集成运放放大电路实验报告

合集下载

集成运算放大器实验报告

集成运算放大器实验报告

集成运算放大器实验报告集成运算放大器实验报告引言集成运算放大器(Integrated Operational Amplifier)是一种常见的电子器件,广泛应用于各个领域,如通信、医疗、工业控制等。

本实验旨在通过实际操作和测量,了解集成运算放大器的基本原理和特性,并探讨其在电路设计中的应用。

一、实验目的本实验的主要目的如下:1. 理解集成运算放大器的基本原理和特性;2. 掌握集成运算放大器的基本参数测量方法;3. 探索集成运算放大器在电路设计中的应用。

二、实验仪器与器件1. 实验仪器:示波器、函数发生器、直流电源、万用表等;2. 实验器件:集成运算放大器、电阻、电容等。

三、实验步骤1. 搭建基本的集成运算放大器电路,并连接相应的仪器;2. 调节函数发生器,输入不同的信号波形,观察输出信号的变化;3. 测量并记录集成运算放大器的增益、输入阻抗、输出阻抗等参数;4. 尝试改变电路中的电阻和电容数值,观察输出信号的变化;5. 根据实验结果,分析集成运算放大器的应用场景和电路设计方法。

四、实验结果与分析1. 在实验中,我们观察到集成运算放大器具有很高的增益,可以将输入信号放大到几十倍甚至几百倍的程度。

这使得它在信号放大和放大器设计中发挥着重要的作用。

2. 通过测量,我们还发现集成运算放大器具有很高的输入阻抗和很低的输出阻抗。

这使得它可以有效地隔离输入和输出电路,提高信号传输的质量。

3. 在实验中,我们改变了电路中的电阻和电容数值,观察到输出信号的变化。

这进一步验证了集成运算放大器的灵活性和可调性,可以根据实际需求进行电路设计和调整。

五、实验总结通过本次实验,我们深入了解了集成运算放大器的基本原理和特性,并掌握了相关的测量方法。

我们还通过实际操作,探索了集成运算放大器在电路设计中的应用。

实验结果表明,集成运算放大器在信号放大、隔离和调节方面具有重要作用,可以在各个领域中发挥重要的作用。

六、参考文献[1] 张三, 李四. 集成运算放大器原理与应用[M]. 北京:电子工业出版社,2018.[2] 王五, 赵六. 集成运算放大器电路设计与实验[M]. 上海:上海科学技术出版社,2019.以上即为本次集成运算放大器实验报告的全部内容。

集成运算放大器的应用实验报告

集成运算放大器的应用实验报告

一、实验目的1. 了解集成运算放大器的基本特性和工作原理。

2. 掌握集成运算放大器的基本应用电路的设计与调试方法。

3. 熟悉集成运算放大器在实际电路中的应用,提高电子电路设计能力。

二、实验原理集成运算放大器(Op-Amp)是一种高增益、低输入阻抗、高输入电阻、低输出阻抗的直接耦合放大器。

它广泛应用于各种模拟信号处理和产生电路中。

本实验主要研究集成运算放大器的基本应用电路,包括反相比例放大电路、同相比例放大电路、加法运算电路、减法运算电路等。

三、实验仪器与设备1. 集成运算放大器:TL0822. 直流稳压电源:±15V3. 数字万用表4. 示波器5. 面包板6. 连接线7. 电阻、电容等元件四、实验内容1. 反相比例放大电路(1)电路连接:将集成运算放大器TL082的输入端分别连接到输入电阻R1和地,输出端连接到负载电阻R2,反馈电阻Rf与R1并联后连接到反相输入端。

(2)电路调试:将输入电压信号输入到电路中,使用示波器观察输出电压波形,调整R1和Rf的值,使输出电压与输入电压成反相关系。

(3)实验结果:当R1和Rf的值分别为1kΩ和10kΩ时,输出电压与输入电压成反相关系,放大倍数为-10。

2. 同相比例放大电路(1)电路连接:将集成运算放大器TL082的同相输入端连接到输入电阻R1,反相输入端连接到地,输出端连接到负载电阻R2,反馈电阻Rf与R1并联后连接到同相输入端。

(2)电路调试:将输入电压信号输入到电路中,使用示波器观察输出电压波形,调整R1和Rf的值,使输出电压与输入电压成正比关系。

(3)实验结果:当R1和Rf的值分别为1kΩ和10kΩ时,输出电压与输入电压成正比关系,放大倍数为10。

3. 加法运算电路(1)电路连接:将集成运算放大器TL082的反相输入端连接到地,同相输入端连接到两个输入电阻R1和R2,输出端连接到负载电阻R3,反馈电阻Rf与R1、R2并联后连接到同相输入端。

集成运算放大器的基本应用实验报告

集成运算放大器的基本应用实验报告

集成运算放大器的基本应用实验报告集成运算放大器的基本应用实验报告引言:集成运算放大器(Operational Amplifier,简称Op-Amp)是一种广泛应用于电子电路中的重要器件。

它具有高增益、低失调、宽带宽等特点,可以实现信号放大、滤波、积分、微分等功能。

在本次实验中,我们将通过几个基本应用实验,探索集成运算放大器的工作原理和应用场景。

实验一:非反相放大器非反相放大器是Op-Amp最常见的应用之一。

它通过将输入信号与放大倍数相乘,输出一个放大后的信号。

我们在实验中使用了一个标准的非反相放大器电路,将一个正弦波信号作为输入,观察输出信号的变化。

实验结果显示,输出信号的幅度和输入信号的幅度相比,增大了放大倍数倍。

而相位方面,输出信号与输入信号的相位保持一致。

这说明非反相放大器能够有效放大输入信号,并且不改变其相位。

实验二:反相放大器反相放大器是Op-Amp另一种常见的应用。

它与非反相放大器相比,输入信号与放大倍数相乘后取反,输出一个反向的放大信号。

我们在实验中使用了一个反相放大器电路,将一个正弦波信号作为输入,观察输出信号的变化。

实验结果显示,输出信号的幅度与输入信号的幅度相比,同样增大了放大倍数倍。

但是相位方面,输出信号与输入信号相差180度。

这说明反相放大器能够有效放大输入信号,并且改变其相位。

实验三:积分器积分器是Op-Amp的另一个重要应用。

它可以将输入信号进行积分运算,输出一个积分后的信号。

我们在实验中使用了一个积分器电路,将一个方波信号作为输入,观察输出信号的变化。

实验结果显示,输出信号呈现一个斜率逐渐增大的曲线,表明输入信号得到了积分。

这说明积分器能够有效对输入信号进行积分运算,输出一个积分后的信号。

实验四:微分器微分器是Op-Amp的又一个重要应用。

它可以将输入信号进行微分运算,输出一个微分后的信号。

我们在实验中使用了一个微分器电路,将一个正弦波信号作为输入,观察输出信号的变化。

集成运算放大器应用实验报告

集成运算放大器应用实验报告

I1=1mA I2=0.6mA I=1.6mA If=1.6mA V1=5V V2=3V V0=-8V 2.根据电路元件值,计算 I 1 , I 2 , I 及 I f 。 I1=V1/R3=1mA I2=V2/R4=0.6mA I=I1+I2=1.6mA If=I=1.6mA 3.根据步骤 2 的电流计算值,计算输出电压 V0。另外,用 V1 和 V2 计算 V0。 V0=-IfRf=-8V V0=-(V1+V2)=-8V 4.在 EWB 平台上建立如图 7-3 所示的实验电路,仪器按图设置。单击仿真开关运行动 态分析。在坐标纸上画出输入及输出波形,并记录直流输出偏移电压。
V1 R1பைடு நூலகம்
由于运放反相输入端虚地,因此加法器的输出电压 Vo 为反馈电阻 Rf 两端电压的负值, 即 对于图 7-3 和图 7-4 所示的电路,输出电压为
四、实验步骤
1.在 EWB 平台上建立如图 7-2 所示的实验电路,万用表按图设置。单击仿真开关运行 电路分析。记录 I1 , I 2 , I , I f ,V1 ,V2 及 V0 。
9.根据电路元件值,用 V1 和 V2 计算输出电压 V0。V0=-V1=-1V
五、思考与分析
1.在步骤 1 中电流 I1,I2,I 及 If 的测量值与计算值比较,情况如何? 完全一样 2.在步骤 1 中输出电压 V0 的测量值与计算值比较,情况如何?为什么 V0 为负值? 完全一样,运放接入的是负极 3.在步骤 1,3 中,输出电压与输入电压之间有何关系? 输出是所有输入电压和的相反数 4.在步骤 5 中,输入电压与输出电压之间有何关系? 输出是所有输入电压和的相反数 5.在步骤 7 中,输入电压与输出电压之间有何关系? 输出是所有输入电压和的相反数 6.在步骤 8 中,输入电压与输出电压之间有何关系? 输出是所有输入电压和的相反数

集成运算放大器应用实验报告

集成运算放大器应用实验报告

集成运算放大器应用实验报告集成运算放大器应用实验报告引言:集成运算放大器(Operational Amplifier,简称Op-Amp)是一种非常常见的电子元件,广泛应用于电路设计和实验中。

本实验旨在通过实际应用,深入了解集成运算放大器的特性和使用方法,并通过实验结果验证理论知识的正确性。

实验目的:1. 了解集成运算放大器的基本结构和工作原理;2. 掌握集成运算放大器的常见应用电路;3. 通过实验验证理论知识的正确性。

实验仪器和材料:1. 集成运算放大器(例如LM741);2. 电阻、电容等基本电子元件;3. 示波器、信号发生器等实验仪器。

实验步骤:1. 集成运算放大器的基本特性实验首先,将集成运算放大器与电源相连接,并通过示波器观察输出波形。

调节输入信号的幅值和频率,观察输出波形的变化。

记录实验结果,并与理论知识进行对比分析。

2. 集成运算放大器的反相放大电路实验搭建反相放大电路,输入一个正弦波信号,通过示波器观察输出波形。

调节输入信号的幅值和频率,观察输出波形的变化。

记录实验结果,并与理论计算值进行对比。

3. 集成运算放大器的非反相放大电路实验搭建非反相放大电路,输入一个正弦波信号,通过示波器观察输出波形。

调节输入信号的幅值和频率,观察输出波形的变化。

记录实验结果,并与理论计算值进行对比。

4. 集成运算放大器的积分电路实验搭建积分电路,输入一个方波信号,通过示波器观察输出波形。

调节输入信号的幅值和频率,观察输出波形的变化。

记录实验结果,并与理论计算值进行对比。

实验结果与分析:1. 集成运算放大器的基本特性实验结果根据实验结果观察到,集成运算放大器具有高增益、低失调电压和低输入阻抗等特点。

随着输入信号幅值的增加,输出信号也随之增大,且输出信号与输入信号具有线性关系。

2. 集成运算放大器的反相放大电路实验结果通过实验观察到,反相放大电路可以将输入信号的幅值放大,并且输出信号与输入信号相位相反。

实验结果与理论计算值基本一致,验证了理论知识的正确性。

集成运放放大电路实验报告

集成运放放大电路实验报告

集成运放放大电路实验报告一 实验目的:用运算放大器等元件构成反相比例放大器,同相比例放大器,反相求和电路,同相求和电路,通过实验测试和分析,进一步掌握它们的主要特征和性能及输出电压与输入电压的函数关系。

二 仪器设备:i SXJ-3B 型模拟学习机 ii 数字万用表 iii 示波器 三 实验内容:每个比例求和运算电路实验,都应进行以下三项: (1)按电路图接好后,仔细检查,确保无误。

(2)调零:各输入端接地调节调零电位器,使输出电压为零(用万用表200mV 档测量,输出电压绝对值不超过0.5mv )。

A. 反相比例放大器 实验电路如图所示R1=10k Rf=100k R ’=10k 输出电压:Vo=-(Rf/R1)V1 实验记录:直流输入电压V10.1V 0.3V 1V 输出电压理论估算值 -1V - 3V -10 V 实测值--0.978V-2.978V 9.978V 误差0.022V0.022V0.022V将电路输入端接学习机上的直流信号源的OUTPUT ,调节换档开关置于合适位置,并调节电位器,使V1分别为表中所列各值,(用万用表测量)分析输出电压值, 填在表内。

实际测量V0的值填在表内。

B 同相比例放大器 R1=10k, Rf=100k R '=10k 输出电压:V0=(1+Rf/R1)V1 调零后,将电路输入端接学习机上的直流信号源的OUTPUT,调节换挡开关置于合适位置,并调节电位器,使U1分 别为表中所列各值,(用万用表测量)分析输出电压值,填在表内。

E 电压跟随器 实验电路:直流输入电压V1 0.1V0.3V 1V 输出电压V0理论估算值 1.1V 3.3V 11V 实测值1.121V 3.321V 11.020V误差0.021V0.021V0.020VV1(Mv)30.0 100.0 1000 3000测试条件Rs=10kRf=10kRL开路同左同左Rs=100kRf=100kRL开路Rs=100kRf=100kRL=10k同左Rs=100kRf=10kRL开路Rs=10kRf=10kRL开路V0(Mv)理论估算值30.00 100.00 1000 1000 1000 3000 3000 3000实测值30.002 100.001999.992999.991 999.991 3000 3000 3000误差0.002 0.001 0.008 0.009 0.009 0 0 0 四思考题1 在反相比例放大器和加法器中,同相输入端必须配置一适当的接地电阻,其作用是什么?阻值大小的选择原则怎样考虑?此电阻也称之为平衡电阻,使输入端对地的静态电阻相等,减少输入失调电流或失调电压对电路的影响。

集成运算放大器实验报告

集成运算放大器实验报告

集成运算放大器一、实验目的和要求1、了解集成运算放大器的工作原理;2、熟练运用模拟集成电路进行基本电路的仿真设计;3、独立完成运算放大器的加法、减法运算,并设计出y=X1+2X2及y=2X1-X2的运算电路。

二、主要仪器电脑、模拟电路软件三、实验原理1、反相加法运算1)原理如图1,可列出以下等式I I1=u i1/R11,I i2=u I2/R12,I i3=u i3/R13,I F=I I1+I i2+I i3,I=-u O/R F,由上式可知,当时,则上式为当时,则由上列三式可见,加法运算放大电路与运算放大器电路本身无关,只要电阻阻值足够精确,可保证加法运算的精度和稳定性。

平衡电阻2)反相加法运算的特点:输入电阻低,共模电压低,改变某一输入电阻时,对其他电路无影响2、减法运算如果两个输入端都有信号输入,则为差分输入。

差分运算电路如图2所示。

由图可列出:因为u-≈u+,则当R1=R2和R F=R3时,则上式为当R F=R1时,则得由上式可见,输出电压与两个输入电压的差值成正比,可进行减法运算。

电压放大倍数在图2中,如将R3断开,则即为同相比例运算和反相比例运算输出电压之和。

由于电路存在共模电压,为保证运算精度,应当选用共模抑制比较高的运算放大器或选用阻值合适的电阻。

四、实验内容1、设计y=X1+2X2运算电路,在电脑中用仿真软件绘图,保证电路在运行状态。

R2R F R6R1R4R3R5注:R2等于R1、R F并联2、设计y=2X1-X2运算电路,在电脑中用仿真软件绘图,保证电路在运行状态。

注:R F/R1=R3/R2五、总结1、了解了集成运算放大器的工作原理;2、可以熟练运用模拟集成电路进行基本电路的仿真设计;3、输出端和输入端都需要接地;4、虽说是仿真电路,但还是要注意接入元件的正负接口,如电压表;5、进行电脑操作前,先熟悉如何接入元件,并连接各元件,再进行下一步操作。

集成运算放大器的基本应用实验报告

集成运算放大器的基本应用实验报告

集成运算放大器的基本应用实验报告一、实验目的。

本实验旨在通过对集成运算放大器的基本应用进行实验操作,加深对集成运算放大器的工作原理和基本应用的理解,掌握集成运算放大器的基本特性和应用技巧,提高实验操作能力和动手能力。

二、实验仪器与设备。

1. 集成运算放大器实验箱。

2. 示波器。

3. 直流稳压电源。

4. 电阻、电容等元器件。

5. 万用表。

6. 示波器探头。

三、实验原理。

集成运算放大器(Operational Amplifier,简称Op-Amp)是一种高增益、直流耦合的差动放大器,具有输入阻抗高、输出阻抗低、增益稳定、频率响应宽等特点,广泛应用于模拟电路中。

在本实验中,我们将学习集成运算放大器的基本特性和应用技巧,包括集成运算放大器的基本参数、基本电路和基本应用。

四、实验内容。

1. 集成运算放大器的基本参数测量。

a. 输入失调电压的测量。

c. 增益带宽积的测量。

2. 集成运算放大器的基本电路实验。

a. 非反相放大电路。

b. 反相放大电路。

c. 比较器电路。

d. 电压跟随器电路。

3. 集成运算放大器的基本应用实验。

a. 信号运算电路。

b. 信号滤波电路。

c. 信号调理电路。

五、实验步骤。

1. 连接实验仪器与设备,按照实验要求进行电路连接。

2. 分别测量集成运算放大器的输入失调电压、输入失调电流和增益带宽积。

3. 搭建集成运算放大器的基本电路,观察输出波形并记录实验数据。

4. 进行集成运算放大器的基本应用实验,观察输出波形并记录实验数据。

六、实验数据与分析。

1. 输入失调电压测量数据。

输入失调电压,0.5mV。

平均输入失调电压,0.55mV。

2. 输入失调电流测量数据。

输入失调电流,10nA。

输入失调电流,12nA。

平均输入失调电流,11nA。

3. 增益带宽积测量数据。

增益带宽积,1MHz。

4. 实验数据分析。

通过测量数据的分析,我们可以得出集成运算放大器的输入失调电压较小,输入失调电流也较小,增益带宽积较大,符合集成运算放大器的基本特性。

集成运算放大器的应用实验报告

集成运算放大器的应用实验报告

集成运算放⼤器的应⽤实验报告集成运算放⼤器实验报告集成运算放⼤器是⼀种⾼性能多级直接耦合具有两个输⼊端、⼀个输出端的电压放⼤电路。

具有⾼增益、⾼输⼊阻抗低输出阻抗的特点。

通常,线性应⽤电路需要引⼊负反馈⽹络,构成各种不同功能的实际应⽤电路。

(a)µA741⾼增益运算放⼤器(b)LM324四运算放⼤器图2.4.2 典型的集成运放外引脚排列1. ⽐例、加减、微分、积分运算电路设计与实验1.1原理图(a) 反相⽐例运算电路 (b) 同相⽐例运算电路图1.1 典型的⽐例运算电路(a) 反相求和运算电路 (b) 同相求和运算电路图1.2 典型的求和运算电路(a) 单运放减法运算电路 (b) 双运放减法运算电路图1.3 典型的减法运算电路图1.4 积分电路图1.5 微分电路图 1.6 实际微分电路(PID)2.⽅波、三⾓波发⽣器2.1原理图图2.1 ⽅波、三⾓波发⽣器2.2理论分析(参照实验教材分析⼯作原理和周期、频率、幅度近似计算出以上结果) 2.2.1频率分析2.2.2幅度分析2.2.3幅度调整图2.2 ⽅波幅度通过R4、R5⽐例调整2.2.4减法器图2.3 减法器(交流正弦信号来⾃⽰波器)图2.4 积分器(⽅波信号可以来⾃⽰波器)图2.5 微分器(⽅波信号可以来⾃⽰波器)2.4.1 ⽐例、加减运算电路设计与实验由运放构成的⽐例、求和电路,实际是利⽤运放在线性应⽤时具有“虚短”、“虚断”的特点,通过调节电路的负反馈深度,实现特定的电路功能。

⼀、实验⽬的1.掌握常⽤集成运放组成的⽐例放⼤电路的基本设计⽅法; 2.掌握各种求和电路的设计⽅法;3.熟悉⽐例放⼤电路、求和电路的调试及测量⽅法。

⼆、实验仪器及备⽤元器件(1)实验仪器(2)实验备⽤器件三、电路原理集成运算放⼤器,配备很⼩的⼏个外接电阻,可以构成各种⽐例运算电路和求和电路。

图2.4.3(a )⽰出了典型的反相⽐例运算电路。

依据负反馈理论和理想运放的“虚短”、“虚断”的概念,不难求出输出输⼊电压之间的关系为 1f o i i R A R υυυυ==-2.4.1式中的“-”号说明电路具有倒相的功能,即输出输⼊的相位相反。

电路实验报告集成运算放大器的应用

电路实验报告集成运算放大器的应用

电路实验报告集成运算放大器的应用集成运算放大器的应用实验报告实验摘要1. 实验内容①在面包板上搭接μA741测试电路,+12V接7脚,-12V接4脚;②用μA741组成的反比例放大电路,放大倍数自定,Vi=100mV,f=2KHz,用示波器测量输入和输出波形,求Av;③用μA741组成积分电路,用示波器观察输入和输出波形(未做)。

2. 名词解释集成运算放大器集成运算放大器(Integrated Operational Amplifier)简称集成运放,是由多级直接耦合放大电路组成的高增益模拟集成电路。

按照集成运算放大器的参数分类,可分为通用型运算放大器、高阻型放大器、低温漂型运算放大器、高速型运算放大器、低功耗型运算放大器和高压大功率型运算放大器。

按照外型的封装样式分类,可分为扁平式、单列直插式和双列直插式。

μA741集成运算放大器此运算放大器含有8个管脚,缺口在左,管脚分配情况为逆时针排列,2脚为负端,3脚为正端。

原理图如:实验目的①了解集成运算放大器的特点、基本组态,性能参数;②熟悉集成运算放大器的正确使用方法和基本应用电路;③了解集成运算放大器组成比例、○加法、减法、积分等电路的特点; 4运用集成运算放大器设计波形发生器的方法。

实验环境(仪器用品等)实验地点:实验时间:实验仪器与元器件:HBE硬件基础电路实验箱、集成运算放大器μA741(此次实验为10倍放大)、镊子、数字万用表、面包板、电阻、导线若干、函数信号发生器、示波器等本次实验的原理电路图如下图所示:(来自Multisim 12)实验原理函数信号发生器的信号输入,经过运放之后会产生放大信号,通过示波器的接收和显示之后,可在示波器屏幕上观察到明显的两个波形,其中一个为放大信号,一个为原信号,可直观观察到放大倍数和效果。

※实验步骤※1. 准备工作:检查万用表是否显示正常;选取合适电阻;调节实验箱;设置好函数信号发生器的信号值①检查万用表的使用状况,确定万用表的读数无误,量程正确;②选出三个电阻,一个为1KΩ,其余两个为100Ω。

运算集成放大电路实验报告

运算集成放大电路实验报告

运算集成放大电路实验报告运算集成放大电路实验报告引言:运算集成放大电路(Operational Amplifier, 简称Op-Amp)是一种广泛应用于电子电路中的集成电路元件。

它具有高增益、高输入阻抗、低输出阻抗等特点,被广泛应用于信号放大、滤波、比较、积分等电路中。

本实验旨在通过搭建运算放大器电路,验证其基本特性,并探究其在不同应用中的工作原理和性能。

实验一:运算放大器的基本特性验证1. 实验目的本实验旨在验证运算放大器的基本特性,包括增益、输入阻抗和输出阻抗。

2. 实验步骤(1)搭建一个基本的运算放大器电路,包括一个运算放大器芯片、两个电阻和一个电源。

(2)通过输入一个信号,观察输出信号的变化,并记录输入输出电压。

(3)更改输入信号的幅度和频率,观察输出信号的变化。

3. 实验结果与分析在实验中,我们发现输出信号与输入信号之间存在一个固定的放大倍数,即运算放大器的增益。

通过调节输入信号的幅度,我们可以观察到输出信号的变化,并根据实际测量结果计算出增益值。

此外,我们还发现运算放大器具有很高的输入阻抗和低的输出阻抗,使其能够有效地接收和驱动外部电路。

实验二:运算放大器的应用1. 实验目的本实验旨在通过实际应用电路,进一步探究运算放大器的工作原理和性能。

2. 实验步骤(1)搭建一个非反相放大电路,观察输入输出信号之间的关系。

(2)搭建一个反相放大电路,观察输入输出信号之间的关系。

(3)搭建一个积分电路,观察输入方波信号在电容上的积分效果。

3. 实验结果与分析在实验中,我们观察到非反相放大电路能够将输入信号放大,并保持与输入信号相同的相位。

而反相放大电路则将输入信号进行反相放大,输出信号与输入信号之间存在180度的相位差。

积分电路则将输入方波信号在电容上进行积分,输出信号为三角波信号。

结论:通过本次实验,我们验证了运算放大器的基本特性,并进一步了解了其在不同应用电路中的工作原理和性能。

运算放大器作为一种重要的电子元件,广泛应用于各种电子电路中,为信号处理提供了便利和灵活性。

集成运算放大器的应用实验报告

集成运算放大器的应用实验报告

集成运算放大器的应用实验报告实验目的,通过本次实验,我们将学习集成运算放大器的基本原理和应用,掌握运算放大器的基本参数测量方法,了解运算放大器在电路中的应用。

实验仪器,集成运算放大器、示波器、信号发生器、直流稳压电源、电阻、电容、万用表等。

实验原理,运算放大器是一种高增益、差分输入、单端输出的电子放大器。

在实验中,我们将通过测量运算放大器的输入偏置电压、输入失调电压、输入失调电流、增益带宽积等参数,来了解运算放大器的基本性能。

实验步骤:1. 连接电路,按照实验指导书上的电路图,连接好运算放大器的电路。

2. 测量输入偏置电压,将输入端接地,测量输出端的电压,计算出输入偏置电压。

3. 测量输入失调电压和输入失调电流,将输入端接地,测量输出端的电压,再将输出端接地,测量输入端的电压和电流,计算出输入失调电压和输入失调电流。

4. 测量增益带宽积,通过改变输入信号的频率,测量输出信号的幅度,计算出增益带宽积。

5. 测量共模抑制比,通过改变输入信号的幅度,测量输出信号的幅度,计算出共模抑制比。

实验结果与分析:通过实验测量,我们得到了运算放大器的各项参数,分析结果如下:1. 输入偏置电压为0.5mV,说明运算放大器的输入端存在微小的偏置电压。

2. 输入失调电压为1mV,输入失调电流为10nA,说明运算放大器的输入端存在微小的失调电压和失调电流。

3. 增益带宽积为1MHz,说明运算放大器在1MHz以下的频率范围内具有较高的增益。

4. 共模抑制比为80dB,说明运算放大器具有较好的共模抑制能力。

结论:通过本次实验,我们对集成运算放大器的基本原理和应用有了更深入的了解,掌握了运算放大器的基本参数测量方法,并了解了运算放大器在电路中的应用。

同时,我们也了解到了运算放大器的一些性能指标,为今后的实际应用提供了参考依据。

总结:集成运算放大器是电子电路中常用的重要器件,具有高增益、差分输入、单端输出等特点,广泛应用于放大、滤波、积分、微分等电路中。

集成运算放大器的应用实验报告

集成运算放大器的应用实验报告

集成运算放大器的应用实验报告一、实验目的。

本实验旨在通过实际操作,掌握集成运算放大器的基本原理和应用技巧,加深对集成运算放大器的理解,提高实际操作能力。

二、实验仪器与设备。

1. 集成运算放大器实验箱。

2. 直流稳压电源。

3. 示波器。

4. 信号发生器。

5. 电阻、电容等元件。

6. 万用表。

7. 示波器探头。

三、实验原理。

集成运算放大器是一种高增益、直流耦合的差分输入、单端输出的电子放大器,具有很多种应用。

在本实验中,我们主要探讨集成运算放大器的非反相放大电路和反相放大电路的应用。

1. 非反相放大电路。

非反相放大电路是指输入信号与反馈信号同相,通过调节反馈电阻和输入电阻的比值,可以实现不同的放大倍数。

在本实验中,我们将通过调节电阻的数值,观察输出信号的变化,从而验证非反相放大电路的工作原理。

2. 反相放大电路。

反相放大电路是指输入信号与反馈信号反相,同样可以通过调节电阻的数值,实现不同的放大倍数。

在本实验中,我们将通过改变输入信号的频率和幅度,观察输出信号的变化,从而验证反相放大电路的工作原理。

四、实验步骤。

1. 连接电路。

根据实验要求,连接非反相放大电路和反相放大电路的电路图,接通电源。

2. 调节参数。

通过调节电阻的数值,观察输出信号的变化,记录不同放大倍数下的输入输出波形。

3. 改变输入信号。

改变输入信号的频率和幅度,观察输出信号的变化,记录不同条件下的输入输出波形。

4. 数据处理。

根据实验数据,计算不同条件下的放大倍数,绘制相应的放大倍数曲线。

五、实验结果与分析。

通过实验数据的记录和处理,我们得出了非反相放大电路和反相放大电路在不同条件下的放大倍数曲线。

从实验结果可以看出,随着电阻数值的变化,放大倍数呈线性变化;而随着输入信号频率和幅度的改变,输出信号的波形也发生相应的变化。

六、实验总结。

通过本次实验,我们深入理解了集成运算放大器的基本原理和应用技巧,掌握了非反相放大电路和反相放大电路的工作原理。

集成运放及应用实验报告

集成运放及应用实验报告

一、实验目的1. 理解集成运算放大器(运放)的基本原理和特性。

2. 掌握集成运放的基本线性应用电路的设计方法。

3. 通过实验验证运放在实际电路中的应用效果。

4. 了解实验中可能出现的误差及分析方法。

二、实验原理集成运算放大器是一种高增益、低噪声、高输入阻抗、低输出阻抗的直接耦合多级放大电路。

它广泛应用于各种模拟信号处理和产生电路中。

本实验主要研究运放的基本线性应用电路,包括比例、加法、减法、积分、微分等运算电路。

三、实验仪器与器材1. 集成运放(如LM741)2. 模拟信号发生器3. 示波器4. 数字多用表5. 电阻、电容等电子元件6. 面包板四、实验内容1. 反相比例运算电路(1) 设计电路:根据实验要求,搭建一个反相比例运算电路,其中输入电阻R1和反馈电阻Rf的比值决定了放大倍数A。

(2) 实验步骤:a. 连接电路,确保无误。

b. 输入一定频率和幅值的正弦信号,观察输出波形。

c. 改变输入信号幅度,记录输出波形。

d. 计算放大倍数,并与理论值进行比较。

2. 同相比例运算电路(1) 设计电路:搭建一个同相比例运算电路,其中输入电阻R1和反馈电阻Rf 的比值决定了放大倍数A。

(2) 实验步骤:a. 连接电路,确保无误。

b. 输入一定频率和幅值的正弦信号,观察输出波形。

c. 改变输入信号幅度,记录输出波形。

d. 计算放大倍数,并与理论值进行比较。

3. 加法运算电路(1) 设计电路:搭建一个加法运算电路,实现两个输入信号的求和。

(2) 实验步骤:a. 连接电路,确保无误。

b. 输入两个不同频率和幅值的正弦信号,观察输出波形。

c. 改变输入信号幅度,记录输出波形。

d. 验证输出波形为两个输入信号的相加。

4. 减法运算电路(1) 设计电路:搭建一个减法运算电路,实现两个输入信号的相减。

(2) 实验步骤:a. 连接电路,确保无误。

b. 输入两个不同频率和幅值的正弦信号,观察输出波形。

c. 改变输入信号幅度,记录输出波形。

集成运算放大器的应用实验报告

集成运算放大器的应用实验报告

集成运算放大器的应用实验报告集成运算放大器(Operational Amplifier,简称Op-Amp)是一种重要的电子器件,广泛应用于各个领域,包括电子通信、仪器仪表、控制系统等。

本文将介绍集成运算放大器的基本原理和应用实验报告。

一、集成运算放大器的基本原理集成运算放大器是一种高增益、差分输入、单端输出的电子放大器。

它由多个晶体管、电阻和电容器等器件组成,以实现放大、滤波、反相和非反相等功能。

集成运算放大器的输入阻抗高、输出阻抗低,具有较大的开环增益和较宽的频率响应范围。

集成运算放大器的基本原理是负反馈。

通过将输出信号与输入信号进行比较,并将差值放大反馈给输入端,从而实现对输入信号的放大和控制。

这种负反馈使得集成运算放大器具有稳定性、线性度高的特点。

二、集成运算放大器的应用实验报告为了深入了解集成运算放大器的应用,我们进行了一系列实验。

以下是其中几个实验的报告:实验一:非反相放大器我们首先搭建了一个非反相放大器电路。

该电路由一个集成运算放大器、两个电阻和一个输入信号源组成。

通过调节电阻的阻值,我们可以改变电路的放大倍数。

实验结果表明,当输入信号为正弦波时,输出信号也为正弦波,但幅值比输入信号大。

这验证了非反相放大器的放大功能。

实验二:反相放大器接下来,我们搭建了一个反相放大器电路。

该电路同样由一个集成运算放大器、两个电阻和一个输入信号源组成。

与非反相放大器不同的是,输入信号通过电阻接到集成运算放大器的反向输入端。

实验结果显示,输出信号与输入信号相比,幅值变大且相位相反。

这证明了反相放大器的放大和反相功能。

实验三:低通滤波器我们进一步设计了一个低通滤波器电路。

该电路由一个集成运算放大器、一个电容和一个电阻组成。

输入信号通过电容接到集成运算放大器的反向输入端,输出信号从集成运算放大器的输出端取出。

实验结果显示,该电路能够滤除高频信号,只保留低频信号。

这说明了低通滤波器的滤波功能。

实验四:积分器最后,我们设计了一个积分器电路。

集成运放 实验报告

集成运放 实验报告

集成运放实验报告1. 实验目的本实验旨在通过实际操作,了解集成运放的基本特性和工作原理,并掌握基本的电路应用。

2. 实验原理集成运放(OP-AMP)是一种高增益、差分输入的直流电压放大器。

它由多个晶体管和被动元件组成,并具有高阻抗输入、低阻抗输出等特点。

常见的集成运放符号如下图所示:![](op_amp_symbol.png)实验中使用的集成运放是LM741型号。

其典型参数如下:- 差模增益:20万- 输入阻抗:2MΩ- 最大输出电流:25mA- 输入偏置电流:80nA- 高达1MHz的带宽通过在反馈电路中使用运放,可以构建各种电路,如放大器、比较器、滤波器等。

3. 实验材料- 集成运放LM741 x 1- 电阻(标准值):1kΩx 4, 10kΩx 2- 电容:0.1μF x 2- 变阻器:10kΩx 1- 直流电源供应器- 示波器- 万用表4. 实验步骤4.1 集成运放的基本测试1. 将运放的引脚与电路连接,按照实验原理中的运放符号连接。

2. 用万用表测量引脚电压,确认供电电压是否满足要求。

3. 将运放的输出引脚连接至示波器,观察输出波形。

4.2 集成运放的非反馈放大器实验1. 将非反馈放大电路按照原理图连接。

2. 将输入信号连接至运放的正输入端。

3. 连接示波器至运放的输出端。

4. 分别输入不同大小的正弦信号,观察输出波形和输入输出关系。

4.3 集成运放的反相放大器实验1. 将反相放大电路按照原理图连接。

2. 分别连接不同大小的输入信号,观察输出波形和输入输出关系。

3. 测量并记录不同输入电压下的输入输出关系。

4.4 集成运放的比较器实验1. 将比较器电路按照原理图连接。

2. 输入不同大小的三角波信号至运放的正输入端。

3. 连接示波器至运放的输出端,观察输出波形。

5. 实验结果与分析经过以上实验,我们观察到了以下现象:- 在非反馈放大器实验中,输出信号与输入信号呈线性关系,且放大倍数与电路元件的选择有关。

集成运算放大电路实验报告

集成运算放大电路实验报告

集成运算放大电路实验报告浙大电工电子学实验报告实验十二集成运算放大器及应用(一)模拟信号运算电路课程名称:指导老师:实验名称:集成运算放大器及应用(一)实验报告一、实验目的1.了解集成运算放大器的基本使用方法和三种输入方式。

2.掌握集成运算放大器构成的比例、加法、减法、积分等运算电路。

二、主要仪器设备1.MDZ-2型模拟电子技术实验箱2.实验板及元器件3.直流稳压电源4.万用表三、实验内容在实验中,各实验电路的输入电压均为直流电压,并要求大小和极性可调。

因此在实验箱中安放了电位器,并与由集成运算放大器构成的电压跟随其联结,如图12-7所示。

当在电位器两端分别加+5V和-5V电源电压时,调节电位器就可在集成运算放大器构成的跟随器的输出端得到稳定而可调的正、负直流电压,此电压即作为各实验电路的输入电压。

图12-7 1.同相输入比例运算图12-1按图12-1接线,输入端加直流电压信号Ui,适当改变Ui,分别测量相应的Uo值,记入表12-1中,并2.加法运算图12-2按图12-2电路接线,适当调节输入直流信号Ui1和Ui2的大小和极性,册书Uo,计入表12-2。

表12-23.减法运算图12-4按图12-4电路完成减法运算,并将结果记入表12-4。

表12-44.积分运算图12-5按图12-5电路连接(注意:电路中的电容C是有极性的电解电容,当Ui为负值时,Uo为正值,电容C的正极应接至输出端;如Ui为正值时,则接法相反)。

将Ui预先调到-0.5V,开关S合上(可用导线短接)时,电容短接,保证电容器五初始电压,Uo=0。

当开关S断开时开始计时,每隔10秒钟读一次Uo,记入表12-5,直到Uo不继续明显增大为止。

表12-5(Ui=-0.5V)四、实验总结1.画出各实验电路图并整理相应的实验数据及结果。

实验电路图已在上文中画出,下面处理实验数据。

(1).同相输入比例运算作Ui-Uo图如下:(2).加法运算作Ui1-Ui2-Uo图如下:(3).减法运算作Ui1-Ui2-Uo图如下:(4).积分运算作T-Uo图如下:2.总结集成运放构成的各种运算电路的功能。

集成运放的实验报告

集成运放的实验报告

集成运放的实验报告集成运放的实验报告引言集成运放(Operational Amplifier,简称Op-Amp)是一种重要的电子元件,广泛应用于模拟电路和信号处理领域。

本实验旨在通过实际操作和测量,深入了解集成运放的基本特性和应用。

实验一:集成运放的基本特性1.1 集成运放的引脚功能集成运放一般有8个引脚,分别是正输入端(+IN)、负输入端(-IN)、输出端(OUT)、正电源(VCC+)、负电源(VCC-)、偏置电压(VBIAS)、偏置电流(IBIAS)和电源地(GND)。

其中正输入端和负输入端是集成运放的主要输入端,输出端则是其主要输出端。

1.2 集成运放的放大倍数通过改变输入信号的幅度,可以观察到集成运放输出信号的变化。

在实验中,我们可以通过改变输入信号的幅度并测量输出信号的幅度,计算出集成运放的放大倍数。

实验中我们可以使用示波器和函数发生器进行测量和调节。

实验二:集成运放的基本应用2.1 非反相放大电路非反相放大电路是集成运放最基本的应用之一。

通过将输入信号与集成运放的正输入端相连接,将负输入端接地,输出信号与集成运放的输出端相连,可以实现输入信号的放大。

2.2 反相放大电路反相放大电路也是集成运放的常见应用之一。

通过将输入信号与集成运放的负输入端相连接,将正输入端接地,输出信号与集成运放的输出端相连,可以实现输入信号的反向放大。

2.3 比较器电路比较器电路是集成运放的另一种常见应用。

通过将输入信号与集成运放的正输入端或负输入端相连接,将另一输入端接地,输出信号与集成运放的输出端相连,可以实现输入信号与参考电压的比较。

实验三:集成运放的应用拓展3.1 滤波器电路滤波器电路是集成运放的重要应用之一。

通过将集成运放与电容和电感等元件相连接,可以实现对特定频率信号的滤波功能。

3.2 非线性电路非线性电路是集成运放的另一种应用拓展。

通过在集成运放的输入端或反馈回路中引入非线性元件,可以实现非线性信号的处理和调节。

实验十一集成运算放大器电路仿真设计实验(参考报告)

实验十一集成运算放大器电路仿真设计实验(参考报告)

实验三 集成运算放大器电路仿真设计实验(参考实验报告)
一、 实验目的(见实验指导书) 二、 实验设备(见实验指导书) 三、 实验原理(见实验指导书) 四、 实验内容(参考)
1、用μA741设计实现下列各种运算功能的电路,并完成各实验 (1)U o =4U i
(注:根据公式U O = (1+1
R Rf
)U i 、R 2=R 1∥R f 自己选定R 1、R 2、R f 参数)
(注:U i 具体验证电压值自拟,但必须保证电压U O 低于运算放大器的工作电压±12V )
(2)U o =-2U i
(注:根据公式U O = —Ui R Rf
1
、R 2=R 1∥R f 自己选定R 1、R 2、R f 参数)
(注:U i 具体验证电压值自拟,但必须保证电压O 低于运算放大器的工作电压±12V )
(3)U o =-(U i1+U i2)
(注:根据公式U o= —R f (2
2
11R U R U )、R 3= R 1∥R 2∥R f 自己选定R 1、R 2、R 3、R f 参数)
(注:U 1、U 2具体验证电压值自拟,但必须保证电压U O 低于运算放大器的工作电压±12V )
2﹑设计一个反相积分运算电路,将方波变换成三角波。

已知条件:方波幅值为2V ,周期为1ms 设计要求:三角波幅值为 1 V 。

(注:根据公式U o =-1/R 1C 1∫U i (t)dt 自己选定R 1、C 1参数;在实用电路中,为了防止低频信号增益过大,常在电容上并联一个电阻加以限制)
画出积分电路的输入和输出波形:
五、 总结和问题讨论(略)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集成运放放大电路实验报告一实验目的:
用运算放大器等元件构成反相比例放大器,同相比例放大器,反相求和电路,同相求和电路,通过实验测试和分析
,进一步掌握它们的主要特征和性能及输出电压与输入电压的函数关系。

二仪器设备:
i SXJ-3B型模拟学习机
ii 数字万用表
iii 示波器
三实验内容:
每个比例求和运算电路实验,都应进行以下三项:
(1)按电路图接好后,仔细检查,确保无误。

(2)调零:各输入端接地调节调零电位器,使输出电压为零(用万用表200mV 档测量,输出电压绝对值不超过)。

A. 反相比例放大器
实验电路如图所示
R1=10k Rf=100k R’=10k
输出电压:Vo=-(Rf/R1)V1
实验记录:
将电路输入端接学习机上的直流信号源的OUTPUT ,调节换档开关置于合适位置,并调节电位器,使V1分别为表中所 列各值,(用万用表测量)分析输出电压值, 填在表内。

实际测量V0的值填在表内。

B 同相比例放大器 R1=10k, Rf=100k R '=10k 输出电压:V0=(1+Rf/R1)V1 调零后,将电路输入端接学习机上的直流信号源的OUTPUT,调节换挡
开关置于合适位置,并调节
电位器,使U1分
别为表中所列各值,(用万用表测量)分析输出电压值,填在表内。

E 电压跟随器 实验电路:
四思考题
1 在反相比例放大器和加法器中,同相输入端必须配置一适当的接地电阻,其作用是什么?阻值大小的选择原则怎样考虑?
此电阻也称之为平衡电阻,使输入端对地的静态电阻相等,减少输入失调电流或失调电压对电路的影响。

2分析实验数据与理论值产生的误差原因。

(1)运放输入阻抗不是无穷大。

(2)运放增益不是无穷大。

(3)运放带宽不是无穷大。

(4)运放实际存在失调电压失调电流输入偏置电流、温漂等等。

相关文档
最新文档