新人教版初二数学上册期末考试试题及答案

合集下载

2024年最新人教版初二数学(上册)期末试卷及答案(各版本)

2024年最新人教版初二数学(上册)期末试卷及答案(各版本)

2024年最新人教版初二数学(上册)期末试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 3B. 2C. 0D. 22. 已知a > 0,b < 0,则下列各式中正确的是()A. a b > 0B. a b < 0C. a + b > 0D. a + b < 03. 下列哪个图形是平行四边形()A. 边长相等的四边形B. 有一个角是直角的四边形C. 对边平行且相等的四边形D. 对角线互相平分的四边形4. 下列哪个图形是正方形()A. 四边相等的四边形B. 四个角都是直角的四边形C. 对角线互相垂直平分的四边形D. 对角线互相垂直且相等的四边形5. 下列各式中,正确的是()A. a^2 = a aB. a^2 = a + aC. a^3 = a a aD. a^3 = a + a + a二、判断题5道(每题1分,共5分)1. 任何两个奇数之和都是偶数。

()2. 任何两个偶数之和都是偶数。

()3. 任何两个奇数之积都是奇数。

()4. 任何两个偶数之积都是偶数。

()5. 任何数乘以1都等于它本身。

()三、填空题5道(每题1分,共5分)1. 两个质数的和是______。

2. 两个偶数的积是______。

3. 两个奇数的积是______。

4. 任何数乘以0都等于______。

5. 任何数除以1都等于______。

四、简答题5道(每题2分,共10分)1. 请简要说明勾股定理的内容。

2. 请简要说明矩形的性质。

3. 请简要说明菱形的性质。

4. 请简要说明正方形的性质。

5. 请简要说明平行四边形的性质。

五、应用题:5道(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,求它的面积。

2. 一个正方形的边长是6cm,求它的面积。

3. 一个平行四边形的底是8cm,高是5cm,求它的面积。

4. 一个三角形的底是10cm,高是6cm,求它的面积。

人教版八年级(上)数学期末试卷(含答案)

人教版八年级(上)数学期末试卷(含答案)

人教版八年级(上)数学期末试卷一、选择题(共12小题,每题3分,计36分)1.新冠病毒的直径最小大约为0.00000008米,这个数用科学记数法表示为()A.8×10﹣8B.8×10﹣7C.80×10﹣9D.0.8×10﹣72.下列运算正确的是()A.2﹣2=B.(a3)2=a5C.+=D.(3a2)3=27a63.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°4.在下列因式分解的过程中,分解因式正确的是()A.x2+2x+4=(x+2)2B.x2﹣4=(x+4)(x﹣4)C.x2﹣4x+4=(x﹣2)2D.x2+4=(x+2)25.如图,经过直线AB外一点C作这条直线的垂线,作法如下:(1)任意取一点K,使点K和点C在AB的两旁.(2)以点C为圆心,CK长为半径作弧,交AB于点D和E.(3)分别以点D和点E为圆心,大于DE的长为半径作弧,两弧相交于点F.(4)作直线CF.则直线CF就是所求作的垂线.根据以上尺规作图过程,若将这些点作为三角形的顶点,其中不一定是等腰三角形的为()A.△CDF B.△CDK C.△CDE D.△DEF6.有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示.右边场地为长方形,长为2(a+b),则宽为()A.B.1C.D.a+b7.下列式子变形是因式分解的是()A.x2﹣5x+6=x(x﹣5)+6B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+6D.x2﹣5x+6=(x+2)(x+3)8.若分式有意义,则a的取值范围是()A.a=0B.a=1C.a≠﹣1D.a≠09.化简的结果是()A.x+1B.x﹣1C.﹣x D.x10.平行四边形ABCD中,对角线AC和BD相交于点O,若AC=3,AB=6,BD=m,那么m的取值范围是()A.9<m<15B.2<m<14C.6<m<8D.4<m<2011.若分式方程无解,则a的值为()A.1B.﹣1C.0D.1或﹣112.如图,△ABC的周长为20,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=8,则MN的长度为()A.B.2C.D.3二、填空题(共10小题,每空2分,计20分)13.请写出一个只含有字母x的分式,当x=3时分式的值为0,你写的分式是.14.计算:(2a)3•(﹣a)4÷a2=.15.如图,要测量池塘两岸相对的两点A,B的距离,可以在池塘外取AB的垂线BF上的两点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直线上.若想知道两点A,B的距离,只需要测量出线段即可.16.若分式方程:有增根,则k=.17.如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.(只需填一个即可)第17题第18题图第19题图18.如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=度.19.如图,一只蚂蚁沿着边长为2的正方体表面从顶点A出发,经过3个面爬到顶点B,如果它运动的路径是最短的,则最短路径为.20.因式分解:x 4﹣16=.21.如图,在△ABC 中,CE 平分∠ACB ,CF 平分△ABC 的外角∠ACD ,且EF 平行BC 交AC 于M ,若CM =4,则CE 2+CF 2的值为.22.如图,△ABC 中,AD 平分∠BAC ,CD ⊥AD ,若∠ABC 与∠ACD 互补,CD =5,则BC 的长为.三、计算题(共3小题,计16分)23.(4分)解方程:.24.(4分)先化简再求值:(+4)÷,其中x =.25.(8分)(1)计算:(3﹣π)0﹣38÷36+()﹣1;(2)因式分解:3x 2﹣12y 2.四、解答题(共4小题,计28分)26.(6分)如图,在▱ABCD 中,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,CF =AE ,连接AF ,BF .第22题图第21题图(1)求证:四边形BFDE是矩形;(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=3,求DC的长度.27.(6分)在平面直角坐标系xOy中,直线l为一、三象限角平分线.点P关于y轴的对称点称为P 的一次反射点,记作P1;P1关于直线l的对称点称为点P的二次反射点,记作P2.例如,点(﹣2,5)的一次反射点为(2,5),二次反射点为(5,2).根据定义,回答下列问题:(1)点(2,5)的一次反射点为,二次反射点为;(2)当点A在第一象限时,点M(3,1),N(3,﹣1)Q(﹣1,﹣3)中可以是点A的二次反射点的是;(3)若点A在第二象限,点A1,A2分别是点A的一次、二次反射点,△OA1A2为等边三角形,求射线OA与x轴所夹锐角的度数.附加问题:若点A在y轴左侧,点A1,A2分别是点A的一次、二次反射点,△AA1A2是等腰直角三角形,请直接写出点A在平面直角坐标系xOy中的位置.28.(6分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?29.(10分)如图1,在平面直角坐标系中,点O(0,0),A(a,0),C(0,c),其中a>c>0,以OA,OC为邻边作矩形OABC,连接AC.(1)若a,c满足+(4﹣c)2=0,求AC的长;(2)在(1)的条件下,将△AOC沿AC折叠,使O'落在矩形所在平面内,AO'交BC于P,求CP的长及点O'的坐标;(3)如图2,D为AC中点时,点E、F分别在线段OA、OC上,且CD=CF,AD=AE,连接FD,EF,DE,则∠FED=90°,求∠FDE的大小及的值.人教版八年级(上)数学期末试卷参考答案与试题解析一、填空题1.【解答】解:∵0.00000008=8×10﹣8;故选:A.2.【解答】解:A、原式中2,﹣2不是同类项,也不是同类二次根式不能合并,故A选项不符合题意;B、原式=a6,故B选项不符合题意;C、原式中,不是同类二次根式不能合并,故C选项不符合题意;D、原式=(3a2)3=33(a2)3=27a6,故D选项符合题意.故选:D.3.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.4.【解答】解:A、原式不能分解,不符合题意;B、原式=(x+2)(x﹣2),不符合题意;C、原式=(x﹣2)2,符合题意;D、原式不能分解,不符合题意,故选:C.5.【解答】解:由作图可得,CD,DF,CF不一定相等,故△CDF不一定是等腰三角形;而CD=CK,CD=CE,DF=EF,故△CDK,△CDE,△DEF都是等腰三角形;故选:A.6.【解答】解:左边场地面积=a2+b2+2ab,∵左边场地的面积与右边场地的面积相等,∴宽=(a2+b2+2ab)÷2(a+b)=(a+b)2÷2(a+b)=,故选:C.7.【解答】解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;B、x2﹣5x+6=(x﹣2)(x﹣3)是整式积的形式,故是分解因式,故本选项正确;C、(x﹣2)(x﹣3)=x2﹣5x+6是整式的乘法,故不是分解因式,故本选项错误;D、x2﹣5x+6=(x﹣2)(x﹣3),故本选项错误.故选B.8.【解答】解:∵分式有意义,∴a≠﹣1.故选C.9.【解答】解:=﹣===x,故选D.10.【解答】解:如图,∵四边形ABCD是平行四边形,∴OA=OC=AC=1.5,OB=OD=BD=m,∵AB﹣OA<OB<AB+OA,∴6﹣1.5<OB<6+1.5,∴4.5<OB<7.5,∴9<BD<15,∴m的取值范围是9<m<15.故选:A.11.【解答】解:∵分式方程无解,∴x+1=0,x=﹣1.∵,整理得(1﹣a)x=2a,∵分式方程无解,∴①当1﹣a=0时,a=1.②把x=﹣1代入(1﹣a)x=2a,得a=﹣1.综上所述:a的值是:1或﹣1.12.【解答】解:在△BNA和△BNE中,,∴△BNA≌△BNE(ASA)∴BE=BA,AN=NE,同理,CD=CA,AM=MD,∴DE=BE+CD﹣BC=BA+CA﹣BC=20﹣8﹣8=4,∵AN=NE,AM=MD,∴MN=DE=2,故选:B.二、填空题13.【解答】解:由题意得:,故答案为:.14.【解答】解:原式=8a3•a4÷a2=8a5,故答案为:8a515.【解答】解:利用CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,即两角及这两角的夹边对应相等即ASA这一方法,可以证明△ABC≌△EDC,故想知道两点A,B的距离,只需要测量出线段DE即可.故答案为:DE.16.【解答】解:∵,去分母得:2(x﹣2)+1﹣kx=﹣1,整理得:(2﹣k)x=2,当2﹣k=0时,此方程无解,∵分式方程有增根,∴x﹣2=0,2﹣x=0,解得:x=2,把x=2代入(2﹣k)x=2得:k=1.故答案为:1或2.17.【解答】解:增加一个条件:∠A=∠F,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等(答案不唯一).故答案为:∠A=∠F或AC∥EF或BC=DE(答案不唯一).18.【解答】解:∵AC=BC,∴∠A=∠B,∵∠A+∠B=∠ACE,∴∠A=∠ACE=×100°=50°.故答案为:50.19.【解答】解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,AB==2,故答案为:2.20.【解答】解:x4﹣16=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2).故答案为:(x2+4)(x+2)(x﹣2).21.【解答】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=4,∴EF=8,由勾股定理得:CE2+CF2=EF2=64.22.【解答】解:延长AB、CD交于点E,如图:∵AD平分∠BAC,CD⊥AD,∴∠EAD=∠CAD,∠ADE=∠ADC=90°,在△ADE和△ADC中,,∴△ADE≌△ADC(ASA),∴ED=CD=5,∠E=∠ACD,∵∠ABC与∠ACD互补,∠ABC与∠CBE互补,∴∠E=∠ACD=∠CBE,∴BC=CE=2CD=10,故答案为:10.三、计算题23.【解答】解:原方程即:.方程两边同时乘以(x+2)(x﹣2),得x(x+2)﹣(x+2)(x﹣2)=8.化简,得2x+4=8.解得:x=2.检验:x=2时,(x+2)(x﹣2)=0,即x=2不是原分式方程的解,则原分式方程无解.24.【解答】解:(+4)÷=•=•=x+2,当x=时,原式=+2.25.【解答】解:(1)原式=1﹣32+3=1﹣9+3=﹣5;(2)原式=3(x2﹣4y2)=3(x+2y)(x﹣2y).四、解答题26.【解答】证明(1)∵四边形ABCD是平行四边形∴DC∥AB,DC=AB∵CF=AE∴DF=BE且DC∥AB∴四边形DFBE是平行四边形又∵DE⊥AB∴四边形DFBE是矩形;(2)∵∠DAB=60°,AD=3,DE⊥AB∴AE=,DE=AE=∵四边形DFBE是矩形∴BF=DE=∵AF平分∠DAB∴∠FAB=∠DAB=30°,且BF⊥AB∴AB=BF=∴CD=27.【解答】解:(1)由题意:点(2,5)的一次反射点为(﹣2,5),二次反射点为(5,﹣2).故答案为(﹣2,5),(5,﹣2).(2)由题意点A的二次反射点在第四象限,故答案为N点.(3)∵点A在第二象限,∴点A1,A2均在第一象限.∵△OA1A2为等边三角形,A1,A2关于OB对称,∴∠A1OB=∠A2OB=30°分类讨论:①若点A1位于直线l的上方,如图1所示,此时∠AOC=∠A1OC=15°,因此射线OA与x轴所夹锐角为75°.②若点A1位于直线l的上下方,如图2所示,此时∠AOC=∠A1OC=75°,因此射线OA与x轴所夹锐角为15°.综上所述,射线OA与x轴所夹锐角为75°或15°.附加题:若点A在y轴左侧,点A1,A2分别是点A的一次、二次反射点,△AA1A2是等腰直角三角形,则点A在平面直角坐标系xOy中的位置:x轴负半轴或第三象限的角平分线.28.【解答】解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=18(天),则该工程施工费用是:18×(6500+3500)=180000(元).答:该工程的费用为180000元.29.【解答】解:(1)∵+(4﹣c)2=0,∴a=8,c=4,∴点A(8,0),点C(0,4),∴OA=8,OC=4,∴AC===4;(2)∵将△AOC沿AC折叠,∴∠PAC=∠OAC,OC=O'C=5,AO=AO'=8,∵BC∥AO,∴∠PCA=∠OAC=∠PAC,∴PC=PA,∵PA2=PB2+AB2,∴CP2=(8﹣AP)2+16,∴CP=5=AP,∴O'P=3,过点O'作O'E⊥CB于E,∵S△CO'P=×CO'×O'P=×CP×O'E,∴O'E=,∴CE===,∴点O'坐标为(,);(3)∵CD=CF,AD=AE,∴∠CDF=∠CFD=,∠ADE=∠AED=,∵∠AOC=90°,∴∠DAO+∠OCA=90°,∴∠CDF+∠ADE=+==135°,∴∠FDE=180°﹣∠CDF﹣∠ADE=45°;∵∠FED=90°,∴∠FDE=∠EFD=45°,∴DE=EF,如图2,过点D作DH⊥AO于H,∵A(a,0),C(0,c),点D是AC的中点,∴OA=a,OC=c,CD=AD,点D(,),∴DH=,OH=,AC=,∴CD=AD=,∴CF=,OF=c﹣,∵∠DEF=∠EOF=∠DHE=90°,∴∠FEO+∠DEH=90°=∠FEO+∠EFO,∴∠EFO=∠DEH,又∵EF=DE,∴△EFO≌△DEH(AAS),∴EH=OF=c﹣,OE=DE=,∵OE+EH=OH,∴+c﹣=,∴=+﹣ac,∴=.。

人教版八年级上学期期末考试数学试卷及答案解析(共六套)

人教版八年级上学期期末考试数学试卷及答案解析(共六套)

人教版八年级上学期期末考试数学试卷(一)一、选择题(本题共10个小题,每小题3分,共30分)1.下列图形中,不是轴对称图形的是()A. B.C. D.2.在式子,,,中,分式的个数为()A.1个B.2个C.3个D.4个3.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.5,6,10 D.1,2,34.如图,AB=AD,添加下列一个条件后,仍无法确定△ABC≌△ADC的是()A.BC=CD B.∠BAC=∠DAC C.∠B=∠D=90°D.∠ACB=∠ACD5.下列运算正确的是()A.a3•a3=2a3B.a0÷a3=a﹣3C.(ab2)3=ab6D.(a3)2=a56.一副三角板如图叠放在一起,则图中∠α的度数为()A.75°B.60°C.65°D.55°7.下面甲、乙、丙三个三角形中,和△ABC全等的是()A.乙和丙B.甲和乙C.甲和丙D.只有甲8.如图,△ABC中,AB=AC,点D在AC边上,若AD=BD=BC,则∠A的度数为()A.70°B.45°C.36°D.30°9.规定一种运算:a*b=ab+a+b,则a*(﹣b)+a*b的计算结果为()A.0 B.2a C.2b D.2ab10.若a+b+c=0,且abc≠0,则a(+)+b(+)+c(+)的值为()A.1 B.0 C.﹣1 D.﹣3二、填空题(本大题共6个小题,每小题4分,共24分)11.若a+b=,且ab=1,则(a+2)(b+2)= .12.计算:(x﹣1+)÷= .13.如图,△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点,点P在线段BC 上以3cm/s的速度由点B向点C移动,同时,点Q在线段CA上由点C向点A移动.若点Q的移动速度与点P的移动速度相同,则经过秒后,△BPD≌△CQP.14.分式方程﹣1=的解是.15.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3= .16.若a+b=4,且ab=2,则a2+b2= .三、解答题(共66分)17.如图,点C.F,A,D在同一条直线上,CF=AD,AB∥DE,AB=DE.求证:∠B=∠E.18.先化简,再求值:[a(a2b2﹣ab)﹣b(a2﹣a3b)]÷2a2b,其中a=﹣,b=.19.如图,∠AOB的内部有一点P,在射线OA,OB边上各取一点P1,P2,使得△PP1P2的周长最小,作出点P1,P2,叙述作图过程(作法),保留作图痕迹.20.一艘轮船在静水中的最大航速为32km/h,它以最大航速沿江顺流航行96km 所用时间,与以最大航速逆流航行64km所用时间相等,江水的流速为多少?21.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是(填A或B)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)(2)应用你从(1)中选出的等式,计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).22.观察下列各式: =﹣; =; =; =﹣;….(1)猜想它的规律:把表示出来: = .(2)用你猜想得到的规律,计算: ++++…++.23.在等边△ABC的外侧作直线BD,作点A关于直线BD的对称点A′,连接AA′交直线BD于点E,连接A′C交直线BD于点F.(1)依题意补全图1,已知∠ABD=30°,求∠BFC的度数;(2)如图2,若60°<∠ABD<90°,判断直线BD和A′C相交所成的锐角的度数是否为定值?若是,求出这个锐角的度数;若不是,请说明理由.参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分)1.下列图形中,不是轴对称图形的是()A. B.C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答.【解答】解:A、不是轴对称图形,故此选项正确;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:A.2.在式子,,,中,分式的个数为()A.1个B.2个C.3个D.4个【考点】分式的定义.【分析】判断一个式子是否是分式,关键要看分母中是否含有未知数,然后对分式的个数进行判断.【解答】解:,的分母都有字母,故都是分式,其它的都不是分式,故选:B.3.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.5,6,10 D.1,2,3【考点】三角形三边关系.【分析】根据三角形三边关系定理进行判断即可.【解答】解:3+4<8,则3,4,8不能组成三角形,A不符合题意;5+6=11,则5,6,11不能组成三角形,B不合题意;5+6>10,则5,6,10能组成三角形,C符合题意;1+2=3,则1,2,3不能组成三角形,D不合题意,故选:C.4.如图,AB=AD,添加下列一个条件后,仍无法确定△ABC≌△ADC的是()A.BC=CD B.∠BAC=∠DAC C.∠B=∠D=90°D.∠ACB=∠ACD【考点】全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、AB=AD、AC=AC、BC=CD,符合全等三角形的判定定理SSS,能推出△ABC≌△ADC,故本选项不符合题意;B、AB=AD、∠BAC=∠DAC、AC=AC,符合全等三角形的判定定理SAS,能推出△ABC ≌△ADC,故本选项不符合题意;C、AB=AD、AC=AC、∠B=∠D=90°,符合全等三角形的判定定理HL,能推出△ABC ≌△ADC,故本选项不符合题意;D、AB=AD、AC=AC、∠ACB=∠ACD,不符合全等三角形的判定定理,不能推出△ABC ≌△ADC,故本选项符合题意;故选D.5.下列运算正确的是()A.a3•a3=2a3B.a0÷a3=a﹣3C.(ab2)3=ab6D.(a3)2=a5【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;零指数幂;负整数指数幂.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a3•a3=a6故A不符合题意;B、a0÷a3=a﹣3,故B符合题意;C、积的乘方的乘方等于乘方的积,故C不符合题意;D、底数不变指数相乘,故D不符合题意;故选:B.6.一副三角板如图叠放在一起,则图中∠α的度数为()A.75°B.60°C.65°D.55°【考点】三角形的外角性质;三角形内角和定理.【分析】因为三角板的度数为45°,60°,所以根据三角形内角和定理即可求解.【解答】解:如图,∵∠1=60°,∠2=45°,∴∠α=180°﹣45°﹣60°=75°,故选A.7.下面甲、乙、丙三个三角形中,和△ABC全等的是()A.乙和丙B.甲和乙C.甲和丙D.只有甲【考点】全等三角形的判定.【分析】首先观察图形,然后根据三角形全等的判定方法(AAS与SAS),即可求得答案.【解答】解:在△ABC和乙三角形中,有两边a、c分别对应相等,且这两边的夹角都为50°,由SAS可知这两个三角形全等;在△ABC和丙三角形中,有一边a对应相等,和两组角对应相等,由AAS可知这两个三角形全等,所以在甲、乙、丙三个三角形中和△ABC全等的是乙和丙,故选:A.8.如图,△ABC中,AB=AC,点D在AC边上,若AD=BD=BC,则∠A的度数为()A.70°B.45°C.36°D.30°【考点】等腰三角形的性质.【分析】利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.【解答】解:∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=,可得2x=,解得:x=36°,则∠A=36°,故选C.9.规定一种运算:a*b=ab+a+b,则a*(﹣b)+a*b的计算结果为()A.0 B.2a C.2b D.2ab【考点】整式的混合运算.【分析】首先进行乘法运算,化简整式方程,然后,把ab=ab+a+b代入化简即可.【解答】解:∵a*b=ab+a+b,∴原式=a(﹣b)+ab=﹣ab+ab=﹣(ab+a+b)+(ab+a+b)=﹣ab﹣a﹣b+ab+a+b=0故选A.10.若a+b+c=0,且abc≠0,则a(+)+b(+)+c(+)的值为()A.1 B.0 C.﹣1 D.﹣3【考点】分式的混合运算.【分析】由已知得:a+b=﹣c,b+c=﹣a,a+c=﹣b,再将所求的式子去括号后,同分母加在一起,分别将所求的式子整体代入约分即可.【解答】解:∵a+b+c=0,∴a+b=﹣c,b+c=﹣a,a+c=﹣b,a(+)+b(+)+c(+),=+++++,=++,=++,=﹣1﹣1﹣1,=﹣3,故选D.二、填空题(本大题共6个小题,每小题4分,共24分)11.若a+b=,且ab=1,则(a+2)(b+2)= 12 .【考点】多项式乘多项式.【分析】根据多项式乘多项式的法则把式子展开,再整体代入计算即可求解.【解答】解:∵a+b=,且ab=1,∴(a+2)(b+2)=ab+2(a+b)+4=1+7+4=12.故答案为:12.12.计算:(x﹣1+)÷= x+1 .【考点】分式的混合运算.【分析】先算括号内的减法,把除法变成乘法,最后约分即可.【解答】解:原式=[+]÷=•=x+1,故答案为:x+1.13.如图,△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点,点P在线段BC 上以3cm/s的速度由点B向点C移动,同时,点Q在线段CA上由点C向点A移动.若点Q的移动速度与点P的移动速度相同,则经过 1 秒后,△BPD≌△CQP.【考点】勾股定理;全等三角形的判定;等腰三角形的性质.【分析】根据等边对等角可得∠B=∠C,然后表示出BD、BP、PC、CQ,再根据全等三角形对应边相等即可得出结论.【解答】解:∵AB=AC,∴∠B=∠C,设点P、Q的运动时间为t,则BP=3t,CQ=3t,∵AB=10cm,BC=8cm,点D为AB的中点,∴BD=×10=5cm,PC=(8﹣3t)cm,∵△BPD≌△CQP,∴BD=PC,BP=CQ,∴5=8﹣3t且3t=3t,解得t=1.故答案为:1.14.分式方程﹣1=的解是x=﹣1 .【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2+3x﹣x2﹣2x+3=2,解得:x=﹣1,经检验x=﹣1是分式方程的解,故答案为:x=﹣115.把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠1=52°,∠2=18°,则∠3= 42°.【考点】多边形内角与外角.【分析】利用360°减去等边三角形的一个内角的度数,减去正方形的一个内角的度数,减去正五边形的一个内角的度数,然后减去∠1和∠2即可求得.【解答】解:等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:(5﹣2)×180°=108°,则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2=42°.故答案是:42°.16.若a+b=4,且ab=2,则a2+b2= 14 .【考点】完全平方公式.【分析】根据完全平方公式即可求出a2+b2的值.【解答】解:∵a+b=4,ab=2,(a+b)2=a2+2ab+b2,∴16=a2+b2+4,∴a2+b2=14故答案为:14三、解答题(共66分)17.如图,点C.F,A,D在同一条直线上,CF=AD,AB∥DE,AB=DE.求证:∠B=∠E.【考点】全等三角形的判定与性质.【分析】首先得出AC=DF,利用平行线的性质∠BAC=∠EDF,再利用SAS证明△ABC≌△DEF,即可得出答案.【解答】证明:∵CF=AD,∴CF+AF=AD+AF,∴AC=DF,∵AB∥DE,∴∠BAC=∠EDF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠B=∠E.18.先化简,再求值:[a(a2b2﹣ab)﹣b(a2﹣a3b)]÷2a2b,其中a=﹣,b=.【考点】整式的混合运算—化简求值.【分析】先算乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:[a(a2b2﹣ab)﹣b(a2﹣a3b)]÷2a2b=[a3b2﹣a2b﹣a2b+a3b2]÷2a2b=[2a3b2﹣2a2b]÷2a2b=ab﹣1,当a=﹣,b=时,原式=﹣1.19.如图,∠AOB的内部有一点P,在射线OA,OB边上各取一点P1,P2,使得△PP1P2的周长最小,作出点P1,P2,叙述作图过程(作法),保留作图痕迹.【考点】轴对称﹣最短路线问题.【分析】作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于P1,交OB于P2,连接PP1,PP2,△PP1P2即为所求.【解答】解:如图,作点P关于直线OA的对称点E,点P关于直线OB的对称点F,连接EF交OA于P1,交OB于P2,连接PP1,PP2,△PP1P2即为所求.理由:∵P1P=P1E,P2P=P2F,∴△PP1P2的周长=PP1+P1P2+PP2=EP1+p1p2+p2F=EF,根据两点之间线段最短,可知此时△PP1P2的周长最短.20.一艘轮船在静水中的最大航速为32km/h,它以最大航速沿江顺流航行96km 所用时间,与以最大航速逆流航行64km所用时间相等,江水的流速为多少?【考点】分式方程的应用.【分析】设江水的流速为Vkm/h,则顺水速=静水速+水流速,逆水速=静水速﹣水流速.根据顺流航行96千米所用时间,与逆流航行64千米所用时间相等,列方程求解.【解答】解:设江水的流速为Vkm/h,根据题意可得: =,解得:V=6.4,经检验:V=6.4是原分式方程的解,答:江水的流速为6.4km/h.21.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 B (填A或B)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)(2)应用你从(1)中选出的等式,计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).【考点】平方差公式的几何背景.【分析】(1)根据题意,将前后两个图形的面积表示出来即可.(2)根据平方差公式即可求出答案.【解答】解:(1)图1中,边长为a的正方形的面积为:a2,边长为b的正方形的面积为:b2,∴图1的阴影部分为面积为:a2﹣b2,图2中长方形的长为:a+b,长方形的宽为:a﹣b,∴图2长方形的面积为:(a+b)(a﹣b),故选(B)(2)原式=(1+)(1﹣)(1+)(1﹣)…(1+)(1﹣)=×××…×=×=22.观察下列各式: =﹣; =; =; =﹣;….(1)猜想它的规律:把表示出来: = .(2)用你猜想得到的规律,计算: ++++…++.【考点】规律型:数字的变化类;有理数的混合运算.【分析】(1)根据所给式子发现=;(2)将++++…++化为+…++,再利用所给规律化简即可.【解答】解:(1)∵=﹣; =; =; =﹣;…∴=;故答案为:;(2)∵=﹣; =; =; =﹣;…=;∴++++…++=+…++,=1+…=1=.23.在等边△ABC的外侧作直线BD,作点A关于直线BD的对称点A′,连接AA′交直线BD于点E,连接A′C交直线BD于点F.(1)依题意补全图1,已知∠ABD=30°,求∠BFC的度数;(2)如图2,若60°<∠ABD<90°,判断直线BD和A′C相交所成的锐角的度数是否为定值?若是,求出这个锐角的度数;若不是,请说明理由.【考点】作图﹣轴对称变换;等边三角形的性质.【分析】(1)根据题意可以作出相应的图形,连接A′B,由题意可得到四边形AA′BC是菱形,根据菱形的对角线平分每一组对角,可以得到∠BFC的度数;(2)画出相应的图形,根据对称的性质可以得到相等的线段和相等的角,由等边△ABC,可以得到BC=BA,然后根据三角形内角和是180°,可以推出直线BD 和A′C相交所成的锐角的度数,本题得以解决.【解答】解:(1)补全的图1如下所示:连接BA′,∵由已知可得,BD垂直平分AA′,∠ABD=30°,△ABC是等边三角形,∴△BA′A是等边三角形,AA′∥BC且AA′=BC,A′A=A′B,∴四边形AA′BC是菱形,∵∠ACB=60°,∴∠BCE=30°;(2)直线BD和A′C相交所成的锐角的度数是定值,若下图所示,连接AF交BC于点G,由已知可得,BA′=BA,BA=BC,FA′=FA,则∠BA′A=∠BAA′,∠FA′A=∠FAA′,BA′=BC,∴∠BA′C=∠BCA′,∠FA′B=∠FAB,∴∠BCA′=∠FAB,∵∠FGC=∠BGA,∠ABC=60°,∴∠CFA=∠ABC=60°,∵∠AFC+∠AFD+∠A′FD=180°,∠A′FD=∠AFD,∴∠A′FD=60°,即直线BD和A′C相交所成的锐角的度数是定值,这个锐角的度数是60°.人教版八年级上学期期末考试数学试卷(二)一、选择题1、下列标志是轴对称图形的是()A、B、C、D、2、PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 002 5米,把数字0.000 002 5用科学记数法表示为()A、2.5×106B、0.25×10﹣6C、25×10﹣6D、2.5×10﹣63、使分式有意义的x的取值范围是()A、x≠3B、x>3C、x<3D、x=34、下列计算中,正确的是()A、(a2)3=a8B、a8÷a4=a2C、a3+a2=a5D、a2•a3=a55、如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为()A、2B、3C、4D、56、在平面直角坐标系中,已知点A(2,m)和点B(n,﹣3)关于x轴对称,则m+n的值是()A、﹣1B、1C、5D、﹣57、工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N 重合,过角尺顶点C作射线OC.由此作法便可得△MOC≌△NOC,其依据是()A、SSSB、SASC、ASAD、AAS8、下列各式中,计算正确的是()A、x(2x﹣1)=2x2﹣1B、=C、(a+2)2=a2+4D、(x+2)(x﹣3)=x2+x﹣69、若a+b=1,则a2﹣b2+2b的值为()A、4B、3C、1D、010、如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D点,则∠DBC的度数是()A、20°B、30°C、40°D、50°11、若分式的值为正整数,则整数a的值有()A、3个B、4个C、6个D、8个12、如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A、6B、8C、10D、12二、填空题13、当x=________时,分式值为0.14、分解因式:x2y﹣4y=________.15、计算:=________.16、已知等腰三角形的两条边长分别为3和7,那么它的周长等于________.17、如图,DE⊥AB,∠A=25°,∠D=45°,则∠ACB的度数为________.18、等式(a+b)2=a2+b2成立的条件为________19、如图,在△ABC中,BD是边AC上的高,CE平分∠ACB,交BD于点E,DE=2,BC=5,则△BCE的面积为________.20、图1是用绳索织成的一片网的一部分,小明探索这片网的结点数(V),网眼数(F),边数(E)之间的关系,他采用由特殊到一般的方法进行探索,列表如下:表中“☆”处应填的数字为________;根据上述探索过程,可以猜想V,F,E 之间满足的等量关系为________;如图2,若网眼形状为六边形,则V,F,E之间满足的等量关系为________.三、解答题21、计算:﹣(π﹣3)0﹣()﹣1+|﹣3|.22、已知:如图,E为BC上一点,AC∥BD,AC=BE,BC=BD.求证:AB=DE.23、计算:.24、解方程:.四、解答题25、已知x﹣y=3,求[(x﹣y)2+(x+y)(x﹣y)]÷2x的值.26、北京时间2015年7月31日,国际奥委会主席巴赫宣布:中国北京获得2022年第24届冬季奥林匹克运动会举办权.北京也创造历史,成为第一个既举办过夏奥会又举办冬奥会的城市,张家口也成为本届冬奥会的协办城市.近期,新建北京至张家口铁路可行性研究报告已经获得国家发改委批复,同意新建北京至张家口铁路,铁路全长约180千米.按照设计,京张高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少了20分钟,求高铁列车的平均行驶速度.27、已知:如图,线段AB和射线BM交于点B.(1)利用尺规完成以下作图,并保留作图痕迹(不写作法).①在射线BM上作一点C,使AC=AB;②作∠ABM的角平分线交AC于D点;③在射线CM上作一点E,使CE=CD,连接DE.(2)在(1)所作的图形中,猜想线段BD与DE的数量关系,并证明.五、解答题28、如图1,我们在2016年1月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”).该十字星的十字差为12×14﹣6×20=48,再选择其它位置的十字星,可以发现“十字差”仍为48.(1)如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为________.(2)若将正整数依次填入k列的长方形数表中(k≥3),继续前面的探究,可以发现相应“十字差”为与列数k有关的定值,请用k表示出这个定值,并证明你的结论.(3)如图3,将正整数依次填入三角形的数表中,探究不同十字星的“十字差”,若某个十字星中心的数在第32行,且其相应的“十字差”为2015,则这个十字星中心的数为________(直接写出结果).29、数学老师布置了这样一道作业题:在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,α+β=120°,连接AD,求∠ADB的度数.小聪提供了研究这个问题的过程和思路:先从特殊问题开始研究,当α=90°,β=30°时(如图1),利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形的相关知识便可解决这个问题.(1)请结合小聪研究问题的过程和思路,求出这种特殊情况下∠ADB的度数;(2)结合小聪研究特殊问题的启发,请解决数学老师布置的这道作业题;(3)解决完老师布置的这道作业题后,小聪进一步思考,当点D和点A在直线BC 的异侧时,且∠ADB的度数与(1)中相同,则α,β满足的条件为________(直接写出结果).答案解析部分一、<b >选择题</b>1、【答案】B【考点】轴对称图形【解析】【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【分析】根据轴对称图形的概念求解.2、【答案】A【考点】科学记数法—表示绝对值较小的数【解析】【解答】解:0.0000025=2.5×10﹣6,故选:A.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.3、【答案】A【考点】分式有意义的条件【解析】【解答】解:由分式有意义,得x﹣3≠0,解得x≠3,故选:A.【分析】根据分式的分母不为零分式有意义,可得答案.4、【答案】D【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法【解析】【解答】解:A、幂的乘方底数不变指数相乘,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、不是同底数幂的乘法指数不能相加,故C错误;D、同底数幂的乘法底数不变指数相加,故D正确;故选:D.【分析】根据幂的乘方底数不变指数相乘,同底数幂的除法底数不变指数相减,同底数幂的乘法底数不变指数相加,可得答案.5、【答案】A【考点】全等三角形的性质【解析】【解答】解:∵△ABC≌△DCB,∴BD=AC=7,∵BE=5,∴DE=BD﹣BE=2,故选A.【分析】根据全等三角形的对应边相等推知BD=AC=7,然后根据线段的和差即可得到结论.6、【答案】B【考点】关于x轴、y轴对称的点的坐标【解析】【解答】解:由点A(2,m)和点B(n,﹣3)关于x轴对称,得n=﹣2,m=3.则m+n=﹣2+3=1.故选:B.【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得m、n的值,根据有理数的加法,可得答案.7、【答案】A【考点】全等三角形的判定【解析】【解答】解:∵在△ONC和△OMC中,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,故选:A.【分析】由作图过程可得MO=NO,NC=MC,再加上公共边CO=CO可利用SSS定理判定△MOC≌△NOC.8、【答案】B【考点】单项式乘多项式,多项式乘多项式,完全平方公式,约分【解析】【解答】解:A、原式=2x2﹣x,错误;B、原式= = ,正确;C、原式=a2+4a+4,错误;D、原式=x2﹣x﹣6,错误,故选B【分析】A、原式利用单项式乘以多项式法则计算得到结果,即可作出判断;B、原式约分得到最简结果,即可作出判断;C、原式利用完全平方公式化简得到结果,即可作出判断;D、原式利用多项式乘以多项式法则计算得到结果,即可作出判断.9、【答案】C【考点】平方差公式【解析】【解答】解:∵a+b=1,∴a2﹣b2+2b=(a+b)(a﹣b)+2b=a﹣b+2b=a+b=1.故选C.【分析】首先利用平方差公式,求得a2﹣b2+2b=(a+b)(a﹣b)+2b,继而求得答案.10、【答案】B【考点】线段垂直平分线的性质,等腰三角形的性质【解析】【解答】解:∵AB=AC,∠A=40°,∴∠ABC= (180°﹣∠A)= (180°﹣40°)=70°,∵MN垂直平分线AB,∴AD=BD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故选B.【分析】根据等腰三角形两底角相等求出∠ABC的度数,再根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,根据等边对等角的性质可得∠ABD=∠A,然后求解即可.11、【答案】B【考点】分式的值【解析】【解答】解:分式的值为正整数,则a+1=1或2或3或6.则a=0或1或2或5.故选B.【分析】分式的值为正整数,则a+1的值是6的正整数约数,据此即可求得a的值.12、【答案】C【考点】轴对称-最短路线问题【解析】【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,= BC•AD= ×4×AD=16,解得AD=8,∴S△ABC∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+ BC=8+ ×4=8+2=10.故选C.【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.二、<b >填空题</b>13、【答案】0【考点】分式的值为零的条件【解析】【解答】解:依题意得:x=0且x﹣1≠0,解得x=0.故答案是:0.【分析】分式的值为零时:x=0且x﹣1≠0,由此求得x的值.14、【答案】y(x+2)(x﹣2)【考点】提公因式法与公式法的综合运用【解析】【解答】解:x2y﹣4y,=y(x2﹣4),=y(x+2)(x﹣2).故答案为:y(x+2)(x﹣2).【分析】先提取公因式y,然后再利用平方差公式进行二次分解.15、【答案】【考点】分式的乘除法【解析】【解答】解:= .故答案为:.【分析】直接利用分式的乘方运算法则化简求出答案.16、【答案】17【考点】三角形三边关系,等腰三角形的性质【解析】【解答】解:当3是腰时,则3+3<7,不能组成三角形,应舍去;当7是腰时,则三角形的周长是3+7×2=17.故答案为:17.【分析】分两种情况讨论:当3是腰时或当7是腰时.根据三角形的三边关系,知3,3,7不能组成三角形,应舍去.17、【答案】110°【考点】三角形的外角性质【解析】【解答】解:∵DE⊥AB,∴∠BED=90°,∵∠D=45°,∴∠B=180°﹣∠BED﹣∠D=45°,又∵∠A=25°,∵∠ACB=180°﹣(∠A+∠B)=110°.故答案为:110°【分析】由DE与AB垂直,利用垂直的定义得到∠BED为直角,进而确定出△BDE 为直角三角形,利用直角三角形的两锐角互余,求出∠B的度数,在△ABC中,利用三角形的内角和定理即可求出∠ACB的度数.18、【答案】ab=0【考点】完全平方公式【解析】【解答】解:∵(a+b)2=a2+2ab+b2,∴等式(a+b)2=a2+b2成立的条件为ab=0,故答案为:ab=0.【分析】先根据完全平方公式得出(a+b)2=a2+2ab+b2,即可得出答案.19、【答案】5【考点】角平分线的性质【解析】【解答】解:作EF⊥BC于F,∵CE平分∠ACB,BD⊥AC,EF⊥BC,∴EF=DE=2,= BC•EF= ×5×2=5.∴S△BCE故答案为:5.【分析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.20、【答案】17①V+F﹣E=1②V+F﹣E=1【考点】点、线、面、体【解析】【解答】解:由表格数据可知,1个网眼时:4+1﹣4=1;2个网眼时:6+2﹣7=1;3个网眼时:9+4﹣12=1;4个网眼时:12+6﹣☆=1,故“☆”处应填的数字为17.据此可知,V+F﹣E=1;若网眼形状为六边形时,一个网眼时:V=6,F=1,E=6,此时V+F﹣E=6+1﹣6=1;二个网眼时:V=10,F=2,E=11,此时V+F﹣E=10+2﹣11=1;三个网眼时:V=13,F=3,E=15,此时V+F﹣E=13+3﹣15=1;故若网眼形状为六边形时,V,F,E之间满足的等量关系为:V+F﹣E=1.故答案为:17,V+F﹣E=1,V+F﹣E=1.【分析】根据表中数据可知,边数E比结点数V与网眼数F的和小1,从而得到6个网眼时的边数;依据以上规律可得V+F﹣E=1;类比网眼为四边形时的方法,可先罗列网眼数是1、2、3时的V、F、E,从而得出三者间关系.三、<b >解答题</b>21、【答案】解:原式=2﹣1﹣2+3=2【考点】实数的运算,零指数幂,负整数指数幂【解析】【分析】原式第一项利用算术平方根定义计算,第二项利用零指数幂法则计算,第三项利用负整数指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.22、【答案】证明:∵AC∥BD,∴∠ACB=∠DBC,∵AC=BE,BC=BD,∴△ABC≌△EDB,∴AB=DE【考点】全等三角形的判定与性质【解析】【分析】由AC、BD平行,可知∠ACB=∠DBC,再根据已知条件,即可得到△ABC≌△EDB,即得结论AB=DE.23、【答案】解:原式= •= •=【考点】分式的混合运算【解析】【分析】先把括号内通分,再把分子分母因式分解和除法运算化为乘法运算,然后约分即可.24、【答案】解:方程两边乘以(x+1)(x﹣1),得x(x+1)﹣(x+1)(x﹣1)=3(x ﹣1),去括号得:x2+x﹣x2+1=3x﹣3,解得:x=2,检验:当x=2时,(x+1)(x﹣1)=3≠0,则原分式方程的解为x=2【考点】解分式方程【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.四、<b >解答题</b>25、【答案】解:原式=(x2﹣2xy+y2+x2﹣y2)÷2x=(2x2﹣2xy)÷2x=x﹣y,当x﹣y=3时,原式=x﹣y=3【考点】整式的混合运算【解析】【分析】原式中括号中利用完全平方公式及平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x﹣y=3代入计算即可求出值.26、【答案】解:设普通快车的平均行驶速度为x千米/时,则高铁列车的平均行驶速度为1.5x千米/时.根据题意得:﹣= ,解得:x=180,经检验,x=80是所列分式方程的解,且符合题意.则1.5x=1.5×180=270.答:高铁列车的平均行驶速度为270千米/时【考点】分式方程的应用【解析】【分析】首先设普通快车的平均行驶速度为x千米/时,则高铁列车的平均行驶速度为1.5x千米/时,利用高铁列车比普通快车用时少了20分钟得出等式进而求出答案.27、【答案】(1)解:如图所示:(2)解:BD=DE,证明:∵BD平分∠ABC,∴∠1= ∠ABC.∵AB=AC,∴∠ABC=∠4.∴∠1= ∠4.∵CE=CD,∴∠2=∠3.∵∠4=∠2+∠3,∴∠3= ∠4.∴∠1=∠3.∴BD=DE【考点】作图—复杂作图【解析】【分析】(1)①以A为圆心,AB长为半径画弧交BC于C;②根据角平分线的作法作∠ABM的角平分线;③以C为圆心CD长为半径画弧交CM于E,再连接ED即可;(2)根据角平分线的性质可得∠1= ∠ABC,根据等边对等角可得∠ABC=∠4,∠2=∠3,然后再证明∠1=∠3,根据等角对等边可得BD=DE.五、<b >解答题</b>28、【答案】(1)24(2)解:定值为k2﹣1=(k+1)(k﹣1);证明:设十字星中心的数为x,则十字星左右两数分别为x﹣1,x+1,上下两数分别为x﹣k,x+k(k≥3),十字差为(x﹣1)(x+1)﹣(x﹣k)(x+k)=x2﹣1﹣x2+k2=k2﹣1,故这个定值为k2﹣1=(k+1)(k﹣1)(3)976【考点】整式的混合运算【解析】【解答】解:(1)根据题意得:6×8﹣2×12=48﹣24=24;故答案为:24;(3)设正中间的数为a,则上下两个数为a﹣62,a+64,左右两个数为a﹣1,a+1,根据题意得:(a﹣1)(a+1)﹣(a﹣62)(a+64)=2015,解得:a=976.故答案为:976.【分析】(1)根据题意求出相应的“十字差”,即可确定出所求定值;(2)定值为k2﹣1=(k+1)(k﹣1),理由为:设十字星中心的数为x,表示出十字星左右两数,上下两数,进而表示出十字差,化简即可得证;(3)设正中间的数为a,则上下两个数为a﹣62,a+64,左右两个数为a﹣1,a+1,根据相应的“十字差”为2015求出a的值即可.29、【答案】(1)解:如图1作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,∵AB=AB,∠AB D′=∠ABD,B D′=BD,。

最新人教版八年级数学(上册)期末试题及答案(完美版)

最新人教版八年级数学(上册)期末试题及答案(完美版)

最新人教版八年级数学(上册)期末试题及答案(完美版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .13.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 6.如果2a a 2a 1-+,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.下列图形中,是轴对称图形的是()A.B. C.D.8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图, BD 是△ABC 的角平分线, AE⊥ BD ,垂足为 F ,若∠ABC=35°,∠ C=50°,则∠CDE 的度数为()A.35°B.40°C.45°D.50°10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a-=__________.2x1-有意义,则x的取值范围是▲.3.如果不等式组841x xx m+<-⎧⎨>⎩的解集是3x>,那么m的取值范围是________.4.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简,再求值:22x 4x 4x 1x 1x 11x ⎛⎫-+-+÷ ⎪--⎝⎭,其中x 满足2x x 20+-=.3.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.4.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D5、D6、C7、B8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、()()33a a +-2、x 1≥.3、3m ≤.4、﹣2<x <25、49136、132三、解答题(本大题共6小题,共72分)1、2x =2、112x -;15.3、(1)12,32-;(2)略.4、(1) 65°;(2) 25°.5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.。

2023-2024学年全国初二上数学人教版期末试卷(含答案解析)

2023-2024学年全国初二上数学人教版期末试卷(含答案解析)

一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是()。

A.(2,3)B.(2,3)C.(2,3)D.(2,3)2. 一个等腰三角形的底边长是12厘米,腰长是8厘米,那么这个三角形的周长是()厘米。

A. 20B. 28C. 36D. 443. 一个正方形的边长是5厘米,那么它的面积是()平方厘米。

A. 10B. 15C. 20D. 254. 在一个等差数列中,首项是2,公差是3,那么第五项是()。

A. 11B. 12C. 13D. 145. 一个圆的半径是4厘米,那么它的周长是()厘米。

A. 8πB. 16πC. 32πD. 64π二、判断题(每题1分,共5分)1. 一个等腰三角形的两个底角相等。

()2. 一个正方形的对角线长度是边长的根号2倍。

()3. 在一个等差数列中,任意两项的差都是公差。

()4. 一个圆的周长是直径的π倍。

()5. 一个等腰三角形的底边长是腰长的两倍。

()三、填空题(每题1分,共5分)1. 一个等边三角形的每个内角都是____度。

2. 一个正方形的面积是边长的____倍。

3. 在一个等差数列中,首项是a,公差是d,那么第n项是____。

4. 一个圆的面积是半径的____倍。

5. 一个等腰三角形的底边长是腰长的____倍。

四、简答题(每题2分,共10分)1. 简述等腰三角形的性质。

2. 简述正方形的性质。

3. 简述等差数列的性质。

4. 简述圆的性质。

5. 简述等腰三角形的判定方法。

五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长是10厘米,腰长是8厘米,求这个三角形的周长。

2. 一个正方形的边长是6厘米,求这个正方形的面积。

3. 在一个等差数列中,首项是2,公差是3,求第五项。

4. 一个圆的半径是5厘米,求这个圆的周长。

5. 一个等腰三角形的底边长是8厘米,腰长是5厘米,求这个三角形的周长。

六、分析题(每题5分,共10分)1. 分析等腰三角形的性质,并说明如何利用这些性质解决实际问题。

2023-2024学年全国初中八年级上数学人教版期末考卷(含答案解析)

2023-2024学年全国初中八年级上数学人教版期末考卷(含答案解析)

20232024学年全国初中八年级上数学人教版期末考卷一、选择题(每题2分,共20分)1. 下列各数中,是整数的是()A. 0.5B. 2C. 3.14D. 5/32. 若a、b是实数,且a+b=0,则下列选项中正确的是()A. a和b互为相反数B. a和b互为倒数C. a和b互为平方根D. a和b互为对数3. 已知a、b是实数,且a²=b²,则下列选项中正确的是()A. a=bB. a=bC. a+b=0D. a²+b²=04. 下列各数中,是无理数的是()A. 2B. 3.14C. √9D. √55. 已知a、b是实数,且a²+b²=0,则下列选项中正确的是()A. a=0,b≠0B. a≠0,b=0C. a=0,b=0D. a≠0,b≠06. 若a、b是实数,且a²+b²=1,则下列选项中正确的是()A. a=1,b=0B. a=0,b=1C. a²+b²=0D. a²+b²=27. 已知a、b是实数,且a²+b²=0,则下列选项中正确的是()A. a=0,b≠0B. a≠0,b=0C. a=0,b=0D. a≠0,b≠08. 若a、b是实数,且a²+b²=1,则下列选项中正确的是()A. a=1,b=0B. a=0,b=1C. a²+b²=0D. a²+b²=29. 已知a、b是实数,且a²+b²=0,则下列选项中正确的是()A. a=0,b≠0B. a≠0,b=0C. a=0,b=0D. a≠0,b≠010. 若a、b是实数,且a²+b²=1,则下列选项中正确的是()A. a=1,b=0B. a=0,b=1C. a²+b²=0D. a²+b²=2二、填空题(每题2分,共20分)1. 若a、b是实数,且a²+b²=0,则a=______,b=______。

人教版八年级数学上册期末测试题及答案解析(共三套)

人教版八年级数学上册期末测试题及答案解析(共三套)

人教版八年级数学上册期末测试题(一)(时间:120分分值:120分)一、选择题:(每题2分,共20分)1.(2分)下列说法中正确的是()A.两个直角三角形全等B.两个等腰三角形全等C.两个等边三角形全等D.两条直角边对应相等的直角三角形全等2.(2分)下列各式中,正确的是()A.y3•y2=y6B.(a3)3=a6C.(﹣x2)3=﹣x6D.﹣(﹣m2)4=m8 3.(2分)计算(x﹣3y)(x+3y)的结果是()A.x2﹣3y2B.x2﹣6y2C.x2﹣9y2D.2x2﹣6y24.(2分)如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2 B.3 C.5 D.2.55.(2分)若2a3x b y+5与5a2﹣4y b2x是同类项,则()A.B.C.D.6.(2分)如图图案中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个7.(2分)若分式的值为零,则x的值是()A.2或﹣2 B.2 C.﹣2 D.48.(2分)如图在△ABC中,AB=AC,D,E在BC上,BD=CE,图中全等三角形的对数为()A.0 B.1 C.2 D.39.(2分)满足下列哪种条件时,能判定△ABC与△DEF全等的是()A.∠A=∠E,AB=EF,∠B=∠D B.AB=DE,BC=EF,∠C=∠FC.AB=DE,BC=EF,∠A=∠E D.∠A=∠D,AB=DE,∠B=∠E10.(2分)如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm二、填空题(每题3分,共30分)11.(3分)当a时,分式有意义.12.(3分)计算:3x2•(﹣2xy3)=,(3x﹣1)(2x+1)=.13.(3分)多项式x2+2mx+64是完全平方式,则m=.14.(3分)若a+b=4,ab=3,则a2+b2=.15.(3分)用科学记数法表示0.00000012为.16.(3分)如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠ABD=.17.(3分)线段AB=4cm,P为AB中垂线上一点,且PA=4cm,则∠APB=。

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D CAB初二数学上册期末考试试题一、选择题(每小题有且只有一个答案正确,每小题4分,共40分) 1、如图,两直线a ∥b ,与∠1相等的角的个数为( ) A 、1个 B 、2个 C 、3个 D 、4个2、不等式组x>3x<4⎧⎨⎩的解集是( )A 、3<x<4B 、x<4C 、x>3D 、无解 3、如果a>b ,那么下列各式中正确的是( ) A 、a 3<b 3-- B 、a b<33C 、a>b --D 、2a<2b -- 4、如图所示,由∠D=∠C,∠BAD=∠ABC 推得△ABD ≌△BAC ,所用的的判定定理的简称是( ) A 、AAS B 、ASA C 、SAS D 、SSS5、已知一组数据1,7,10,8,x ,6,0,3,若x =5,则x 应等于( ) A 、6 B 、5 C 、4 D 、26、下列说法错误的是( )A 、长方体、正方体都是棱柱;B 、三棱住的侧面是三角形;C 、六棱住有六个侧面、侧面为长方形;D 、球体的三种视图均为同样大小的图形; 7、△ABC 的三边为a 、b 、c ,且2(a+b)(a-b)=c ,则( ) A 、△ABC 是锐角三角形; B 、c 边的对角是直角; C 、△ABC 是钝角三角形; D 、a 边的对角是直角;8、为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是( )A 、中位数;B 、平均数;C 、众数;D 、加权平均数; 9、如右图,有三个大小一样的正方体,每个正方体的六个面上都按照相同的顺序,依次标有1,2,3,4,5,6这六个数字,并且把标有“6”的面都放在左边,那么它们底面所标的3个数字之和等于( )A 、8B 、9C 、10D 、1110、为鼓励居民节约用水,北京市出台了新的居民用水收费标准:(1)若每月每户居民用水不超过4立方米,则按每立方米2米计算;(2)若每月每户居民用水超过4立方米,则超过部分按每立方米4.5米计算(不超过部分仍按每立方米2元计算)。

现假设该市某户居民某月用水x 立方米,水费为y 元,则y 与x 的函数关系用图象表示正确的是( )1abA BCD EFA BO CD二、填空题(每小题4分,共32分)11、不等式2x-1>3的解集是__________________;12、已知点A 在第四象限,且到x 轴,y 轴的距离分别为3,5,则A 点的坐标为_________;13、为了了解某校初三年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是指__________________________________;14、某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下的8人一共得了300分,则中位数是_____________。

15、如图,已知∠B=∠DEF ,AB=DE ,请添加一个条件使△ABC ≌△DEF ,则需添加的条件是__________; 16、如图,AD 和BC 相交于点O ,OA=OD ,OB=OC ,若∠B=40°,∠AOB=110°,则∠D=________度; 17、弹簧的长度y(cm)与所挂物体的质量x (kg)的关系是一次函数, 图象如右图所示,则弹簧不挂物体时的长度是___________cm ;第15题图 第16题图 第17题图 18、如下图所示,图中是一个立体图形的三视图,请你根据视图,说出立体图形的名称:对应的立体图形是________________的三视图。

三、解答题(共78分) 19、(8分)解不等式x+1(x 1)12--≤,并把解集在数轴上表示出来。

20、(8分)填空(补全下列证明及括号内的推理依据): 如图:已知:AD ⊥BC 于D ,EF ⊥BC 于F ,∠1=∠3, 求证:AD 平分∠BAC 。

证明:∵AD ⊥BC ,EF ⊥BC 于F(已知)∴AD ∥EF( ) ∴∠1=∠E( ) ∠2=∠3( ) 又∵∠3=∠1(已知) ∴∠1=∠2(等量代换)主视图左视图俯视图12 3A BCDEF∴AD 平分∠BAC( ) 21、画出下图的三视图(9分)22、(9分)已知点A(10,0),B(10,8),C(5,0),D(0,8),E(0,0)(1)分别描出A 、B 、C 、D 、E(2)要图象“高矮”不变,“胖瘦”变为原来图形的一半,坐标值应发生怎样的变化?23、(10分)如图,l A ,l B 分别表示A 步行与B 骑车在同一路上行驶的路程S 与时间t 的关系。

(1)B 出发时与A 相距_________千米。

(2)走了一段路后,自行车发生故障,进行修理,所用的时间是____________小时。

(3)B 出发后_________小时与A 相遇。

(4)若B 的自行车不发生故障,保持出发时的速度前进,几小时与A 相遇,相遇点离B 的出发点多少千米。

在图中表示出这个相遇点C ,并写出过程。

24、(10分)已知:如图,RtABC ≌Rt △ADE ,∠ABC=∠ADE=90°,试以图中标有字母的点为端点,连结两条线段,如果你所连结的两条线段满足相等、垂直或平行关系中的一种,那么请你把它写出来并说明理由。

25、(10分)某工厂有甲、乙两条生产线,在乙生产线投产前,甲生产线已生产了200吨成品,从乙生产线投产开始,甲、乙两条生产线每天生产20吨和30吨成品。

(1)分别求出甲、乙两条生产线投产后,各自的总产量y(吨)与从乙开始投产以后所用时间x(天)之间的函数关系式,并求出第几天结束时,甲、乙两条生产线的总产量相同;(2)在如图所示的直角坐标系中,作出上述两个函数和第一象限内的图象,并观察图象,分别指出第15天和第25天结束时,哪条生产线的总产量高?26、(14分) (1)为保护环境,某校环保小组成员小敏收集废电池,第一天收集1号电池4节、5号电池5节,总重量460克;第二天收集1号电池2节、5号电池3节,总重量240克。

①求1号和5号电池每节分别重多少克?②学校环保小组为估算四月份收集废电池的总重量,他们随意抽取了该月腜5天每天收集废电池的数量,如下表:分别计算两种电池的样本平均数,并由此估算该月(30天)环保小组收集废电池的总重量是多少千克?(2)如图,用正方体石墩垒石梯,下图分别表示垒到一、二、三阶梯时的情况,那么照这样垒下去,①填出下表中未填的两空,观察规律。

②垒到第n级阶梯时,共用正方体石墩________________块(用含n的代数式表示)。

一、选择题(每小题有且只有一个答案正确,每小题4分,共40分)1、C ;2、A ;3、D ;4、A ;5、B ;6、B ;7、D ;8、C ;9、A ;10、C ; 二、填空题(每小题4分,共32分)11、2x >;12、(5,3)-;13、某校初三年级400名学生体重情况的全体;14、80分 15、BC=EF(答案不唯一);16、30;17、9;18、四棱锥或五面体; 三、解答题(共78分) 19、解:x+1(x 1)12--≥ x+12(x 1)2--≥……………………………………(2分)x 12x 22+-+≥……………………………………(1分) x 1-≥- ……………………………………(1分) x 1≤ ……………………………………(2分)数轴表示正确2分;20、证明:∵AD ⊥BC ,EF ⊥BC 于F(已知)∴AD ∥EF(同位角相等,两直线平等或在同一平面内,垂直于同一条干线的两条直线平行) ∴∠1=∠E(两条直线平行,同位角相等) ∠2=∠3(两条直线平行,内错角相等) 又∵∠3=∠1(已知) ∴∠1=∠2(等量代换)∴AD 平分∠BAC(角平分线的定义 ) 每空2分,共8分;21、图形如下,每个3分,共9分;主视图 左视图 俯视图 22、图形略,(3分)(1)像字母M ;(2分)(2)横坐标变为原来的一半,纵坐标不变;(4分)23、(1)10;(2)1;(3)3;………………………………………………(每题1分)(4)解:表示出相遇点C 得1分;求出l A 的函数关系式:S=4t+10…………………………2分求出B l '的函数关系:S=15t …………………………………2分 解得10t=11………………………………………………………1分150S=11……………………………………………………1分24、解:有不同的情况,图形画正确,并且结论也正确的即可给2分; (1)连结CD 、EB ,则有CD =EB ; (2)连结AF 、BD ,则有AF ⊥BD ; (3)连结BD 、EC ,则有BD ∥EC ; 选(1);证明:∵Rt △ABC ≌Rt △ADE(已知)∴AC=AE,AD=AB(全等三角形对应边相等)∠CAB=∠EAB(全等三角形对应角相等)…………………………3分∴CAB BAD=EAD BAD∠-∠∠-∠即:CAD=EAB∠∠…………………………………………………2分∴在△ADC和△ABE中:∵AC=AEÐCAD=?EABAD=AB⎧⎪⎨⎪⎩∴△ADC≌△ABE(SAS)……………………………………………2分∴CD=EB……………………………………………………………1分25、(1)解得:y=200+20x甲…………………………2分y=30x乙………………………………2分两者总生产量相等,即:y=y乙甲∴200+20x=30x解得:x=20…………………………………2分(2)图形略,……………………………………2分第15天结束,甲的总生产量大于乙的总生产量;……………………1分第25天结束时,乙的总生产量大于甲的总生产量;…………………1分26、解:(1)①设1号电池每节重量为x克,5号电池每节重量为y克;由题意可得:4x+5y=4602x+3y=240⎧⎨⎩……………………………………2分解得:x=90,y=20……………………………………………1分答:1号电池每节重量为90克,5号电池每节重量为20克;………………1分②求得1号电池平均每天30节,5号电池平均每天50节,…………………2分所以总重量=(30905020)30111000(⨯+⨯⨯=克)=111(千克)……………………………………………………2分(2)18,30,3n(n+1)2…………………………………第一个空1分,第二个空2分,第三空3分;。

相关文档
最新文档