600MW锅炉本体结构
[经典专业文档]600MW机组锅炉本体设备
项目 再热器压降 炉膛压力 炉膛至省煤器出口烟气压降 省煤器出口至 空气预热器出口烟气压降 空气预热器进口烟温 排烟温度(未校/已校正)
单位 kPa kPa kPa kPa
℃ ℃
空气预热器进口风温(平均值) ℃
空气预热器出口一次风温
℃
空气预热器出口二次风温
℃
省煤器压降
kPa
空气预热器进口二次风压
kPa
(1)炉膛与燃烧器
锅炉炉膛尺寸为宽19.558m、深16.432m, 炉膛容积15484m³,除了炉膛上部被壁式再热器覆 盖部分采用光管水冷壁外,炉膛四周均为Φ51mm内 螺纹管组成的膜式水冷壁。炉膛设 计压力7813Pa。 最上层燃烧器标高32.61,至屏底距离为16.7m, 锅炉顶棚管标高为 66.16m,运转层标高为13.7 m。
平朔 晋北煤 洗中煤
50
30
1110
20
过热蒸汽 调温方式
一级喷水
二级 喷水
二级喷 三级
水
喷水
喷水
三级 喷水
喷水
21
再热蒸汽 调温方式
燃烧器摆 动+喷水
同左
同左
一级 喷水
汽-汽热交 换器高负荷 同左 时喷水
同左
燃料低位 22 发热量
Qar,net(kJ/kg)
22441 22901 20934 11304
北仑电厂第一台600MW机组的锅炉由美 国燃烧工程公司(CE)设计制造,其型式为 亚临界压力、一次中间再热、控制循环单 汽包锅炉,采用平衡通风、直流式四角切 向燃烧系统,设计燃料为山西晋北烟煤。
(一)锅炉主要设计参数
锅炉主要设计参数见表1-1-2。
表1-1-2 锅炉主要设计参数
600MW锅炉结构讲解
三、FW亚临界压力600MW自然循环锅炉
FW亚临界压力600MW自然循环锅炉的最大蒸发量为 2020t/h,采用24只低NOx旋流式燃烧器对冲燃烧方式,配 置6台双进双出磨煤机直吹式制粉系统,两台三分仓空气预 热器,两台离心式一次风机,两台动叶可调轴流式二次风 机,两台动叶可调轴流式吸风机,再热汽温调节采用烟气 挡板,过热汽温调节以喷水减温为主。 由锅筒引出的饱和蒸汽依次进入顶棚过热器、包墙管过热 器、一级过热器、大屏过热器、末级过热器。 过热汽温的调节采用两级喷水减温。第一级减温器布置在 一级过热器和大屏过热器的连接管道内,二级减温器布置 在大屏过热器出口联箱和后屏过热器进口联箱之间。
五、B&W360MW级W型火焰锅炉
B&W360MW级W型火焰锅炉是我国湖南岳阳电厂引进的 亚临界自然循环锅炉。锅炉整体布置如图1-8。沿烟气流程 布置屏式过热器、高温过热器,水平烟道中布置高、低温 再热器(即再热器为单级布置),尾部竖井烟道中布置低 温过热器和省煤器。过热汽温调节采用两级喷水减温,再 热汽温调节采用炉底供热风的方式。炉底注入热风还可以 使冷灰斗区域的炉渣凝聚体积减小,以利于排渣和减轻受 热面的磨损。
1. 原煤破碎→原煤干燥→磨制煤粉→输送煤粉→组织 燃烧; 2. 空气加热→燃料燃烧配风; 3. 锅炉给水由省煤器受热面加热升温→由蒸发受热面 (水冷壁)吸热将给水转变为汽水混合物或直接转变 为蒸汽→由过热器受热面将蒸汽进一步加热达到过 热状态; 4. 排渣、清灰、除灰、烟气排放。
第二节 锅炉机组的系统及组成部件
一、锅炉机组的系统
1、制粉系统 原煤输送系统将破碎后的原煤送入原煤仓→给煤机→磨煤 机→煤粉分离→合格的煤粉→由空气送入炉内燃烧。 2、燃烧系统 燃烧所需要的空气 → 送风机 → 空气预热器 → → 燃烧器二次风喷口→燃烧室。 →两路热风管道 →制粉系统输送煤 粉→燃烧器一次 风喷口→燃烧室。
600MW锅炉水冷壁
冷灰斗结构
过渡段水冷壁管屏
从倾斜布置的水冷壁转换到垂直上升的水冷壁就需要过渡 结构,即过渡段水冷壁。
螺旋水冷壁出口管几乎每间隔1根管子直接上升成为垂 直水冷壁,另1根抽出到炉外,进入螺旋水冷壁出口集 箱,再由连接管从螺旋水冷壁出口集箱引入到垂直水冷 壁进口集箱,由垂直水冷壁进口集箱拉出两倍进入垂直
前墙和两侧墙垂直管屏上升并与位于顶棚上方的出口 集箱相连接,后墙垂直管屏上升与标高52.061m的 φ273×60后水吊挂管入口集箱相接,此集箱引出95 根φ76×12.5 MWT的吊挂管至标高68.8m的吊挂管出 口集箱。
在运行过程中为监控水冷壁的壁温,在螺旋水 冷壁管出口装设了73个壁温测点,在前、侧墙 垂直管屏和后水吊挂管出口共装设了87个壁温 测点。
零膨胀点的设置
锅炉本体采用全悬吊结构,使锅炉本体的每个部分能 够比较充分的热膨胀,大大地减少了由于热膨胀受阻 而产生的热应力。锅炉的自然热膨胀中心除了与锅炉 的几何尺寸有关之外,还与温度的分布有关。而锅炉 在启动低负荷、满负荷和停炉工况下温度的分布是不 一样的。因此,锅炉的自然热膨胀中心是随着工况的 变化而变化的。为了进行比较精确的热膨胀位移计算, 以便进行系统的应力分析和密封设计,需要有一个在 各种工况下都保持不变的膨胀中心,作为热膨胀位移 计算的零点。这个膨胀中心就是所谓的人为的膨胀中 心,通过一定的结构措施就能实现它。
锅炉上炉膛的垂直水冷壁布置了10层水平刚性 梁
尾部烟道包墙和竖井烟道共设置12层水平刚性 梁,上5层与上炉膛垂直水冷壁水平刚性梁标 高相同
水平刚性梁的层间布置有校平装置,此外,在 与水平烟道连接的后水两侧和后烟道前包墙的 两侧都设置了垂直刚性梁。
亚临界600MW机组锅炉设备培训教材
第一篇锅炉本体设备第一章锅炉设备整体介绍600MW级燃煤机组是世界多数工业发达国家重点发展的火力主力机组。
平圩发电有限责任公司,按4×600MW规模设计,第一期工程安装两台亚临界600MW燃煤汽轮发电机组。
汽轮机及发电机分别由哈尔滨汽轮机厂和电机厂按引进美国西屋公司技术制造的,配置的HG2008/186-M型2008t/h亚临界压力中间再热控制循环锅炉为哈尔滨锅炉厂按引进美国燃烧工程公司(CE)技术设计制造的。
第一节锅炉的主要技术参数锅炉的主要设计参数包括锅炉的蒸发量、蒸汽参数、给水温度。
锅炉的蒸发量有两种表述,一是锅炉额定蒸发量,二是锅炉最大连续蒸发量(MCR),其单位均为t/h(吨/小时)。
锅炉额定蒸发量是指锅炉在额定蒸汽参数,额定给水温度和使用设计燃料并保证效率时所规定的蒸发量。
锅炉的最大连续蒸发量(MCR)是指锅炉在额定蒸汽参数,额定给水温度和设计燃料时长期连续运行时所能达到的最大蒸发量。
锅炉蒸汽参数是指其出口蒸汽压力和温度。
锅炉的主要设计参数见下表1-1-1。
表1—1-1第二节锅炉的总体布置及其结构特点一、锅炉总体简介:锅炉本体采用单炉膛Π型半露天岛式布置,一次中间再热;制粉系统为正压直吹式,采用RP-1003型中速磨煤机6台;四角布置切圆燃烧方式,摆动式直流燃烧器;固态机械除渣。
图1-2-1 平圩电厂2008t/h锅炉整体布置简图锅炉本体布置简图如图1-2-1,炉膛深度为16432mm、宽度为18542mm,汽包中心线标高73304mm,锅炉大板梁底层标高80520mm,冷灰斗标高10860mm,倾角55°;前墙至折焰角的距离为13080mm, 折焰角55°。
锅炉构架为全钢结构,它们分别由立柱、梁、水平支撑、垂直支撑等构件通过高强度螺栓连接而成(个别次要构件也有焊接)。
锅炉本体各受热面通过吊杆悬挂于炉顶的大板梁上,各受热面整体向下膨胀。
炉膛两侧墙和前后墙的垂直中在线布置有四处膨胀中心点(一个横截面上)人为控制锅炉本体受热面的膨胀,尾部竖井后墙也有此装置。
超临界锅炉本体结构(2)
⑧ ④
⑤
⑦ ③
⑨ ⑥
来自高加 来自高压缸 ①省煤器 ②炉膛 ③低过 ④屏过 ⑤末过 ⑥低再 ⑦高再 ⑧分离器 ⑨贮水罐
①
②
低温过热器
1 水平段共1段 根管绕, 水平段共 段,4根管绕,共168排,横向 根管绕 排 节距114.3,管段下部分管子规格为 节距 , Φ45X7、15CrMoG管段上部分管子规格为 、15CrMoG管段上部分管子规格为 Φ45X7,材质 ,材质12Cr1MoVG; ; 垂直出口段Φ 垂直出口段Φ45X7,材质 ,材质12Cr1MoVG, , 横向节距228.6mm, 84排 横向节距228.6mm,共84排。 水平段管屏宽度为2481 水平段管屏宽度为2481 低过进口集箱Φ 低过进口集箱Φ482.6×85,SA335P12 , × , 带短管接头分两段出厂, 带短管接头分两段出厂,集箱工地焊口两 端各留出4个管接头不焊 个管接头不焊, 端各留出 个管接头不焊,待集箱工地对 接后再行焊接, 接后再行焊接, 低过出口集箱Φ546.1×107, SA-335P12 , 低过出口集箱Φ × 带长管接头分两段出厂
1.共分为2段,下段分7屏 长60480-52646=7834 屏宽2743.2. 2.上部管屏迎风面弯头处 防磨盖板厂内焊接后发货
低温过热器
• 低温过热器蛇形管布置在后 竖井后烟道内,分为水平段 和垂直出口段。 • 蒸汽从汽吊管前后烟道出口 集箱两侧端部由连接管 (Φ339.7×58,SA335P12) 引出后分别合并成单侧单根 连接管(Φ457.2×72, SA335P12),再从两端送入 低温过热器进口集箱 (Φ482.6×85,SA335P12) • 整个低温过热器为顺列布置, 蒸汽与烟气逆流换热。
凤台电厂600MW超临界机组锅炉简介
点火 油枪
启动 油枪
燃烧 器
HT-NR3燃烧器配风示意图
一次风机
一次风由一次风机提
供。它首先进入磨煤 机干燥原煤并携带磨 制合格的煤粉通过燃 烧器的一次风入口弯 头组件进入HT-NR燃 烧器,再流经燃烧器 的一次风管,最后进 入炉膛。
中间 段 进气 箱
一次风 机 叶轮 机壳
润滑 油站
二次风、三次风
工作原理
ZGM113G磨煤机是一种中速辊盘式磨煤机,其碾磨部分
是由转动的磨环和三个沿磨环滚动的固定且可自转的磨辊 组成。需粉磨的原煤从磨机的中央落煤管落到磨环上,旋 转磨环借助于离心力将原煤运动至碾磨滚道上,通过磨辊 进行碾磨。三个磨辊沿圆周方向均布于磨盘滚道上,碾磨 力则由液压加载系统产生,通过静定的三点系统,碾磨力 均匀作用至三个磨辊上,这个力是经磨环、磨辊、压架、 拉杆、传动盘、减速机、液压缸后通过底板传至基础(见 图6―1)。原煤的碾磨和干燥同时进行,一次风通过喷嘴 环均匀进入磨环周围,将经过碾磨从磨环上切向甩出的煤 粉混合物烘干并输送至磨机上部的分离器,在分离器中进 行分离,粗粉被分离出来返回磨环重磨,合格的细粉被一 次风带出分离器。
燃烧器风箱为每个HT-NR3燃烧器提供二次
风和三次风。风箱采用大风箱结构,同时 每层又用隔板分隔。在每层燃烧器入口处 设有风门执行器,以根据需要调整各层空 气的风量。风门执行器可程控操作。
燃尽风(OFA)
燃尽风采用优化的双气流结构和布置形式。
燃尽风风口包含两股独立的气流:中央部 位的气流是非旋转的气流,它直接穿透进 入炉膛中心;外圈气流是旋转气流,用于 和靠近炉膛水冷壁的上升烟气进行混合。
点火 油枪
二次 风
一次 风煤 粉
三次 风
600MW超(超)临界直流锅炉概述
直流锅炉
概述
600MW超(超)临界直流锅炉概述
锅炉:高效超超临界变压直流 运行、单炉膛、一次再热、平 衡通风、露天岛式布置、固态 排渣、全钢构架、全悬吊结构、 对冲燃烧方式(四角切圆燃烧 方式)、Π型锅炉,采用三分仓 回转式空预器,取消增压风机, 引风机与增压风机合并。
600MW超(超)临界直流锅炉概述
你学会了吗?
直流锅炉依靠给水 泵的压头将锅炉给 水一次通过预热、 蒸发、过热各受热 面而变成过热蒸汽。
600MW直流锅炉启动ຫໍສະໝຸດ 统锅炉启动系统为内置式和外 置式启动系统,采用简单疏 水扩容式启动系统,包括启 动分离器、立式一体化疏水 扩容器、疏水扩容器排汽管、 启动疏水泵、水位控制阀 (361阀)、流量测量喷嘴、 截止阀、管道及附件等组成。 在正常运行中分离器不与系 统隔离,作为系统流程的一 个部件。
600MW直流锅炉汽水流程
自给水管路出来的水由炉侧一端进入位于尾部竖井后 烟道下部的省煤器入口集箱,水流经水平布置的省煤 器蛇形管后,由省煤器出口集箱端部引出到集中下降 管进入位于锅炉下部左、右两侧的集中下降管分配头, 再通过下水连接管进入螺旋水冷壁入口集箱,经螺旋 水冷壁管、螺旋水冷壁出口集箱、混合集箱,一部分 进入垂直水冷壁入口集箱经垂直水冷壁管、垂直水冷 壁出口集箱后进入水冷壁出口混合集箱,另一部分进 入水平烟道再汇聚到水冷壁出口混合集箱,然后经引 入管引入汽水分离器进行汽水分离。循环运行时从分 离器分离出来的水从下部排进储水罐,水通过启动系 统管道接至疏水扩容器,然后通过疏水泵进入凝汽器 和循环水回水,或直接排到排水槽。分离器出来的汽 进入过热器系统内。进入直流运行时全部工质均通过 汽水分离器进入顶棚管
600MW锅炉本体结构
中间过渡水冷壁
螺旋水冷壁
垂直水冷壁
垂直水冷壁入口集箱
半炉膛混合,减少吸热偏差小,适应变压运行
混合集箱
垂直冷壁进口集箱 螺旋水冷壁出口集箱
螺旋膜式壁
垂直水冷壁进口集箱
过渡段水冷壁厂内组装
过渡段水冷壁安装后
内螺纹螺旋管圈水冷壁: 不需设置水冷壁进口节流圈
垂直水冷壁 + 内螺纹管
螺旋水冷壁 + 内螺纹管
炉膛水冷壁型式
流量调整困难 (进口节流圈)
采用高质量流速,且质量流速可 以自由调整。
负荷变化 和煤种变 化适应性
对比
节流圈为针对锅炉某一负荷、某一煤种而设计。 由于节流圈的固有特性,对所有负荷进行流量 合理分配、调节较为困难;机组运行一段时间, 节流圈将不可避免地结垢,偏离设计值。对煤 种变化、炉膛结渣等所引起的炉膛热负荷变化 适应性较差。
前墙 侧墙 后墙 侧墙
燃烧器布置对水冷壁热负荷的影响
过渡段水冷壁
• 螺旋水冷壁前墙、两侧墙出口管全 部抽出炉外
• 后墙出口管则是4抽1根管子直接上 升成为垂直水冷壁后墙凝渣管,另 3根抽出到炉外
• 抽出炉外的所有管子均进入24根螺 旋水冷壁出口集箱,由22根连接管 从螺旋水冷壁出口集箱引入位于锅 炉左右两侧的两个混合集箱 (Φ444.5×95,SA335P12)混合 后,再通过22根连接管从混合集箱 引入到24根垂直水冷壁进口集箱, 然后由垂直水冷壁进口集箱引出光 管形成垂直水冷壁管屏,垂直光管 与螺旋管的管数比为3:1。
压直流炉,单炉膛、一次再热、平衡通风、露天布置、 固态排渣、全钢构架、全悬吊结构Π型锅炉。 • 中速磨直吹式制粉系统,配6台磨(1台备用),装设旋流 式HT-NR3型燃烧器,前后墙布置,对冲燃烧。 • 机组配置2×50%B-MCR汽动调速给水泵和1台30 %BMCR电动调速给水泵。 • 采用35%B-MCR容量高、低压串联汽机旁路。
600MW锅炉概述解析
3
省煤器管型
--
H型鳍片管
给水经省煤器的入口汇集集箱分别供至前后的省煤器入口 4 布置方式 -- 顺列布置 集箱。省煤器的管子规格为 φ 51× 5 371SA-201C, 设计进口温度(BMCR) ℃ 6mm,材料为 管组横向节距为 115mm 4排 6 400 设计出口温度(BMCR ) ,共190排。省煤器向上形成共 ℃ 吊挂管,用于吊挂尾部烟道中的水平过热器和水平再热器 7 m2 19178/2670 受热面积(蛇形管/悬吊管) 吊挂管的规格为 φ 51×9mm、材料为 SA-213 T12 。吊挂管 8 MPa 0.15 省煤器压降(BMCR) 的 9 4只出口集箱两端与两根下降管相连,下降管将水供至 mm φ39/φ51 省煤器管内/外径 水冷壁下集箱 10 省煤器管节距 mm 115 在省煤器烟气入口的四周墙壁上设置了烟气阻流板,避免 12 省煤器管的防磨设施 -- 烟气阻流板 形成烟气走廊而造成局部磨损 3
93.45% 93.6%
炉膛容积热负荷 炉膛断面热负荷
锅炉设计条件
锅炉燃煤设计煤种为神府东胜煤,校核煤种1为混煤,校 核煤种2为大同煤。煤质分析数据如下:
锅炉点火及助燃用油为#0轻柴油
符号 Mt 单位 % 设计煤种 12.1 校核煤种1 12.93
项目 全水份
校核煤种2
6.84
锅炉给水质量标准:补给水量在正常时(按 空气干燥基水份 Mad % 3.31 ~8(暂定) 1.62 BMCR 的5%计)为 97.5t/h ,启动或事故时 干燥无灰基挥发份 Vdaf % 28 38 39 8.79 收到基灰份 Aar % 26.68 (按 BMCR的8 %计)为 156 t/h 21.02
主要参数
名 过热蒸汽流量 过热器出口蒸汽压力 过热器出口蒸汽温度 再热蒸汽流量 称 单 位 T/h Mpa(g) ℃ T/h BMCR 2072 25.4 571 1742 BRL 2009.77 25.4 571 1684
600mw机组锅炉参数
(一)锅炉1.1.1.1制造商:上海锅炉厂有限公司。
1.1.1.2型式和特点本工程锅炉采用上海锅炉厂有限公司的典型烟煤炉型。
锅炉为亚临界压力、一次再热、单炉膛平衡通风、控制循环汽包锅炉。
采用四角切圆燃烧方式,配置低NO X直流煤粉燃烧器。
24台燃烧器分6层布置,同层的4台燃烧器由同1台磨煤机供应煤粉。
炉膛上层燃烧器上方设有燃烬风(OFA)喷咀,并起消旋的作用。
油燃烧器总输入热量为20%BMCR,分3层布置,共12只油枪。
锅炉采用三分仓空气预热器,中速磨煤机冷一次风机正压直吹式制粉系统,每台锅炉配备6台中速磨煤机,其中1台备用。
锅炉本体采用全钢构架、紧身封闭加轻型金属屋盖、Π型布置,固态连续排渣。
锅炉燃烧器考虑减少NOx排放的措施, NOx的排放值在B-MCR工况不高于400mg/Nm3。
炉膛设计承压能力为±5.98kPa。
过热蒸汽温度采用二级喷水减温调节。
再热蒸汽温度采用摆动燃烧器调节,再热器上设有喷水减温器,作为事故备用。
锅炉带基本负荷,并具有变负荷调峰能力。
锅炉能以定滑定和定压模式运行。
过热和再热蒸汽出口温度,在定压运行时,在50%~100%B-MCR内可达到额定值;滑压运行时,在45%~100%B-MCR负荷内可达到额定值。
锅炉点火方式为:高能电火花-轻柴油-煤粉。
当燃用设计煤种时,锅炉不投油最低稳定燃烧负荷为30%BMCR。
1.1.1.3主要参数(BMCR工况)(1)过热蒸汽流量:2059 t/h(2)过热器出口蒸汽压力:17.5 MPa.g(3)过热器出口蒸汽温度:541 ℃(4)再热蒸汽流量: 1745.56 t/h(5)再热器出口蒸汽压力: 3.84 MPa.g(6)再热器出口蒸汽温度:541 ℃(7)省煤器进口给水温度:282.7 ℃(8)省煤器进口给水压力:19.23 MPa.g(9)排烟温度(修正前):135℃(10)排烟温度(修正后):130℃(11)锅炉保证热效率(按低位发热量):93.16%(12)锅炉不投油最低稳燃负荷: 30%BMCR(二)1.1.2锅炉1.1.2.1制造商:哈尔滨锅炉厂。
超临界600MW锅炉系统及运行的介绍
锅炉设有膨胀中心,并在需监视膨胀的位置合理布置 装设有膨胀指示器,膨胀指示器的装设方便运行工况巡视 检查。膨胀指示器主要布置在水冷壁下集箱,省煤器下集 箱、尾部包墙下集箱及集中下降管等需要对膨胀进行监视 的部位,数量为30个。
锅炉下部水冷壁采用螺旋管圈,在各种负荷下均有足 够的冷却能力,并能有效地补偿沿炉膛周界上的热偏差, 水动力特性稳定;采用4只启动分离器,壁厚较薄,温度 变化时热应力小,适合于滑压运行,具有良好的变压、调 峰和启动性能,同时提高了机组的效率,延长了汽机的寿 命。
4.4 锅炉启动系统
锅炉启动系统配置带再循环泵的内置汽水分离器。系统主 要由下列设备组成。 1) 四只汽水分离器及其引入与引出管系统; 2) 一只立式储水箱; 3) 与储水箱连接的管道、阀门及流量测量装置; 4) 通往扩容器的大、小溢流管及两只水位调节阀及截止阀 ; 5) 热备用管,装有流量测量装置; 6) 省煤器入口到循环泵入口管道的冷却管,流量约为泵 的1-2%; 7) 扩容器;
4.2.2
煤粉旋流燃烧器(LNASB)
本锅炉配置三井巴布科克公司(Mitsui Babcock)的低 NOx轴向旋流煤粉燃烧器(Low NOx Axial Swirl Burner – LNASB),结构见下图。燃烧方式采用前后墙对冲燃烧。前、 后墙上各布置3层燃烧器,每层各有5只LNASB燃烧器,总共 30只。在最上层煤粉燃烧器上方,前后墙各布置1层燃尽风 口,每层布置5只,共10只燃尽风口。一次风喷口采用了防 止烧坏和磨损的合金材料SUS310或1Cr20Ni14Si2制造,燃 烧器内部与煤粉接触部位都敷设了耐热的高铬耐磨材料。 燃烧器间距为3622.5m,燃烧器与侧墙的距离为3848.5m。 点火方式为二级点火,高能电火花点燃轻柴油,轻柴油 火焰点燃煤粉。油枪采用简单机械雾化。
600MW锅炉本体结构
600MW锅炉本体结构1.炉膛:炉膛是锅炉的主要部分,用于燃烧燃料生成高温高压蒸汽。
炉膛一般由顶棚、壁水、底部和炉膛壁组成。
顶棚是炉膛的顶部,起到集中管束燃气和并调节燃气流分布的作用。
壁水是指炉膛壁上形成的水膜层,起到冷却壁面和吸收燃气热量的作用。
底部是炉膛的底部,通常为水冷的,用于收集和排除炉内的灰渣和不完全燃烧的燃料。
2.回转热风炉:在600MW锅炉中,回转热风炉被广泛用于燃烧煤粉。
回转热风炉由炉膛、高温风冷器和高效旋风分离器组成。
煤粉从燃烧器进入炉膛,通过高温风冷器进行冷却,然后进一步燃烧,最后通过旋风分离器分离烟气和灰渣。
3.冷凝器:冷凝器是锅炉中的一个重要部分,用于冷却热气,将热能转化为冷凝水,并进一步提高锅炉的效率。
冷凝器通常由管束、冷却介质和冷却塔组成。
热气从锅炉中通过管束流过,与冷却介质进行换热,将热能转移到冷却介质上,然后经过冷却塔散热,最后形成冷凝水。
4.空预器:空预器是锅炉的一个重要烟气预热设备,通常由双腔式空气预热器和烟道系统组成。
空气从空气预热器的一个腔体中流过,被烟气加热,然后进入锅炉燃烧室,与燃料混合燃烧。
另一腔体中则通过烟道系统,烟气从炉膛中流过,与空气进行换热。
5.锅炉主蒸汽管路:主蒸汽管路是将锅炉产生的高温高压蒸汽输送到汽轮机进行发电的管路系统。
主蒸汽管路通常由主干管、管弯头、排水管和疏水装置等组成。
主干管是主蒸汽的主要传输通道,负责将蒸汽输送到汽轮机。
管弯头用于改变蒸汽的流动方向,排水管用于排除管路中的凝结水,疏水装置则用于控制管路中的水位。
6.其他:除了以上几个主要部分外,600MW锅炉还包括给水系统、循环水系统、除尘系统、通风系统、煤粉供应系统和灰渣处理系统等。
给水系统用于将水供给锅炉,循环水系统用于循环冷却锅炉,在循环中吸收热量。
除尘系统用于除去锅炉燃烧产生的灰尘,通风系统用于保持锅炉内部的空气流通。
煤粉供应系统用于将煤粉供给回转热风炉,灰渣处理系统用于处理锅炉中产生的灰渣。
锅炉|同样是 600 MW级,超临界与亚临界锅炉本体的区别
锅炉|同样是600 MW级,超临界与亚临界锅炉本体的区别电力百科第2 期:超/亚临界一、蒸汽参数与炉型水的临界压力为22 .115 MPa , 临界温度为347 .12 ℃。
在临界点上, 水与汽的参数完全相同, 两者的差别消失, 汽化潜热趋向于零, 即汽化在一瞬间完成。
锅炉的型式主要取决于蒸汽参数和容量, 有自然循环炉、控制循环炉、直流炉及复合循环直流炉4 种。
直流炉适合于超临界亚临界参数, 自然循环及控制循环炉只适宜于亚临界及亚临界以下压力参数。
如采用亚临界参数, 则直流炉、自然循环和控制循环汽包炉都是可选用的方案。
如元宝山电厂600 MW 亚临界参数锅炉采用的是本生型强制循环直流炉;北仑电厂1 号炉和平圩电厂两台600MW 锅炉采用控制循环汽包炉;北仑电厂2 号炉采用自然循环方式。
采用超临界参数时均采用强制循环直流锅炉。
国际上超临界参数锅炉的过热蒸汽(汽机进口)压力一般采用24.2、25.3 和26.4 MPa 3 个级别;过热和再热蒸汽温度通常设计为538 ℃, 也有采用566℃的;大多采用一次再热,采用两次再热的只占超临界机组中的15 %, 因两次再热虽能改善经济性, 但管路复杂, 耗用钢材也多。
石洞口二厂两台600 MW超界参数锅炉采用的是超临界螺旋管圈直流锅炉, 过热蒸汽(锅炉出口)压力为25.4 MPa , 温度为541 ℃, 中间再热级数为一次,再热蒸汽温度为569 ℃。
二、典型600 MW级机组锅炉设计规范及结构特性参数三、锅炉本体的特点超临界机组与亚临界机组在燃烧系统、过热器和再热器系统的差异不是太大,主要差别比较大的是水冷系统、锅炉启动系统。
1、水冷系统北仑电厂1 号炉和平圩电厂锅炉都是CE 型亚临界控制循环锅炉。
在其下降管回路中均设循环泵, 以提供足够的压头来保证在任何运行工况下能进行充分的强迫循环。
每炉有3 台循环水泵,每泵能满足60%的额定负荷。
考虑到亚临界参数下汽包壁厚增加, 起停过程中上下壁温差值较大因而限制起停速度, 汽包壁采取上下不等壁厚结构, 并采用环形夹层, 使汽包内壁温接近于汽水混合物温度, 使上下壁温差均匀而且减小, 可快速起停。
600MW超临界W型火焰锅炉主要技术特点
故设置了内置式的启动系统,其中启动分离器在直流负
荷之前进行汽水分离,在之后只作为一个流通元件。在水
质合格的情况下,可最大限度地回收工质,降低锅炉启动
过程中的热损失。在锅炉点火之前,即可建立最低的水循
环。锅炉的内置式启动系统,包括启动分离器、贮水箱、疏
水扩容器、启动循环泵、水位控制阀、疏水泵、截止阀、管
行检查(图 5)。
(4)重新将末叶打入, 4 结 语
从叶轮上已预钻完销孔
经工艺方案改进后,虽然操作步骤复杂了,操作者需
的一侧后划末叶上销孔 要反复撤出末叶片单项每个预加工,最后再打入末叶精
孔线;
钻,但实际验证了安装结果达到了“双胞胎”以及双倒梯形
(5)取出 末 叶 ,将 末 末叶片销孔偏斜率控制在 5%以内的要求,充分证明了工
有放水、锅炉充水和酸洗的接管座,并带有相应的阀门。
为保护省煤器,在锅炉起动过程中有必要的冷却措施。在
BMCR 工况时,通过省煤器的烟气平均流速(平均流速指
进、出口流速的平均值)不超过 8m/s。
2.4 锅炉启动系统
超临界变压运行直流锅炉从启动到带满负荷,将经
历高压、超高压、亚临界和超临界的过程,由于没有汽包,
单一地燃用固定的一个煤种,一般都是混煤,且煤种不 化,特别是防止发生在亚临
定,采用 W 型燃烧技术有利于低挥发性煤种的着火和燃 界压力下的偏离核态沸腾
尽。W 型火焰锅炉是国内较为常见的一种燃用低挥发性 和超临界压力下的类膜态
煤种的电站锅炉。1990 年代末,哈锅和英国巴布科克公 沸腾现象。水冷壁的设计考
况下(尤其是低负荷及启动工况),保证水冷壁内有足够 范围内。对水冷壁进行传热恶化计算,传热恶化的临界放
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
(完整word版)600MW亚临界锅炉说明书
600MW火电机组HG-2070/17.5-YM9型锅炉设计说明书目录一. 锅炉设计主要参数及运行条件1.锅炉容量及主要参数1.1BMCR 工况1.2额定工况2. 设计依据2.1 燃料2.2 锅炉汽水品质3. 电厂自然条件4. 主要设计特点5. 锅炉预期性能计算数据表二. 受压部件1. 锅炉给水和水循环系统2. 锅筒3. 锅筒内部装置4. 省煤器4.1 结构说明4.2 维护5. 过热器和再热器5.1 结构说明1) 过热器2) 再热器5.2 蒸汽流程5.3 保护和控制5.4 运行5.5 维护5.6 检查6. 减温器6.1 说明6.2 过热器减温器6.3 再热器减温器6.4 减温水操纵台6.5 维护7. 水冷炉膛7.1 膜式水冷壁结构7.2 冷灰斗7.3 运行7.4 维护三. 燃烧器四. 空气预热器(删除)五. 门孔、吹灰孔、烟风系统仪表测点孔六. 汽水系统测点布置七. 锅炉膨胀系统八. 锅炉构架说明九.炉水循环泵十.锅炉对控制的要求一. 锅炉设计主要参数及运行条件陕西铜川发电厂2×600MW机组锅炉是采用美国燃烧工程公司(CE)的引进技术设计制造的。
锅炉为亚临界参数、控制循环、四角切向燃烧方式、一次中间再热、单炉膛平衡通风、固态排渣、露天布置、全钢构架的∏型汽包炉。
1. 锅炉容量及主要参数1.1 B-MCR工况过热蒸汽流量2070 t/h过热蒸汽出口压力17.5 MPa.g过热蒸汽出口温度541 ℃再热蒸汽流量1768 t/h再热蒸汽进口压力 4.041 MPa.g再热蒸汽出口压力 3.861 MPa.g再热蒸汽进口温度334.4 ℃再热蒸汽出口温度541 ℃给水温度283.4 ℃过热器设计压力19.95 MPa.g再热器设计压力 4.65 MPa.g1.2 额定(THA)工况过热蒸汽流量1876.4 t/h过热蒸汽出口压力17.45 MPa.g过热蒸汽出口温度541 ℃再热蒸汽流量1642.5 t/h再热蒸汽进口压力 3.685 MPa.g再热蒸汽出口压力 3.521 MPa.g再热蒸汽进口温度325.3 ℃再热蒸汽出口温度541 ℃给水温度277.1 ℃2. 设计依据2.1 燃料:2.2锅炉汽水品质:炉给水质量标准p H值 9.0~9.5(无铜系统)硬度μmol/L 0溶氧(O2)μg/L ≤7铁(Fe)μg/L ≤20铜(Cu)μg/L ≤5油mg/L ≤0.3联氨(N2H4)μg/L 10~30导电率(25℃)μS/cm ≤0.3 炉水:pH值9~10 硬度μmol/L 0总含盐量mg/L ≤20二氧化硅(SiO2) mg/kg ≤0.25 氯离子Cl-mg/L ≤1磷酸根mg/L 0.5~3导电率(25℃)μS/cm <503. 电厂自然条件3.1气象条件水文气象条件表:3.2岩土工程条件根据区域地质资料,本区出露地层主要有:上部为第四系风积黄土,厚度100m左右;下部为石炭、二叠系海陆交互相的煤层、泥岩、砂岩、页岩、石灰岩沉积层。
600MW锅炉概述
锅炉负荷效率曲线
锅炉本体布置
锅炉及炉后剖面图
锅炉本体 输煤皮带 电除尘 脱硫塔
制粉系统
锅炉整体布置图
末级过热器 高温再热器 屏式过热器 低温再热器 一级过热器 省煤器 空预器
燃烧器
炉膛及水冷壁 冷灰斗
省煤器
序号 项 目 单位 数 值 1 MPa 31.5 省煤器设计压力(BMCR) 在双烟道的下部均布置有省煤器,省煤器以顺列布置,以 2 MPa 28.86 省煤器工作压力(BMCR) 逆流方式与烟气进行换热
本锅炉配有容量为35bmcr的启动系统以与锅炉水冷壁最低质量流量相匹配本锅炉配有容量为35bmcr的启动系统以与锅炉水冷壁最低质量流量相匹配启动系统为内置式启动分离系统包括四只启动分离器一只贮水箱水位控制阀截止阀管道及附件等组成启动系统为内置式启动分离系统包括四只启动分离器一只贮水箱水位控制阀截止阀管道及附件等组成启动分离器为圆形筒体结构直立式布置启动分离器为圆形筒体结构直立式布置分离器的设计除考虑汽水的有效分离防止发生分离器蒸汽带水现象以外还考虑启动时汽水膨胀现象分离器的设计除考虑汽水的有效分离防止发生分离器蒸汽带水现象以外还考虑启动时汽水膨胀现象分离器带贮水箱锅炉配置启动循环泵分离器带贮水箱锅炉配置启动循环泵分离器分离器分离器分离器高容量溢流管低容量溢流管过冷水管暖线管启动循环泵启动系统简图启动系统简图一根轴向蒸汽引出管一根轴向蒸汽引出管一根轴向饱和水引出管一根轴向饱和水引出管6根汽水混合物引入管6根汽水混合物引入管锅炉给水系统和水冷壁及省煤器的冷态和温态水冲洗并将冲洗水通过扩容器和冷凝水箱排入冷却水总管锅炉给水系统和水冷壁及省煤器的冷态和温态水冲洗并将冲洗水通过扩容器和冷凝水箱排入冷却水总管满足锅炉冷态温态热态和极热态启动的需要直到锅炉达到35bmcr最低直流负荷由在循环模式转入直流方式运行为止满足锅炉冷态温态热态和极热态启动的需要直到锅炉达到35bmcr最低直流负荷由在循环模式转入直流方式运行为止只要水质合格启动系统可完全回收工质及其所含的热量只要水质合格启动系统可完全回收工质及其所含的热量在最低直流负荷以下运行时贮水箱出现水位将根据水位的高低自动打开相应的水位调节阀进行炉水再循环在最低直流负荷以下运行时贮水箱出现水位将根据水位的高低自动打开相应的水位调节阀进行炉水再循环在启动过程中回收热量和工质在启动过程中回收热量和工质开启循环泵进行水冲洗
600MW超临界压力锅炉煤粉锅炉
600MW超临界压力锅炉煤粉锅炉600MW等级超临界压力煤粉锅炉锅炉课程设计报告姓名学号指导教师目录第一章锅炉设计的目的和意义 (3)第一节锅炉课程设计的目的和内容 (3)第二节锅炉课程设计的方法和步骤 (4)第二章锅炉简介 (5)第一节锅炉的整体布置 (5)第二节省煤器和水冷壁系统 (5)第三节过热器系统 (5)第四节再热器系统 (6)第五节燃烧系统 (6)第六节烟风系统 (5)第三章计算 (8)第一节600MW机组锅炉设计计算原始参数 (8)第二节煤的元素分析数据校核和煤种判别 (9)第三节燃烧产物和锅炉热平衡计算 (9)第四节炉膛设计和热力计算 (12)第五节前屏过热器结构和热力计算 (15)第六节后屏过热器结构和热力计算 (19)第七节高温再热器结构和热力计算 (24)第八节第一悬吊管结构和热力计算 (27)第九节高温对流过热器结构和热力计算 (29)第十节第二悬吊管结构和热力计算 (33)第十一节低温再热器垂直段结构和热力计算 (35)第十二节转向室结构和热力计算 (38)第十三节低温再热器水平段结构和热力计算 (40)第十四节省煤器结构和热力计算 (43)第十五节汽温校核 (46)第十六节空气预热器结构和热力计算 (47)第十七节热力计算数据的总校和计算结果汇总 (53)第四章热力计算结果数据分析 (55)附录第一章锅炉设计的目的和意义第一节锅炉课程设计的目的和内容一、锅炉课程设计的目的锅炉课程设计是《锅炉原理》课程的重要教学实践环节。
通过课程设计,使学生对锅炉原理课程的知识得到巩固、充实和提高;掌握锅炉机组的热力计算方法,学会使用与热力计算相关的标准或导则,培养综合考虑锅炉机组设计与布置的初步能力;培养学生查阅资料和分析数据的能力,提高学生运算、绘图等基本技能;培养学生对待工程技术问题的严肃认真和负责的态度。
二、锅炉课程设计的内容本书的设计任务是根据一台给定规范和形式的600MW等级超临界压力直流煤粉锅炉的原始资料,进行锅炉的结构设计和热力计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锅炉本体三维动画
1.总体布置
采用П型布置形式
П型布置是传统普遍采用的方式, 烟气由炉膛经水平烟道进入尾部烟 道,在尾部烟道通过各受热面后排 出。
其主要优点是锅炉高度较低, 尾部烟道烟气向下流动有自生吹灰 作用,各受热面易于布置成逆流形 式,对传热有利等。
布置简图
锅炉∏型布置和塔型布置的比较
概念 业绩
前墙 侧墙 后墙 侧墙
燃烧器布置对水冷壁热负荷的影响
过渡段水冷壁
• 螺旋水冷壁前墙、两侧墙出口管全 部抽出炉外
• 后墙出口管则是4抽1根管子直接上 升成为垂直水冷壁后墙凝渣管,另 3根抽出到炉外
• 抽出炉外的所有管子均进入24根螺 旋水冷壁出口集箱,由22根连接管 从螺旋水冷壁出口集箱引入位于锅 炉左右两侧的两个混合集箱 (Φ444.5×95,SA335P12)混合 后,再通过22根连接管从混合集箱 引入到24根垂直水冷壁进口集箱, 然后由垂直水冷壁进口集箱引出光 管形成垂直水冷壁管屏,垂直光管 与螺旋管的管数比为3:1。
锅炉启动时间:冷态启动
7~8小时
温态启动
2~3小时
热态启动
1~1.5小时
极热态
<1小时
水冷壁前上集箱 顶棚进口集箱 二级过热器汇集集箱 过热器二级减温器 二级过热器进口集箱 三级过热器进口集箱 三级过热器出口集箱 水冷壁凝渣管束 水冷壁后墙出口集箱
高再进口集箱 高再出口集箱 后竖井前墙集箱 再热器减温器 低再出口集箱 再热器减温器 后竖井吊挂管集箱 后竖井中隔墙集箱 一级过热器出口集箱 后竖井吊挂管集箱 后竖井后墙集箱 顶棚出口集箱
压直流炉,单炉膛、一次再热、平衡通风、露天布置、 固态排渣、全钢构架、全悬吊结构Π型锅炉。 • 中速磨直吹式制粉系统,配6台磨(1台备用),装设旋流 式HT-NR3型燃烧器,前后墙布置,对冲燃烧。 • 机组配置2×50%B-MCR汽动调速给水泵和1台30 %BMCR电动调速给水泵。 • 采用35%B-MCR容量高、低压串联汽机旁路。
锅炉主要界限尺寸
锅炉深度
mm 44500
顶棚出口集箱
刚性梁
刚性梁
锅炉宽度(外侧柱) mm 44000
刚性梁
刚性梁 刚性梁
锅炉宽度(内侧柱) mm 25000
刚性梁
刚性梁
刚性梁
大板梁标高
mm 85900
刚性梁
刚性梁
低再进口集箱
炉膛宽度
mm 19419.2
炉膛深度
mm 15456.8
顶棚拐点标高
mm 72800
水冷壁的支撑结构
减少热应力 销杆连接 (不需要焊接)
螺 旋 膜 式 水 冷 壁
垂直膜式水冷壁
螺旋水冷壁出口集箱
垂直水冷壁进口集箱 螺旋水冷壁出口集箱 垂直水冷壁进口集箱
螺旋管圈水冷壁
水平刚性梁 垂直刚性梁
垂直搭接板
上部垂直水冷壁
水冷壁系统的保护
• 温度监测保护:水冷壁系统温度测点是锅 炉在启停、运行时对管子金属壁温进行监 视和保护的重要手段。
内螺纹螺旋管圈水冷壁: 不需设置水冷壁进口节流圈
垂直水冷壁 + 内螺纹管
螺旋水冷壁 + 内螺纹管
炉膛水冷壁型式
流量调整困难 (进口节流圈)
采用高质量流速,且质量流速可 以自由调整。
负荷变化 和煤种变 化适应性
对比
节流圈为针对锅炉某一负荷、某一煤种而设计。 由于节流圈的固有特性,对所有负荷进行流量 合理分配、调节较为困难;机组运行一段时间, 节流圈将不可避免地结垢,偏离设计值。对煤 种变化、炉膛结渣等所引起的炉膛热负荷变化 适应性较差。
• 螺旋水冷壁管全部采用六头、上升角60°的内 螺纹管,共456根,管子规格Φ38.1×7.5,材 料为SA-213T2。
• 炉膛冷灰斗处管子节距为50.8及49.827mm, 冷灰斗以外的中部螺旋盘绕管圈,倾角为 19.471°,管子节距50.8 mm。
• 冷灰斗管屏、螺旋管屏膜式扁钢厚δ6.4,材料 为15CrMo,均采用双面坡口型式。
锅炉汽、水、烟、风阻力
BMCR工况的阻力情况: 过热器蒸汽侧阻力 顶棚和包墙系统阻力 再热器蒸汽侧阻力 省煤器水侧阻力 水冷壁压降阻力 空气预热器一次风阻力 空气预热器二次风阻力 空气预热器烟气侧阻力 锅炉本体烟气阻力(含空预器) 燃烧器一次风阻 燃烧器二次风阻力
1.068MPa 0.696MPa 0.19MPa 0.087MPa 1.619MPa
B-MCR 1900 25.4 571 1613.8
4.6/4.41 322/569
283 93.72
313/327 123/118
BRL 1797.95
25.2 571 1523.8 4.34/4.16 315/569 279 93.8 93.49 310/322 121/115
锅炉主要性能参数(BMCR)
% / t/h t/h % % ℃ ℃ ℃
姚孟 83.11 4950 265800 93.72 1.14
57 76 66.4 33.6 27/313 20/327 123/118
阳逻 79.99 4370 232680 93.38 1.14
76 76 55.5 44.5 28/323 21/334 131/126
锅炉主要规范:
名称 过热蒸汽流量 过热器出口蒸汽压力 过热器出口蒸汽温度 再热蒸汽流量 再热器进/出口蒸汽压力 再热器进/出口蒸汽温度 给水省煤器进口温度 计算热效率(按低位发热量) 保证热效率(按低位发热量) 热一/二次风温度 排烟温度(修正前/后)
单位 t/h MPa(g) oC t/h MPa(g) oC oC / / oC oC
水平烟道深
mm 5486.4
后竖井低温再热器 mm 6604 烟道深度
后竖井低温过热器 mm 8331.2 烟道深度
水冷壁下集箱标高 mm 5800
锅炉性能保证值 (设计煤种)
1 锅炉B-MCR出力1900t/h 2 锅炉保证热效率(按低位发热量)93.49% 3 不投油最低稳燃负荷不大于35%B-MCR 4 烟、风压降实际值与设计值的偏差不大于10% 5 过热器、再热器、省煤器的实际水、汽侧压降数值不 超过保证值。 6 过热蒸汽在35~100%B-MCR范围内,再热蒸汽在50~ 100%B-MCR范围内能维持其额定汽温;汽温允许偏差为 ±5℃。 7 NOX的排放量不高于400mg/Nm3
采用较高质量流速设计,且进口不需装设节流圈,螺旋管圈 水冷壁的传热、流量分配和介质出口温度等不会受到燃烧器、 磨煤机切换等工况的影响 。对煤种变化、炉膛结渣以及机组
负荷变化所引起的吸热量的变化适应性好,变负荷、变压运 行能力强
螺旋水冷壁管
• 炉膛下部水冷壁(包括冷灰斗水冷壁、中部螺 旋水冷壁)都采用螺旋盘绕膜式管圈,从水冷 壁进口到折焰角水冷壁下标高52608.9 mm处。
过热器出口压力 25
设计平均
20
质量流速
4,000 3,500 3,000 2,500
15
2,000
10 光管
足Su够ff的ic裕ien量t Margin 1,500
1,000
5 临界质量流速
500 内螺纹管
0 0
Tube
-
500 1000 1500 2000 2500 3000 3500
主蒸汽流量, t/h
温)
经济性和煤适应性有影响。
2. 水冷壁
采用螺旋管圈+垂直管圈 方式
对于超临界变压运行锅炉,螺旋管 圈水冷壁是首先应用于超临界变压运行 锅炉的水冷壁型式。 ➢ 炉膛水冷壁采用螺旋管圈+垂直管圈 方式【即下部炉膛的水冷壁采用螺旋管 圈(内螺纹管),上部炉膛的水冷壁为 垂直】,保证质量流速符合要求。 ➢ 水冷壁采用全焊接的膜式水冷壁 ➢ 水冷壁采用一次中间混合联箱来实现 螺旋管至垂直水冷壁管的过渡
世界上烟煤型锅炉典型布置
主要用于褐煤型锅炉
日本超临界燃煤锅炉均采用此种 布置方式
适合600MW-1050MW超临界燃煤 变压锅炉
-高灰份 缺乏1000MW超临界燃煤变压锅炉经验
结构与安装 具备成熟的结构技术及众多业绩, 需研究大容量超临界锅炉可靠性 可靠性高
性能及运行 煤适应性好(采挡板调节再热汽 再热器采用喷水及燃烧器摆动调温,对
名称 炉膛容积热负荷 炉膛断面热负荷 燃料耗量 锅炉计算效率(按低位热值) 炉膛出口过剩空气系数 过热器一级减温水喷水量 过热器二级减温水喷水量 过热器侧烟气份额 再热器侧烟气份额 空气预热器一次风进出口温度 空气预热器二次风进出口温度 空气预热器出口 (修正前/修正后)
单位 kw/m3 kw/m2 kg/h
600MW超临界机组
技术专题介绍2
锅炉本体结构(1)
郑州电力高等专科学校
杨建华
锅炉本体结构
• 1.总体布置 • 2.水冷壁 • 3.启动分离器 • 4.过热器 • 5.再热器 • 6.省煤器 • 7.空气预热器
锅炉基本性能
• 锅炉型号:DG1900/25.4-Ⅱ1 • 装设二台600MW燃煤汽轮发电机组,锅炉为超临界参数变
350Pa 770Pa 909Pa 2257Pa 1150Pa 1950Pa
负荷特性:带基本负荷,并具有一定调峰能力
运行方式:采用定-滑-定方式运行,也可定压方式运行
汽温控制范围:过热汽温35%~100%B-MCR
再热汽温50%~100%B-MCR
炉膛压力:设计压力
±5800Pa
瞬时承受压力 ±8700Pa
技术特点:
➢采用管螺旋管圈
控制合理的设计平均质量流速, 防止亚临界状态下的传热恶化,提 高高负荷下的安全裕度。
➢选取较高的质量流速
较高的流速可以确保更高的传热 性能和流动可靠性,确保水冷壁有 较高的安全性和较大的安全裕度。