2)中α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.31.(2023秋•青岛期末)如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,求∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,尝试发现∠MON与α的数量关系.(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON与α、β有数量关系吗?直接写出结论即可.32.(2024春•高青县期末)【实践活动】如图1,将一副三角板的直角顶点重合摆放.(1)∠ACE与∠BCD的大小关系是∠ACE ∠BCD.(填“>”“=”或“<”)(2)∠ACB与∠DCE之间的数量关系是 .【拓展探究】(3)如图2,若∠ACD≠∠BCE,且∠ACD+∠BCE=180°,探索∠ACB与∠DCE之间的数量关系,并说明理由.33.(2023秋•和平区校级期末)已知∠AOB=120°,从∠AOB的顶点O引出一条射线OC,射线OC在∠AOB的内部,将射线OC绕点O逆时针旋转60°形成∠COD.(1)如图1,若∠AOD=90°,比较∠AOC和∠BOD的大小,并说明理由;(2)作射线OE,射线OE为∠AOD的平分线,设∠AOC=α.①如图2,当0°<α<60°,若射线OC恰好平分∠AOE,求∠BOD的度数;②当α≠60°时,请探究∠EOC与∠BOD之间的数量关系.34.(2023秋•山西期末)综合与探究特例感知:(1)如图1.线段AB=16cm,C为线段AB上的一个动点,点D,E分别是AC,BC的中点.①若AC=4cm,则线段DE的长为 cm.②设AC=a cm,则线段DE的长为 cm.知识迁移:(2)我们发现角的很多规律和线段一样,如图2,若∠AOB=120°,OC是∠AOB内部的一条射线,射线OM平分∠AOC,射线ON平分∠BOC,求∠MON的度数.拓展探究:(3)已知∠COD在∠AOB内的位置如图3所示,∠AOB=α,∠COD=30°,且∠DOM=2∠AOM,∠CON=2∠BON,求∠MON的度数.(用含α的代数式表示)35.(2023秋•青羊区校级期末)如图所示,O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1,若∠AOC=30°,求∠DOE的度数.(2)在图1中,若∠AOC=α,直接写出∠DOE的度数: (用含α的代数式表示).(3)将图1中的∠COD绕顶点O顺时针开始旋转.①当∠COD旋转至如图2的位置时,请探究∠AOD与∠BOE的度数之间的关系,写出你的结论,并说明理由;②过点O的一条射线OF,使得OC恰好平分∠BOF,在图1和图2中分别探究∠AOF与∠DOE的度数之间的关系,请直接写出结论.。

(完整版)七年级数学角练习题及答案

(完整版)七年级数学角练习题及答案

七年级数学角练习题及答案一、选择题1.A.15°B.20°C.85°D.105°答案:A 北A?4题图东西?B 南题图题图6、×=×=11°31′26″×3=33°93′78″=34°34′18″15.AOD25. 如图14,将一副三角尺的直角顶点重合在一起.若∠DOB与∠DOA的比是2∶11,求∠BOC的度数.若叠合所成的∠BOC=n°,则∠AOD的补角的度数与∠BOC的度数之比是多少?26.如图,一个机器人从点O出发,每前进2米就向左转体45°.假设机器人从O点出发时,身体朝向正北方向,试用1厘米代表1米,在图中画出机器人走过6米路程后所处的位置,并指明点A在点O的什么方向上?机器人从出发到首次回到O点,共走过了多远的路程?数学七年级上第4章直线与角检测题一、选择题1.如图,,若∠1=40°,则∠2的度数是AO第1题图A.20°B.40°C.50°D.60°.如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是1B第2题图 A BCD3.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,?,那么六条直线最多有A.21个交点B.18个交点C.15个交点D.10个交点.已知=65°,则的补角等于A.125°B.105°C.115°D.95°.下列说法正确的个数是①教科书是长方形;②教科书是长方体,也是棱柱;③教科书的表面是长方形. A.①②B.①③ C.②③ D.①②③6. 如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是 A.∠2=∠B.C.D.以上都不对7. 在直线l上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,那么线段OB的长度是A.2㎝ B.0.5㎝ C.1.5㎝ D.1㎝8. 下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有A. ①②B. ①③C. ②④D. ③④9. 如图,下列关系式中与图不符合的式子是 A.C. B.D.第9题图10. 下列叙述正确的是A.180°的角是补角 B.110°和90°的角互为补角 1C.10°、20°、60°的角互为余角D.120°和60°的角互为补角二、填空题 11.已知=67°,则的余角等于度.12. 如图,∠AOC=∠BOD=78°,∠BOC=35°,则∠AOD=. 13.有下列语句:①在所有连接两点的线中,直线最短;②线段③取直线是点与点的距离;的中点;,得到射线,其中正确的是 .第12题图④反向延长线段14. 要在墙上钉一根木条,至少要用两个钉子,这是因为:. 15. 一个角的补角是这个角的余角的3倍,则这个角的度数是 . 16. 已知直线上有A,B,C三点,其中AB=cm,BC=cm,则AC=_______. 17. 计算:180°2313′6″__________. 18.若线段MN=_______.,C是线段AB上的任意一点,M、N分别是AC和CB的中点,则三、解答题19. 将下列几何体与它的名称连接起来.圆锥三棱锥圆柱正方体球长方体20.如图所示,线段AD=cm,线段AC=BD=cm ,E、F分别是线段AB、CD的中点,求EF.第20题图21.如图,已知画直线画射线三点.;;2找出线段画出的中点,连结的平分线与;相交于,与相交于点.第21题图第22题图22. 如图,的度数.23. 火车往返于A、B两个城市,中途经过4个站点,不同的车站往返需要不同的车票.共有多少种不同的车票?如果共有≥3)个站点,则需要多少种不同的车票?°,°,求、24. 如图,数一数以O为顶点且小于180°的角一共有多少个?你能得到解这类问题的一般方法吗?第24题图3第4章直线与角检测题参考答案1.C 解析:∵,∴ ∠∠1∠290°,∴ ∠2=90°∠1=90°40°50°.2.B 解析:选项A和C能折成原几何体的形式,但涂颜色的面是底面与原几何体的涂颜色面的位置不一致;选项B能折叠成原几何体的形式,且涂颜色的面的位置与原几何体一致;选项D不能折叠成原几何体的形式.3.C 解析:由题意,得条直线之间交点的个数最多为,故6条直线最多有=15交点.4.C 解析:∠的补角为180°∠=115°,故选C.5.C 解析:教科书是立体图形,所以①不对,②③都是正确的,故选C.6. C 解析:因为∠1与∠2互补,所以∠1+∠2=180°.又因为∠2与∠3互余,所以∠2+∠3=90°,所以∠1+=180°,所以∠1=90°+∠3.7.D 解析:因为是顺次取的,所以AC=cm,因为O是线段AC的中点,所以OA=OC= cm.OB=AB-OA=5-4=1. 故选D.8.D 解析:①②是两点确定一条直线的体现,③④可以用“两点之间,线段最短”来解释.故选D.9.C 解析:根据线段之间的和差关系依次进行判断即可得出正确答案.正确;,故本选项错误;,正确;,正确.故选C.,而10.D 解析:180°的角是平角,所以A不正确;110°+90°180°,所以B不正确;互为余角是指两个角,所以C不正确;120°+60°=180°,所以D正确. 11.2312. 121° 解析:根据∠AOC=∠BOD=78°,∠BOC=35°,∴∠AOB=∠AOC?∠BOC=78°?35°?43°,故∠AOD=∠AOB+∠BOD=43°+78°=121°.13.④ 解析:∵ 在所有连接两点的线中,线段最短,∴ ①错误;∵ 线段点的距离,∴ ②错误;∵ 直线没有长度,∴ 说取直线向延长线段,得到射线的长是点与的中点错误,∴ ③错误;∵ 反正确,∴ ④正确.故答案为④.14.两点确定一条直线15.45° 解析:设这个角为,所以,根据题意可,所以416.cm或cm 解析:当三点按的顺序排列时,;当三点,按的顺序排列时,.17.156°46′54″ 解析:原式=179°59′60″-23°13′6″156°46′54″.18. 解析:.19.分析:正确区分各个几何体的特征. 解:圆锥三棱锥圆柱正方体球长方体20.解:如题图,∵ 线段AD=cm,线段AC=BD=cm,∴ BC?AC?BD?AD?4?4?6?2. ∴ AB?CD?AD?BC?6?2?4. 又∵ E、F分别是线段AB、CD的中点, ∴ EB?112AB,CF?2CD ,∴ EB?CF?1122CD?12?2.∴ EF?EB?BC?CF?2?2?4. 答:线段EF的长为cm.21.分析:根据直线是向两方无限延长的画出直线即可;根据射线是向一方无限延长的画出射线即可;找出的中点,画出线段即可;画出∠的平分线即可.解:如图所示.5。

人教版数学七年级上学期:《角》课时练习(含答案)

人教版数学七年级上学期:《角》课时练习(含答案)

4.3角4.3.1角能力提升1.下列说法中正确的是()A.两条射线组成的图形叫做角B.角是一条线段绕它的一个端点旋转而成的图形C.有公共端点的两条线段组成的图形叫做角D.角是一条射线绕着它的端点旋转而成的图形2.如图,O是直线AB上一点,图中小于180°的角的个数为()A.7B.9C.8D.103.下午2点30分时(如图),时钟的分针与时针所成角的度数为()A.90°B.105°C.120°D.135°(第2题图)(第3题图)4.若∠1=75°24',∠2=75.3°,∠3=75.12°,则()A.∠1=∠2B.∠2=∠3C.∠1=∠3D.以上都不对5.由2点15分到2点30分,钟表的分针转过的角度是()A.30°B.45°C.60°D.90°6.(1)32.6°=°';(2)10.145°=°'″;(3)50°25'12″=°.7.小明说:我每天下午3:00准时做“阳光体育”活动.则下午3:00这一时刻,时钟上分针与时针所夹的角等于.8.指出图中所示的小于平角的角,并把它们表示出来.★9.如图,从点O引出的5条射线OA,OB,OC,OD,OE组成的图形中共有几个角?创新应用★10.观察下图,回答下列问题.(1)在∠AOB内部任意画1条射线OC,则图①中有个不同的角;(2)在∠AOB内部任意画2条射线OC,OD,则图②中有个不同的角;(3)在∠AOB内部任意画3条射线OC,OD,OE,则图③中有个不同的角;(4)在∠AOB内部任意画10条射线OC,OD,…,则共形成个不同的角.参考答案能力提升1.D2.B3.B时钟上每一大格是30°,2点30分时时针与分针之间是3.5个格,所以夹角为3.5×30°=105°.4.D因为∠1=75°24'=75.4°,所以∠1,∠2和∠3都不相等.5.D6.(1)3236(2)10842(3)50.427.90°8.解:满足条件的角有6个,它们是∠A,∠D,∠ABE,∠ABF,∠DCE,∠DCF.9.解:图形中有∠AOB,∠AOC,∠AOD,∠AOE,∠BOC,∠BOD,∠BOE,∠COD,∠COE,∠DOE,共10个角.创新应用10.(1)3(2)6(3)10(4)66(1)2+1=3;(2)3+2+1=6;(3)4+3+2+1=10;(4)11+10+9+…+3+2+1=66.第2课时线段的性质能力提升1.如图所示,要在直线PQ上找一点C,使PC=3CQ,则点C应在()A.P,Q之间B.点P的左边C.点Q的右边D.P,Q之间或在点Q的右边2.如果线段AB=5 cm,BC=3 cm,那么A,C两点间的距离是()A.8 cmB.2 cmC.4 cmD.不能确定3.C为线段AB的一个三等分点,D为线段AB的中点,若AB的长为6.6 cm,则CD的长为()A.0.8 cmB.1.1 cmC.3.3 cmD.4.4 cm4.如图所示,C是线段AB的中点,D是CB上一点,下列说法中错误的是()A.CD=AC-BDB.CD=BCC.CD=AB-BDD.CD=AD-BC5.下面给出的4条线段中,最长的是()A.dB.cC.bD.a6.已知A,B是数轴上的两点,点A表示的数是-1,且线段AB的长度为6,则点B表示的数是.7.已知线段AB=7 cm,在线段AB所在的直线上画线段BC=1 cm,则线段AC=. 8.如图所示,设A,B,C,D为4个居民小区,现要在四边形ABCD内建一个购物中心,试问把购物中心建在何处,才能使4个居民小区到购物中心的距离之和最小?请说明理由.9.如图所示,点C是线段AB上一点,点M是线段AC的中点,点N是线段BC的中点.(1)如果AB=20 cm,AM=6 cm,求NC的长;(2)如果MN=6 cm,求AB的长.10.在桌面上放了一个正方体的盒子,如图所示,一只蚂蚁在顶点A处,它要爬到顶点B处找食物,你能帮助蚂蚁设计一条最短的爬行路线吗?要是食物在顶点C处呢?★11.已知线段AB=12 cm,直线AB上有一点C,且BC=6 cm,M是线段AC的中点,求线段AM 的长.创新应用★12.在同一条公路旁,住着5人,他们在同一家公司上班,如图,不妨设这5人的家分别住在点A,B,D,E,F所示的位置,公司在点C处,若AB=4 km,BC=2 km,CD=3 km,DE=3 km,EF=1 km,他们全部乘出租车上班,车费单位报销.出租车收费标准是:起步价6元(3 km以内,包括3 km),超过3 km超出的部分每千米1.5元(不足1 km,以1 km计算),每辆车能容纳3人.(1)若他们分别乘出租车去上班,公司应支付车费多少元?(2)如果你是公司经理,你对他们有没有什么建议?参考答案能力提升1.D注意本题中的条件是在直线PQ上找一点C,所以C可以在P,Q之间,也可以在点Q的右侧.2.D A,B,C三点位置不确定,可能共线,也可能不共线.3.B如图,AD=AB=3.3cm,AC=AB=2.2cm,所以CD=AD-AC=3.3-2.2=1.1(cm).4.B5.A6.-7或5点B可能在点A的左侧,也有可能在点A的右侧.若点B在点A的左侧,则点B表示的数比点A表示的数小6,此时点B表示的数为-7;若点B在点A的右侧,则点B表示的数比点A表示的数大6,此时点B表示的数为5.7.8 cm或6 cm分两种情况:①点C在线段AB内,②点C在线段AB的延长线上.8.解:连接AC,BD,交点P即为购物中心的位置.理由:根据公理“两点之间,线段最短”,要使购物中心到A,B,C,D的距离和最小,购物中心既要在AC上,又要在BD上.9.解:(1)因为M为AC的中点,所以MC=AM.又因为AM=6cm,所以AC=2×6=12(cm).因为AB=20cm,所以BC=AB-AC=20-12=8(cm).又因为N为BC的中点,所以NC=BC=4(cm).(2)因为M为AC的中点,所以MC=AM.因为N为BC的中点,所以CN=BN.所以AB=AC+BC=2(MC+CN)=2MN=2×6=12(cm).10.解:如图所示,是该正方体的侧面展开图.食物在B处时的最短路线为线段AB,食物在C处时的最短路线为线段AC.11.解:(1)当点C在线段AB上时,如图①,图①因为M是AC的中点,所以AM=AC.又因为AC=AB-BC,AB=12cm,BC=6cm,所以AM=(AB-BC)=×(12-6)=3(cm).(2)当点C在线段AB的延长线上时,如图②,图②因为M是AC的中点,所以AM=AC.又因为AC=AB+BC,AB=12cm,BC=6cm,所以AM=AC=(AB+BC)=×(12+6)=9(cm).故AM的长度为3cm或9cm.创新应用12.解:(1)在A处乘车的车费为6+(4+2-3)×1.5=10.5(元);在B处乘车的车费为6元;在D处乘车的车费为6元;在E处乘车的车费为6+(3+3-3)×1.5=10.5(元);在F处乘车的车费为6+(1+3+3-3)×1.5=12(元),合计45元.(2)A,B同乘一辆车,从A开出,D,E,F同乘一辆车,从F开出,合计22.5元.。

七年级上册数学角试卷【含答案】

七年级上册数学角试卷【含答案】

七年级上册数学角试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 角是由两条具有公共端点的射线组成的图形,这个公共端点称为角的()。

A. 顶点B. 边C. 射线D. 直线2. 下列哪种角是锐角?A. 30°B. 90°C. 120°D. 180°3. 两条直线相交,如果形成的两个相邻角相等,那么这两个角是()。

A. 钝角B. 锐角C. 直角D. 对顶角4. 一个角的补角比这个角的余角大()。

A. 30°B. 45°C. 60°D. 90°5. 如果一个角的度数是另一个角的2倍,那么这两个角的关系是()。

A. 补角B. 余角C. 对顶角D. 无法确定二、判断题(每题1分,共5分)1. 所有的角都可以分为锐角、直角和钝角。

()2. 如果两个角的和为180°,那么这两个角互为补角。

()3. 任何角都有对应的余角和补角。

()4. 一个角的补角和余角的和为90°。

()5. 对顶角相等。

()三、填空题(每题1分,共5分)1. 一个角的补角比这个角的余角大______。

2. 如果两个角的和为______,那么这两个角互为补角。

3. 任何角都有对应的余角和补角,余角和补角的和为______。

4. 对顶角是指两个角的顶点相同,且两个角的边分别是另两个角的______。

5. 一个角的度数是另一个角的2倍,那么这两个角的关系是______。

四、简答题(每题2分,共10分)1. 请简述角的概念。

2. 什么是补角?什么是余角?它们之间的关系是什么?3. 如何判断两个角是对顶角?4. 什么是锐角?什么是钝角?什么是直角?5. 如何计算一个角的补角和余角?五、应用题(每题2分,共10分)1. 已知一个角的度数是60°,求它的补角和余角。

2. 如果两个角的和为120°,求这两个角的补角。

3. 画出两个对顶角,并标出它们的度数。

新人教版七年级数学上册专题训练:角的计算(含答案)

新人教版七年级数学上册专题训练:角的计算(含答案)

七年级数学上册专题训练:角的计算(含答案)类型1利用角度的和、差关系找出待求的角与已知角的和、差关系,根据角度和、差来计算.1.如图所示,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD的度数.解:因为∠AOC=75°,∠BOC=30°,所以∠AO B=∠AOC-∠BOC=75°-30°=45°.又因为∠BOD=75°,所以∠AOD=∠AOB+∠BOD=45°+75°=120°.2.将一副三角板的两个顶点重叠放在一起.(两个三角板中的锐角分别为45°、45°和30°、60°)(1)如图1所示,在此种情形下,当∠DAC=4∠BAD时,求∠CAE的度数;(2)如图2所示,在此种情形下,当∠ACE=3∠BCD时,求∠ACD的度数.解:(1)因为∠BAD+∠DA C=90°,∠DAC=4∠B AD,所以5∠BAD=90°,即∠BAD=18°.所以∠DAC=4×18°=72°.因为∠DAE=90°,所以∠CAE=∠DAE-∠DAC=18°.(2)因为∠BCE=∠DCE-∠BCD=60°-∠BCD,∠ACE=3∠BCD,所以∠ACB=∠ACE+∠BCE=3∠BCD+60°-∠BCD=90°.解得∠BCD=15°.所以∠ACD=∠ACB+∠BCD=90°+15°=105°.类型2利用角平分线的性质角的平分线将角分成两个相等的角,利用角平分线的这个性质,再结合角的和、差关系进行计算.3.如图所示,点A,O,E在同一直线上,∠AOB=40°,∠EOD=28°46′,OD平分∠COE,求∠COB 的度数.解:因为∠EOD=28°46′,OD 平分∠COE,所以∠COE=2∠EOD=2×28°46′=57°32′. 又因为∠AOB=40°,所以∠COB=180°-∠AOB-∠COE=180°-40°-57°32′=82°28′.4.已知∠AOB=40°,OD 是∠BOC 的平分线.(1)如图1所示,当∠AOB 与∠BOC 互补时,求∠COD 的度数;(2)如图2所示,当∠AOB 与∠BOC 互余时,求∠COD 的度数.解:(1)因为∠AOB 与∠BOC 互补,所以∠AOB+∠BOC =180°.又因为∠AOB=40°,所以∠BOC=180°-40°=140°.因为OD 是∠BOC 的平分线,所以∠COD=12∠BOC=70°. (2)因为∠AOB 与∠BOC 互余,所以∠AOB+∠BOC=90°.又因为∠AOB=40°,所以∠BOC=90°-40°=50°.因为OD 是∠BOC 的平分线,所以∠COD=12∠BOC=25°.类型3 利用方程思想求解在解决有关余角、补角,角的比例关系或倍分关系问题时,常利用方程思想来求解,即通过设未知数,建立方程,通过解方程使问题得以解决.5.一个角的余角比它的补角的23还少40°,求这个角的度数. 解:设这个角的度数为x °,根据题意,得90-x =23(180-x)-40. 解得x =30.所以这个角的度数是30°.6.如图所示,已知∠AOE 是平角,∠DOE =20°,OB 平分∠AOC,且∠COD∶∠BOC=2∶3,求∠BOC 的度数.解:设∠COD=2x °,则∠BOC=3x °.因为OB 平分∠AOC,所以∠AOB=3x °.所以2x +3x +3x +20=180.解得x =20.所以∠BOC=3×20°=60°.7.如图所示,已知∠AOB=12∠BOC,∠COD =∠AOD=3∠AOB ,求∠AOB 和∠COD 的度数.解:设∠AOB=x °,则∠COD=∠AOD=3∠AOB=3x °.因为∠AOB=12∠BOC, 所以∠BOC=2x °.所以3x +3x +2x +x =360.解得x =40.所以∠AOB=40°,∠COD =120°.类型4 利用分类讨论思想求解在角度计算中,如题目中无图,或补全图形时,常需分类讨论,确保答案的完整性.8.已知∠AOB=75°,∠AOC =23∠AOB,OD 平分∠AOC,求∠BOD 的大小. 解:因为∠AOB=75°,∠AOC =23∠AOB, 所以∠AOC=23×75°=50°.因为O D 平分∠AOC,所以∠AOD=∠COD=25°.如图1,∠BOD =75°+25°=100°;如图2,∠BOD =75°-25°=50°.9.已知:如图所示,OC 是∠AOB 的平分线.(1)当∠AOB=60°时,求∠AOC 的度数;(2)在(1)的条件下,∠EOC =90°,请在图中补全图形,并求∠AOE 的度数;(3)当∠AOB=α时,∠EOC =90°,直接写出∠AOE 的度数.(用含α的代数式表示)解:(1)因为OC 是∠AOB 的平分线,所以∠AOC=12∠AOB. 因为∠AOB=60°,所以∠AOC=30°.(2)如图1,∠AOE =∠EOC+∠AOC=90°+30°=120°;如图2,∠AOE =∠EOC-∠AOC=90°-30°=60°.(3)90°+α2 或90°-α2.专题训练 整式的加减运算计算:(1)(钦南期末)a 2b +3ab 2-a 2b ;解:原式=3ab 2.(2)2(a -1)-(2a -3)+3;解:原式=4.(3)2(2a 2+9b)+3(-5a 2-4b);解:原式=-11a 2+6b.(4)3(x 3+2x 2-1)-(3x 3+4x 2-2);解:原式=2x 2-1.(5)(钦南期末)(2x 2-12+3x)-4(x -x 2+12); 解:原式=2x 2-12+3x -4x +4x 2-2 =6x 2-x -52.(6)3(x2-x2y-2x2y2)-2(-x2+2x2y-3);解:原式=3x2-3x2y-6x2y2+2x2-4x2y+6=5x2-7x2y-6x2y2+6.(7)-(2x2+3xy-1)+(3x2-3xy+x-3);解:原式=-2x2-3xy+1+3x2-3xy+x-3=x2-6xy+x-2.(8)(4ab-b2)-2(a2+2ab-b2);解:原式=4ab-b2-2a2-4ab+2b2=-2a2+b2.(9)-3(2x2-xy)+4(x2+xy-6);解:原式=-6x2+3xy+4x2+4xy-24=-2x2+7xy-24.(10)(钦州期中)2a2-[-5ab+(ab-a2)]-2ab. 解:原式=2a2+5ab-ab+a2-2ab=3a2+2ab.。

七年级数学上册《角》练习题及答案

七年级数学上册《角》练习题及答案

七年级数学上册《角》练习题及答案一、选择题(共11小题)1. 用100倍的放大镜看一个60∘的角,这时这个角是( )A. 6∘B. 60∘C. 600∘D. 6000∘2. 如图,某轮船在O处,测得灯塔A在它北偏东40∘的方向上,渔船B在它的东南方向上,则∠AOB的度数是( )A. 85∘B. 90∘C. 95∘D. 100∘3. 如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为( )A. 45∘B. 55∘C. 125∘D. 135∘4. 甲、乙、丙、丁四个学生判断时钟的分针与时针互相垂直时,他们每个人都说了两个时间,说对的是( )A. 甲说 3 点时和 3 点 30 分B. 乙说 6 点 15 分和 6 点 45 分C. 丙说 9 时整和 12 时 15 分D. 丁说 3 时整和 9 时整5. 如图,图中锐角共有( )A. 4个B. 6个C. 7个D. 8个6. 下列语句正确的是( )A. ∠A就是∠BACB. 在∠BAC的边AB延长线上取一点DC. 对一个角的表示没有要求,可任意书写D. 角可以看作是由一条射线绕角的端点旋转而成7. 下面等式成立的是( )A. 83.5∘=83∘50ʹB. 37∘12ʹ36ʺ=37.48∘C. 24∘24ʹ24ʺ=24.44∘D. 41.25∘=41∘15ʹ8. 如图,射线OA的方向是北偏东30∘,若∠AOB=90∘,则射线OB的方向是( )A. 北偏西30∘B. 北偏西60∘C. 东偏北30∘D. 东偏北60∘9. 下面四幅图中,用量角器测得∠AOB的度数是40∘的是( )A. B.C. D.10. 若∠A=20∘18ʹ,∠B=20∘15ʹ30ʺ,∠C=20.25∘,则( )A. ∠A>∠B>∠CB. ∠B>∠A>∠CC. ∠A>∠C>∠BD. ∠C>∠A>∠B11. 钟面上4点10分,时针与分针所夹的角为( )A. 55∘B. 65∘C. 75∘D. 以上结论都不对二、填空题(共7小题)12. 45∘=直角=平角=周角.13. 将18.25∘换算成度、分、秒的结果是 .14. 57.32∘=∘ʹʺ.15. 由2点30分到2点55分,时钟的时针旋转了度,分针旋转了度,此刻时针与分针的夹角是度.16. 如图,圆规的张角(即∠α)的度数约为∘.17. 如图,OA的方向是北偏东15∘,OB的方向是北偏西40∘,若∠AOC=∠AOB,则OC的方向是.18. 24.29∘=.三、解答题(共5小题)19. 仿照左图,在右图上画角,并根据图形填空,已知∠α,用直尺和圆规作∠AOB,使∠AOB=∠α.解:作射线OA;以∠α的顶点为圆心,以任意长a为半径作弧,分别交∠α的两边于点E,F;以为圆心,以为半径作弧,交OA于点C;以为圆心,以长为半径作弧,交前弧于点D;经过点D作射线OB,∠AOB就是所求作的角.20. 用计算器计算:(1)4∘4ʹ4ʺ+2∘56ʹ56ʺ.(2)15∘15ʹ24ʺ+55∘14ʹ35ʺ−32∘28ʹ19ʺ.21. 如图,以B为顶点的角有几个?把它们表示出来.以D为顶点的角有几个(不包括平角)?把它们表示出来.22. 已知∠α,∠β,如图,用量角器求作∠α+∠β.23. 如图,上午10时,一艘船从A出发以20海里/时的速度向正北方向航行,11时45分到达B处,从A处测得灯塔C在北偏西26∘方向,从B处测得灯塔C在北偏西52∘方向,求B处到达塔C的距离.参考答案1. B2. C3. B【解析】由题图可知,∠AOB的边OA在0刻度线上,边OB在55∘对应的刻度线上,所以∠AOB的度数应为55∘.4. D【解析】A、3 点 30 分不到90∘,故 A 错误;B、6 点 15 分比90∘多,故 B 错误;C、12 时 15 分不到90∘,故 C 错误;D、3 时整和 9 时整钟面角都是90∘,故 D 正确.5. A6. D7. D8. B 【解析】如图所示:∵OA 是北偏东 30∘ 方向的一条射线,∠AOB =90∘,∴∠1=90∘−30∘=60∘,∴OB 的方向角是北偏西 60∘.9. A【解析】用量角器度量角的度数时,需要把量角器的中心和角的顶点重合,量角器的零刻度线和角的一边重合,角的另一边在量角器上所指示的读数就是角的度数,故选A .10. A11. B12. 12,14,1813. 18∘15ʹ14. 57,19,1215. 12.5,150,117.5【解析】∵ 时针在钟面上每分钟转 0.5∘,分针每分钟转 6∘,又从 2 点 30 分到 2 点 55 分经过了 25 分钟,∴ 时钟的时针旋转了 0.5∘×25=12.5∘,时钟的分针旋转了 6∘×25=150∘.∵2 点 55 分时时针距离 3 还有 5×0.5∘,分针指向 11,中间相差 3 个数字,钟表 12 个数字,每相邻两个数字之间的夹角为 30∘,∴ 此时分针与时针的夹角是 4×30∘−5×0.5∘=117.5∘.16. 35【解析】可用量角器测量约为 35∘.17. 北偏东 70∘18. 24∘17ʹ24ʺ19. 图略;O ;a ;C ;EF20. (1)7∘1ʹ.(2)38∘1ʹ40ʺ.21. B为顶点的角有3个,分别是∠ABD,∠CBD,∠ABC.以D为顶点的角有4个,分别是∠ADB,∠ADM,∠BDC,∠MDC.22. 用量角器量得∠α=66∘,∠β=30∘,∴∠α+∠β=96∘.用量角器作∠AOB=96∘,则∠AOB就是所求作的角(如图).23. 据题意得∠A=26∘,∠DBC=52∘,∵∠DBC=∠A+∠C,∴∠A=∠C=26∘,∴AB=BC,=35,∵AB=20×74∴BC=35(海里).∴B处到达塔C的距离是35海里.。

2022-2023学年七年级上数学:角(附答案解析)

2022-2023学年七年级上数学:角(附答案解析)
2022-2023学年七年级上数学:角
一.选择题(共5小题)
1.如果A看B的方向是南偏西20°,那么B看A的方向是( )
A.北偏东70°B.南偏西70°C.北偏东20°D.北偏西20°
2.如图,点B在点A的( )方向.
A.北偏东35°B.北偏东55°C.北偏西35°D.北偏西55°
3.如图,∠AOB=50°,则∠AOB的余角的度数是( )
A.北偏东35°B.北偏东55°C.北偏西35°D.北偏西55°
【分析】先求出55°的余角,再根据方向角的定义,即可解答.
【解答】解:由题意得:
90°﹣55°=35°,
∴如图,点B在点A的北偏西35°方向,
故选:C.
【点评】本题考查了方向角,熟练掌握方向角的定义是解题的关键.
3.如图,∠AOB=50°,则∠AOB的余角的度数是( )
∴∠COD=∠AOD,
∵∠AOE+∠BOE=180°,
当∠COD与∠BOE互补时,
∴∠AOE=∠COD,
∴∠COE=3∠COD,
∵∠COE=∠BOE,
∴∠BOE=3∠COD,
∵∠AOE+∠BOE=180°,
∴4∠COD=180°,
∴∠COD=45°,
∴∠AOC=90°.
故答案为:90.
【点评】本题考查有关角的计算,关键是由条件推出∠BOE=3∠COD.
【分析】由图可知∠AOC=∠AOB+∠BOC,根据已知可求出∠AOC,再根据角平分线的性质可求出∠COD.
【解答】解:∵∠AOB=84°,∠BOC=44°,
∴∠AOC=∠AOB+∠BOC=84°+44°=128°,
∵OD平分∠AOC,
∴∠COD=∠AOD= ∠AOC= 128°=64°.

初一数学角度题30道

初一数学角度题30道

初一数学角度题30道1. 一个角的补角比这个角大30°,求这个角的度数。

- 咱设这个角是x度哦。

那它的补角就是180 - x度。

题目说补角比这个角大30°,那就可以列方程啦,180 - x=x + 30。

移项可得180 - 30 = x+x,也就是150 = 2x,解得x = 75度。

2. 已知∠A = 50°,它的余角是多少度呢?- 余角的定义就是两个角加起来等于90°嘛。

那∠A的余角就是90 - 50 = 40°,简单吧。

3. 一个角是它的余角的2倍,这个角是多少度?- 设这个角的余角是x度,那这个角就是2x度。

因为它们是余角关系,所以x+2x = 90。

3x = 90,解得x = 30度,那这个角就是2x = 60度。

4. 若∠α和∠β互为补角,且∠α - ∠β = 40°,求∠α和∠β的度数。

- 因为∠α和∠β互为补角,所以∠α+∠β = 180°。

又知道∠α - ∠β = 40°。

把这两个方程相加,就是2∠α=180 + 40 = 220°,所以∠α = 110°,那∠β = 180 - 110 = 70°。

5. 一个角的补角与这个角的余角的和是120°,求这个角。

- 设这个角是x度,它的补角是180 - x度,余角是90 - x度。

根据题意,(180 - x)+(90 - x)=120。

化简一下就是270 - 2x = 120,移项得到2x = 270 - 120 = 150,解得x = 75度。

6. 在一个直角三角形中,一个锐角是另一个锐角的3倍,求这两个锐角的度数。

- 直角三角形里,两个锐角和是90°。

设小的锐角是x度,那大的锐角就是3x度。

x + 3x = 90,4x = 90,解得x = 22.5度,3x = 67.5度。

7. 已知∠AOB = 80°,OC是∠AOB内的一条射线,∠AOC = 30°,求∠BOC的度数。

七年级数学《角》练习题及答案

七年级数学《角》练习题及答案

七年级数学《角》练习题及答案七年级数学《角》练题及答案一、选择题1.下列说法正确的是()A。

两点之间的直线最短。

B。

用放大镜可以放大图形和角的度数。

C。

把一个角分成两个角的射线叫做角的平分线。

D。

直线l经过点A,那么点A在直线l上。

2.下列4个图形中,能用∠1,∠AOB,∠O三种方法表示同一角的图形是()。

3.下列关于平角、XXX的说法正确的是()。

A。

平角是一条直线。

B。

XXX是一条射线。

C。

反向延长射线OA,就形成一个平角。

D。

两个锐角的和不一定小于平角。

4.右图中,小于平角的角有()A。

5个B。

6个C。

7个D。

8个5.如图所示,射线OA表示的方向,射线OB表示的方向,则∠AOB=()A。

155°B。

205°C。

85°D。

105°6.一个人从A40°西东偏西方向走到B点,再从B点出发XXX15°方向走到C点,那么∠ABC=()A。

60°B。

15°C。

45°D。

70°二、填空题:7.角也可以看作由旋转面形成的图形。

8.2周角= 1平角= 360°,1平角= 90°。

9.1°的60分之一是1′。

10.1周角= 1平角= 2直角= 360°,1直角= 90°。

11.换算:42°27′= 42.45°,68°45′36″= 68.76°。

12.2点15分,钟表的时针与分针所成的锐角是30°。

13.钟面上从4点到5点,时针与分针重合时,此时4点20分。

14.计算:1)53°18′36″-16°51′= 36°27′36″。

2)(43°13′28″÷2-10°5′18″)×3= 58°23′6″。

15.如图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,在它XXX°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A 40︒
75︒O
一、选择题
1.下列说法正确的是()
A.两点之间直线最短
B .用一个放大镜能够把一个图形放大,也能够把一个角的度数放大
C .把一个角分成两个角的射线叫角的平分线
D .直线l 经过点A ,那么点A 在直线l 上呢
2、下列4 个图形中,能用∠1,∠AOB,∠O 三种方法表示同一角的图形是()
3.下列关于平角、周角的说法正确的是().
A.平角是一条直线B.周角是一条射线
C.反向延长射线OA,就形成一个平角D.两个锐角的和不一定小于平角
4、右图中,小于平角的角有()
A.5 个
B.6 个
C.7 个
D.8 个
答案:D
5.(变式练习)如图所示,射线OA 表示的方向,射线OB 表示的方向,则∠AOB=()
A.155 °
B.205 °
C.85°
D.105°

西东
B

6、一个人从A 点出发向北偏东60°方向走到B 点,再从B 点出发向南偏西15°方向走到C 点,那么∠ABC=()
A .60°
B .15° C.45° D.70°
二、填空题:
7.角也可以看作由旋转面形成的图形。

答案:一条射线绕着它的端点
8.2 周角= 1 平角=
9.1°的是1′
10.1 周角= 平角= 直角= ;
11. 换算:42°27′=°,68°45′36″=°;
12.2 点15 分,钟表的时针与分针所成的锐角是度;
13.钟面上从4 点到5 点,时针与分针重合时,此时4 点分
14.如图,货轮O 在航行过程中,发现灯塔A 在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C 和海岛D,
仿照表示灯塔方位的方法画出表示客轮B,货轮C 和海岛D 方向的射线.
15.如图,B 处在A 处的南偏西45°方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东80°方向,求∠ACB
16、如图,已知:∠AOE=100°,∠BOF=80°,OE 平分∠BOC,OF 平分∠AOC,
求∠EOF 的度数。

“”
“”
At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

相关文档
最新文档