光伏支架计算书

合集下载

1-地面全钢 光伏支架系统计算书V1

1-地面全钢 光伏支架系统计算书V1

20
地面全钢光伏支架计算书
21
地面全钢光伏支架计算书
2)斜支撑截面参数 :
截面宽度: a 41mm
截面高度: b 51mm
厚 度: 截面面积:
t 2mm A0 322mm2
抗弯模量: 惯性矩:
W 3861mm3 I 107203mm4
回转半径:
Ri I 18.25 mm A0
抗剪截面模量:
抗剪强度满足要求。
5)变形验算
次龙骨挠度最大: △ 12.3mm
次龙骨长度 : Lx 2800mm
次龙骨允许变形 :
Lx 14 mm > 200
综上次龙骨强度和变形满足使用要求。
△ 12.3mm
14
地面全钢光伏支架计算书
5.2斜梁计算
1)模型中斜梁内力 最大出现在中部的斜梁中间 位置:
弯距 : M 1007.39N m
抗剪强度设计值: fvC 125MPa
弹性模量:
EC 206GPa
3
3)不锈钢螺栓 A2-70
抗拉强度设计值: ftb 280MPa 抗剪强度设计值: ftv 265MPa
4)碳钢 GR8.8
抗拉强度设计值: ftb8.8 400MPa 抗剪强度设计值: ftv8.8 320MPa
地面全钢光伏支架计算书
组合1 :
1.2G 1.4W﹢
组合2:
1.0G 1.4W﹣
组合3:
1.35G 0.6 1.4W﹢ 0.7 1.4S
组合4:
1.0G 0.6 1.4W﹣ 0.7 1.4S
组合5: 组合6:
1.2G 1.4W﹢ 0.7 1.4S 1.0G 1.4W﹣ 0.7 1.4S
组合7: 组合8:

光伏支架及基础计算书

光伏支架及基础计算书

项目名称
项目地点
日 期
省/

无锡地区参照年限10年一遇参照年限50年一遇0.3
kN/m 210年一遇0.45
kN/m 2
50年一遇25年22长0.4m 宽0.5m 高长0.8m 宽0.4m 高
23.5kN/m 30.58kN/m 2
1.88kN
6.02kN
1.35kN
5.12kN
1.896m
18.58kN·
m 9.72kN·
m ※光伏支架基础计算书
黄色背景部分为按需填写项★注:本工具由Nemo Zheng 根据自己的经验,并参考相关标准及网络上的资料、文章编写,"组件机械数据库"数量很少,且铝合金支架的截面特性由截面详图决定,因此檩条计算书暂只支持Q235 厚度≤16mm 的钢结构,且数据库也较少。

另外,本工具中使用较多的名称,并非直接填入即能生效,因此添加后需要查看相关名称定义并修改方可,或替换原有数据,也可直接提供相关参数至nemojoy@ 要求添加需要的数据。

欢迎各位参与交流。

采用GB 50007-2011 P49 挡土墙的抗倾覆安全系数≥1.6
条选取1.3
抗倾覆力矩倾覆力矩
= 1.91 1.6>验算通过!风载荷标准值=ω0*βz *μz *μs =倾覆点距组件安装面中心法线距离=光伏组件、支架及配件自重=风荷载=抗倾覆力矩=前支墩重量G1k 后支墩重量G2k 验算结果为:0
设计年限项目地基本风压ω0项目地设计年限基本风压ω倾覆力矩=。

(公建屋面)光伏支架计算书

(公建屋面)光伏支架计算书

海南恒大海花岛影视基地光伏项目2#、3#楼(整体)计算书审核:校核:编写:2017年1月22日目录1 设计依据 (1)1.1作用荷载计算过程 (1)2 计算简图 (2)3 荷载与组合 (2)3.1 节点荷载 (3)3.2 单元荷载 (3)3.3 其它荷载 (6)3.4 荷载组合 (7)4 内力位移计算结果 (7)4.1 内力 (7)4.1.1 内力包络及统计 (7)4.2 位移 (18)4.2.1 组合位移 (18)5 设计验算结果 (23)5.1 设计验算结果图及统计表 (24)附录 (27)6.连接螺栓计算 (28)6.1主梁与横向次梁的连接 (28)6.2横向次梁与纵向次梁的连接(纵向次梁端) (31)6.3横向次梁与纵向次梁的连接(横向次梁端) (32)6.4横向次梁与纵向次梁的连接(连接过渡用钢板) (34)6.5拉条与横向次梁的连接(横向次梁端) (35)1 设计依据《钢结构设计规范》 (GB50017-2003) 《冷弯薄壁型钢结构技术规范》 (GB50018-2002) 《建筑结构荷载规范》 (GB50009-2012) 《建筑抗震设计规范》 (GB50011-2010) 《建筑地基基础设计规范》 (GB50007-2011) 《钢结构焊接规范》 (GB50661-2011) 《钢结构高强度螺栓连接技术规程》 (JGJ82-2011)1.1作用荷载计算过程一、与光伏板直接连接横梁所受荷载1、永久荷载标准值(对水平投影面): 光伏板 22520.12630.99100k g kN m =≈⨯2、可变荷载标准值 (1) 活荷和雪荷载不考虑。

(2)风荷载根据招标文件要求,光伏板所受风荷载按围护结构计算,基本风压按50年一遇(0.80kN/m 2)考虑, 外部局部体型系数按1 2.0s μ=-外考虑。

根据《荷规》8.2.1,地面粗糙度类别为A 类,高度按26.6米考虑查表8.2.1 ()26.6201.67 1.52 1.52 1.6193020z μ-=⨯-+≈-8.3.4 光伏板横梁A=0.87x0.93=0.81m ²<1.0m ²,故1s μ外不折减 8.3.5 开放式,11 2.0s s μμ==-外 查表8.6.1 ()26.6201.53 1.55 1.55 1.5373020gz β-=⨯-+≈-8.1.1 10 1.537( 2.0) 1.6190.80 3.98k gz s z ωβμμω==⨯-⨯⨯≈ kN/m 22、汇总每根横梁所受荷载如下: 由上文可知,'0.1263k g ≈ kN/m边部迎风面最大角度14°,()'0,max 3.98 1.65sin 1420.794k ω=⨯⨯≈ kN/m2 计算简图计算简图 (圆表示支座,数字为节点号)3 荷载与组合结构重要性系数: 1.003.1 节点荷载3.2 单元荷载1) 工况号: 0*输入荷载库中的荷载:单元荷载分布图:单元荷载序号1分布图(实粗线表示荷载作用的单元) 2) 工况号: 1*输入荷载库中的荷载:单元荷载分布图:单元荷载序号1分布图(实粗线表示荷载作用的单元)单元荷载序号2分布图(实粗线表示荷载作用的单元)单元荷载序号3分布图(实粗线表示荷载作用的单元)单元荷载序号4分布图(实粗线表示荷载作用的单元)单元荷载序号5分布图(实粗线表示荷载作用的单元)单元荷载序号6分布图(实粗线表示荷载作用的单元)3.3 其它荷载(1). 地震作用规范:《建筑抗震设计规范》(GB50011-2010)地震烈度: 7度(0.10g)水平地震影响系数最大值: 0.08计算振型数: 9建筑结构阻尼比: 0.040特征周期值: 0.35地震影响:多遇地震场地类别:Ⅱ类地震分组:第一组周期折减系数: 1.00地震力计算方法:振型分解法(2). 温度作用无温度作用。

光伏支架及基础计算书

光伏支架及基础计算书

项目名称项目地点日 期A A-1安徽省/市毫州市地区参照年限50年一遇参照年限50年一遇0.45kN/m 250年一遇0.45kN/m 250年一遇25年0.45kN/m 2A-2B 类A-35米A-5品牌Trina 系列TSM-PC05A ※光伏组件机械参数组件长度 1.65米组件宽度0.992米组件厚度35毫米组件重量18.6千克A-625度A-72块A-820mm A-90.04kN/m 2A-100.25m A-11独立基础A-120.4m 长0.4m 宽0.4m 高0.8m 长0.8m 宽0.4m 高A-13C2023.5kN/m 3A-140.2m A-152.5m A-16 2.7m B μz =1μs = 1.3※0.59kN/m 21.50kN6.02kN1.36kN5.24kN1.852m18.51kN·m 9.71kN·m ※光伏支架基础计算书项目地、附近风压点设计资料黄色背景部分为按需填写项★注:本工具参考相关标准及网络上的资料、文章编写,另外"组件机械数据库"数量很少,本工具中使用较多的名称,并非直接填入即能生效,因此添加后需要查看相关名称定义并修改方可,或替换原有数据。

采用GB 50007-2011 P49 挡土墙的抗倾覆安全系数≥1.6风荷载体形系数按照GB50797-2012中6.8.7条选取1.3抗倾覆力矩倾覆力矩= 1.91 1.6>验算通过!风载荷标准值=ω0*βz *μz *μs =光伏支架基础倾覆验算倾覆点距组件安装面中心法线距离=光伏组件、支架及配件自重=风荷载=抗倾覆力矩=前支墩重量G1k 后支墩重量G2k 验算结果为:前支墩尺寸单根主梁上的组件数量组件安装角度单根主梁上的组件间距光伏支架及配件自重前支架高度地面粗糙度分为A 、B 、C 三类:A 类 - 近海海面、海岛、海岸、湖岸及沙漠地区B 类 - 田野、乡村、丛林、丘陵以及房屋比较稀疏的中、小城镇和大城市郊区C 类 - 有密集建筑群的城市市区D 类 - 有密集建筑群且房屋较高的城市市区项目地基本风压ω0设计年限基础类型基础尺寸项目地基本风压ω0地面粗糙度类别设计计算高度H 项目地设计年限基本风压ω0光伏组件选型后支墩尺寸基础强度倾覆力矩=前支墩距前支架中心距离前后支墩中心间距风压高度变化系数风载荷体型系数支架跨距。

光伏支架设计方案受力计算书-参考

光伏支架设计方案受力计算书-参考

(1) 恒载 G:
恒载包含太阳能板的重量和支架的自重。其中太阳能板总重量:
G1=40P×20kg/P×9.8N/s2=7840N
支架自重根据计算不同的梁时分别施加。
(2) 风载 W:
根据《建筑结构荷载规范》(GB50009-2012)中对风荷载的规定如下(按承重结构
设计):
wk z s z w0
应对称分布。下图为光伏组件的受力简图,剪力图与弯距图。
由剪力图可以得出:当 a=b 时,剪力 Q 取最小极值,为 qa。即横梁间距等于光伏
组件长度的一半。 由弯距图可以看出:当 a=b 时,弯距 M 极值为[0,-0.0625ql2];
当 1 q(l 2 la) 1 qa 2 时,即 a 2 1l 时,弯距 M 极值为[0.0215ql2,-0.0215ql2],因此当
l23 b2
3l22 b
)
R0 R1
R2
1 2
P(1
P(3
l1
5l2 b
l1
5l2 b
3l22 b2
3l22 b2
l23 b3
)
l23 b3
)
由剪力图中可以看出斜梁中分布了 6 个峰值,分别为:
当 0<b< l2 时
QQ10
Q5 Q4
P 2P
剪力极值 Qmax>P
Q2 Q3 R0 2P
数值 Q235B 4.705 23.059 12.935 35.994 32.862 29.138 7.016919238 7.913720914
单位
cm2 cm4 cm4 cm4 mm mm cm3 cm3
项目 屈服极限 σs 弹性横量 E 对 y 轴惯性半径 iy 对 z 轴惯性半径 iz 极惯性半径 ip 左端离质心距离 右端离质心距离 抗弯截面系数 Wz(左) 抗弯截面系数 Wz(右)

光伏电站支架计算书(优化版)

光伏电站支架计算书(优化版)

光伏电站支架计算书(优化版)新疆光伏电站钢结构支架计算书计算:_____________校对:_____________审核:_____________目录一、计算假定: (3)二、设计依据 (3)三、计算简图 (3)四、几何信息 (4)五、荷载与组合 (5)1. 荷载计算 (6)2. 单元荷载 (6)3. 其它荷载 (12)4. 荷载组合 (12)六、内力位移计算结果 (13)1. 内力 (13)1.1 工况内力 (13)1.2 组合内力 (14)1.3 最不利内力 (18)1.4 内力统计 (21)2. 位移 (22)2.1 工况位移 (22)2.2 组合位移 (22)七、设计验算结果 (25)附录 (28)八、结构连接验算: (28)九、横梁承载验算:.................................................................. 错误!未定义书签。

一、计算假定:依照新疆地区已做的项目,按照新疆塔xx项目的抗力设计要求,取50年一遇风压:0.55kn/㎡;50年一遇雪压取0.45kn/㎡。

光伏组件选1640*992*40 重量19.5kg。

倾斜角度32°。

两块光伏板为一组。

支架截面:斜梁C100*50*15*2,横梁和斜柱均为C80*40*15*2。

柱脚锚栓M12 ,斜柱与斜梁连接一颗M12x40的4.6c级螺栓,横梁转接件与横梁和斜梁连接均为M8X25螺栓,光伏板与横梁连接依据光伏板定,M8X25。

二、设计依据《冷弯薄壁型钢结构技术规范》(GB50018-2002)《建筑结构荷载规范》(GB50009-2012)《建筑抗震设计规范》(GB50011-2010)《建筑地基基础设计规范》(GB50007-2011)《建筑钢结构焊接规程》(JGJ81-2002)《钢结构高强度螺栓连接的设计,施工及验收规程》(JGJ82-2011)三、计算简图计算简图(圆表示支座,数字为节点号)节点编号图单元编号图四、几何信息。

光伏支架力学强度计算说明书

光伏支架力学强度计算说明书

引起的材料的弯曲强度和弯曲量,支撑臂的压曲(压缩)以及拉伸强度,
安装螺栓的强度等,并确认强度。
(1) 结构材料
选取支架材料,确定截面二次力矩 IM 和截面系数 Z。 (2) 假象载荷
1) 固定荷重(G)=
组件质量
2) 风压荷重(W)
(加在组件上的风压力(WM)和加在支撑物上的风压力(WK)的总和)。
计算自由实体力
打开
摩擦
关闭
使用自适应方法:
关闭
结果文件夹
SolidWorks 文档 (D:\工作文件\小金)
单位
单位系统: 长度/位移 温度 角速度 压强/应力
公制 (MKS) mm Kelvin 弧度/秒 N/m^2
材料属性
模型参考
曲线数据:N/A
属性
名称: 模型类型: 默认失败准则: 屈服强度: 张力强度: 弹性模量:
最小 1.41537e-006 单元: 4353
最大 0.000226646 单元: 14334
可调支架 新导轨 - 1000-算例 1-应变-应变 1 结论:导轨符合安装要求。
备注:南昌市 50 年一遇最大载荷。 载荷要求:风载为 0.45KN/M2;
雪载为 0.45KN/M2 安装方式屋顶厂房屋顶支架; 载荷计算: 备注:此处正压对组件影响比较大,所以只需考虑正压即顺风情况。 单块组件风载:(此处以 12 度角正压计算)
W=0.75*450*1.64*0.992=549N 单块组件雪载:
建设地点的周围地形等状况 如海面一样基本没有障碍物的平坦地域 树木、低层房屋(楼房)分布平坦的地域 树木、低层房屋密集的地域,或者中层建筑(4-9 层)物分布的地域
(3)风力系数
1)组件面的风力系数。

固定式光伏支架计算书

固定式光伏支架计算书

固定式光伏组件支架结构计算书2015年11月目录1工程概述 (1)2分析方法与软件 (1)3设计依据 (1)4材料及其截面 (1)5荷载工况与组合 (2)5.1 荷载工况 (2)5.1.1 支架所受荷载 (2)5.2 荷载组合 (2)6 结构建模 (3)6.1 模型概况 (3)6.2 结构计算模型、坐标系及约束关系 (3)6.3 荷载施加 (4)7主要计算结果 (5)7.1 构件应力比 (5)7.2 构件稳定性校核 (8)1工程概述支架共8榀,间距为3m,两端带悬挑0.58mm,总长22.16m,电池板组水平宽度2.708米、斜面长度3.3米,荷载按25年重现期计算,结构重要性系数0.95,项目地点在黑龙江省牡丹江市,结构计算的三维示意如下图1所示。

图1.1 总体结构模型2分析方法与软件采用SAP2000 V15钢结构分析软件进行结构计算分析。

3设计依据1)建筑结构可靠度设计统一标准( GB 50068-2001 )2)建筑结构荷载规范( GB 50009-2012)3)建筑抗震设计规范( GB 50011-20104)钢结构设计规范( GB 50017-2003 )4材料及其截面材料材质性能,详见下表4.1。

表4.1 材料性能材料名称单位重量N/m3fy屈服强度N/m2f设计强度N/m2抗拉强度N/m2弹性模量E1N/m2泊松比UQ235 7.85E4 235E6 215E6 390E6 2.1E11 0.3 Q345 7.85E4 345E6 310E6 470E6 2.1E11 0.35荷载工况与组合5.1 荷载工况计算所考虑的荷载有恒载、雪荷载以及风荷载作用(由于本支架比较轻,地震工况与风荷载相比,其远不起控制作用,因此,可不考虑地震工况)。

5.1.1 支架所受荷载支架受到的荷载主要有支架自重、电池板及安装附件自重、风载、雪载。

荷载通过檩条传递到支架柱上,模型按各荷载大小均匀分布到檩条上进行加载。

光伏支架受力计算书

光伏支架受力计算书

光伏支架受力计算书的力计算表为1。

该设计基于1.1规范1。

建筑结构荷载规范GB50009-XXXX采用风压,但不应小于0.3kN/m2风荷载的组合值、频率值和准永久值系数分别为0.6、0.4和0。

全国所有平台10年、50年和100年重现期的雪压和风压值,风振系数见表D.4,取1风荷载体型系数见下表-。

根据构件与地面形成的角度,采用插入法计算风荷载体型系数A = 15。

正风荷载体型系数μ s = 1.325(根据XXXX国家标准50009中的基本风速m/s,每年一次当使用杯形风速计时,必须考虑温度和气压对空气密度的影响。

空气密度可根据以下公式确定:??0.001276?p?0.378e?3??(t/m)1?0.00366吨?100000?t-空气温度(摄氏度),p-空气压力(帕),e-水压(帕)根据位置的海拔高度z(m ),根据以下公式近似估算空气密度:?= 0.00125 e-0.0001 z(t/m3)z-风速表的实际高度(m)。

2,负载组合3。

梁抗弯强度计算组合截面形心坐标计算公式:根据截面形心,计算惯性矩公式平行轴位移:根据公式гmax = mmax Ymax/iz检查法向应力强度mIz代表惯性矩挠度计算:均匀载荷下的最大挠度在梁跨度的中间。

计算公式为:Ymax = 5ql 4/(384ei)。

,其中ymax是梁跨度中的最大挠度(mm)。

q是平均布线负载的标准值(kn/m)。

E是钢的弹性模量。

对于工程结构钢,e = 2100000 n/mm 2。

I是钢截面的惯性矩。

在三个相等的集中载荷下的最大挠度可以在型钢表(mm 4)中找到。

跨度等间距排列。

计算公式为:Ymax = 6.33 pl 3/(384 ei)。

,其中ymax是梁跨度中的最大挠度(mm)。

p是各种集中荷载的标准值之和(kn)。

E是钢的弹性模量。

对于工程用结构钢,E = 2100000 n/mm 2.i为钢截面的惯性矩。

它可以在型钢表中找到(mm ).风荷载基本风压:WP = ro * v2/2 = 1.225×242/2 = 352.8n/m2其中WP为风压,ro为空气密度kg/m3,v为风速m/s风荷载值为0.353 KN/m2高度z处的风振系数:结构高宽比小于1.5,因此,在表7.2.1) μz =1 结构类型:斜面,θ =元件与地面成15度角。

实用文档之光伏支架计算书

实用文档之光伏支架计算书

实用文档之"支架结构系统计算书"1.计算及设计依据《建筑结构荷载规范》(GB 50009-2001)《钢结构设计规范》(GB50017-2003 )2.材料力学性能2.1Q235结构钢2.2.1 HM-41槽钢截面图2.2.2HM-41槽钢物理特性壁厚t[mm]2截面积A[mm2]288.6重量[kg/m]2.51屈服强度f yk [N/mm2]245抗拉/压/弯强度[N/mm2]215弹性模量[N/mm2]200000剪切模量[N/mm2]80000 Y轴距槽口e 1[mm]22.61Y轴距槽背e 2[mm]-18.69惯性矩I y [cm4]6.66截面模量W y1[cm3]2.95容许弯矩M y [Nm]3.562.3.1 HM-52槽钢截面2.3.2 HM-52物理特性壁厚t[mm]2.5截面积A[mm2]405.2重量[kg/m]3.53屈服强度f yk [N/mm2]245抗拉/压/弯强度[N/mm2]215弹性模量[N/mm2]200000剪切模量[N/mm2]80000 Y轴距槽口e 1[mm]26.00Y轴距槽背e 2[mm]-26.00惯性矩I y [cm4]13.97截面模量W y1[cm3]5.37容许弯矩M y [Nm]5.373.设计参数太阳能板支架为主次梁布置,次梁跨度2.1m,主梁跨度2.5m;柱高度0.675m,倾斜度15度:次梁及柱采用表面热镀锌型材,本计算书依据2×9(电池板)阵列进行计算,计算简图见图=0.55KN/m2基本风压值:w=0.3KN/m2基本雪压值:S电池板块(每块质量19.8kg,1640×990mm,)阵列 2 ×9倾角:15°结构设计使用年限:25年4.荷载4.1恒载= gk=19.8×10×cos15°/(1.640×0.99)=0.118KN/ m2SGK4.2风荷载垂直于建筑物表面上的风荷载标准值,应按下述公式计算:wk=z×s×z×w式中:wk—风荷载标准值(KN/m2);z—高度z处的风振系数;s—风荷载体型系数;z—风压高度变化系数;—基本风压(KN/m2);w风振系数z=1体型系数α=15°s1=-1.325s2=-0.525s3=1.325s4=0.535离地高度小于30m的C类地区,z 取值1(s1)=1×-1.325×1×0.55=-0.72875KN/m2 WkW(s2) =1×0.525×1×0.55=-0.28875KN/m2 k(s3) =1×1.325×1×0.55=0.72875KN/m2WkW(s4) =1×0.525×1×0.55=0.28875KN/m2k4.3雪荷载水平投影面上的雪荷载标准值,应按下式计算:Sk=rSo体型系数r取值1(倾角15°)资料中给出基本雪压So 取值0.3KPa得雪荷载值:Sk=1×0.3=0.3 KN/ m2荷载组合承载能力极限状态:1)S1=1.2恒+1.4*风(+)+0.7*1.4*雪2)S2=1.2恒+1.4*雪(+)+0.6*1.4*风3)S3=1.0恒+1.4风(-)4)S4=1.35恒正常使用极限状态5)S1=1.0恒+1.0风(+)1.0(雪)6)S2=1.0恒+1.0风(-)7)S3=1.0恒+1.4 wk+1.4×0.7 SkS=1.2 SGK=1.2×0.118+1.4×0.72875+1.4×0.7×0.3=1.456 KN/m25.钢结构有限元分析s3区承载力极限状态下最不利荷载为:S1=1.2恒+1.4*雪(+)+0.6*1.4*风= =1.2×0.118+1.4×0.72875+1.4×0.7×0.3=1.456 KN/m2梁均布线荷载1.456×1.64/2=1.19 KN/ ms4区承载力极限状态下最不利荷载为:S2=1.2恒+1.4*风(+)+0.6*1.4*雪=1.2×0.118+1.4×0.3+1.4×0.7×0.28875=0.84 KN/m2梁均布线荷载0.84×1.64/2=0.69 KN/ m5.1有限元分析采用SAP2000非线性版新建模型施加荷载运行分析—后处理数据5.2次梁计算采用 C钢41*41 进行校核5.2.1 导轨截面:41*41*2*12100 mm5.2.2导轨受力分析图5.2.3 受力分析数据弯矩最大值:Mmax=0.313KN·m应力计算max=Mmax/W=0.313×103/2.95×10-6=106.1MPa<=215 MPa满足应力强度条件。

光伏支架荷载计算

光伏支架荷载计算

quk = Wkf - 1.0 Gk =2.1 KPa
(标准值)
qu = 1.4Wkf - 1.0 Gk =2.98 KPa
负风荷载- 自重荷载
(设计值)
qgk = quk =2.1KPa (标准值)
qg = qu =2.98 KPa (设计值)
Q235B
-2
EST = 206000N.mm
-2
fa=215 N.mm
Mx
=
0.188.Fl.L
5
=8.3×10
N·mm
按双跨梁计算
Qo = 0.688.Fl. =1.68 kN
F = 1.376.Fl. =3.36 KN
第3页
截面参数 截面特性
截面几何参数
A
325
Ix
112670
Iy
92260
ix
16.845
iy
18.616
Wx
4008
Wy
4500
Sx
2735
Sy
-2
fv=125 N.mm
组件规格 荷载分格 单根龙骨长度
a = 1650mm B = 992mm H = 3000mm
b = 992mm
龙骨固定长度 集中荷载
跨中最大弯矩 最大剪力 最大反力
L = 1817mm
Fk = 0.5qgk.a.b =1719 N
Fl = 0.5qg.a.b =2439 N
光伏支架结构计算书
计算:刘长 审核: 核定: 日期:2016 年 5 月 10 日
第1页
1、光伏支架龙骨计算
俯视图
1.1 荷载计算
1.1.1 风荷载计算
基本风压(惠州地区):

光伏支架计算书

光伏支架计算书

光伏支架计算书支架结构系统计算书本计算书的计算及设计依据包括《建筑结构荷载规范》(GB -2001)和《钢结构设计规范》(GB-2003)。

材料力学性能方面,本文采用了Q235结构钢和HM-41、HM-52槽钢。

HM-41槽钢的物理特性包括壁厚、截面积、重量、屈服强度、抗拉/压/弯强度、弹性模量、剪切模量、Y轴距槽口、Y轴距槽背、惯性矩、截面模量和容许弯矩等参数。

同样,HM-52槽钢也有类似的物理特性参数。

设计参数方面,本文主要针对太阳能板支架的主次梁布置、次梁跨度、主梁跨度、柱高度、倾斜度等进行了计算。

支架结构的设计使用年限为25年。

在荷载方面,本文考虑了恒载和风荷载。

恒载的计算采用了电池板块的质量和倾角等参数。

风荷载的计算则按照公式进行,其中包括了风振系数、风荷载体型系数、风压高度变化系数等参数。

经过以上的计算和设计,本文得出了太阳能板支架结构系统的各项参数和荷载情况。

In C-class areas where the height is less than 30m。

the wind load is XXX(z=1,2) = 1 × (-1.325) × 1 × 0.55 = -0. KN/m。

Wk(s1,s2) = 1 × 0.525 × 1 × 0.55 = -0. KN/m。

Wk(s3) = 1 ×1.325 × 1 × 0.55 = 0. KN/m。

and Wk(s4) = 1 × 0.525 × 1 × 0.55 = 0. KN/m.For XXX。

the standard value is calculated using the formula Sk = rSo。

where r=1 (with a slope of 15°) and So=0.3 KPa。

光伏支架基础计算书整理,计算书内有插图

光伏支架基础计算书整理,计算书内有插图

嘉荫县乌拉嘎镇胜利村220kW光伏扶贫电站项目光伏支架桩基础计算书基本信息:本项目位于黑龙江省伊春市嘉荫县,支架采用独立桩基支架形式,支架倾角(θ)40度,支架间距3.7m(取最不利布置为计算对象)。

依据《光伏发电站设计规范》GB50797-2012支架计算风、雪荷载及荷载效应按现行国家规范《建筑结构荷载规范》GB50009中25年一遇的荷载数值取值。

地面支架风荷载体型系数取1.3;风振系数取1.0;风压高度变化系数取1.0。

一、荷载计算1、恒载:光伏组件规格:1640X992,含组件自重为20Kg,即0.2KN.支架自重约为80 Kg,支架间距为3.7m,根据布置图一组支架支撑面为6块光伏组件。

支架及光伏组件自重每平米G1=2KN/1.65*0.992*6=0.2KN/m2。

2、风荷载查《建筑结构荷载规范》取基本风压W0=0.3KN/m2查《光伏发电设计规范》6.8.7风荷载体形系数μs1=1.3;风压高度变化系数μz=1.0;由《建筑结构荷载规范》不考虑风振影响。

因此取风振系数βz=1.0。

风荷载标准值W k1=βz*μs1*μz*W0=1.0×1.3×1.0×0.3=0.39KN/m2(垂直于光伏组件面)。

W kh= W k1*sinθ=0.39*0.643=0.25 KN/m2(水平方向)W kv= W k1*cosθ=0.39*0.766=0.3 KN/m2(铅锤方向)3、雪荷载查《建筑结构荷载规范》基本雪压S0=0.56KN/m2(铅锤方向);查《建筑结构荷载规范》表7.2.1,屋面积雪分布系数μr=0.55;则雪荷载标准值S k=μr*S0=0.56×0.55=0.31KN/m2(铅锤方向)。

二、计算单元计算单元的选取:根据支架布置计算单元取以中间支架为计算单元,计算单元面积为A=3.3*3=9.9 m2三、荷载组合及内力计算(顺风向工况和逆风向工况)4.1支架计算(顺风向起控制)支架计算采用节点荷载输入:节点承载面积A=0.83*3=2.5 m2垂直于光伏板方向:节点荷载Fh=1.4*2.5*0.39=1.365KN(↘)铅锤向下:节点荷载Fv=2.5*(1.2*0.2+1.4*0.6*0.31)=1.25KN(↓)4.2檩条计算(顺风向起控制)檩条计算采用线荷载输入:承载面宽B=0.83m垂直于光伏板方向:风荷载Fh=1.4*0.83*0.39=0.45KN/m(↘)铅锤向下:恒荷载Fv=1.2*0.83*0.12=0.12KN/m(↓)4.3桩承载力计算(顺风向起控制)桩竖向承载力:Fv=3.3*3*{1.2*0.2+1.4*(0.31+0.6*0.3) }=9.16KN(↓)桩水平承载力:Fh=1.4*3.3*3*0.25=3.5KN(→)4.4桩抗拔计算(逆风向起控制)桩竖向承载力:Fv=3.3*3*(1.0*0.2-1.4*0.3)=2.2KN(↑)桩水平承载力:Fh=1.4*3.3*3*0.25=3.5KN(←)。

[技术]光伏支架计算书

[技术]光伏支架计算书

[技术]光伏支架计算书屋面光伏项目支架及基础计算书1 项目概述1.1 项目信息表1.1-1 项目主要信息1 项目类型混凝土屋顶固定式光伏电站(979kW)2 项目地点湖北武汉3 组件尺寸2094mm*1038mm*35mm4 组件重量23.5kg 每件5 组件倾角10°6 设计基本风压0.35Kpa(50年重现期)GB50009-20127 基本雪压0.5Kpa(50年重现期)GB50009-20128 场地类型B类GB50009-20121.2 设计采用标准(1)《建筑结构荷载规范》(GB50009-2012)(2)《光伏发电站设计规范》(GB50797-2012)(3)《光伏支架结构设计规范》(NB/T10115-2018)(4)《混凝土结构设计规范》(GB50010-2010)(5)《钢结构设计标准》(GB50017-2017)2 支架及基础布置形式2.1 支架及基础典型布置图图2.1-1 支架及基础典型布置图2.2 支架及基础剖面图图2.2-1 支架及基础剖面图3 主要材料及许用应力值3.1 支架主要材料表3.1-1 支架主要材料信息序号名称尺寸(mm)材料1 前立柱基础∅400*300 C302 后立柱基础∅600*300 C303 U型地脚螺栓M12*U200*1104 立柱U51*41*2.5 Q235B5 斜梁U51*41*2.5 Q235B6 檩条U51*41*2.0 Q235B7 斜撑U41*41*2.0 Q235B8 背拉杆L30X3.0 Q235B3.2 构件截面尺寸表3.2-1 构件截面尺寸信息3.3 材料属性表3.3-1 材料属性信息Q235B (≤ 16mm)Q355B (≤ 16mm)极限抗拉强度fu = 375 MPa fu = 470 MPa 最小屈服强度fy = 235 MPa fy = 345 MPa 密度7850 kg/m3 7850 kg/m3杨氏模量206000MPa 206000MPa3.4 许用应力设计值表3.4-1 许用应力设计值信息Q235B (≤ 16mm)Q355B (≤ 16mm)抗拉215N/mm2 310N/mm2抗压215N/mm2 310N/mm2抗弯215N/mm2 310N/mm2抗剪125N/mm2 175N/mm24.1 荷载分类根据屋顶光伏支架承受的荷载,以下几种荷载将被考虑。

光伏支架及基础计算书

光伏支架及基础计算书

光伏支架及基础计算书项目名称项目地点日期A A-1安徽省/市毫州市地区参照年限50年一遇参照年限50年一遇0.45kN/m 2 50年一遇0.45kN/m 250年一遇25年0.45kN/m 2A-2B 类A-35米A-5品牌Trina 系列TSM-PC05A ※光伏组件机械参数组件长度 1.65米组件宽度0.992米组件厚度35毫米组件重量18.6千克A-625度A-72块A-820mm A-90.04kN/m 2A-100.25m A-11独立基础A-120.4m 长0.4m 宽0.4m 高0.8m 长0.8m 宽0.4m 高A-13C2023.5kN/m 3A-140.2m A-152.5m A-16 2.7m B μz =1μs = 1.3※0.59kN/m 21.50kN6.02kN1.36kN5.24kN1.852m18.51kN·m 9.71kN·m ※光伏支架基础计算书项目地、附近风压点设计资料黄色背景部分为按需填写项★注:本工具参考相关标准及网络上的资料、文章编写,另外"组件机械数据库"数量很少,本工具中使用较多的名称,并非直接填入即能生效,因此添加后需要查看相关名称定义并修改方可,或替换原有数据。

采用GB 50007-2011 P49 挡土墙的抗倾覆安全系数≥1.6风荷载体形系数按照GB50797-2012中6.8.7条选取1.3抗倾覆力矩倾覆力矩= 1.91 1.6>验算通过!风载荷标准值=ω0*βz *μz *μs =光伏支架基础倾覆验算倾覆点距组件安装面中心法线距离=光伏组件、支架及配件自重=风荷载=抗倾覆力矩=前支墩重量G1k 后支墩重量G2k 验算结果为:前支墩尺寸单根主梁上的组件数量组件安装角度单根主梁上的组件间距光伏支架及配件自重前支架高度地面粗糙度分为A 、B 、C 三类:A 类 - 近海海面、海岛、海岸、湖岸及沙漠地区B 类 - 田野、乡村、丛林、丘陵以及房屋比较稀疏的中、小城镇和大城市郊区C 类- 有密集建筑群的城市市区D 类- 有密集建筑群且房屋较高的城市市区项目地基本风压ω0设计年限基础类型基础尺寸项目地基本风压ω0地面粗糙度类别设计计算高度H 项目地设计年限基本风压ω0光伏组件选型后支墩尺寸基础强度倾覆力矩=前支墩距前支架中心距离前后支墩中心间距风压高度变化系数风载荷体型系数支架跨距。

光伏支架受力计算书

光伏支架受力计算书

支架结构受力计算书设计:___ ___ _日期:___ 校对:_ 日期:___ 审核:__ _____日期:____常州市**实业有限公司1 工程概况项目名称: *****30MW 光伏并网发电项目 工程地址: 新疆 建设单位: **集团结构高度: 电池板边缘离地不小于500mm 2 参考规范《建筑结构可靠度设计统一标准》GB50068—2001 《建筑结构荷载规范》GB50009—2012 《建筑抗震设计规范》GB50011—2010 《钢结构设计规范》GB50017—2003《冷弯薄壁型钢结构设计规范》GB50018—2002 《不锈钢冷轧钢板和钢带》GB/T3280—2007 《光伏发电站设计规范》 GB50797-2012 3 主要材料物理性能 3.1材料自重铝材——————————————————————327/kN m 钢材————————————————————3/78.5kN m 3.2弹性模量铝材————————————————————270000/N mm 钢材———————————————————2206000/N mm 3.3设计强度 铝合金铝合金设计强度[单位:2/N mm ]钢材钢材设计强度[单位:2/N mm ]不锈钢螺栓不锈钢螺栓连接设计强度[单位:2/N mm ]普通螺栓普通螺栓连接设计强度[单位:2/N mm ]角焊缝容许拉/剪应力—————————————————2160/N mm 4 结构计算4.1 光伏组件参数 晶硅组件:自重PV G :0.196kN (20kg /块) 尺寸(长×宽×厚)992164400mm ⨯⨯安装倾角:37° 4.2 支架结构支架安装侧视图4.3 基本参数1)电站所在地区参数新疆阿勒泰项目地,所处经纬度:位于 北纬43°,东经89°。

基本风压20.56/kN m (风速30/s m ),基本雪压21.35/kN m 。

光伏电站支架 计算书(优化版)

光伏电站支架  计算书(优化版)

新疆光伏电站钢结构支架计算书计算:_____________校对:_____________审核:_____________目录一、计算假定: (3)二、设计依据 (3)三、计算简图 (3)四、几何信息 (4)五、荷载与组合 (5)1. 荷载计算 (6)2. 单元荷载 (6)3. 其它荷载 (12)4. 荷载组合 (12)六、内力位移计算结果 (13)1. 内力 (13)1.1 工况内力 (13)1.2 组合内力 (14)1.3 最不利内力 (18)1.4 内力统计 (21)2. 位移 (22)2.1 工况位移 (22)2.2 组合位移 (22)七、设计验算结果 (25)附录 (28)八、结构连接验算: (28)九、横梁承载验算:.................................................................. 错误!未定义书签。

一、计算假定:依照新疆地区已做的项目,按照新疆塔xx项目的抗力设计要求,取50年一遇风压:0.55kn/㎡;50年一遇雪压取0.45kn/㎡。

光伏组件选1640*992*40 重量19.5kg。

倾斜角度32°。

两块光伏板为一组。

支架截面:斜梁C100*50*15*2,横梁和斜柱均为C80*40*15*2。

柱脚锚栓M12 ,斜柱与斜梁连接一颗M12x40的4.6c级螺栓,横梁转接件与横梁和斜梁连接均为M8X25螺栓,光伏板与横梁连接依据光伏板定,M8X25。

二、设计依据《冷弯薄壁型钢结构技术规范》(GB50018-2002)《建筑结构荷载规范》(GB50009-2012)《建筑抗震设计规范》(GB50011-2010)《建筑地基基础设计规范》(GB50007-2011)《建筑钢结构焊接规程》(JGJ81-2002)《钢结构高强度螺栓连接的设计,施工及验收规程》(JGJ82-2011)三、计算简图计算简图(圆表示支座,数字为节点号)节点编号图单元编号图四、几何信息各节点信息如下表:各单元信息如下表:五、荷载与组合结构重要性系数: 1.001.荷载计算2. 单元荷载(1) 单元荷载汇总表(力:kN;分布力:kN/m;弯矩:kN.m;分布弯矩:kN.m/m)第 1 工况单元荷载表第 2 工况单元荷载表第 3 工况单元荷载表1) 工况号: 0单元荷载分布图:单元荷载序号1分布图(实粗线表示荷载作用的单元) 2) 工况号: 1*输入荷载库中的荷载:单元荷载分布图:单元荷载序号1分布图(实粗线表示荷载作用的单元) 3) 工况号: 2单元荷载分布图:单元荷载序号1分布图(实粗线表示荷载作用的单元)单元荷载序号2分布图(实粗线表示荷载作用的单元) 4) 工况号: 3*输入荷载库中的荷载:单元荷载分布图:单元荷载序号1分布图(实粗线表示荷载作用的单元)单元荷载序号2分布图(实粗线表示荷载作用的单元)(2) 单元荷载图(力:kN;分布力:kN/m;弯矩:kN.m;分布弯矩:kN.m/m)第 0 工况单元荷载简图工况单元荷载简图第 2 工况单元荷载简图第 3 工况单元荷载简图3. 其它荷载(1). 地震作用规范:《建筑抗震设计规范》(GB50011-2010)地震烈度: 8度(0.30g)水平地震影响系数最大值: 0.24计算振型数: 2建筑结构阻尼比: 0.035特征周期值: 0.35地震影响:多遇地震场地类别:Ⅰ1类地震分组:第三组周期折减系数: 1.00地震力计算方法:振型分解法(2). 温度作用4. 荷载组合(1) 1.35 恒载 + 1.40 x 0.70 活载工况1(2) 1.20 恒载 + 1.40 活载工况1(3) 1.00 恒载 + 1.40 活载工况1(4) 1.20 恒载 + 1.40 风载工况2(5) 1.00 恒载 + 1.40 风载工况2(6) 1.20 恒载 + 1.40 活载工况1 + 1.40 x 0.60 风载工况2(7) 1.00 恒载 + 1.40 活载工况1 + 1.40 x 0.60 风载工况2(8) 1.20 恒载 + 1.40 x 0.70 活载工况1 + 1.40 风载工况2(9) 1.00 恒载 + 1.40 x 0.70 活载工况1 + 1.40 风载工况2(10) 1.20 恒载(11) 1.20 恒载 + 1.40 风载工况3(12) 1.00 恒载 + 1.40 风载工况3(13) 1.20 恒载 + 1.40 活载工况1 + 1.40 x 0.60 风载工况3(14) 1.00 恒载 + 1.40 活载工况1 + 1.40 x 0.60 风载工况3(15) 1.20 恒载 + 1.40 x 0.70 活载工况1 + 1.40 风载工况3(16) 1.00 恒载 + 1.40 x 0.70 活载工况1 + 1.40 风载工况3六、内力位移计算结果1. 内力1.1 工况内力第 0 工况内力表 (单位:N、Q(kN);M(kN.m))第 1 工况内力表 (单位:N、Q(kN);M(kN.m))第 3 工况内力表 (单位:N、Q(kN);M(kN.m))地震工况第 2 种情况内力表 (单位:N、Q(kN);M(kN.m))1.2 组合内力第 3 种组合内力表 (单位:N、Q(kN);M(kN.m))第 6 种组合内力表 (单位:N、Q(kN);M(kN.m))第 8 种组合内力表 (单位:N、Q(kN);M(kN.m))第 9 种组合内力表 (单位:N、Q(kN);M(kN.m))第 11 种组合内力表 (单位:N、Q(kN);M(kN.m))第 12 种组合内力表 (单位:N、Q(kN);M(kN.m))第 14 种组合内力表 (单位:N、Q(kN);M(kN.m))第 15 种组合内力表 (单位:N、Q(kN);M(kN.m))第 16 种组合内力表1.3 最不利内力各效应组合下最大支座反力设计值(单位:kN、kN.m)3.80.0 2.8 0.0-0.0 0.5 0.0轴力 N 包络图(单位:kN)弯矩 M2 包络图(单位:kN.m)1.4 内力统计轴力 N 最大的前 3 个单元的内力 (单位:m,kN,kN.m)轴力 N 最小的前 3 个单元的内力 (单位:m,kN,kN.m)弯矩 M2 最小的前 3 个单元的内力 (单位:m,kN,kN.m)2. 位移2.1 工况位移2.2 组合位移“X向位移”最大的前 5 个节点位移表(单位:mm)“Y向位移”最大的前 5 个节点位移表(单位:mm)“结构层”层“X向位移”最大的前 5 个节点位移表(单位:mm)“结构层”层“Y向位移”最大的前 5 个节点位移表(单位:mm)“结构层”层“Z向位移”最大的前 5 个节点位移表(单位:mm)“结构层”层“合位移”最大的前 5 个节点位移表(单位:mm)“结构层”层“X向位移”最小的前 5 个节点位移表(单位:mm)七、设计验算结果本工程有1种材料:Q235弹性模量: 2.06*105N/mm2;泊松比: 0.30;线膨胀系数: 1.20*10-5;质量密度: 7850kg/m3.最严控制表 (强度和整体稳定为(应力/设计强度))“强度应力比”最大的前 5 个单元的验算结果(所在组合号/情况号)按“强度应力比”统计结果表“绕2轴整体稳定应力比”最大的前 5 个单元的验算结果(所在组合号/情况号)按“绕2轴整体稳定应力比”统计结果表“绕3轴整体稳定应力比”最大的前 5 个单元的验算结果(所在组合号/情况号)按“绕3轴整体稳定应力比”统计结果表“绕2轴长细比”最大的前 5 个单元的验算结果按“绕2轴长细比”统计结果表“绕3轴长细比”最大的前 5 个单元的验算结果按“绕3轴长细比”统计结果表附录冷弯卷边槽钢截面示意图八、结构连接验算:1:柱脚与基础连接验算:M12查《钢结构设计手册》表20-6 单个普通C级螺栓的承载力设计值(Q235)螺栓直径d=12mm,受拉承载力设计值错误!未找到引用源。

光伏支架受力计算书

光伏支架受力计算书

光伏支架受力计算书光伏支架受力计算书受力计算书一、设计依据规范1. 建筑结构荷载规范GB50009-20XX2. 钢结构设计规范GB50017-20XX 3. 铝合金结构设计规范GB50429-20XX 4. 冷弯薄壁型钢结构技术规范 5. 建筑抗震设计规范材料力学性能钢材碳素结构钢 Q235-B 重力密度ρ= kN/m3 弹性模量E=×10^5N/mm2 线膨胀系数α=×10-5 泊松比ν= 抗拉/压/弯强度 fs=215 N/mm2 抗剪强度 fsv=125N/mm2 端面承压强度 fsce=325 N/mm2设计过程:1、荷载组合中风荷载确定过程。

(1) Wk=βz*Ms*Mz*W0Wk-风荷载标准值,βz-高度z处的风振系数,Ms-风荷载体型系数,Mz-风压高度变化系数,W0-基本风压(kN/m2)。

注:基本风压应按本规范附录中附表给出的50 年一遇的风压采用,但不得小于/m2。

风荷载的组合值、频遇值和准永久值系数可分别取、和0。

全国各站台重现期为10 年、50 年和100 年的雪压和风压值见附表风振系数取值为1。

风荷载体型系数如下表根据组件与地面所成角度,插入法计算风荷载体型系数a=15正风压荷载体型系数μs=(根据GB50009-20XX 表) 负风压荷载体型系数μs=- (根据GB50009-20XX表) 风压高度变化系数:地面粗糙度类别 : B Mz=1 地貌描述 :A类, 指近海海面和海岛,海岸,湖岸及沙漠地区。

B类,指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区 C类,指有密集建筑群的城市市区D 类,指有密集建筑群且房屋较高的城市市区基本风压:Wo=ρVo2/2Wo-基本风压,ρ-空气密度,Vo-平均50年一遇的基本风速m/s。

使用风杯式测风仪时,必须考虑空气密度受温度、气压影响的修正,可按下述公式确定空气密度:p31100000t-空气温度,P-气压,e-水气压(Pa)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

支架结构系统计算书
1.计算及设计依据
《建筑结构荷载规范》(GB 50009-2001)
《钢结构设计规范》(GB50017-2003 )
2.材料力学性能
2.1Q235结构钢
2.2.1 HM-41槽钢截面图
2.2.2HM-41槽钢物理特性
壁厚t[mm] 2 截面积A[mm2] 288.6 重量[kg/m] 2.51
[N/mm2] 245 屈服强度f
yk
抗拉/压/弯强度[N/mm2] 215 弹性模量[N/mm2] 200000 剪切模量[N/mm2] 80000
[mm] 22.61 Y轴距槽口e
1
Y轴距槽背e
[mm] -18.69
2
惯性矩I
[cm4] 6.66
y
截面模量W
[cm3] 2.95
y1
[Nm] 3.56 容许弯矩M
y
2.3.1 HM-52槽钢截面
2.3.2 HM-52物理特性
壁厚t[mm] 2.5 截面积A[mm2] 405.2 重量[kg/m] 3.53
[N/mm2] 245 屈服强度f
yk
抗拉/压/弯强度[N/mm2] 215 弹性模量[N/mm2] 200000 剪切模量[N/mm2] 80000 Y轴距槽口e
[mm] 26.00
1
[mm] -26.00 Y轴距槽背e
2
[cm4] 13.97 惯性矩I
y
截面模量W
[cm3] 5.37
y1
[Nm] 5.37 容许弯矩M
y
3.设计参数
太阳能板支架为主次梁布置,次梁跨度2.1m,主梁跨度2.5m;柱高度0.675m,倾斜度15度:次梁及柱采用表面热镀锌型材,本计算书依据2×9(电池板)阵列进行计算,计算简图见图
=0.55KN/m2
基本风压值:w
基本雪压值:S
=0.3KN/m2
电池板块(每块质量19.8kg,1640×990mm,)阵列2 ×9
倾角:15°
结构设计使用年限:25年
4.荷载
4.1恒载
= gk=19.8×10×cos15°/(1.640×0.99)=0.118KN/ m2
S
GK
4.2风荷载
垂直于建筑物表面上的风荷载标准值,应按下述公式计算:
wk=z×s×z×w
式中:wk—风荷载标准值(KN/m2);
z—高度z处的风振系数;
s—风荷载体型系数;
z—风压高度变化系数;
—基本风压(KN/m2);
w
风振系数z=1
体型系数α=15°
s1=-1.325
s2=-0.525
s3=1.325
s4=0.535
离地高度小于30m的C类地区,z 取值1 (s1)=1×-1.325×1×0.55=-0.72875KN/m2
W
k
(s2) =1×0.525×1×0.55=-0.28875KN/m2
W
k
W
(s3) =1×1.325×1×0.55=0.72875KN/m2
k
(s4) =1×0.525×1×0.55=0.28875KN/m2
W
k
4.3雪荷载
水平投影面上的雪荷载标准值,应按下式计算:Sk=rSo
体型系数r取值1(倾角15°)
资料中给出基本雪压So 取值0.3KPa
得雪荷载值:
Sk=1×0.3=0.3 KN/ m2
荷载组合
承载能力极限状态:
1)S1=1.2恒+1.4*风(+)+0.7*1.4*雪
2)S2=1.2恒+1.4*雪(+)+0.6*1.4*风
3)S3=1.0恒+1.4风(-)
4)S4=1.35恒
正常使用极限状态
5)S1=1.0恒+1.0风(+)1.0(雪)
6)S2=1.0恒+1.0风(-)
7)S3=1.0恒
S=1.2 S
+1.4 wk+1.4×0.7 Sk
GK
=1.2×0.118+1.4×0.72875+1.4×0.7×0.3
=1.456 KN/m2
5.钢结构有限元分析
s3区承载力极限状态下最不利荷载为:S1=1.2恒+1.4*雪(+)+0.6*1.4*风= =1.2×0.118+1.4×0.72875+1.4×0.7×0.3=1.456 KN/m2
梁均布线荷载1.456×1.64/2=1.19 KN/ m
s4区承载力极限状态下最不利荷载为:S2=1.2恒+1.4*风(+)+0.6*1.4*雪=1.2×0.118+1.4×0.3+1.4×0.7×0.28875=0.84 KN/m2
梁均布线荷载0.84×1.64/2=0.69 KN/ m
5.1有限元分析采用SAP2000非线性版
新建模型
施加荷载运行分析—后处理数据
5.2次梁计算采用C钢41*41 进行校核
5.2.1 导轨截面:41*41*2*12100 mm
5.2.2导轨受力分析图
5.2.3 受力分析数据
弯矩最大值:Mmax=0.313KN·m
应力计算
max=Mmax/W=0.313×103/2.95×10-6=106.1MPa<=215 MPa 满足应力强度条件。

5.3主梁受力分析
5.3.1主梁截面41*52*2mm*3200 mm
5.3.2 主梁受力分析图
5.3.3受力分析数据
弯矩最大值:Mmax=1.74KN·m
应力计算
max=Mmax/W=0.761×103/5.37×10-6=141MPa<=215 MPa
满足应力强度条件。

5.4 立柱受力分析
5.4.1 立柱截面41*42*2*675mm
5.4.2立柱受力分析图
压应力=F2/A
=5.536×103/(288.6×10-6)=19.18 MPa<215MPa
beam
满足应力强度条件。

相关文档
最新文档