高考生物知识点之生物的遗传和变异

合集下载

高中生物遗传与变异知识点

高中生物遗传与变异知识点

高中生物遗传与变异知识点一、基因和染色体的结构与功能1.基因的结构:基因是由DNA分子组成的,由编码区和非编码区组成。

编码区是指直接参与蛋白质合成的DNA片段,非编码区则不参与蛋白质合成。

2.染色体的结构:染色体是由DNA和蛋白质组成的。

DNA在染色体上呈线状,固定在各个染色体上的特定位置。

3.基因的功能:基因是遗传信息的携带者,能够决定个体的性状及其遗传方式。

4.染色体的功能:染色体是遗传物质的载体,能够稳定遗传信息,并在细胞分裂过程中传递给后代细胞。

二、遗传变异的概念与类型1.遗传变异的概念:遗传变异指的是同一物种内个体之间在遗传物质上的差异。

2.遗传变异的类型:主要分为基因突变和染色体畸变两种。

-基因突变:指基因的突然改变,包括点突变、插入突变、缺失突变等。

例如,突变会导致基因的功能发生改变,进而影响个体的性状表现。

-染色体畸变:指染色体的数量和结构的异常,包括染色体数目异常和染色体结构异常。

例如,染色体缺失、重复、移位等畸变会引起染色体的不稳定和质量变化,从而影响个体的正常发育和生殖能力。

三、遗传规律与遗传定律1.孟德尔的遗传规律:孟德尔是遗传学的奠基人,他提出了两个基本遗传定律。

-第一定律:互斥性定律(简称分离定律):每个个体在生殖时只能传递给后代一半的遗传因子。

-第二定律:自由组合定律:每个基因对后代的遗传影响是相互独立的。

2.随机联合定律:指在两个或多个基因进行遗传时,基因之间以及其中一些基因的不完全显性和不完全隐性等特征的组合是随机的。

3.完全显性和不完全显性:完全显性是指一个等位基因(版本)能够完全表达其遗传信息,而不完全显性是指一个等位基因只能部分表达其遗传信息。

四、遗传特征的分离与联合1.分离:指两个不同表型的个体交配后,生产的后代表现出两个表型中的一个。

2.联合:指两个不同表型的个体交配后,生产的后代表现出两个表型的特征,即混合了两个表型的特征。

五、遗传的分子基础1.DNA的结构与复制:DNA由磷酸、糖和碱基组成,形成双螺旋结构。

高考生物必备知识点:遗传和变异

高考生物必备知识点:遗传和变异

高考生物必备知识点:遗传和变异叫变异。

遗传是指亲子间的相似性,变异是指亲子间和子代个体间的差异。

生物的遗传和变异是通过生殖和发育而实现的。

二、遗传和变异的辩证关系遗传和变异是对立的统一体,遗传使物种得以延续,变异则使物种不断进化。

本章主要论述病毒的变异现象、变异机理以及研究变异的方法和诱变因素等,关于病毒的遗传学理论请参阅有关的专业书籍。

病毒的遗传变异常常是群体,也就是无数病毒粒子的共同表现。

而病毒成分,特别是病毒编码的酶和蛋白质,又常与细胞的正常酶类和蛋白质混杂在一起。

这显然增加了病毒遗传变异特性鉴定上的复杂性。

三、高中生物遗传和变异知识点1.基因是有遗传效应的DNA片段,基因在染色体上呈线性排列,染色体是基因的主要载体(叶绿体和线粒体中的DNA上也有基因存在)。

2.遗传信息是指基因上脱氧核苷酸的排列顺序。

3.遗传密码是指信使RNA上的核糖核苷酸的排列顺序。

4.密码子是指信使RNA上的决定一个氨基酸的三个相邻的碱基。

信使RNA上四种碱基的组合方式有64种,其中,决定氨基酸的有61种,3种是终止密码子。

5.反密码子是指转运RNA上能够和它所携带的氨基酸的密码子配对的三个碱基,由于决定氨基酸的密码子有61种,所以,反密码子也有61种。

6.基因的表达是通过DNA控制蛋白质的合成来实现的,包括转录和翻译两个过程。

7.由于不同基因的脱氧核苷酸的排列顺序(碱基顺序)不同,因此,不同的基因含有不同的遗传信息(即:基因的脱氧核苷酸的排列顺序就代表遗传信息)。

8.生物的遗传是细胞核和细胞质共同作用的结果。

9.一般情况下,一条染色体上有一个DNA分子,在一个DNA 分子上有许多基因。

10.生物个体基因型和表现型的关系是:基因型是性状表现的内在因素,而表现型则是基因型的表现形式。

在个体发育过程中,生物个体的表现型不仅要受到内在基因的控制,也要受到环境条件的影响,表现型是基因型和环境相互作用的结果。

11.在杂种体内,等位基因虽然共同存在于一个细胞中,但是它们分别位于一对同源染色体上,随着同源染色体的分离而分离,具有一定的独立性。

生物的遗传和变异知识点

生物的遗传和变异知识点

生物的遗传和变异知识点生物的遗传和变异是生物学领域中非常重要的知识点。

遗传是指物种在繁殖过程中传递给后代的遗传信息,而变异是指个体在遗传信息的基础上发生的变化。

遗传和变异对物种的进化、适应环境和生存能力等起着重要的作用。

本文将从遗传的基本原理、遗传的变异机制以及遗传与变异对生物的影响等方面进行论述。

首先,遗传的基本原理主要包括孟德尔遗传定律和基因的结构与功能。

孟德尔遗传定律包括一级遗传定律、二级遗传定律和三级遗传定律。

一级遗传定律是指自交保持纯合的个体之间的杂合子和纯合子的比例为3:1;二级遗传定律是指两对基因分离独立遗传;三级遗传定律是指一个基因对另一个基因的组合没有影响。

基因的结构和功能主要包括DNA和RNA。

DNA是遗传信息的携带者,是由若干个碱基对组成的双螺旋结构,包括腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C)四种碱基;RNA是在基因表达过程中转录的产物,包括mRNA、tRNA和rRNA等类型。

其次,遗传的变异机制主要包括突变、重组和杂交等。

突变是指遗传物质(DNA)发生的突发性改变,可以分为点突变和染色体突变两类。

点突变是指存在于单一碱基序列中的基本突变,主要包括错义突变、无义突变和无移动突变等;染色体突变是指染色体上的突变事件,包括基因缺失、重复、倒位和易位等。

重组是指在个体的染色体上,同源染色体的配对发生杂交DNA重组,从而使得孟德尔遗传定律中的基因分离独立不再适用。

杂交是指不同种类的个体之间产生的杂种,具有两者的特征,且往往比本身的亲本更适应生存环境。

最后,遗传和变异对生物的影响是多方面的。

首先,遗传和变异是物种进化的基础。

遗传和变异使得物种在漫长的进化过程中具有了多样性,从而促进了物种的适应环境和生存能力。

其次,遗传和变异是自然选择的基础。

在物种繁衍过程中,个体之间的遗传差异通过自然选择来筛选,有助于适应环境和获得更大的生存优势。

再次,遗传和变异对个体的形态和功能具有直接的影响。

高考生物遗传和变异知识点总结

高考生物遗传和变异知识点总结

高考生物遗传和变异知识点总结遗传是生物学的重要分支之一,研究生物基因与性状传递规律以及遗传变异的发生和演化机制。

在高考生物中,遗传和变异是一个较为重要的考点,掌握好这些知识点对于提高成绩至关重要。

下面将对高考生物遗传和变异的知识点进行总结。

一、遗传与变异基础概念1. 基因:遗传物质的分子基本单位,能够编码生物性状。

2. 染色体:基因的载体,存在于细胞核中,是由DNA和蛋白质组成的复合体。

3. 基因型:一个个体在某一基因位点上的基因的组合。

4. 表现型:一个个体在性状上的表现。

5. 等位基因:存在于同一位点上,控制着相同性状的不同基因。

6. 显性和隐性:显性基因决定个体的显性性状,隐性基因只在显性基因缺失或没有的情况下表现。

7. 一对杂合:一个个体所含的两个等位基因不相同的状态。

8. 纯合:一个个体所含的两个等位基因相同的状态。

9. 遗传性状:与遗传有关的外显的性状。

二、遗传和变异的规律1. 孟德尔的遗传实验:孟德尔通过对豌豆的杂交实验,发现一对配对基因对独立地分离和随机组合,形成新的基因型和表现型的组合。

2. 分离定律:个体的两对基因分离开来,并独立地进入不同的配子。

3. 自由组合定律:位于不同的染色体上的基因对独立地分离和自由组合。

4. 互补定律:两对显性纯合子的复合子,其表型与一个配子的表型相同。

5. 独立分配定律:亲代的两对基因以各自的方式分配给子代。

三、单因素遗传1. 显性和隐性遗传:显性遗传是指显性基因决定的性状能够表现在杂合和纯合个体上,隐性遗传是指隐性基因决定的性状只能在纯合个体上表现。

2. 过显性:过显性是指杂合个体的表型超过两种等位基因的效应之和。

3. 倒位:两对等位基因互换位置,导致显性和隐性状相反。

4. 可变等位基因:一个基因座上可以有多个等位基因,这些等位基因在自然界中随时变化。

5. 基因突变:由于基因突变,导致性状改变。

四、多因素遗传1. 重叠性状:多对基因的叠加作用,由于每对基因只对性状的一部分贡献,导致连续性状的存在。

高三生物遗传与变异知识点

高三生物遗传与变异知识点

高三生物遗传与变异知识点生物遗传与变异是高中生物课程中的重点内容,它涉及到了生物体的遗传基础和变异现象,对于理解生物演化与适应环境具有重要意义。

本文将从基因、染色体、遗传规律、突变等方面进行讲解。

一、基因与染色体基因是生物遗传的基础单位,它位于染色体上。

染色体是生物体内的遗传物质,由DNA组成。

在细胞分裂过程中,染色体会从一个细胞分裂成为两个细胞,确保遗传信息的传递和稳定。

二、遗传规律经过长期的研究,生物学家摸索出了一些遗传规律,其中包括孟德尔的遗传规律和硬连锁与柔连锁遗传规律。

孟德尔的遗传规律主要包括基因的隐性和显性、各自对生物性状的影响、基因的分离等。

它帮助我们理解了生物遗传的本质和遗传特点。

硬连锁与柔连锁遗传规律则是指基因之间的相互作用和相互关系。

硬连锁指的是两个基因在染色体上靠得很近,几乎同时遗传给后代,而柔连锁指的是基因在染色体上靠得较远,因此可能被断裂、重组等产生新的遗传组合。

三、突变突变是指遗传物质发生变异或改变,导致生物产生新的性状或特征。

突变可以分为基因突变和染色体突变两种。

基因突变是指基因序列的变异。

它可以是点突变、插入突变或缺失突变等。

基因突变会导致个体产生新的特征,有时对生物的发育有重要影响。

染色体突变则是指染色体结构的变异。

它可以是染色体片段的倒位、易位、缺失、加倍等变异。

染色体突变可能导致胚胎发育异常、不孕、遗传疾病等。

四、遗传变异的意义生物的遗传变异对于演化和适应环境有着重要意义。

它能够增加生物种群的多样性,以适应环境的变化。

遗传变异在物种起源和进化中起到了重要作用。

通过变异和选择的双重作用,生物种群可以产生适应环境的新特征和特性,从而增加生存竞争的优势。

对于人类而言,遗传变异的研究对于探讨人类起源、疾病的发生机理以及个体差异等方面都有重要的意义。

综上所述,遗传与变异是生物学中非常关键的内容,它和生物的演化、适应等方面有着密切的关联。

通过对基因、染色体、遗传规律和突变等知识点的学习,我们能够深入理解生物遗传的本质和特点,为进一步研究生物学提供基础和参考。

2024年高考生物遗传和变异知识点总结

2024年高考生物遗传和变异知识点总结

2024年高考生物遗传和变异知识点总结一. 基因和染色体1. 基因的概念和结构: 基因是控制遗传性状的单位,由DNA序列组成。

基因主要由编码区和调控区组成。

2. 染色体的结构: 染色体由DNA和蛋白质组成,包括着丝粒、中节和武器,显示为X形。

人体细胞有23对染色体,其中一对性染色体决定个体的性别。

3. 基因表达和遗传密码: 基因在细胞内通过转录和翻译进行表达,形成蛋白质。

遗传密码是DNA上碱基序列与蛋白质上氨基酸序列之间的对应关系。

二. 遗传与变异1. 遗传的模式和规律: 单倍体和双倍体的授精结合方式决定了不同的遗传模式,如显性遗传、隐性遗传和中间型遗传等。

遗传规律包括孟德尔遗传定律、多基因遗传和多因素遗传等。

2. 变异的原因和分类: 变异是指个体间基因型和表型的差异。

变异原因有突变、基因重组和基因互作等。

变异可分为显性变异、隐性变异和连续变异等。

3. 变异的作用和意义: 变异是进化的基础,对物种的适应和生存具有重要作用。

变异也是品种育种和遗传病的研究的重要基础。

三. 遗传与性别决定1. 性染色体: 人类性别决定基因位于性染色体上,男性为XY,女性为XX。

Y染色体上的性别决定基因决定了个体的性别。

2. 性染色体遗传: 男性性别决定基因为隐性,女性性别决定基因为显性,男性将Y染色体传给儿子,女性将X染色体传给儿子和女儿。

3. 性别比的控制: 性别比由性别比偏离比和性别比变化比。

性别比的偏离由性染色体和非性染色体控制。

四. 遗传与遗传病1. 遗传病的概念和分类: 遗传病是由异常基因引起的疾病,可分为单基因遗传病、多基因遗传病和染色体遗传病。

2. 常见的遗传病: 单基因遗传病如先天愚型、血红蛋白病等;多基因遗传病如近视、高血压等;染色体遗传病如唐氏综合征、慢性粒细胞性白血病等。

3. 遗传病的防治: 遗传病的防治可以通过遗传咨询、基因筛查和基因治疗等手段进行。

五. 遗传与进化1. 进化的概念和证据: 进化是生物种群遗传结构和表型特征随时间发生变化的过程。

高中生物遗传与变异知识点

高中生物遗传与变异知识点

高中生物遗传与变异知识点一、遗传的基本规律一、基本概念1.概念整理:杂交:基因型不同的生物体间相互交配的过程;一般用 x 表示自交:基因型相同的生物体间相互交配;植物体中指雌雄同花的植株自花受粉和雌雄异花的同株受粉;自交是获得纯系的有效方法..一般用表示.. 测交:就是让杂种子一代与隐性个体相交;用来测定F1的基因型..性状:生物体的形态、结构和生理生化的总称.. 相对性状:同种生物同一性状的不同表现类型..显性性状:具有相对性状的亲本杂交;F1表现出来的那个亲本性状..隐性性状:具有相对性状的亲本杂交;F1未表现出来的那个亲本性状..性状分离:杂种的自交后代中;同时显现出显性性状和隐性性状的现象..显性基因:控制显性性状的基因;一般用大写英文字母表示;如D..隐性基因:控制隐性性状的基因;一般用小写英文字母表示;如d..等位基因:在一对同源染色体的同一位置上;控制相对性状的基因;一般用英文字母的大写和小写表示;如D、d..非等位基因:位于同源染色体的不同位置上或非同源染色体上的基因..表现型:是指生物个体所表现出来的性状..基因型:是指控制生物性状的基因组成..纯合子:是由含有相同基因的配子结合成的合子发育而成的个体..杂合子:是由含有不同基因的配子结合成的合子发育而成的个体..2.例题:1判断:表现型相同;基因型一定相同.. x基因型相同;表现型一定相同..x纯合子自交后代都是纯合子.. √纯合子测交后代都是纯合子.. x杂合子自交后代都是杂合子.. x只要存在等位基因;一定是杂合子..√等位基因必定位于同源染色体上;非等位基因必定位于非同源染色体上.. x2下列性状中属于相对性状的是 BA.人的长发和白发 B.花生的厚壳和薄壳C.狗的长毛和卷毛 D.豌豆的红花和黄粒3下列属于等位基因的是 CA. aa B. Bd C. Ff D. YY二、基因的分离定律1、一对相对性状的遗传实验2、基因分离定律的实质生物体在进行减数分裂形成配子的过程中; 等位基因会随着同源染色体的分开而分离;分别进入到两种不同的配子中; 独立地遗传给后代..基因的分离定律发生是由于在减数分裂第一次分裂后期 ; 同源染色体分开时;导致等位基因的分离..例:1在二倍体的生物中;下列的基因组合中不是配子的是 BA.YR B. Dd C.Br D.Bt2鼠的毛皮黑色M对褐色m为显性;在两只杂合黑鼠的后代中;纯种黑鼠占整个黑鼠中的比例是BA.1/2 B.1/3 C.1/4 D.全部3已知兔的黑色对白色是显性;要确定一只黑色雄兔是纯合体还是杂合体;选用与它交配的雌兔最好选择AA.纯合白色 B.纯合黑色 C.杂合白色 D.杂合黑色4绵羊的白色和黑色由基因B和b控制;现有一白色公羊和白色母羊交配生下一只小白羊;第二次交配却生下一只小黑羊..公羊和母羊的基因型是CA.BB和Bb B.bb和Bb C. Bb和Bb D .BB和bb5一对表现型正常的夫妇;男方的父亲是白化病患者;女方的父母正常;但她的弟弟是白化病患者..预计他们生育一个白化病男孩的几率是 DA.1/4 B .1/6 C .1/8 D .1/12三、基因的自由组合定律1、两对相对性状的遗传实验2、、基因自由组合定律的实质在进行减数分裂形成配子的过程中;同源染色体上的等位基因彼此分离的同时;非同源染色体上的非等位基因基因自由组合..5、基因自由组合定律在实践中的应用理论上;是生物变异的来源之一基因重组;实践上利用基因重组进行杂交育种..四、孟德尔获得成功的原因1、选用豌豆做试验材料:严格的闭花受粉;有一些稳定的、易区分的相对性状..2、先针对一对相对性状的传递情况进行研究;再对两对、三对甚至多对相对性状的传递情况进行研究由单因素到多因素..3、对实验结果记载;并应用统计方法对实验结果进行分析..例:1若两对基因在非同源染色体上;下列各杂交组合中;子代只出现1种表现型的是 B A.aaBb和AABb B.AaBB和 AABbC.AaBb和 AABb D.AaBB和 aaBb2有一基因型为MmNNPp这3对基因位于3对同源染色体上的雄兔;它产生的配子种类有BA.2种 B.4种 C .8种 D.16种3黄色Y、圆粒R对绿色y、皱粒r为显性;现用黄色皱粒豌豆与绿色圆粒豌豆杂交;杂交后代得到的种子数为:黄色圆粒106、绿色圆粒108、黄色皱粒110、绿色皱粒113..问亲本杂交组合是 CA.Yyrr和yyRR B.YYrr和yyRRC.Yyrr和yyRr D.YyRr和YyRr4等位基因分离和非等位基因的自由组合在 BA.有丝分裂后期 B.减数的一次分裂后期C.减数的一次分裂末期 D.减数的二次分裂后期5基因型为AaBb的个体与基因型为Aabb的个体杂交;子代会出现几种表现型和几种基因型BA.4和4 B.4和6 C.4和8 D.6和6二、性别决定和伴性遗传一、性别决定生物体细胞中的染色体可以分为两类:一类是雌性女性个体和雄性男性个体相同的染色体;叫常染色体;另一类是雌性女性个体和雄性男性个体不同的染色体;叫性染色体..生物的性别通常就是由性染色体决定的..生物的性别决定方式主要有两种:XY型:该性别决定的生物;雌性的性染色体是 XX ;雄性的性染色体是 XY ..以人为例:男性的染色体的组成为 44+XY ;女性的染色体的组成为44+XX ..②ZW型:该性别决定的生物;雌性的性染色体是 ZW ;雄性的是ZZ ..蛾类、鸟类的性别决定属于ZW型..二、伴性遗传性染色体上的基因;它的遗传方式是与性别相联系的;这种遗传方式叫伴性遗传..例:1某男孩体检时发现患红绿色盲;但他的父母、祖父母、外祖父母均无红绿色盲症状;在这一家系中色盲基因的传递途径是 DA.祖母---父---男孩 B.外祖父---母---男孩C .祖父---父---男孩 D.外祖母---母---男孩2位于Y染色体上的基因也能决定性状;人的耳廓上长硬毛的性状就是由Y染色体上的基因决定的..现有一对夫妇;丈夫患此病;若生一男孩;其患病的概率为 A A.100% B.75% C.50% D.25%三、人类遗传病与预防一、人类遗传病概述人类遗传病通常是指由于遗传物质改变而引起的人类疾病..1、单基因遗传病单基因遗传病是指受一对等位基因控制的人类遗传病..可分为:常染色体隐性、常染色体显性、 X连锁隐性 ; X连锁显性、 Y连锁等..2、多基因遗传病多基因遗传病是指受多对等位基因控制的人类遗传病;还比较容易受到环境的影响..3、染色体异常遗传病二、遗传病的预防1、禁止近亲结婚我国的婚姻法规定“直系血亲和三代以内的旁系血亲禁止结婚”..在近亲结婚的情况下;他们所生的孩子患隐性遗传病的机会大大提高..2、遗传咨询3、避免遗传病患儿的出生女子最适于生育的年龄一般是 24-29 岁..4、婚前体检三.遗传病的类型判断:①例:1以下家族图谱分别是患有何种类型的遗传病:2右图为某个单基因遗传病的系谱图;致病基因为A或a;请回答下列问题∶1该病的致病基因在常染色体上;是隐性遗传病..2I-2和II-3的基因型相同的概率是100% ..3Ⅱ-2的基因型可能是Aa ..4Ⅲ-2的基因型可能是AA、Aa ..2下图为某家族遗传系谱图;请据图回答:基因用A;a表示1该遗传病的遗传方式为:常色体显性遗传病..25号与6号再生一个患病男孩的几率为 3/8 ..37号与8号婚配;则子女患病的几率为 2/3 ..3下图是某家系红绿色盲病遗传图解..图中除男孩Ⅲ3和他的祖父Ⅰ4是红绿色盲患者外;其他人色觉都正常;请据图回答:1Ⅲ3的基因型是XbY; Ⅲ2可能的基因型是X B X B或X B X b ..2Ⅰ中与男孩Ⅲ3的红绿色盲基因有关的亲属的基因型是X B X b ;与该男孩的亲属关系是外祖母;Ⅱ中与男孩Ⅲ3的红绿色盲基因有关的亲属的基因型是X B X b ;与该男孩的亲属关系是母亲 ..3Ⅳ1是红绿色盲基因携带者的概率是 25% ..四、生物的变异由于环境因素的影响造成的;并不引起生物体内的遗传物质的变化;因而不能够遗传下去;属于不遗传的变异..由于生物体内的遗传物质的改变引起的;因而能够遗传给后代;属于可遗传的变异..可遗传的变异有三种来源:基因突变、基因重组、染色体畸变 ..一、基因突变1、基因突变的概念由于DNA分子中发生碱基对的替换、缺失或增加 ;而引起的基因分子脱氧核苷酸的改变;就叫基因突变..基因突变发生在DNA 复制阶段..即体细胞发生基因突变在有丝分裂的间期;由原始的生殖细胞到成熟的生殖细胞过程中发生基因突变是在减数第一次分裂间期..基因突变是产生新基因的主要来源..对生物的进化具有重要意义..2、基因突变的特点1 可逆性2 多方向性3 低频性4 随机性3、应用:诱变育种二、基因重组1、基因重组概念生物体在进行有性生殖过程中;控制不同性状的基因重新组合 ..2、基因重组产生的原因1 非同源染色体的非等位基因自由组合 ;2 同源染色体的非姐妹染色单体间的交叉互换 ..3、基因重组的意义通过有性生殖过程实现的基因重组;这是形成生物多样性的重要原因之一;对于生物进化具有十分重要的意义..三、染色体变异染色体变异有染色体结构的变异、染色体数目的变异等..1、染色体结构的变异四种:缺失、重复、倒位、易位 ..2、染色体数目的变异一般来说;每一种生物的染色体数目都是恒定的;但是;在某些特定的环境条件下;生物体的染色体数目会发生改变;从而产生可遗传的变异..1染色体组细胞中的一组非同源染色体;它们在形态和功能上各不相同;但是携带着控制一种生物生长发育、遗传和变异的全部信息2二倍体的个体;体细胞中含有二个染色体组的个体叫做二倍体..3多倍体体细胞中含有三个及三个以上染色体组的个体叫做多倍体..与二倍体植株相比;多倍体植株的茎杆粗壮 ;叶片、果实、种子比较大 ; 蛋白质、糖等营养物质含量高 ..4人工诱导多倍体在育种上的应用方法:最常用而且最有效的方法是用秋水仙素处理萌发的种子或幼苗;从而得到多倍体..成因:秋水仙素作用于正在有丝分裂的细胞时;能够抑制纺锤体形成;导致染色体不分离;从而引起细胞内染色体数目加倍 ;细胞继续进行正常的有丝分裂分裂;将来就可以发育成多倍体植株..实例:三倍体无籽西瓜的培育见课本图解..5单倍体体细胞中含有本物种配子染色体数目的个体可能含有一到多个染色体组;叫做单倍体..与正常的植株相比;单倍体植株长得瘦弱 ;而且高度不育 ..6单倍体育种方法:采用花粉离体培养培养的方法先得到单倍体植株;再使用秋水仙素处理;使它的染色体数目加倍 ..这样;它的体细胞中不仅含有正常植株体细胞中的染色体数;而且每对染色体上的成对的基因都纯合的..花药离体培养法与单倍体育种的区别..利用单倍体植株培育新品种;与常规的杂交育种方法相比明显缩短了育种年限..例:1下列哪种情况下可产生新的基因AA.基因突变 B.基因重组 C.染色体变异 D.不可遗传的变异2"一猪生九仔;九仔各不同";这种变异主要来自于BA.基因突变B.基因重组 C.染色体变异D.环境影响3下列有关单倍体的叙述;正确的是CA.体细胞中含有一个染色体组的个体 B.体细胞中含有奇数染色体数目的个体C.体细胞中含有本物种配子染色体数目的个体 D.体细胞中含有奇数染色体组数目的个体4下列能产生可遗传变异的现象是DA.用生长素处理未授粉的番茄雌蕊得到无籽果实B.正常人接受了镰刀型细胞贫血症患者的血液C.割除公鸡和母鸡的生殖腺并相互移植后表现出各种变化D.一株黄色圆粒豌豆自交;后代出现部分黄色皱粒豌豆5填空:若某生物体细胞含有六组染色体组;称为六倍体;其花粉中含有3 组染色体组;称为单倍体..6判断:含有一个染色体组的生物一定是单倍体X ;单倍体只含有一组染色体组√;配子都是单倍体√。

生物的遗传和变异的知识要点

生物的遗传和变异的知识要点

1、不遗传的变异:环境因素引起的变异,遗传物质没有改变,不能进一步遗
传给后代。

2、可遗传的变异:遗传物质所引起的变异。

3、可遗传的变异基因突变、基因重组、染色体畸变。

4、基因突变:是指基因结构的改变,包括DNA碱基对的增添、缺失或改变。

5、基因突变
①类型:包括形态突变、生化突变和致死突变。

②特点:普遍性;多方向性;稀有性;可逆性;有害性。

④原因:在一定的'外界条件或者生物内部因素的作用下,使得DNA复制过程出现差错,造成了基因中脱氧核苷酸排列顺序的改变,最终导致原来的基因变为它的等位基因。

⑤实例:人类镰刀型贫血病、白化病、太空椒(利用宇宙空间强烈辐射而发生
基因突变培育的新品种。

⑥引起基因突变的因素:
a、物理因素:主要是各种射线。

b、化学因素:主要是各种能与DNA发生化学反应的化学物质。

c、生物因素:主要是某些寄生在细胞内的病毒。

6、基因重组:指控制不同性状基因的重新组合,导致后代不同于亲本类型的
现象或过程。

①类型:基因自由组合(非同源染色体上的非等位基因)、基因交换(同源染色
体上的非姐妹染色单体间的交换)。

②意义:是通过有性生殖过程实现的,导致生物性状的多样性。

2024年高考生物遗传和变异知识点总结

2024年高考生物遗传和变异知识点总结

2024年高考生物遗传和变异知识点总结遗传和变异是生物学中重要的概念和研究方向,也是高考生物中的重要内容。

以下是2024年高考生物遗传和变异知识点的总结:
1. 遗传的基本概念:遗传是指生物体获得的特性和性状通过基因传递给后代的过程。

基因是遗传信息的基本单位,位于染色体上。

2. 物质基础:DNA是遗传信息的物质基础,它由四种核苷酸组成:腺嘌呤(A),鸟嘌呤(G),胸腺嘧啶(T)和胞嘧啶(C)。

3. 遗传物质复制:DNA的复制是生物体繁殖和生长的基础。

DNA 复制是一种半保留复制过程,即新合成的DNA分子保留了原DNA链的一个链。

4. 基因型与表现型:个体的表现型由基因型决定,基因型是指个体所携带的基因的类型和数量。

5. 遗传的模式:遗传的模式包括显性遗传、隐性遗传和性连锁遗传。

显性遗传是指形状和性状通过显性基因表现出来,隐性遗传是指形状和性状只有在两个隐性基因都带有则能显示出来,性连锁遗传指某些特征与性别有关。

6. 遗传变异:遗传变异是指基因型和表现型在整个种群中存在差异的现象。

遗传变异是进化的基础。

7. 突变:突变是指基因在遗传过程中发生的突然而稀有的改变。

突变可以分为点突变、染色体结构变异和染色体数目变异。

8. 变异的影响:变异的影响包括生物的形态、生理功能、生态适应和进化等方面。

9. 遗传工程:遗传工程是利用现代生物技术进行基因的改造和调控,通过导入外源基因改变目标生物的基因型和表现型。

这些是2024年高考生物遗传和变异知识点的主要内容。

学生们可以通过学习和理解这些知识点,提高对遗传和变异的理解能力,为高考生物考试做好准备。

高考生物遗传和变异知识点总结

高考生物遗传和变异知识点总结

高考生物遗传和变异知识点总结遗传和变异是高考生物中的重要知识点,它们涉及了生物的进化、多样性以及人类的遗传疾病等内容。

下面是对这一部分知识点的总结。

一、遗传的基本概念和规律1. 遗传的基本概念:遗传是指通过基因在代际之间传递和表达的生物性状的变化。

2. 遗传的因素:遗传的因素包括基因、染色体、DNA等。

3. 遗传的规律:(1) 孟德尔的遗传定律:孟德尔通过对豌豆杂交实验的观察总结了遗传定律,包括单因素遗传定律、分离定律和自由组合定律。

(2) 染色体遗传定律:染色体是载体基因的结构,染色体的亲子传递和分离规律决定了基因的遗传方式。

(3) 表现型的遗传规律:表现型是基因与环境相互作用的结果,包括多基因遗传、多基因互制、多基因环境相互作用等。

二、基因突变与变异1. 基因突变的定义:基因突变是指基因序列发生改变,造成新的表型出现的遗传变异。

2. 基因突变的分类:(1) 点突变:包括错义突变、无义突变和同义突变等。

(2) 基因重组:包括染色体交换、交配型重组和基因重组等。

(3) 缺失、插入与倒位:染色体上的片段缺失、插入或倒位引起的遗传变异。

3. 变异的类型:(1) 无性变异:通过染色体的重组来增加遗传多样性。

(2) 同源变异:同一种或相近物种中的个体之间存在的遗传差异。

(3) 多态性:包括形态多态性、生态多态性和生殖多态性等。

三、基因的亲缘关系和基因图谱1. 基因的亲缘关系:通过研究基因的相似性和差异性来判断基因之间的亲缘关系。

亲缘关系可以用基因相似指数和系统发育树来表示。

2. 基因图谱:基因图谱是将基因按照位置在染色体上进行排序和标记的图表。

它可以揭示基因与染色体的关系和基因的分布规律,为遗传研究提供了重要的依据。

四、人类的遗传和变异1. 人类的染色体:人类有23对染色体,其中22对是常染色体,1对是性染色体。

2. 基因突变与遗传疾病:基因突变是人类遗传疾病的重要原因。

常见的遗传疾病包括遗传性疾病、单基因遗传病和染色体异常等。

高中生物学习中的遗传与遗传变异

高中生物学习中的遗传与遗传变异

高中生物学习中的遗传与遗传变异遗传和遗传变异是生物学中重要的概念,对于高中生物学习来说,理解和掌握这些知识点是非常重要的。

遗传涉及到生物信息的传递和变异,而遗传变异则是生物多样性的基础。

下面将从遗传和遗传变异的概念、遗传物质、遗传定律以及遗传变异的影响等方面来进行论述。

一、遗传与遗传变异的概念遗传是指生物种群或个体中性状的传递,是生物进化和适应的基础。

遗传变异则是指生物个体之间存在的遗传差异,它源于遗传物质的存在和遗传机制的作用。

遗传与遗传变异紧密联系,共同决定了生物的特征和多样性。

二、遗传物质遗传物质是指存在于生物体内的携带遗传信息的物质,主要包括DNA和RNA。

DNA是生物体内遗传信息的主要携带者,它以双螺旋结构存在于细胞核中,通过基因编码蛋白质的合成过程实现遗传信息的传递。

RNA则在蛋白质合成过程中发挥着重要的作用。

遗传物质的结构和功能研究是生物学中的重要内容。

三、遗传定律遗传学是研究遗传的科学,其中涉及到一些重要的遗传定律。

孟德尔遗传定律是遗传学的基石,通过对豌豆花的研究,揭示了基因的传递规律。

孟德尔定律包括基因分离定律、继承定律和自由组合定律,将遗传现象科学化并建立了遗传学的基础。

四、遗传变异的影响遗传变异是生物多样性的重要基础,它对生物的进化和适应性起到了决定性的作用。

遗传变异可以使个体在面对环境变化时具有更好的适应能力,从而促进物种的繁衍和多样性的产生。

同时,遗传变异也是人类进行选育和改良的基础,通过人为干预遗传变异可以培育出更高产量、更有抗病性的作物和家禽等。

总结:遗传与遗传变异是生物学中重要的概念,高中生物学习中对于这些知识的理解和掌握是必不可少的。

遗传物质的研究揭示了遗传信息的传递和变异的基本机制,而遗传变异的影响则体现了生物多样性的重要性和生物进化的规律。

在今后的学习中,我们需要深入了解和应用遗传与遗传变异的知识,不断拓宽我们的生物学视野。

高中生物遗传与变异知识点

高中生物遗传与变异知识点

高中生物遗传与变异知识点1.遗传与遗传物质:(1)遗传是指生物个体或种群在后代间传递性状的现象。

(2)传递性状的遗传物质是基因。

2.染色体与基因:(1)染色体是生物细胞中可见的染色质聚集物,携带了遗传信息。

(2)基因是染色体上的功能单位,是操纵个体性状的遗传物质。

3.遗传的分类:(1)单基因遗传:受一个基因控制的性状,可分为显性遗传和隐性遗传。

(2)多基因遗传:受多个基因共同控制的性状,呈连续分布的现象。

4.遗传的规律:(1)孟德尔遗传定律:-第一定律:同一性法则,同一种纯合子的后代性状相同。

-第二定律:分离法则,同一杂合子的后代存在隐性性状。

-第三定律:再组合法则,两个基因的组合方式影响后代性状。

(2)随意分离定律:杂合子在减数分裂时配子的分离是随意的。

5.基因型与表型:(1)基因型是一个个体所拥有的基因种类及其组合方式。

(2)表型是基因型在外部环境作用下所表现出来的形态、结构、功能等。

6.基因突变与变异:(1)基因突变是指基因发生变异,可分为点突变、插入突变、缺失突变等。

(2)变异是指个体或种群表型的差异,包括遗传变异和环境变异。

7.自由联会和连锁不平衡:(1)自由联会是指处于同一染色体上的基因在减数分裂过程中以非孟德尔方式联合遗传。

(2)连锁不平衡是指处于同一染色体上的基因由于自由联会而不平衡地遗传。

8.性别遗传:(1)人类的性别遗传是由X和Y染色体决定的,男性为XY型,女性为XX型。

(2)X染色体和Y染色体携带了不同的性别决定基因,决定了个体的性别。

9.染色体与基因工程:(1)染色体工程是通过改变个体或种群的染色体结构来实现其中一种目的的技术。

10.生物技术与遗传病:(1)生物技术包括基因工程技术、细胞工程技术等,对生物遗传病的预防和治疗具有重要意义。

(2)遗传病是由基因突变引起的疾病,可遗传给后代。

以上是高中生物遗传与变异的主要知识点,理解和掌握这些知识点对于加深对遗传与变异的理解、提高综合应用能力以及解决遗传病等问题具有重要意义。

研究生物的遗传与变异生物知识点

研究生物的遗传与变异生物知识点

研究生物的遗传与变异生物知识点遗传与变异是生物学中重要的研究方向之一,涉及到生物种群的演化、基因的传递和遗传物质的变化等多个方面。

本文将从遗传与变异的基本概念、遗传物质的结构和功能、遗传变异的类型以及其在进化和生物多样性中的作用等方面进行论述。

一、遗传与变异的基本概念遗传是指生物中个体或群体在繁殖过程中将自身的特征传递给下一代的现象。

而遗传变异则是指在遗传过程中,由于基因的重新组合、突变等原因引起的基因型和表型的变化。

二、遗传物质的结构和功能遗传物质主要是指DNA(脱氧核糖核酸),它是生物体内最重要的分子之一。

DNA分子由若干个核苷酸单元经过磷酸二酯键连接而成,而核苷酸又由碱基、糖和磷酸组成。

DNA的主要功能是存储和传递遗传信息,控制生物体的生长、发育和遗传特征等。

三、遗传变异的类型遗传变异可以分为两大类,一类是一次性突变,即由于突变引起的一次性遗传变异,如基因突变、染色体异常等;另一类是遗传多样性,即由于各种因素引起的遗传多样性,如基因重组、交配系统和群体结构的变化等。

四、遗传与变异在进化和生物多样性中的作用1. 进化:遗传与变异是生物进化的基础,它为物种的适应性进化和新物种的产生提供了遗传基础。

2. 适应性:遗传与变异使物种具备适应环境变化的能力,通过基因的转移和突变,物种可以适应不同的生态环境。

3. 生物多样性:遗传与变异导致了物种间的遗传差异,进而促进了生物多样性的形成和维持。

综上所述,遗传与变异是生物学中至关重要的研究方向,涉及到生物的遗传信息传递、进化以及生物多样性等方面。

通过对遗传与变异的研究,我们可以更深入地了解生命起源和演化过程,为保护生物多样性和开展生物工程等领域的研究提供理论基础。

2024年高考生物遗传和变异知识点总结

2024年高考生物遗传和变异知识点总结

2024年高考生物遗传和变异知识点总结一、遗传和变异的基本概念1. 遗传:指生物个体所具有的一些性状和特征在后代中得以保留并传递的现象。

2. 变异:指生物个体在遗传过程中产生的性状和特征的差异。

3. 遗传物质:DNA,是生物遗传信息的携带者。

二、遗传的基本规律1. 孟德尔遗传规律:包括单因素遗传规律、自由组合规律和二基因遗传规律。

2. 补体遗传规律:交配时两个亲本的基因在一起配对形成一个染色体对,分离后形成四种不同的组合。

三、基因的结构和功能1. 基因:指导生物体形成和发育的遗传物质单位。

2. DNA的结构:由核苷酸组成,包括磷酸、五碳糖和氮碱基。

3. RNA的结构:类似DNA,但糖是核糖,碱基中没有胸腺嘧啶,而是尿嘧啶。

四、基因的表达1. DNA复制:DNA通过一系列酶的作用,进行复制,形成两条完全一致的新DNA分子。

2. 转录:DNA的一部分信息转移到RNA上。

3. 翻译:在细胞质中,mRNA通过核糖体的作用,在氨基酸的参与下,合成蛋白质。

五、基因突变1. 突变:指遗传物质中的基因发生改变。

2. 突变的类型:包括点突变、插入突变、缺失突变、倒位突变和重组等。

六、染色体的结构和变异1. 染色体的结构:包括着丝粒、着丝粒间隔、染色单体、腺带、间相等带和A-T富集区等。

2. 染色体的变异:包括染色体的缺失、重复、倒位、易位和多倍体等。

七、DNA的复制和修复1. DNA的复制:复制起始点是一个起始复制复合体,由DNA聚合酶和其他辅助酶组成。

在复制过程中,存在主链合成和链延伸等步骤。

2. DNA的修复:包括自我修复机制、错配修复机制、核酸切除修复机制和重组修复机制等。

八、生物的遗传变异1. 快速繁殖和遗传变异:快速繁殖的有利因素会加速遗传变异的积累。

2. 多样性与适应性:生物种群的遗传变异为适应新的生存环境提供了可能性。

九、遗传病的诊断和防治1. 遗传病的分类:包括单基因遗传病、多基因遗传病和染色体异常引起的遗传病等。

高考生物遗传和变异知识点

高考生物遗传和变异知识点

高考生物遗传和变异知识点1500字高考生物遗传与变异知识点:遗传是生物学的基础,对于生物学试题中的遗传和变异问题,是考生需要重点掌握和理解的内容。

下面将介绍高考生物遗传与变异的主要知识点,包括遗传基因的本质、遗传因素的作用、基因的分离与组合规律、遗传变异和遗传与环境的关系等方面。

一、遗传基因的本质1. 遗传基因的定义:遗传基因是指遗传信息在细胞内的携带者,由DNA分子构成。

2. 遗传基因的性质:遗传基因具有遗传稳定性、遗传多样性和遗传可变性的性质。

二、遗传因素的作用1. 遗传因素的种类:遗传因素包括显性因素和隐性因素。

2. 遗传因素的作用:显性因素使表现型表现出来,隐性因素使表现型不表现出来。

三、基因的分离与组合规律1. 孟德尔遗传定律:孟德尔的遗传定律包括基因的分离定律和基因的自由组合定律。

(1) 基因的分离定律:杂种的第一代后代中,基因可以分离出来,并且以隐性的态度保存在子代中,等到第二代的时候才会重新组合在一起。

(2) 基因的自由组合定律:不同基因对一个性状的影响是相互独立的,基因之间相互自由组合。

四、遗传变异的发生1. 基因突变:基因突变是指基因序列发生突变,导致基因功能的改变。

2. 染色体畸变:染色体畸变是指染色体结构发生异常,引起基因组的改变。

3. 基因重组:基因重组是指在染色体中,同一染色体上的两条同源染色单体之间发生交换和组合。

五、遗传与环境的关系1. 遗传与环境的相互作用:遗传和环境是相互作用的,遗传决定了个体的遗传基因,而环境则影响基因的表现。

2. 遗传稳定性和可塑性:遗传稳定性是指遗传物质在生物体内传代中基本稳定的属性,而可塑性是指生物体对环境因素的适应性以及这种适应性在遗传上的反映。

六、细胞分裂和生殖细胞形成1. 有丝分裂:有丝分裂是指细胞在生殖和增长过程中发生的一种细胞分裂方式,通过细胞核的分裂和细胞质的分裂,产生两个细胞子代,每个子代的细胞染色体数目与母细胞相同。

2. 减数分裂:减数分裂是指生殖细胞形成过程中发生的一种细胞分裂方式,通过一次细胞核分裂和两次细胞质分裂,产生四个细胞子代,每个子代的细胞染色体数目减半。

生物的遗传和变异知识点

生物的遗传和变异知识点

生物的遗传和变异知识点1.遗传学的基本概念-遗传学研究遗传特征在后代之间传递的规律和机制。

-人类的遗传特征由DNA分子携带,通过遗传物质的传递和表达实现。

2.DNA的结构和功能-DNA是由四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶)组成的双螺旋结构。

-DNA携带遗传信息,通过转录和翻译转化为蛋白质,实现基因表达。

3.染色体和基因-染色体是DNA和蛋白质组成的结构,携带着基因。

-基因是一段DNA序列,编码了特定的蛋白质。

4.遗传变异的类型和机制-突变是遗传变异的基本形式,可以是点突变、插入、缺失或倒位。

-染色体的结构变异包括染色体缺失、倒位、重复和易位。

-遗传重组是两个染色体间的DNA交换。

5.自然选择和进化-自然选择是达尔文进化理论的核心概念,指的是适应环境的有利特征或基因在繁殖中的逐渐累积和传递。

-进化是物种适应环境变化的长期过程,通过一代代的遗传变异和自然选择实现。

6.基因频率和遗传平衡-基因频率指的是群体中特定等位基因的比例。

-遗传平衡指的是群体处于定点突变、重组和自然选择的动态平衡状态。

7.遗传病和遗传性状-遗传病是由基因突变引起的疾病,可以是单基因遗传病或多基因遗传病。

-遗传性状是由基因决定的与个体特征相关的特征。

8.血型和人类遗传-血型是人类常见的遗传性状之一,由基因决定。

-人类有A型、B型、AB型和O型四种血型,具有不同的遗传模式和相应的基因型。

9.遗传变异和多样性-遗传变异是生物多样性的重要原因之一,使得个体在遗传水平上存在差异。

-遗传变异对个体适应环境和物种进化起到重要作用。

10.遗传工程和转基因技术-遗传工程利用基因工程技术对生物进行基因的改造和转移。

-转基因技术将外源基因导入到目标生物体中,用于改变其性状或增强其特定功能。

总结:遗传和变异是生物学中重要的研究领域,涉及DNA结构和功能、基因和染色体、遗传变异的类型和机制、生物进化和多样性等。

了解遗传和变异知识有助于我们深入理解生命的起源、发展和多样性,也可以应用于遗传病的诊断和治疗以及农业生产和生物技术的发展。

高三生物遗传和变异知识点

高三生物遗传和变异知识点

高三生物遗传和变异知识点人类作为生物世界中的一员,自诞生以来就受到了生物基因的约束和影响。

遗传和变异是我们生命中不可或缺的一部分,因此,对于高三生物学课程中的遗传和变异知识点的全面掌握,对于理解生命的奥秘和解开自身谜题具有重要意义。

1. 遗传与基因遗传是生物界中广泛存在的现象,它是父母繁殖后代时将自身特征传递给子代的过程。

而基因则是遗传的基本单位,位于DNA分子上。

每个个体的基因构成了其基因型,决定了表现型的体现。

高三生物学中,我们需要深入了解DNA的结构和功能,以及基因在遗传中的作用。

2. 遗传与性状遗传通过基因的传递来影响个体的性状。

基因有两种状态,分别为显性基因和隐性基因。

显性基因在基因型中只需要有一个位点上的基因表达,就能体现在表现型上;而隐性基因则需要两个相同的基因位点才能表达。

高三生物学中,我们需要学习和了解不同基因型之间的遗传规律,包括主效遗传、共显性和隐性等。

3. 变异与自然选择在遗传中,变异是一种普遍存在的现象。

个体之间的遗传差异造就了物种的多样性。

自然选择则是环境对于变异个体进行筛选的过程。

高三生物学中,我们需要了解各种变异的形式和对于个体的影响,以及自然选择对于种群适应环境的重要性。

4. 变异与进化变异不仅影响个体和种群,还对进化产生了深远的影响。

进化是生物界中的一个长期过程,通过变异和自然选择来使物种逐渐适应环境和发展进化。

高三生物学中,我们需要学习和了解进化的原理和模式,以及进化对于物种多样性和生物适应性的重要性。

5. 变异与人类健康遗传变异不仅在自然界中普遍存在,也与人类的健康息息相关。

基因突变可能导致一系列的遗传疾病,如遗传性疾病、癌症等。

高三生物学中,我们需要了解不同变异对人类健康的影响,以及遗传咨询与基因治疗等新兴领域对于人类健康的重要意义。

6. 变异与基因工程基因工程是一项涉及变异和基因的重要技术。

通过基因工程,科学家可以对生物的遗传物质进行修改和编辑,以实现特定的目的。

2024年高考生物遗传和变异知识点总结

2024年高考生物遗传和变异知识点总结

2024年高考生物遗传和变异知识点总结一、基本概念1. 遗传:指的是生物体通过生殖细胞将遗传物质(基因)传递给后代的过程。

2. 遗传物质:指的是DNA(脱氧核糖核酸),它是生物体质量的基础,也是遗传信息的携带者。

3. 基因:是指控制某一种或几种性状的一段DNA序列,它是遗传基础。

4. 基因型:是指一个个体的所有基因的组合。

5. 表型:是指一个个体的表现性状。

6. 纯合子:是指一个个体的两个基因均相同。

7. 杂合子:是指一个个体的两个基因不同。

二、遗传规律1. 孟德尔遗传规律孟德尔从豌豆杂交实验中总结出了三个遗传规律:(1)单倍性规律:个体的某一性状由一对基因决定,分别来自父本和母本。

(2)分离规律:杂合子的两个基因在生殖过程中会分离,每个生殖细胞只含有一对基因。

(3)自由组合规律:基因之间的组合是自由的,相互独立地进行遗传。

2. 染色体遗传规律(1)基因与染色体的关系:基因位于染色体上,染色体是基因的载体。

(2)同源染色体分离规律:在减数分裂中,同源染色体会互相分离,其配子中只含有一个。

(3)基因连锁规律:同一染色体上的基因具有连锁作用,它们很少进行交叉互换。

(4)染色体显性规律:在染色体对中,显性等位基因的表现受控于核质比例的大小。

三、遗传的分子基础1. DNA的分子结构DNA由磷酸、五碳糖和四种碱基组成,形成双螺旋结构。

2. DNA的复制DNA复制是指通过DNA聚合酶的作用,将一个DNA分子复制成两个完全相同的DNA分子的过程。

3. RNA的合成RNA合成是指在DNA模板上通过RNA聚合酶的作用,合成RNA 分子的过程。

4. 蛋白质合成蛋白质合成是指在细胞中,通过转录和翻译过程,将DNA上的遗传信息转化为蛋白质的过程。

四、基因突变与变异1. 基因突变基因突变是指DNA序列发生改变,引起基因型的变化。

常见的基因突变类型有:(1)点突变:指DNA序列中一个碱基的改变,包括碱基替换、插入和缺失。

(2)染色体突变:指染色体结构的改变,包括染色体重排、染色体缺失和染色体重复。

高考生物认识生物的遗传与变异

高考生物认识生物的遗传与变异

高考生物认识生物的遗传与变异在生物学中,遗传与变异是一个非常重要的概念,也是高考生物考试中的热点内容。

通过对生物的遗传与变异的认识,可以更好地理解生物进化和适应环境的过程。

本文将深入探讨高考生物认识生物的遗传与变异的相关知识点。

1. 遗传与变异的基本概念遗传是指个体在繁殖过程中将基因的信息传递给后代的过程。

通过遗传,后代可以获得一部分父代的遗传物质,包括基因和染色体。

这种遗传是有序的、稳定的,并且具有一定的规律性。

变异是指个体在遗传过程中,由于基因的突变或者基因的重新组合,导致后代与父代存在差异的过程。

变异是生物多样性的来源,也是生物进化的原始材料。

变异可以是有利的,有助于适应环境的变异,也可以是不利的,导致个体的不适应性。

2. 染色体与遗传物质染色体是细胞核中的一种结构,在有细胞核的生物中普遍存在。

染色体携带着生物的遗传物质,即DNA。

DNA是生物体内保存遗传信息的分子,它决定着生物的性状和特征。

DNA由核苷酸组成,核苷酸由磷酸、五碳糖和氮碱基组成。

氮碱基有腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C)四种,它们之间的排列顺序决定了DNA的编码方式。

3. 遗传物质的复制和传递遗传物质的复制是指将DNA复制一份后传递给下一代的过程。

遗传物质的复制是生物遗传的基础,也是生物繁殖的重要环节。

在细胞分裂过程中,DNA会经历复制、分离和合并等步骤,确保每一个细胞都获得完整的遗传物质。

遗传物质的传递是将经过复制的DNA传递给下一代的过程。

在有性繁殖中,通过两个个体的配子的结合,将父母的遗传信息传递给下一代。

在遗传物质的传递过程中,基因发生着重新组合和分离等变异,从而导致个体间的差异。

4. 遗传与变异的影响因素遗传与变异受到多个因素的影响,包括基因、环境和突变等。

基因是决定生物性状的基本单位,它们呈现出多样性和多形性。

不同基因的组合会导致个体间的差异,从而产生遗传现象。

环境也会对遗传与变异产生影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考生物知识点之生物的遗传和变异基本概念一.DNA是主要的遗传物质名词:1、T2噬菌体:这是一种寄生在大肠杆菌里的病毒。

它是由蛋白质外壳和存在于头部内的DNA所构成。

它侵染细菌时可以产生一大批与亲代噬菌体一样的子代噬菌体。

2、细胞核遗传:染色体是主要的遗传物质载体,且染色体在细胞核内,受细胞核内遗传物质控制的遗传现象。

3、细胞质遗传:线粒体和叶绿体也是遗传物质的载体,且在细胞质内,受细胞质内遗传物质控制的遗传现象。

语句:1、证明DNA是遗传物质的实验关键是:设法把DNA与蛋白质分开,单独直接地观察DNA 的作用。

2、肺炎双球菌的类型:①、R型(英文Rough是粗糙之意),菌落粗糙,菌体无多糖荚膜,无毒,注入小鼠体内后,小鼠不死亡。

②、S型(英文Smooth是光滑之意):菌落光滑,菌体有多糖荚膜,有毒,注入到小鼠体内可以使小鼠患病死亡。

如果用加热的方法杀死S 型细菌后注入到小鼠体内,小鼠不死亡。

3、格里菲斯实验:格里菲斯用加热的办法将S型菌杀死,并用死的S型菌与活的R型菌的混合物注射到小鼠身上。

小鼠死了。

(由于R型经不起死了的S型菌的DNA(转化因子)的诱惑,变成了S型)。

4、艾弗里实验说明DNA是"转化因子"的原因:将S型细菌中的多糖、蛋白质、脂类和DNA 等提取出来,分别与R型细菌进行混合;结果只有DNA与R型细菌进行混合,才能使R型细菌转化成S型细菌,并且的含量越高,转化越有效。

5、艾弗里实验的结论:DNA是转化因子,是使R型细菌产生稳定的遗传变化的物质,即DNA 是遗传物质。

6、噬菌体侵染细菌的实验:①噬菌体侵染细菌的实验过程:吸附→侵入→复制→组装→释放。

②DNA中P的含量多,蛋白质中P的含量少;蛋白质中有S而DNA中没有S,所以用放射性同位素35S标记一部分噬菌体的蛋白质,用放射性同位素32P标记另一部分噬菌体的DNA。

用35P标记蛋白质的噬菌体侵染后,细菌体内无放射性,即表明噬菌体的蛋白质没有进入细菌内部;而用32P标记DNA的噬菌体侵染细菌后,细菌体内有放射性,即表明噬菌体的DNA进入了细菌体内。

③结论:进入细菌的物质,只有DNA,并没有蛋白质,就能形成新的噬菌体。

新的噬菌体中的蛋白质不是从亲代连续下来的,而是在噬菌体DNA的作用下合成的。

说明了遗传物质是DNA,不是蛋白质。

③此实验还证明了DNA能够自我复制,在亲子代之间能够保持一定的连续性,也证明了DNA能够控制蛋白质的合成。

7、肺炎双球菌的转化实验和噬菌体侵染细菌的实验只证明DNA是遗传物质(而没有证明它是主要遗传物质)8、遗传物质应具备的特点:①具有相对稳定性②能自我复制③可以指导蛋白质的合成④能产生可遗传的变异。

9、绝大多数生物的遗传物质是DNA,只有少数病毒(如烟草花叶病病毒)的遗传物质是RNA,因此说DNA是主要的遗传物质。

病毒的遗传物质是DNA或RNA。

10、①遗传物质的载体有:染色体、线绿体、叶绿体。

②遗传物质的主要载体是染色体。

二.DNA的结构和复制名词:1、DNA的碱基互补配对原则:A与T配对,G与C配对。

2、DNA复制:是指以亲代DNA分子为模板来合成子代DNA的过程。

DNA的复制实质上是遗传信息的复制。

3、解旋:在ATP供能、解旋酶的作用下,DNA分子两条多脱氧核苷酸链配对的碱基从氢键处断裂,于是部分双螺旋链解旋为二条平行双链,解开的两条单链叫母链(模板链)。

4、DNA的半保留复制:在子代双链中,有一条是亲代原有的链,另一条则是新合成的。

5、人类基因组是指人体DNA分子所携带的全部遗传信息。

人类基因组计划就是分析测定人类基因组的核苷酸序列。

语句:1、DNA的化学结构:①DNA是高分子化合物:组成它的基本元素是C、H、O、N、P等。

②组成DNA的基本单位--脱氧核苷酸。

每个脱氧核苷酸由三部分组成:一个脱氧核糖、一个含氮碱基和一个磷酸③构成DNA的脱氧核苷酸有四种。

DNA在水解酶的作用下,可以得到四种不同的核苷酸,即腺嘌呤(A)脱氧核苷酸;鸟嘌呤(G)脱氧核苷酸;胞嘧啶(C)脱氧核苷酸;胸腺嘧啶(T)脱氧核苷酸;组成四种脱氧核苷酸的脱氧核糖和磷酸都是一样的,所不相同的是四种含氮碱基:ATGC。

④DNA是由四种不同的脱氧核苷酸为单位,聚合而成的脱氧核苷酸链。

2、DNA的双螺旋结构:DNA的双螺旋结构,脱氧核糖与磷酸相间排列在外侧,形成两条主链(反向平行),构成DNA的基本骨架。

两条主链之间的横档是碱基对,排列在内侧。

相对应的两个碱基通过氢键连结形成碱基对,DNA一条链上的碱基排列顺序确定了,根据碱基互补配对原则,另一条链的碱基排列顺序也就确定了。

3、DNA的特性:①稳定性:DNA分子两条长链上的脱氧核糖与磷酸交替排列的顺序和两条链之间碱基互补配对的方式是稳定不变的,从而导致DNA分子的稳定性。

②多样性:DNA 中的碱基对的排列顺序是千变万化的。

碱基对的排列方式:4n(n为碱基对的数目)③特异性:每个特定的DNA分子都具有特定的碱基排列顺序,这种特定的碱基排列顺序就构成了DNA分子自身严格的特异性。

4、碱基互补配对原则在碱基含量计算中的应用:①在双链DNA分子中,不互补的两碱基含量之和是相等的,占整个分子碱基总量的50%。

②在双链DNA分子中,一条链中的嘌呤之和与嘧啶之和的比值与其互补链中相应的比值互为倒数。

③在双链DNA分子中,一条链中的不互补的两碱基含量之和的比值(A+T/G+ C)与其在互补链中的比值和在整个分子中的比值都是一样的。

5、DNA的复制:①时期:有丝分裂间期和减数第一次分裂的间期。

②场所:主要在细胞核中。

③条件:a、模板:亲代DNA的两条母链;b、原料:四种脱氧核苷酸为;c、能量:(ATP);d、一系列的酶。

缺少其中任何一种,DNA复制都无法进行。

④过程:a、解旋:首先DNA 分子利用细胞提供的能量,在解旋酶的作用下,把两条扭成螺旋的双链解开,这个过程称为解旋;b、合成子链:然后,以解开的每段链(母链)为模板,以周围环境中的脱氧核苷酸为原料,在有关酶的作用下,按照碱基互补配对原则合成与母链互补的子链。

随着解旋过程的进行,新合成的子链不断地延长,同时每条子链与其对应的母链互相盘绕成螺旋结构,c、形成新的DNA分子。

⑤特点:边解旋边复制,半保留复制。

⑥结果:一个DNA分子复制一次形成两个完全相同的DNA分子。

⑦意义:使亲代的遗传信息传给子代,从而使前后代保持了一定的连续性.。

⑧准确复制的原因:DNA之所以能够自我复制,一是因为它具有独特的双螺旋结构,能为复制提供模板;二是因为它的碱基互补配对能力,能够使复制准确无误。

6、DNA复制的计算规律:每次复制的子代DNA中各有一条链是其上一代DNA分子中的,即有一半被保留。

一个DNA分子复制n次则形成2n个DNA,但含有最初母链的DNA分子有2个,可形成2ⅹ2n条脱氧核苷酸链,含有最初脱氧核苷酸链的有2条。

子代DNA和亲代DNA相同,假设x为所求脱氧核苷酸在母链的数量,形成新的DNA所需要游离的脱氧核苷酸数为子代DNA中所求脱氧核苷酸总数2nx减去所求脱氧核苷酸在最初母链的数量x。

7、核酸种类的判断:首先根据有T无U,来确定该核酸是不是DNA,又由于双链DNA遵循碱基互补配对原则:A=T,G=C,单链DNA不遵循碱基互补配对原则,来确定是双链DNA还是单链DNA。

三.基因的表达名词:1、基因:是控制生物性状的遗传物质的功能单位和结构单位,是有遗传效应的DNA片段。

基因在染色体上呈间断的直线排列,每个基因中可以含有成百上千个脱氧核苷酸。

2、遗传信息:基因的脱氧核苷酸排列顺序就代表~。

3、转录:是在细胞核内进行的,它是指以DNA的一条链为模板,合成RNA的过程。

4、翻译:是在细胞质中进行的,它是指以信使RNA为模板,合成具有一定氨基酸顺序的蛋白质的过程。

5、密码子(遗传密码):信使RNA上决定一个氨基酸的三个相邻的碱基,叫做~。

6、转运RNA(tRNA):它的一端是携带氨基酸的部位,另一端有三个碱基,都只能专一地与mRNA上的特定的三个碱基配对。

7、起始密码子:两个密码子AUG和GUG除了分别决定甲硫氨酸和撷氨酸外,还是翻译的起始信号。

8、终止密码子:三个密码子UAA、UAG、UGA,它们并不决定任何氨基酸,但在蛋自质合成过程中,却是肽链增长的终止信号。

9、中心法则:遗传信息从DNA传递给RNA,再从RNA传递给蛋白质的转录和翻译过程,以及遗传信息从DNA传递给DNA的复制过程。

后发现,RNA同样可以反过来决定DNA,为逆转录。

语句:1、基因是DNA的片段,但必须具有遗传效应,有的DNA片段属间隔区段,没有控制性状的作用,这样的DNA片段就不是基因。

每个DNA分子有很多个基因。

每个基因有成百上千个脱氧核苷酸。

基因不同是由于脱氧核苷酸排列顺序不同。

基因控制性状就是通过控制蛋白质合成来实现的。

DNA的遗传信息又是通过RNA来传递的。

2、基因控制蛋白质的合成:RNA与DNA的区别有两点:①碱基有一个不同:RNA是尿嘧啶,DNA则为胸腺嘧啶。

②五碳糖不同:RNA是核糖,DNA是脱氧核糖,这样一来组成RNA的基本单位就是核糖核苷酸;DNA则为脱氧核苷酸。

3、转录:(1)场所:细胞核中。

(2)信息传递方向:DNA→信使RNA。

(3)转录的过程:在细胞核中进行;以DNA特定的一条单链为模板转录;特定的配对方式:4、翻译:(1)场所:细胞质中的核糖体,信使RNA由细胞核进入细胞质中与核糖体结合。

(2)信息传递方向:信使RNA→一定结构的蛋白质。

5、信使RNA的遗传信息即碱基排列顺序是由DNA决定的;转运RNA携带的氨基酸(如甲硫氨酸、谷氨酸)能在蛋白质的氨基酸顺序的哪一个位置上是由信使RNA决定的,归根结底是由DNA的特定片段(基因)决定的。

6、信使RNA是由DNA的一条链为模板合成的;蛋白质是由信使RNA为模板,每三个核苷酸对应一个氨基酸合成的。

公式:基因(或DNA)的碱基数目:信使RNA的碱基数目:氨基酸个数=6:3:1;脱氧核苷酸的数目=的基因(或DNA)的碱基数目;肽键数=脱去水分子数=氨基酸数目-肽链数。

7、一种氨基酸可以只有一个密码子,也可以有数个密码子,一种氨基酸可以由几种不同的密码子决定。

8、基因对性状的控制:①一些基因就是通过控制酶的合成来控制代谢过程,从而控制生物性状的。

白化病是由于基因突变导致不能合成促使黑色素形成的酪氨酸酶。

②一些基因通过控制蛋白质分子的结构来直接影响性状的。

(如:镰刀型细胞贫血症)。

相关文档
最新文档