新编线性代数习题二解答
线性代数第二章习题答案
习 题 2-11.由6名选手参加乒乓球比赛,成绩如下:选手1胜选手2、4、5、6而负于选手3;选手2胜选手4、5、6而负于选手1、3;选手3胜选手1、2、4而负于选手5、6;选手4胜选手5、6而负于选手1、2、3;选手5胜选手3、6而负于选手1、2、4;选手6胜选手2而负于选手1、3、4、5.若胜一场得1分,负一场得0分,使用矩阵表示输赢状况,并排序.解: ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛000010100100110000001011111000111010654321654321,选手按胜多负少排序为:6,5,4,3,2,1.2.设矩阵⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛+-=2521,03231z x y x B A ,已知B A =,求z y x ,,. 解:由于B A =得⎪⎩⎪⎨⎧=-=+=-0253223z x y x ,解得:⎪⎩⎪⎨⎧===211z y x 。
习 题 2-21.设⎪⎪⎭⎫⎝⎛=0112A ,⎪⎪⎭⎫ ⎝⎛-=4021B ,求 (1)B A 52-; (2)BA AB -; (3)22B A -.解:(1)⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=-202892001050224402150112252B A ;(2)⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-2592041021820112402140210112BA AB ;(3)⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-152441606112254021402101120112B A 22.2.已知⎪⎪⎪⎭⎫ ⎝⎛--=230412301321A ,⎪⎪⎪⎭⎫ ⎝⎛---=052110351234B ,求B A 23-. 解:⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫⎝⎛--=0521103512342230412301321323B -A⎪⎪⎪⎭⎫⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛--=619410161510550110104220610246869012369039633.设⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫⎝⎛=101012121234,432112122121B A ,求(1)B A -3; (2)B A 32+;(3)若X 满足B X A =-,求X ;(4)若Y 满足()()O Y B Y A =-+-22,求Y .解:(1)⎪⎪⎪⎭⎫⎝⎛-----⎪⎪⎪⎭⎫⎝⎛=-10101212123443211212212133B A⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-----⎪⎪⎪⎭⎫ ⎝⎛=13973282851311010121212341296336366363; (2)⎪⎪⎪⎭⎫⎝⎛----+⎪⎪⎪⎭⎫⎝⎛=+1010121212343432112122121232B A⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛----+⎪⎪⎪⎭⎫ ⎝⎛=561252527813143030363636912864224244242; (3)由B X A =-得,⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛-----⎪⎪⎪⎭⎫ ⎝⎛=-=533104041113101012121234432112122121B A X ; (4)由()()O Y B Y A =-+-22得,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=+=2232323403402231031033112020335532)(32B A Y 。
线性代数考试练习题带答案(2)
线性代数试题集与答案解析二、判断题(判断正误,共5道小题)9.设A ,B 是同阶方阵,则AB=BA 。
正确答案:说法错误解答参考:10. n维向量组{ α 1 , α 2 , α 3 , α 4 } 线性相关,则{ α 2 , α 3 , α 4 } 线性无关。
正确答案:说法错误解答参考:11.若方程组Ax=0 有非零解,则方程组Ax=b 一定有无穷多解。
正确答案:说法错误解答参考:12.若A ,B 均为n阶方阵,则当| A |>| B | 时,A ,B 一定不相似。
正确答案:说法正确解答参考:相似矩阵行列式值相同13.设A是m×n 阶矩阵且线性方程组Ax=b 有惟一解,则m≥n 。
正确答案:说法正确解答参考:(注意:若有主观题目,请按照题目,离线完成,完成后纸质上交学习中心,记录成绩。
在线只需提交客观题答案。
)三、主观题(共12道小题)14.设A是m×n 矩阵, B是p×m 矩阵,则A T B T 是×阶矩阵。
参考答案:A T B T是n×p 阶矩阵。
15.由m个n维向量组成的向量组,当m n时,向量组一定线性相关。
参考答案:m>n时向量组一定线性相关16.参考答案:a=6(R( A )=2⇒| A |=0)17._________________。
参考答案:( 1 2 3 4 ) T+k ( 2 0 −2 −4 ) T。
因为R ( A )=3 ,原方程组的导出组的基础解系中只含有一个解向量,取为η2+ η3−2 η1,由原方程组的通解可表为导出组的通解与其一个特解之和即得。
18.时方程组有唯一解。
参考答案:当a=−2 时方程组无解,当a=1 时方程组有无穷多个解,当a≠1,−2 时方程组有唯一解。
19.参考答案:2420.参考答案:t=6 21.参考答案:22.参考答案:23.参考答案:24.已知方阵(1)求a,b的值;(2)求可逆矩阵P及对角矩阵D,使得参考答案:25.参考答案:本次作业是本门课程本学期的第1次作业,注释如下:一、单项选择题(只有一个选项正确,共8道小题)1. 下列矩阵中,不是初等矩阵。
线性代数课后习题答案第二章矩阵及其运算
第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y . 2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换. 解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3.设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B ,求3AB -2A 及A T B .解⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T.4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635.(2)⎪⎪⎭⎫ ⎝⎛123)321(;解⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解)21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142.(4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ;解⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解 ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA . (2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B )2≠A 2+2AB +B 2.(3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B )(A -B )≠A 2-B 2.6. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0.(2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k. 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k .8.设⎪⎪⎭⎫⎝⎛=λλλ001001A ,求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA kk kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫.用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ,由数学归纳法原理知:⎪⎪⎪⎪⎭⎫⎝⎛-=---k k kk k k k k k k k A λλλλλλ0002)1(121.9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB , 即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以 AB =(AB )T =B T A T =BA . 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫⎝⎛5221;解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为⎪⎭⎫⎝⎛--=⎪⎭⎫⎝⎛=1225*22122111A A A A A , 故 *||11A A A =-⎪⎭⎫⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ;解 ⎪⎭⎫ ⎝⎛-=θθθθc o s s i n s i n c o s A . |A |=1≠0, 故A -1存在. 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛=θθθθc o s s i ns i n c o s *22122111A A A A A , 所以 *||11A A A =-⎪⎭⎫⎝⎛-=θθθθc o s s i ns i n c o s .(3)⎪⎪⎭⎫⎝⎛---145243121;解⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以*||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n a a a A 10011211 .12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232.(2)⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛--234311*********X ;解1111012112234311-⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解11110210132141--⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111.(4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012.13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x , 故⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有⎪⎩⎪⎨⎧===305321x x x . 14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ). 另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或 E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2, 即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1, )3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*.证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有|A *|=|A |n |A -1|=|A |n -1≠0, 从而A *也可逆.因为A *=|A |A -1, 所以 (A *)-1=|A |-1A . 又*)(||)*(||1111---==A A A A A , 所以(A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A *, 证明: (1)若|A |=0, 则|A *|=0; (2)|A *|=|A |n -1. 证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0. (2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到|A ||A *|=|A |n . 若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1. 19.设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B ,求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E AB ⎪⎪⎭⎫ ⎝⎛-=011321330.20.设⎪⎪⎭⎫⎝⎛=101020101A ,且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A ,所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E ,B =-8(A *-2E )-1A -1=-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21,1 ,21(d i a g 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A ,且ABA -1=BA -1+3E , 求B . 解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A 11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-103006060060006603001010010000161.23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)]=diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫ ⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A .26. 计算⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121.解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B , 则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,所以⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521,即⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫⎝⎛---=9000340042102521. 27. 取⎪⎭⎫⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠. 解4100120021010*********0021010010110100101==--=--=D C B A ,而 01111||||||||==D C B A , 故 |||||||| D C B A DC B A ≠.28. 设⎪⎪⎪⎭⎫⎝⎛-=22023443O O A , 求|A 8|及A 4.解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则 ⎪⎭⎫⎝⎛=21A O O A A ,故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A .29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求 (1)1-⎪⎭⎫⎝⎛O B A O ;解 设⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====snE BC OBC OAC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛---O A B O O B A O 111.(2)1-⎪⎭⎫⎝⎛B C O A .解 设⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A .30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025;解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001.解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.。
线性代数第二章习题答案
习 题 2-11.由6名选手参加乒乓球比赛,成绩如下:选手1胜选手2、4、5、6而负于选手3;选手2胜选手4、5、6而负于选手1、3;选手3胜选手1、2、4而负于选手5、6;选手4胜选手5、6而负于选手1、2、3;选手5胜选手3、6而负于选手1、2、4;选手6胜选手2而负于选手1、3、4、5.若胜一场得1分,负一场得0分,使用矩阵表示输赢状况,并排序.解: ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛000010100100110000001011111000111010654321654321,选手按胜多负少排序为:6,5,4,3,2,1. 2.设矩阵⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛+-=2521,03231z x y x B A ,已知B A =,求z y x ,,. 解:由于B A =得⎪⎩⎪⎨⎧=-=+=-0253223z x y x ,解得:⎪⎩⎪⎨⎧===211z y x 。
习 题 2-21.设⎪⎪⎭⎫⎝⎛=0112A ,⎪⎪⎭⎫ ⎝⎛-=4021B ,求 (1)B A 52-; (2)BA AB -; (3)22B A -.解:(1)⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=-202892001050224402150112252B A ;(2)⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-2592041021820112402140210112BA AB ;(3)⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-152441606112254021402101120112B A 22.2.已知⎪⎪⎪⎭⎫ ⎝⎛--=230412301321A ,⎪⎪⎪⎭⎫ ⎝⎛---=052110351234B ,求B A 23-. 解:⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛--=0521103512342230412301321323B -A ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛--=61941016151055011010422061024686901236903963 3.设⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛=101012121234,432112122121B A ,求(1)B A -3; (2)B A 32+; (3)若X 满足B X A =-,求X ;(4)若Y 满足()()O Y B Y A =-+-22,求Y .解:(1)⎪⎪⎪⎭⎫⎝⎛-----⎪⎪⎪⎭⎫ ⎝⎛=-10101212123443211212212133B A ⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-----⎪⎪⎪⎭⎫ ⎝⎛=13973282851311010121212341296336366363;(2)⎪⎪⎪⎭⎫⎝⎛----+⎪⎪⎪⎭⎫ ⎝⎛=+1010121212343432112122121232B A ⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫⎝⎛----+⎪⎪⎪⎭⎫ ⎝⎛=561252527813143030363636912864224244242;(3)由B X A =-得,⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫⎝⎛-----⎪⎪⎪⎭⎫ ⎝⎛=-=533104041113101012121234432112122121B A X ;(4)由()()O Y B Y A =-+-22得,⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=+=223232340342231031033112020335532)(32B A Y 。
线性代数第二章习题解答
线性代数第二章习题解习题一A 组1.计算下列二阶行列式 (1)521-12= (2)012896= (3)2222ba ab b a b a-= (4)11112322--=++-x x x x x x2.计算下列三阶行列式(1)132213321=1+8+27-6-6-6=18 (2)5598413111=(3)7140053101-=- (4)000000=d c b a3. 当k 取何值时,10143k kk -=0.解:10143kkk -0)3(0)(02-----++=k k , 得 0342=+-k k , 所以 1=k 或 3=k 。
4.求下列排列的逆序数.解:(1) 512110)51324(=++++=τ. (2) 8142010)426315(=+++++=τ. (3) 21123456)7654321(=+++++=τ. (4) 1340423000)36715284(=+++++++=τ.5.下列各元素乘积是否是五阶行列式 ij a 中一项?如果是,该项应取什么符号? 解:(2) 不是. 因为 5145332211a a a a a 中有俩个元素在第一列. (3) 是. 对应项为534531*********)1(a a a a a )(τ-1021)24153(+++=τ 所以该项应取负号。
6.选择i , j 使j i a a a a a 54234213成为五阶行列式 ij a 中带有负号的项解: 当 )5,1(),(=j i 时, 30102)31425(=+++=τ, 是奇排列.当 )1,5(),(=j i 时, 81232)35421(=+++=τ, 是偶排列. 所以 i = 1, j = 5.8.利用行列式性质计算下列行列式.解: (1)111212321-23043032123121----+-+-r r r r 620043032132-=--+-r r(2)6217213424435431014327427246-621721100044354320003274271000123c c c ++621721144354323274271103=.62110014431002327100110323c c +-621114431232711105=31212rr r r +-+-294002111032711105--=294105⨯(3)1111111111111111---820000200002011114,3,21-=---=+-i r r i(4) 1502321353140422-----15023213531402112-----=11203840553002112234413121-----+++r r r r r r11205100046100211223424-----+-+-r r r r 7130051000461002112242------+-r r 7130012004610211)5(2-----=02700120046100211)5(2743----+r r 27002100641020111043---↔c c 270-=.(5)y y x x -+-+1111111111111111y y y x x x c c c c --+-+-11011010110123412y y x x r r r r --+-+-00011000010124321 y y x x--=000110001010122320001000010101y x yy x xr r =--+(6)d c b a c b a b a a d c b a c b a b a a d c b a c b a b a a d c b a ++++++++++++++++++3610363234232cb a b a ac b a b a a cb a b a a dc b a i r r i 36103630234232004,3,21+++++++++=+-b a a b a ac b a b a ad c b a r r r r 373002000324232++++++-+-44300020003a ab a a cb a b a a dc b a r r =+++++-9.用行列式性质证明:(1) 333332222211111c c b kb a c c b kb a c c b kb a ++++++=333222111c b a c b a c b a证明: 333332222211111c c b kb a c c b kb a c c b kb a ++++++33332222111123c b kb a c b kb a c b kb a c c ++++-33322211112c b a c b a c b a c kc +-. (2) efcf bfde cdbdaeac ab---=abcdef 4 证明: ef cfbf de cd bdaeac ab---d c b e c b e c b abf ---的公因子提取各行111111111---abfbce 的公因子提取各列202001113121-++abcdef r r r r 20002011123--↔abcdef r r abcdef 4=. (3) yy x x ++++1111111111111111y x xy y x 222222++=证明: y y x x ++++1111111111111111=yy x x +++++++1110111101111011111y y x +++=1111111111111111 y y x x ++++111011*********y y x 0000000001111=y y x x +++++++110101101011101101 y y xx y y xxy +++++++=1010011001010101000000011101112yy x x y xx xy xy +++++=10001001001001100110011011022 y y x x y x x xy +++=100010010010000110011011022=+++=)1(2222y y x y x xy 222222y x y x xy ++. 10.解下列方程:(1)0913251323222321122=--x x解: 由2243212240005132320321129132513232223211x x r r r r x x ----+-+---22314000131032032112x x r r ------+-22221240001310332003211x x x r r x -------+2222340003320013103211x x x r r ------↔)4)(32(22x x ---= 得 0)4)(32(22=---x x 所以 2=x 或 2-=x .(2)0011101101110=x x xx解: 由=++++=+01110110122224,3,20111011011101x x x x x x x i r r x x x x i 0111011011111)2(x x xx + 111011*********)2(413121-------++-+-+-x x x x x x r r r xr r r xx xx x x x r r -------++10011010101111)2(43x x x x x x x x x x x x x x x r r x ------+=----+----++-100)1(0010101111)2(100)1)(1(10010101111)2()1(32xx xx x x ----⨯-+=1)1(1011)2(=})1(){1)(2(22x x x x -+-+2)2)(2(x x x -+-= 得 0)2)(2(2=-+x x x , 所以 021==x x ,23=x , 24-=x . 15. 用克莱姆法则解下列线性方程组:(1)⎩⎨⎧=+=+2731322121x x x x解:由系数行列式57332==D 172311==D 123122==D5111==D D x , 5122==D D x . (3) ⎪⎩⎪⎨⎧=+-=+-=+-445222725 1243321321321x x x x x x x x x解: 由系数行列式 638701702112452181211245272524331212313=--+-+----+-+----=r r r r r r r r D=--+-+---=41143786220124454722224131211c c c c D 63126002312545322442722521331212=---+-+-=r r r r D189107017703112452148131124522225143312123133=--+-+---+-+----=r r r r r r r r D得 111==D D x , 222==D Dx ,333==DD x .16.判断下列齐次方程组是否有非零解:(1) ⎪⎪⎩⎪⎪⎨⎧=+-+=-+-=++--=+-+0320508307934321432143214321x x x x x x x x x x x x x x x x解:由系数行列式3211151118137931------=D 47208144022198079313413121------+-+-+r r rr r r 0472814422198=-----= (第一、二行对应元素成比例) 此齐次方程组有非零解.(2). ⎪⎪⎩⎪⎪⎨⎧=-++=+++=-++=+-0302430332022432143214321421x x x x x x x x x x x x x x x解:由系数行列式3015111104)1(2301511122)1(30015011313210221131214331321022********---+----=----+-+----=+rr r r r r D0131114≠=---=此齐次方程组只有唯一的非零解.17. 若齐次线性方程组 ⎩⎨⎧=-+=+-0)2(504)3(y x y x λλ 有非零解.则λ取何值?解:由系数行列式 )2)(7(14520)2)(3(25432+-=--=---=--=λλλλλλλλD其齐次线性方程组有非零解,则 7=λ 或 2-=λ.习题二A 组1.计算下列矩阵的乘积.(1) ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-2312521131.解: ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-2312521131⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛⨯+⨯⨯+-⨯⨯-+⨯⨯-+-⨯⨯+⨯⨯+-⨯=12111577251253)2(22)1(113)1()2(1231133)2(1. (2)()0111132=⎪⎪⎪⎭⎫ ⎝⎛---(3) ⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛-35002103531152112401321214.解: ⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-35002103531152112401321214⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫⎝⎛=10316665350021161167923. (4)()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x解:()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x =233322222111x a x a x a +++212112)(x x a a ++313113)(x x a a ++323223)(x x a a + 2. 计算下列各矩阵:(1) 52423⎪⎪⎭⎫ ⎝⎛--. 解: 52423⎪⎪⎭⎫ ⎝⎛--22423⎪⎪⎭⎫ ⎝⎛--=22423⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--2423⎪⎪⎭⎫ ⎝⎛--=4421⎪⎪⎭⎫ ⎝⎛--4421⎪⎪⎭⎫ ⎝⎛--2423 ⎪⎪⎭⎫ ⎝⎛--=81267⎪⎪⎭⎫ ⎝⎛--2423⎪⎪⎭⎫ ⎝⎛-=8423.(2)2210013112⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡ 解: 2210013112⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡433349447 (3) n⎪⎪⎭⎫ ⎝⎛1011.解: n ⎪⎪⎭⎫ ⎝⎛1011n⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=00101001=nn n nn n n ⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛--0010001010012)1(001010011001221+⎪⎪⎭⎫⎝⎛=1001⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛101000n n , 其中 20010⎪⎪⎭⎫ ⎝⎛ =⎪⎪⎭⎫ ⎝⎛=30010⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=00000010n. (4) n⎪⎪⎪⎭⎫ ⎝⎛λλλ001001 解: n⎪⎪⎪⎭⎫ ⎝⎛λλλ001001=n ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛000100010000000λλλn⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=000100010100010001λ⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=---- 222110001000101000100012)1(000100010100010001100010001n n n n n n n n n λλλ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=-0000002)1(0000000000000002n nn n n n n n n n λλλλλλ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=-nn nn nnn n n n λλλλλλ0002)1(1其中 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛0000001000001000102,⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛==⎪⎪⎪⎭⎫ ⎝⎛0000000000001000100001000103n. 5. 证明:对任意n m ⨯矩阵A ,A A T与TAA 都是对称方阵;而当A 为n 阶对称方阵时,则对任意n 阶方阵C ,AC C T 为对称方阵.证明: (1)A A T为n 阶方阵, 又A A A A T T T =)( A A T∴为n 阶对称方阵同理TAA 为m 阶对称方阵(2)AC C T为n 阶方阵, A 为n 阶对称方阵 A A T=∴ 又 AC C AC C T T T =)(AC C T∴为n 阶对称方阵6.设C B A ,,均为n 阶方阵.证明:如果CA A C AB E B +=+=, 则.E C B =-解: 由已知 E B A E E AB B =-=-)(, 则 B A E =--1)(.且 A CA C =- 即 A A E C =-)(, 则 AB A E A C =-=-1)(. 得 E AB B C B =-=-.8.(3)⎪⎪⎪⎭⎫ ⎝⎛--=122341213A解:25=A 1011=A 521=A 531-=A712-=A 122-=A 1132=A 613-=A 823-=A 1333=A⎪⎪⎪⎭⎫⎝⎛-----=-1386111755102511A9. 解下列矩阵方程: (1) ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛23123512X 解: 由 ⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛-251335121,得 ⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-1161923122513231235121X .(3) ⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X 解: 由 ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=--01010000102110234110000101001010000102110234110000101011X⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=201431012010100001021341102, 即 ⎪⎪⎪⎭⎫⎝⎛---=201431012X .11. 设 B A AB A -=⎪⎪⎪⎭⎫ ⎝⎛--=2,011002100, 求.B解: 由已知 ,2)(,2A B E A A B AB =+=+因 01622)(3≠-===+=+A A B E A B E A1)(-+E A 存在, 则 A E A B 2)(1⋅+=-由 ()⎪⎪⎪⎭⎫⎝⎛----−→−++-⎪⎪⎪⎭⎫ ⎝⎛----=+22240420001021010120220042001110121012,3121r r r r A E A⎪⎪⎪⎭⎫ ⎝⎛----−−→−++-⎪⎪⎪⎭⎫ ⎝⎛-----−→−+--31322211310001000121626404200200210101321231332r r r r r r r所以 ⎪⎪⎪⎭⎫ ⎝⎛----=⋅+=-31322211132)(1A E AB .12.设B A ,均为n 阶方阵,E 为n 阶单位阵,证明: (1) 若,AB B A =+ 则E A -可逆;(2) 若O E A A =+-432 则E A -可逆,并求-1)(E A -. 解: (1)由已知 E E B A AB =+--, 即E E B E A E E B E B A =--=---))((,)()(,所以 E A -可逆,且E B E A -=--1)(. (2)由已知 E E A E A A E E A AE AA 2)(2)(,222-=----=+--,,2))(2(E E A E A -=-- 所以 E A -可逆,且A E E A E A 21)2(211--=--=-)(. 14.设⎪⎪⎪⎪⎪⎭⎫⎝⎛---=1100210000230012A , 求 4,AA 及1-A . 解: 33111212312=⨯=---=A ,由⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛7-48-7-11-2197168-56-9723-1-244,, 所以 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=7400870000971680056974A . 由⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛112-13111-21231223-1-2-1-1,, 所以 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=31310032-3100002300121-A . 15. 用初等变换把下列矩阵化为标准形:(1) ⎪⎪⎪⎭⎫⎝⎛=02-112321-1A解: ⎪⎪⎪⎭⎫ ⎝⎛=02-112321-1A ⎪⎪⎪⎭⎫ ⎝⎛-+-+⎪⎪⎪⎭⎫-- ⎝⎛+-+-100010001)1(1001101012-1-05-5021-133********r r r r r r r r r16.求下列各矩阵的秩:(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=61331311405133312A ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----↔3312311405136133141r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----+-+-+-152970275313018348061331243413121r r r r r r⎪⎪⎪⎪⎪⎭⎫⎝⎛-----+-152970275313035106133124r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-------+-+-66001212003510613317134232r r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-------→1212006600351061331⎪⎪⎪⎪⎪⎭⎫⎝⎛-----→00006600351061331 所以3)(=A R 17.设⎪⎪⎪⎭⎫ ⎝⎛=110101011A ,⎪⎪⎪⎭⎫⎝⎛=a a a B 111211,且矩阵AB 的秩为2,求a解:因为2)(=AB R ,所以B A AB ==0 又因为0≠A , 所以0=B 即01=+-a 1=⇒a。
高等数学 线性代数 习题答案第二章
第二章习题2-11. 证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有n x a ε-<取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有n k x a ε+-<由数列极限的定义得 lim n k x x a +→∞=.2. 证明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立.证:lim 0,,.使当时,有n x n x aN n N x a εε→∞=∴∀>∃>-<而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。
3. 证明:lim n →∞x n =0的充要条件是lim n →∞∣x n ∣=0.证:必要性由2题已证,下面证明充分性。
即证若lim 0n n x →∞=,则lim 0n n x →∞=,由lim 0n n x →∞=知,0ε∀>,N ∃,设当n N >时,有0 0n n n x x x εεε-<<-<即即由数列极限的定义可得 lim 0n n x →∞=4. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭ =0; (2) lim n →∞2!n =0. 证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭ . (2)因为22222240!1231n n n n n<=<- ,而且4lim 0n n →∞=, 所以,由夹逼定理得2lim 0!nn n →∞= 5. 利用单调有界数列收敛准则证明下列数列的极限存在. (1) x 1>0,x n +1=13()2n nx x +,n =1,2,…; (2) x 1x n +1,n =1,2,…;(3) 设x n 单调递增,y n 单调递减,且lim n →∞(x n -y n )=0,证明x n 和y n 的极限均存在.证:(1)由10x >及13()2n n nx x x =+知,有0n x >(1,2,n = )即数列{}n x 有下界。
线性代数 习题二答案
1. 241110331032350382A B -⎛⎫⎛⎫⎛⎫+=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,110020130350011361B C --⎛⎫⎛⎫⎛⎫-=-= ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭,2410204222323032011091A C ⎛⎫⎛⎫⎛⎫-=-= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.2.由32A X B -=可得()341231010283211153312111125211222234221171157115222X A B ⎡⎤-⎢⎥⎛⎫-⎡⎤⎡⎤⎡⎤⎢⎥⎪⎢⎥⎢⎥⎢⎥⎢⎥=-=---=-=- ⎪⎢⎥⎢⎥⎢⎥⎢⎥ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎝⎭⎢⎥⎢⎥⎣⎦.3. 由22422243a b a b c d c d +--⎛⎫⎛⎫=⎪ ⎪+--⎝⎭⎝⎭可得,24222423a b a b c d c d +=⎧⎪-=-⎪⎨+=⎪⎪-=-⎩ 解方程组可得0,2,1,2a b c d ====. 4.设()ijm nA a ⨯=,当kA O =时,由零矩阵定义,有0ij ka =,则0k =或0ij a =,即0k =或A O =.5.(1)()()()323122382031237243181141142184011437813203515112581051137402++-+⎡⎤⎡⎤⎡⎤-⎛⎫⎢⎥⎢⎥⎢⎥-=-+-+--+=- ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎢⎥⎢⎥⎢⎥++-+-⎣⎦⎣⎦⎣⎦ .(2)()()()1311113213804220142232701371021310-+---⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-=+-+=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+-+⎣⎦⎣⎦⎣⎦⎣⎦. (3)()()()()()13121110132101312111013210321023222120264203332313039630-⎡⎤-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--------⎢⎥⎢⎥⎢⎥-==⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦⎣⎦⎣⎦ .(4)()()()()1132211322151⎡⎤⎢⎥=++-=⎢⎥⎢⎥-⎣⎦. (5)()()()()210112113121121111120101321101-⎡⎤⎢⎥-=-+--+-+-⎢⎥⎢⎥-⎣⎦()325=--.(6)()()111211222211121122221212111a a b x x xy a a b y a x a y b a x a y b b x b y c y b b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=++++++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()()()()111211222212a x a y b x a x a y b y b x b y c =++++++++()2212111222222c b x b y a x a xy a y =+++++.6.21010101121A λλλ⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,3210101021131A A A λλλ⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,因此,我们猜测101nA n λ⎛⎫= ⎪⎝⎭,下面用归纳法证明:当1n =时成立;假设当1n -时成立,则()()110101010111111nn A A A n n n λλλλλ-⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭,因此101n A n λ⎛⎫=⎪⎝⎭.7.(1)设cos sin sin cos A θθθθ-⎛⎫=⎪⎝⎭, 则2cos 2sin 2sin 2cos 2A θθθθ-⎛⎫=⎪⎝⎭,3cos3sin3sin3cos3A θθθθ-⎛⎫= ⎪⎝⎭,因此,我们猜测cos sin sin cos nn n A n n θθθθ-⎛⎫=⎪⎝⎭,下面用归纳法证明:当1n =时成立;假设当1n -时成立,则()()()()1cos 1sin 1cos sin sin 1cos 1sin cos n n n n A A A n n θθθθθθθθ----⎛⎫-⎛⎫==⎪⎪--⎝⎭⎝⎭ ()()()()()()()()cos 1cos sin 1sin cos 1sin sin 1cos sin 1cos cos 1sin sin 1sin cos 1cos n n n n n n n n θθθθθθθθθθθθθθθ-------⎛⎫=⎪-+---+-⎝⎭cos sin sin cos n n n n θθθθ-⎛⎫=⎪⎝⎭,因此cos sin sin cos n n n A n n θθθθ-⎛⎫=⎪⎝⎭.(2)设142032043A ⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦,则2100010001A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,所以2100010001k A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,21142032043k A +⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦, 即()()()()()()122111012111022121n nn nnn n A ⎡⎤----⎢⎥⎢⎥=-+--+-⎢⎥----⎢⎥⎣⎦.(3)设1111111111111111A ---⎡⎤⎢⎥---⎢⎥=⎢⎥---⎢⎥---⎣⎦,则 241111111140001111111104004111111110040111111110004A E ------⎡⎤⎡⎤⎛⎫⎪⎢⎥⎢⎥------ ⎪⎢⎥⎢⎥=== ⎪⎢⎥⎢⎥------ ⎪⎢⎥⎢⎥------⎣⎦⎣⎦⎝⎭, 所以244k k A E ==,2111111111411111111k k A +---⎡⎤⎢⎥---⎢⎥=⎢⎥---⎢⎥---⎣⎦. (4)1112233111121311112233112233212223313233()()()()T T T T T T T T n Tnn n T n a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b αβαβαβαβαβαβαβαβαβαβ----===++⎡⎤⎢⎥=++=++⎢⎥⎢⎥⎣⎦8, (1)设矩阵11122122x x B x x ⎛⎫=⎪⎝⎭与矩阵A 可交换, 则112112222122x x x x AB x x ++⎛⎫=⎪⎝⎭,111112212122x x x BA x x x +⎛⎫= ⎪+⎝⎭,由AB BA =得210x =,1122x x =.(2)设矩阵111213212223313233x x x B x x x x x x ⎛⎫⎪= ⎪ ⎪⎝⎭与矩阵A 可交换, 则212223313233000x x x AB x x x ⎛⎫⎪= ⎪ ⎪⎝⎭,111221223132000x x BA x x x x ⎛⎫⎪= ⎪ ⎪⎝⎭, 由AB BA =得2131320x x x ===,112233x x x ==,1223x x =9. 设矩阵111213212223313233x x x B x x x x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦与矩阵A 可交换,则111213212223313233ax ax ax AB bx bx bx cx cx cx ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,111213212223313233ax bx cx BA ax bx cx ax bx cx ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 由AB BA =得2131321213230x x x x x x ======,即与A 可交换的矩阵必为对角距阵. 10. 因为A T=A , 所以(P TAP)T=P T(P TA)T=P T A TP =P TAP ,从而P TAP 是对称矩阵. 11. 证明充分性: 因为A T=A , B T=B , 且AB =BA , 所以 (AB)T=(BA)T=A T B T=AB , 即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T=AB , 所以AB =(AB)T=B T A T=BA.12.(1)因为AB BA =,所以()222222A B A AB BA B A AB B +=+++=++,得证.(2)因为AB BA =,所以右边2222A AB BA B A B =-+-=-=左边,得证. (3)因为AB BA =, 所以()()()()()()()()()()()()()1p p pAB AB AB AB AB AB AB A BA BA BA BA BA BA B -==()()()()()()()()()()1222p p A AB AB AB AB AB AB B A BA BA BA BA B --==()()()()()()()()()23223311p p p p p pA AB AB AB AB B A AB AB AB AB B A AB B A B ----===== ;如果AB BA ≠,则上述等式不成立. 13, 1001A -⎛⎫=⎪-⎝⎭14, 充分性:因为2B E =, 所以()()()22111222442A B E B E B E B A =++=+=+=; 必要性:因为2A A =, 所以()()()22111222442A B E B E B B E =++=+=+, 整理得2B E =.15, 因为A 是反对称矩阵,B 是对称矩阵, 所以TA A =-,TB B =, (1)()()()22TT T AA A A A A ==--=,即2A 是对称矩阵.(2)()()()()()TTTT T T TAB BA AB BA B A A B B A A B AB BA -=-=-=---=-,即AB BA -是对称矩阵.(3)充分性:因为AB BA =,所以()()TT TAB B A B A BA AB ==-=-=-,即A 是反对称矩阵;必要性:因为A 是反对称矩阵,所以()()TT TAB B A B A BA AB ==-=-=-,即AB BA =. 16,设111211112222121121111121n n n n n n n n n n nnn nnn a a a a a a a a A a a a a a a a a --------⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭, 则2A 主对角线上的元素分别为22221112111n n a a a a -++++ ,22221222212n n a a a a -++++ ,…,2222121n n n n nn a a a a -++++ ,又因为2A O =,所以222211121110n n a a a a -++++= ,222212222120n n a a a a -++++= ,…,22221210n n n n nn a a a a -++++= ,解得11121222320n n nn a a a a a a a ========== , 即A O =.17.设111212122212n n m m mn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ ,则112111222212m m T nn mn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, 222111212222122222212n Tn m m mn a a a a a a AA a a a ⎡⎤+++⎢⎥+++⎢⎥=⎢⎥⎢⎥+++⎢⎥⎣⎦因为TAA O =,则222111210n a a a +++= ,222212220n a a a +++= ,…,222120m m mn a a a +++= , 所以1112121222120n n m m mn a a a a a a a a a ======+==+++= ,即A O =. 18,(1)2111111141132222232323872341A A --------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-=-=⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.(2)321411141110325432548723872301A A A E ------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-=-+-⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭91128554024303221316141015046036-------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 19,因为()21fλλλ=-+,所以()21551222310014391331100100531371331200110612f A A A E ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=-+=--+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.20,11A d =,12A c =-,21A b =-,22A a =,所以d b A c a *-⎛⎫= ⎪-⎝⎭.若0ad bc -≠,则0A ad bc =-≠,所以矩阵A 可逆,11d b ad bc ad bc A A ca A ad bcad bc -*⎛⎫-⎪--==⎪ ⎪-⎪--⎝⎭. 21,11A d =,12A c =-,21A b =-,22A a =, 所以d b A c a *-⎛⎫=⎪-⎝⎭.若0ad bc -≠,则0A ad bc =-≠,所以矩阵A 可逆,11d b ad bc ad bc A A ca A ad bcad bc -*⎛⎫-⎪--==⎪ ⎪-⎪--⎝⎭. 22.(1)200A =-≠,所以矩阵A 可逆,又112A =-,123A =-,216A =-,221A =,所以113261110103131202020A A A -*⎛⎫ ⎪--⎛⎫=== ⎪ ⎪-- ⎪⎝⎭- ⎪⎝⎭. (2)10A =≠,所以矩阵A 可逆,又11cos A θ=,12sin A θ=-,21sin A θ=,22cos A θ=,所以1cos sin 1sin cos A A A θθθθ-*⎛⎫== ⎪-⎝⎭. (3)10A =≠,所以矩阵A 可逆,又111A =,120A =,130A =,212A =-,221A =,230A =,317A =,322A =-,331A =,所以11271012001A A A -*-⎛⎫⎪==- ⎪ ⎪⎝⎭. (4)()()()()2123134141000100010001000112000100020011002213000100130201011214000102141001r r r A E r r r r r r ⎛⎫⎛⎫+-→ ⎪ ⎪- ⎪⎪=+-→ ⎪⎪- ⎪⎪+-→-⎝⎭⎝⎭ ()()32323424100010001000100020130201001302010020011000060312020214100100543021r r r r r r r r ⎛⎫⎛⎫ ⎪ ⎪+-→-- ⎪ ⎪↔ ⎪ ⎪---+-→ ⎪ ⎪---⎝⎭⎝⎭()343100010000130201010014010100543021r r r ⎛⎫⎪- ⎪+-→ ⎪--- ⎪--⎝⎭()()232434100010001110001000010000223010122313111001401010010052630024352615110001824124r r r r r r ⎛⎫⎪⎛⎫ ⎪-⎪⎪+→--- ⎪ ⎪→ ⎪----- ⎪+-→ ⎪⎪--⎝⎭⎪-- ⎪⎝⎭所以,距阵A 可逆,且1100011002211102631511824124A -⎛⎫ ⎪ ⎪- ⎪ ⎪=-- ⎪ ⎪ ⎪-- ⎪⎝⎭. (5)因为0A =, 所以1A -不存在.(6)50A =≠,所以矩阵A 可逆,又113A =,122A =,131A =-,213A =-,223A =,231A =,311A =-,324A =-,332A =,所以13315551234555112555A A A-*⎛⎫-- ⎪⎪ ⎪==- ⎪ ⎪ ⎪- ⎪⎝⎭. (7)2312223341000100110000100010010100(,)001000100100100001001010001a a a a r ar a a a A E r ar a a r ar -⎡⎤⎡⎤-⎢⎥⎢⎥-⎢⎥⎢⎥=-⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦ 所以,距阵A 可逆,且11110110010001a a A a --⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥⎣⎦22,(1)1100500510121012271003403453753712333023023X -⎛⎫⎪⎛⎫⎪---⎛⎫⎛⎫⎛⎫ ⎪==-= ⎪ ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭⎪⎪-⎝⎭⎪⎝⎭;(2)1100001100001001100a a a a Xb b b bc c c c -⎛⎫ ⎪⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ⎪⎪⎝⎭; (3)111111211000111112100001110120000011000210000100012X -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦11000211000110012100001000120000011000210000100012-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦1110011100011000001100012--⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦(4)由XP PB =得:111001001002100002102110012111001010010021000021020021101411611X PBP --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦⎣⎦511111111111111151()()()()()()()()()X PBP PBP PBP PBP PBP PBP PBP PBP PBP PBP PB P P B P P B P P B P P BP PB P----------------====5B B =,故55100200611X XB X XBX ⎡⎤⎢⎥===⎢⎥⎢⎥--⎣⎦23,100110111A -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦故:11210010(2)(2)110120111112100100200110120120011112112A E A A E ---⎡⎤⎡⎤⎢⎥⎢⎥++-=--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=---=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦24,1311110,211A --⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 由1111*111,,3A A A A A A A ----====-,得*1113A A A A --==,*1**1211211()111,()1119154154A A ---⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦25,1*11210121001210121,0012001200010001A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥===⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦而*A 中的所有元素即为A 中所有元素的代数余子式,即A 所有元素的代数余子式为0. 26,由题意得:*1()*E A A kA AA kE A E kE -=-+=--=--,即 13k A =--=- 27,(1).因为2AX B X =+, 所以()2A E X B -=,又因为()111013112111110112211A E ----⎛⎫⎛⎫⎪ ⎪-=-=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭则()13112135242110012201211103311X A E B ---⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-=-= ⎪⎪ ⎪ ⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭(2)由题意得:11()()()()AXA BXB AXB BXA EA B X A B E X A B A B --+--=⇒--=⇒=-- 故:11111111125011011012001001001X ------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦(3)由12*0,2n A A AA A ->==⇒=1*1002211002210022A A A A-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==-⇒=-⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦由111111133()31263()332231122ABA BA E ABA BA E A E BA E B A E A -------=+⇒-=⇒-=⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⇒=-=--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦--⎢⎥⎢⎥⎣⎦⎣⎦28,因为A ,B ,C 都是非奇异矩阵,所以1A -,1B -,1C -存在,又111111ABC C B A C B A ABC E ------==, 则由推论知ABC 可逆,且()1111ABC C B A ----=29,111111AB BA B ABBB BAB B A AB ------=⇔=⇔=,111111AB BA A ABA A BAA BA A B ------=⇔=⇔=, ()()111111AB BA AB BA B A A B ------=⇔=⇔=,综上可得11111111AB BA ABB A A B BA A B B A --------=⇔=⇔=⇔=.30,(1)不成立,A B =-时不成立.(2)成立,A ,B 可逆,0A ≠,0B ≠,0AB A B =≠,则AB 可逆. (3)成立,AB 可逆,0AB A B =≠,0A ≠,0B ≠,则A ,B 可逆. 31,()2200A A E A A E A E A E A -+=⇒-=⇒-=⇒≠, 即A 为非奇异矩阵. 32,因为B 可逆,所以0B ≠,20B B B =≠,又22A AB B O ++=,则22A AB B +=-,()()22210nA AB A A B A A B B B +=+=+=-=-≠,即0A ≠,0A B +≠, 由推论知A 和A B +都可逆. 33,证明:假设*A 可逆,则1*00n A AA -=≠⇒≠,即A 可逆,1A -存在,再由2211A A A A AA A E --=⇒=⇒=与题设A E ≠矛盾,故假设不成立即*A 不可逆,证毕。
线性代数第二章习题及解答
··· ··· .. . ···
∗ ∗ . . .
2 a2 n1 + · · · + ann
(1)
(2)
2 2 由 A2 = 0 得到 a2 0 i1 + ai2 + · · · + ain = 0, i = 1, 2, . . . , n 于是 aij = ( ) 1 2 2 cos θ sin θ 8. 设 A = ,B = , C = 2 1 −2 − sin θ cos θ 2 −2 1
证明:|A−1 | =
|A| = ±1
1 |A|
注意到 A−1 的元素为正数所以其行列式必为整数, 即
1 |A|
为正数, 于是只有
若 |A| = ±1, 由于 A−1 = 整数.
A∗ |A|
注意到 Aij 为整数,于是 A∗ 的元素必为整数,则 A−1 的元素为
1 3 0 0 0
0 2
20 −1 −1 0 , P AP = 0 1 0 求 A 0 0 2 1 2 520 0 0 解:P AP −1 P AP −1 · · · P AP −1 = P A20 P −1 = 0 1 0 20 0 0 220 520 0 0 2 · 520 − 1 1 − 220 2 · 520 − 221 20 20 那么 A20 = P −1 2 · 520 − 221 0 1 0 P = 2 · 5 − 2 2 − 2 0 0 20 −520 + 1 −1 + 220 −520 + 221 19. 设 A, B, A + B 可逆, 证明 (A−1 + B −1 )−1 = A(A + B )−1 B
考研线性代数习题及答案(二)
习题二 (A )1.设矩阵232121a b a c A b c a b c +--⎡⎤=⎢⎥+--+-⎣⎦,且A O =,求a ,b ,c 的值.解: A =0时2302102100a b a c b c a b c +=⎧⎪--=⎪⎨+-=⎪⎪-++=⎩,则3,2,5a b c ==-=2.设201312A -⎡⎤=⎢⎥⎣⎦,112215B -⎡⎤=⎢⎥-⎣⎦求(1)2A B +,(2)3A B -.解: 20111231022312215431A B --⎛⎫⎛⎫⎛⎫+=+=⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ 201112537333122159217A B ----⎛⎫⎛⎫⎛⎫-=-=⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭3.如果矩阵X 满足2X A B X -=-,其中2112A -⎡⎤=⎢⎥-⎣⎦,0220B -⎡⎤=⎢⎥-⎣⎦求X .解:2X A B X -=- 22X A B =+ 12X A B =+ 21022211220222---⎛⎫⎛⎫⎛⎫=+=⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭4.某石油公司所属的三个炼油厂A 1,A 2,A 3在2003年和2004年所生产的四种油品B 1,B 2,B 3,B 4的数量如下表(单位:104t ):(1)作矩阵34A ⨯和34B ⨯分别表示2003年、2004年工厂A i 产油品B j 的数量; (2)计算A B +和B A -,分别说明其经济意义;(3)计算1()2A B +,并说明其经济意义.解: 1) 582715472201856525143A ⎛⎫⎪= ⎪ ⎪⎝⎭ 632513590302078028185B ⎛⎫⎪= ⎪ ⎪⎝⎭ 2) 1215228916260381214553328A B ⎛⎫⎪+= ⎪ ⎪⎝⎭上式表明:123,,A A A 三个在2003年,2004年生产1234,,,B B B B 四种油品的总产量.52211802215342B A --⎛⎫⎪-= ⎪ ⎪⎝⎭上式表明:123,,A A A 三厂在2004年生产的1234,,,B B B B 四种与2003年相比的增加量.3) 12192614221()813019621455316422A B ⎛⎫ ⎪ ⎪+= ⎪ ⎪ ⎪⎝⎭上式表明123,,A A A 三厂在2003年、2004年生产1234,,,B B B B 四种油品的平均产量.5.计算下列矩阵的乘积:(1)01121043⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦; (2)5112207432-⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦⎢⎥⎣⎦; (3)(-1,3,2)304⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (4)213⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(-1,2); (5)112120124305--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(6)(1,-1,2)120201013112-⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦解:1) 4312⎛⎫=⎪⎝⎭2) 126241114⎛⎫⎪=-- ⎪ ⎪-⎝⎭ 3) =54) 241236-⎛⎫⎪=- ⎪ ⎪⎝⎭5) 1332⎛⎫ ⎪= ⎪ ⎪⎝⎭6) =156.设311212123A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦111210111B -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦求(1)AB 和BA ;(2)AB-BA .解:1) 612610842AB -⎛⎫⎪=- ⎪ ⎪-⎝⎭ 400410222AB ⎛⎫⎪= ⎪ ⎪⎝⎭2) 212220660AB BA -⎛⎫⎪-=- ⎪ ⎪-⎝⎭7.求所有与A 可交换的矩阵: (1)1011A ⎡⎤=⎢⎥⎣⎦; (2)11001101A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.解:1) 设ab Xcd ⎛⎫=⎪⎝⎭,则 XA =AX 得 a =d b =0 0a X c a ⎛⎫∴=⎪⎝⎭2) 设111222ab c Y a b c a b c ⎛⎫⎪= ⎪ ⎪⎝⎭,则 YA AY =得 1220a a b === 12b c a == 1c b =00a b c Y a b a ⎛⎫⎪∴= ⎪ ⎪⎝⎭8.设矩阵A 与B 可交换.证明:(1)22()()A B A B A B +-=-;(2)222()2A B A AB B ±=±+.解:1) 2222()()A B A B A AB BA B A B +-=-+-=- 2) 22222()2A B A AB BA B A AB B ±=±±+=±+9.计算(1)31111⎡⎤⎢⎥--⎣⎦; (2)1301n⎡⎤⎢⎥⎣⎦; (3)2212301111⎡⎤⎢⎥⎢⎥⎢⎥--⎣⎦; (4)000000na b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (5)311110111001101⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (6)1111111111111111n---⎡⎤⎢⎥---⎢⎥⎢⎥---⎢⎥---⎣⎦解:1) 0000⎛⎫=⎪⎝⎭ 2) 1301n ⎛⎫=⎪⎝⎭3) 507527622⎛⎫⎪= ⎪ ⎪---⎝⎭4) 000000n n n a b c ⎛⎫ ⎪= ⎪ ⎪⎝⎭5) 13610013600130001⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭6) 2,1,nE n n A n ⎧⎪=⎨-⎪⎩为偶数2为奇数10.设2210()f x a x a x a =++,A 是n 阶矩阵,定义2210()f A a A a A a E =++. (1)如果2()1f x x x =-+211312110A ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦求()f A .(2)如果35)(2+-=x x x f⎥⎦⎤⎢⎣⎡--=3312A 求)(A f .解:1) 2713()823210f A A A E ⎛⎫⎪=-+= ⎪ ⎪-⎝⎭2) 200()5300f A A A E ⎛⎫=-+= ⎪⎝⎭11.设521341A -⎡⎤=⎢⎥-⎣⎦,320201B -⎡⎤=⎢⎥-⎣⎦, 计算(1)AB T ;(2)B T A ;(3)A T A .解:1) 32521199203411701TAB --⎛⎫---⎛⎫⎛⎫⎪== ⎪⎪ ⎪---⎝⎭⎝⎭⎪⎝⎭2) 21211042341TB A ---⎛⎫ ⎪=- ⎪ ⎪-⎝⎭ 3) 34222206262TA A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭12.设某港口在一月份出口到三个地区的两种货物的数量以及两种货物的单位价格、重量、体积如下表:(1)利用矩阵乘法计算经该港口出口到三个地区的货物总价值、总重量、总体积各为多少? (2)利用(1)的结果计算经该港口出口的货物总价值、总重量、总体积为多少?解:1) 0.20.35820655335200010008000.0110.05827633.8120013005000.120.5840770346⎛⎫⎛⎫⎛⎫ ⎪⎪=⎪ ⎪ ⎪⎝⎭ ⎪⎪⎝⎭⎝⎭2) 82065533511810827633.81191.884077034611956⎛⎫⎛⎫⎛⎫⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭总价值为1810,总重量为191.8,总体积为195613.设A 为n 阵对称矩阵,k 为常数.试证kA 仍为对称矩阵.证明: 设111212122212n n n n nn a a a a a a A a a a ⎛⎫ ⎪⎪= ⎪ ⎪⎪⎝⎭,则 111212122212()n n T n n nn ka ka ka ka ka ka kA kA ka ka ka ⎛⎫⎪ ⎪== ⎪ ⎪ ⎪⎝⎭则kA 为对称矩阵14.(1)证明:对任意的m ×n 矩阵A ,A T A 和AA T 都是对称矩阵.(2)证明;对任意的n 阶矩阵A ,A +A T 为对称矩阵,而A -A T 为反对称矩阵. 解:1) 证明: ()()T T T T T TA A A A A A == ()()T T T T T TAA A A AA == ,T TA A AA ∴都是对称矩阵2) ()(),T T T T T T TA A A A A A A A A A +=+=+=++为对称矩阵 ()()()T T T T T TA A A A A A A A -=-=-=-- 则TA A -为对称矩阵15.设A 、B 是同阶对称矩阵,则AB 是对称矩阵的充分必要条件是AB =BA .解:()TTTAB AB B A AB BA AB =⇔=⇔=16.判断下列矩阵是否可逆.若可逆,利用伴随矩阵法求其逆矩阵:(1)5432⎡⎤⎢⎥⎣⎦; (2)1326-⎡⎤⎢⎥-⎣⎦; (3)021111312⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦; (4)100120123⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦.解:1) 1123522A --⎛⎫ ⎪= ⎪- ⎪⎝⎭2)不可逆3) 1153444131444131222A -⎛⎫- ⎪⎪⎪=- ⎪ ⎪⎪- ⎪⎝⎭4) 11001102211033A -⎛⎫⎪⎪⎪=-⎪ ⎪⎪- ⎪⎝⎭17.设n 阶矩阵A 可逆,且det A =a ,求1det A -,det *A .解:1AA E -= 111det det AA a-==∴ *det AA A E =⋅∴*11det (det )n n A A a --==18.设A 为n 阶矩阵,A ≠O 且存在正整数k ≥2,使k A O =.求证:E A -可逆,且121()k E A E A A A ---=++++证明: 21()()k E A E A A A--+++2121()k k k E A A A A A A E A E E A --=++++----=-=- 21K E A A A -=+++19.已知n 阶阵A 满足232A A E O --=.求证:A 可逆,并求A -1。
线性代数习题 第二章 (附详解)
线性代数习题 第二章 (附详解)第二章 矩阵及其运算【编号】ZSWD2023B0061 1 已知线性变换3213321232113235322y y y x y y y x y y y x 求从变量x 1 x 2 x 3到变量y 1 y 2 y 3的线性变换解: 由已知221321323513122y y y x x x故3211221323513122x x x y y y321423736947y y y 321332123211423736947x x x y x x x y x x x y2 已知两个线性变换32133212311542322y y y x y y y x y y x 323312211323z z y z z y z z y求从z 1 z 2 z 3到x 1 x 2 x 3的线性变换 解: 由已知221321514232102y y y x x x321310102013514232102z z z321161109412316z z z所以有 3213321232111610941236z z z x z z z x z z z x3 设 111111111A150421321B 求3AB 2A 及A TB解:1111111112150421321111111111323A AB2294201722213211111111120926508503092650850150421321111111111B A T4 计算下列乘积(1)127075321134解:127075321134 102775132)2(7111237449635(2)123)321(解:123)321( (1 3 2 2 3 1) (10)(3))21(312解: )21(31223)1(321)1(122)1(2632142(4)20413121013143110412 解:20413121013143110412 6520876(5)321332313232212131211321)(x x x a a a a a a a a a x x x 解:321332313232212131211321)(x x x a a a a a a a a a x x x(a 11x 1 a 12x 2 a 13x 3 a 12x 1 a 22x 2 a 23x 3 a 13x 1 a 23x 2 a 33x 3)321x x x322331132112233322222111222x x a x x a x x a x a x a x a5 设3121A2101B 问(1)AB BA 吗? 解: AB BA 因为6443AB8321BA 所以AB BA(2)(A B)2A 22AB B 2吗? 解: (A B)2A 22AB B 2因为5222B A52225222)(2B A2914148但 43011288611483222B AB A27151610 所以(A B)2A 22AB B 2(3)(A B)(A B) A 2B 2吗?解: (A B)(A B) A 2B 2因为5222B A1020B A906010205222))((B A B A而718243011148322B A 故(A B)(A B) A 2B 26 举反列说明下列命题是错误的 (1)若A 20 则A 0解: 取0010A 则A 20 但A 0 (2)若A 2A 则A 0或A E 解: 取0011A 则A 2A 但A 0且A E (3)若AX AY 且A 0 则X Y 解: 取0001A 1111X1011Y则AX AY 且A 0 但X Y7 设101 A 求A 2A 3A k解:12011011012 A1301101120123 A A A101 k A k8 设001001A 求Ak解: 首先观察0010010010012A2220020123232323003033 A A A43423434004064 A A A545345450050105A A AkA k k kk k k k k k k 0002)1(121用数学归纳法证明 当k 2时 显然成立 假设k 时成立,则k 1时,0010010002)1(1211k k k k k k k k k k k k A A A11111100)1(02)1()1(k k k k k k k k k k 由数学归纳法原理知k k k k k k k k k k k A 0002)1(1219 设A B 为n 阶矩阵,且A 为对称矩阵,证明B TAB 也是对称矩阵 证明: 因为A TA 所以(B TAB)TB T(B TA)TB T A TB B TAB从而B TAB 是对称矩阵10 设A B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB BA 证明: 充分性 因为A TA B TB 且AB BA 所以(AB)T(BA)TA TB TAB即AB 是对称矩阵必要性 因为A TA B TB 且(AB)TAB 所以AB (AB)TB T A TBA11 求下列矩阵的逆矩阵 (1)5221 解:5221A |A| 1 故A 1存在 因为1225*22122111A A A A A故 *||11A A A1225(2)cos sin sin cos 解cos sin sin cos A |A| 1 0 故A 1存在 因为cos sin sin cos *22122111A A A A A所以 *||11A A Acos sin sin cos(3)145243121解145243121A |A| 2 0 故A 1存在 因为214321613024*332313322212312111A A A AA A A A A A所以 *||11A A A1716213213012(4)n a a a 0021(a 1a 2a n0)解 n a a a A 0021由对角矩阵的性质知n a a a A 1001121112 解下列矩阵方程 (1)12643152X解:126431521X1264215380232(2)234311*********X 解: 1111012112234311X0332321012343113132538122(3)101311022141X解: 11110210132141X2101101311421212101036612104111 (4)021102341010100001100001010X解: 11010100001021102341100001010X01010000102110234110000101020143101213 利用逆矩阵解下列线性方程组(1) 3532522132321321321x x x x x x x x x解: 方程组可表示为321153522321321x x x故0013211535223211321x x x从而有 001321x x x(2) 05231322321321321x x x x x x x x x解: 方程组可表示为012523312111321x x x故3050125233121111321x x x 故有 305321x x x14 设A kO (k 为正整数) 证明(E A) 1E A A 2A k 1证明: 因为A kO 所以E A kE 又因为E A k(E A)(E A A 2A k 1)所以 (E A)(E A A 2A k 1) E由定理2推论知(E A)可逆 且 (E A) 1E A A 2A k 1证明 一方面 有E (E A) 1(E A)另一方面 由A kO 有E (E A) (A A 2) A 2A k 1(A k 1A k)(E A A 2 Ak 1)(E A)故 (E A) 1(E A) (E A A 2A k 1)(E A)两端同时右乘(E A) 1就有 (E A) 1(E A) E A A 2A k 115 设方阵A 满足A 2A 2E O 证明A 及A 2E 都可逆 并求A 1及(A 2E) 1证明: 由A 2A 2E O 得A 2A 2E 即A(A E) 2E或 E E A A)(21 由定理2推论知A 可逆 且)(211E A A 由A 2A 2E O 得A 2A 6E 4E 即(A 2E)(A 3E) 4E或 E A E E A)3(41)2( 由定理2推论知(A 2E)可逆 且)3(41)2(1A E E A证明 由A 2A 2E O 得A 2A 2E 两端同时取行列式得 |A 2A| 2即 |A||A E| 2 故 |A| 0所以A 可逆 而A 2E A 2|A 2E| |A 2| |A|20 故A 2E 也可逆由 A 2A 2E O A(A E) 2EA 1A(A E) 2A 1E )(211E A A又由 A 2A 2E O (A 2E)A 3(A 2E) 4E (A 2E)(A 3E) 4 E所以 (A 2E) 1(A 2E)(A 3E) 4(A 2 E) 1)3(41)2(1A E E A16 设A 为3阶矩阵 21||A 求|(2A) 15A*| 解: 因为*||11A A A所以 |||521||*5)2(|111 A A A A A |2521|11 A A | 2A 1| ( 2)3|A 1| 8|A| 18 2 1617 设矩阵A 可逆 证明其伴随阵A*也可逆 且(A*) 1(A 1)*证明: 由*||11A A A得A* |A|A 1所以当A 可逆时 有|A*| |A|n|A 1| |A|n 10 从而A*也可逆因为A* |A|A 1所以(A*) 1|A| 1A又*)(||)*(||1111A A A A A 所以 (A*) 1|A| 1A |A| 1|A|(A 1)* (A 1)*18 设n 阶矩阵A 的伴随矩阵为A* 证明 (1)若|A| 0 则|A*| 0 (2)|A*| |A|n 1证明:(1)用反证法证明 假设|A*| 0 则有A*(A*) 1E 由此得A A A*(A*) 1|A|E(A*) 1O所以A* O 这与|A*| 0矛盾,故当|A| 0时 有|A*| 0(2)由于*||11A A A则AA* |A|E 取行列式得到 |A||A*| |A|n若|A| 0 则|A*| |A|n 1若|A| 0 由(1)知|A*| 0 此时命题也成立 因此|A*| |A|n 119 设321011330A AB A 2B 求B解: 由AB A 2E 可得(A 2E)B A 故321011330121011332)2(11A E A B01132133020 设101020101A 且AB E A 2B 求B解: 由AB E A 2B 得(A E)B A 2E即 (A E)B (A E)(A E)因为01001010100|| E A 所以(A E)可逆 从而201030102E A B21 设A diag(1 2 1) A*BA 2BA 8E 求B 解: 由A*BA 2BA 8E 得 (A* 2E)BA 8E B 8(A* 2E) 1A 18[A(A* 2E)] 18(AA* 2A)18(|A|E 2A) 18( 2E 2A) 14(E A)14[diag(2 1 2)] 1)21 ,1 21(diag 4 2diag(1 2 1)22 已知矩阵A 的伴随阵8030010100100001*A 且ABA 1BA 13E 求B解: 由|A*| |A|38 得|A| 2由ABA 1BA 13E 得AB B 3AB 3(A E) 1A 3[A(E A 1)] 1A11*)2(6*)21(3A E A E103006060060000660300101001000016123 设P 1AP 其中1141P2001 求A 11解: 由P 1AP 得A P P 1所以A 11A=P 11P 1. |P| 31141*P 1141311P而11111120 012001故31313431200111411111A6846832732273124 设AP P 其中111201111P511求 (A) A 8(5E 6A A 2) 解: ( ) 8(5E 6 2)diag(1 1 58)[diag(5 5 5) diag( 6 6 30) diag(1 1 25)] diag(1 1 58)diag(12 0 0) 12diag(1 0 0) (A) P ( )P 1*)(||1P P P1213032220000000011112011112111111111425 设矩阵A、B 及A B 都可逆 证明A 1B 1也可逆 并求其逆阵证明: 因为A 1(A B)B 1B 1A 1A 1B 1而A 1(A B)B 1是三个可逆矩阵的乘积 所以A 1(A B)B 1可逆 即A 1B 1可逆(A 1B 1) 1[A 1(A B)B 1] 1B(A B) 1A26 计算30003200121013013000120010100121 解: 设10211A30122A 12131B30322B则 2121B O B E A O E A222111B A O B B A A而4225303212131021211B B A90343032301222B A 所以 2121B O B E A O E A 222111B A O B B A A9000340042102521即30003200121013013000120010100121900034004210252127 取1001D C B A 验证|||||||| D C B A D C B A解:4100120021010*********0021010010110100101D C B A 而01111|||||||| D C B A 故|||||||| D C B A D C B A28 设22023443O O A 求|A 8|及A 4解: 令 34431A22022A则21A O O A A故 8218 A O O A A8281A O O A 1682818281810|||||||||| A A A A A464444241422025005O O A O O A A29 设n 阶矩阵A 及s 阶矩阵B 都可逆 求 (1)1O B A O解: 设43211C C C C O B A O 则O B A O 4321C C C Cs n E O O E BC BC AC AC 2143 由此得 s n E BC O BC O AC E AC 2143 121413B C O C O C A C所以O A B O O B A O 111(2)1B C O A解: 设43211D D D D B C O A 则s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321由此得 s n E BD CD O BD CD O AD E AD 423121 14113211B D CA B D O D A D所以11111B CA B O A BC O A30 求下列矩阵的逆阵(1)2500380000120025 解: 设1225A2538B 则5221122511A8532253811B于是850032000052002125003800001200251111B A B A(2)4121031200210001 解: 设 2101A 4103B2112C 则1111114121031200210001B CA B O A BC O A411212458103161210021210001。
《线性代数》测验二答案
1
答
2
5.设 A 为 n 阶矩阵,B 为 n 阶非零矩阵,若 B 的每一个列向量都是齐次线性方程组 Ax=0 的
解,则|A|=__________________
答0
6.齐次线性方程组
2x1x1x2x2x33 x3
0
0
的基础解系所含解向量的个数为________________
答1
(D)(1)的解是(2)的解,但(2)的解不是(1)的解
1
答A
4 5 8.设矩阵 A= 5 7
6 9 (A)(1,1,1)T 答A
2
3 ,则以下向量中是 A 的特征向量的是(
)
4
(B)(1,1,3)T (C)(1,1,0)T (D)(1,0,-3)T
1 1 1
《线性代数》(向量、线性方程组、特征值与特征向量)测验二
学院
班级
姓名
成绩
一.单项选择题(每小题 2 分,共 20 分)
1.设向量组1, 2 , 3 线性无关,则下列向量组线性无关的是(
)
(A)1 2 , 2 3 , 3 1
(B)1 2 , 2 3 ,1 2 2 3
性表示,记向量组(Ⅱ)1, 2 ,, m1, ,则(
)
(A) m 不能由(Ⅰ)线性表示,也不能由(Ⅱ)线性表示
(B) m 不能由(Ⅰ)线性表示,但可由(Ⅱ)线性表示
(C) m 可由(Ⅰ)线性表示,也可由(Ⅱ)线性表示
(D) m 可由(Ⅰ)线性表示,但不可由(Ⅱ)线性表示
答B
3.设1, 2 ,, s 均为 n 维向量,下列结论不.正确的是(
答
Ab
1 0
线性代数第二章答案
第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换. 解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635.(2)⎪⎪⎭⎫ ⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142.(4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ;解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA . 因为⎪⎭⎫⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2. 因为⎪⎭⎫⎝⎛=+5222B A ,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610,所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2. 因为⎪⎭⎫⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B )(A -B )≠A 2-B 2.6. 举反列说明下列命题是错误的:(也可参考书上的答案) (1)若A 2=0, 则A =0; 解 取⎪⎭⎫⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y . 7. 设⎪⎭⎫⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k .8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA kk kk k kk k k k λλλλλλ02)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. (也可提取公因式,变成书上的答案)9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB , 即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以 AB =(AB )T =B T A T =BA .11. 求下列矩阵的逆矩阵: (1)⎪⎭⎫ ⎝⎛5221; 解⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ;解 ⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A |=1≠0, 故A -1存在. 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎭⎫⎝⎛---145243121;解⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以*||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012. (4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 .12. 解下列矩阵方程: (1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛12643152X ;解⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232.(2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311111012112X ;解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解11110210132141--⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012.13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ). 另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1. 证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2,即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E ⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-, 又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1,)3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16.17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*. 证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有 |A *|=|A |n |A -1|=|A |n -1≠0, 从而A *也可逆.因为A *=|A |A -1, 所以 (A *)-1=|A |-1A . 又*)(||)*(||1111---==A A A A A , 所以 (A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A *, 证明: (1)若|A |=0, 则|A *|=0; (2)|A *|=|A |n -1. 证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0. (2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到 |A ||A *|=|A |n . 若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A , 所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-= =2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B . 解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161.23. 设P -1AP =Λ, 其中⎪⎭⎫⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1. |P |=3,⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731.24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆. (A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫⎝⎛---=9000340042102521. (最后一行的-9也可除以-1变成9,从而变成书上的答案)27. 取⎪⎭⎫⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠. 解4100120021010*********0021010010110100101==--=--=D C B A , 而01111|||||||| ==D C B A , 故 |||||||| D C B A D C B A ≠.28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则⎪⎭⎫ ⎝⎛=21A O O A A ,故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A .29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求 (1)1-⎪⎭⎫⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A .30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025;解 设⎪⎭⎫⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=411212458103161210021210001.第五章 相似矩阵及二次型1. 试用施密特法把下列向量组正交化:(1)⎪⎪⎭⎫⎝⎛=931421111) , ,(321a a a ;解 根据施密特正交化方法,⎪⎪⎭⎫ ⎝⎛==11111a b , ⎪⎪⎭⎫ ⎝⎛-=-=101],[],[1112122b b b a b a b ,⎪⎪⎭⎫ ⎝⎛-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b .(2)⎪⎪⎪⎭⎫ ⎝⎛---=011101110111) , ,(321a a a .解 根据施密特正交化方法,⎪⎪⎪⎭⎫ ⎝⎛-==110111a b ,⎪⎪⎪⎭⎫ ⎝⎛-=-=123131],[],[1112122b b b a b a b ,⎪⎪⎪⎭⎫ ⎝⎛-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b . 2. 下列矩阵是不是正交阵:(1)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---121312112131211;解 此矩阵的第一个行向量非单位向量, 故不是正交阵.(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------979494949198949891.解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵.3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵.4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明 因为A , B 是n 阶正交阵, 故A -1=A T , B -1=B T ,(AB )T (AB )=B T A T AB =B -1A -1AB =E ,故AB 也是正交阵.5. 求下列矩阵的特征值和特征向量:(1)⎪⎪⎭⎫ ⎝⎛----201335212;解 3)1(201335212||+-=-------=-λλλλλE A ,故A 的特征值为λ=-1(三重). 对于特征值λ=-1, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=+000110101101325213~E A ,得方程(A +E )x =0的基础解系p 1=(1, 1, -1)T , 向量p 1就是对应于特征值λ=-1的特征值向量.(2)⎪⎪⎭⎫⎝⎛633312321;解 )9)(1(633312321||-+-=---=-λλλλλλλE A ,故A 的特征值为λ1=0, λ2=-1, λ3=9. 对于特征值λ1=0, 由⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=000110321633312321~A ,得方程A x =0的基础解系p 1=(-1, -1, 1)T , 向量p 1是对应于特征值λ1=0的特征值向量. 对于特征值λ2=-1, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=+000100322733322322~E A ,得方程(A +E )x =0的基础解系p 2=(-1, 1, 0)T , 向量p 2就是对应于特征值λ2=-1的特征值向量. 对于特征值λ3=9, 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=-00021101113333823289~E A , 得方程(A -9E )x =0的基础解系p 3=(1/2, 1/2, 1)T , 向量p 3就是对应于特征值λ3=9的特征值向量.(3)⎪⎪⎪⎭⎫⎝⎛0001001001001000.(和书后答案不同,以书后为主,但解题步骤可以参考) 解 22)1()1(01010010100||+-=----=-λλλλλλλE A , 故A 的特征值为λ1=λ2=-1, λ3=λ4=1. 对于特征值λ1=λ2=-1, 由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛=+00000000011010011001011001101001~E A , 得方程(A +E )x =0的基础解系p 1=(1, 0, 0, -1)T , p 2=(0, 1, -1, 0)T , 向量p 1和p 2是对应于特征值λ1=λ2=-1的线性无关特征值向量.对于特征值λ3=λ4=1, 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛----=-00000000011010011001011001101001~E A , 得方程(A -E )x =0的基础解系p 3=(1, 0, 0, 1)T , p 4=(0, 1, 1, 0)T , 向量p 3和p 4是对应于特征值λ3=λ4=1的线性无关特征值向量.6. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同. 证明 因为|A T -λE |=|(A -λE )T |=|A -λE |T =|A -λE |,所以A T 与A 的特征多项式相同, 从而A T 与A 的特征值相同.7. 设n 阶矩阵A 、B 满足R (A )+R (B )<n , 证明A 与B 有公共的特征值, 有公共的特征向量.证明 设R (A )=r , R (B )=t , 则r +t <n .若a 1, a 2, ⋅⋅⋅, a n -r 是齐次方程组A x =0的基础解系, 显然它们是A 的对应于特征值λ=0的线性无关的特征向量.类似地, 设b 1, b 2, ⋅⋅⋅, b n -t 是齐次方程组B x =0的基础解系, 则它们是B 的对应于特征值λ=0的线性无关的特征向量.由于(n -r )+(n -t )=n +(n -r -t )>n , 故a 1, a 2, ⋅⋅⋅, a n -r , b 1, b 2, ⋅⋅⋅, b n -t 必线性相关. 于是有不全为0的数k 1, k 2, ⋅⋅⋅, k n -r , l 1, l 2, ⋅⋅⋅, l n -t , 使k 1a 1+k 2a 2+ ⋅⋅⋅ +k n -r a n -r +l 1b 1+l 2b 2+ ⋅⋅⋅ +l n -r b n -r =0.记 γ=k 1a 1+k 2a 2+ ⋅⋅⋅ +k n -r a n -r =-(l 1b 1+l 2b 2+ ⋅⋅⋅ +l n -r b n -r ), 则k 1, k 2, ⋅⋅⋅, k n -r 不全为0, 否则l 1, l 2, ⋅⋅⋅, l n -t 不全为0, 而l 1b 1+l 2b 2+ ⋅⋅⋅ +l n -r b n -r =0,与b 1, b 2, ⋅⋅⋅, b n -t 线性无关相矛盾.因此, γ≠0, γ是A 的也是B 的关于λ=0的特征向量, 所以A 与B 有公共的特征值, 有公共的特征向量.8. 设A 2-3A +2E =O , 证明A 的特征值只能取1或2.证明设λ是A的任意一个特征值,x是A的对应于λ的特征向量,则(A2-3A+2E)x=λ2x-3λx+2x=(λ2-3λ+2)x=0.因为x≠0,所以λ2-3λ+2=0,即λ是方程λ2-3λ+2=0的根,也就是说λ=1或λ=2.9.设A为正交阵,且|A|=-1,证明λ=-1是A的特征值.证明因为A为正交矩阵,所以A的特征值为-1或1.(需要说明)因为|A|等于所有特征值之积,又|A|=-1,所以必有奇数个特征值为-1,即λ=-1是A的特征值.10.设λ≠0是m阶矩阵A m⨯n B n⨯m的特征值,证明λ也是n阶矩阵BA的特征值.证明设x是AB的对应于λ≠0的特征向量,则有(AB)x=λx,于是B(AB)x=B(λx),或BA(B x)=λ(B x),从而λ是BA的特征值,且B x是BA的对应于λ的特征向量.11.已知3阶矩阵A的特征值为1, 2, 3,求|A3-5A2+7A|.解令ϕ(λ)=λ3-5λ2+7λ,则ϕ(1)=3,ϕ(2)=2,ϕ(3)=3是ϕ(A)的特征值,故|A3-5A2+7A|=|ϕ(A)|=ϕ(1)⋅ϕ(2)⋅ϕ(3)=3⨯2⨯3=18.12.已知3阶矩阵A的特征值为1, 2,-3,求|A*+3A+2E|.解因为|A|=1⨯2⨯(-3)=-6≠0,所以A可逆,故A*=|A|A-1=-6A-1,A*+3A+2E=-6A-1+3A+2E.令ϕ(λ)=-6λ-1+3λ+2,则ϕ(1)=-1,ϕ(2)=5,ϕ(-3)=-5是ϕ(A)的特征值,故|A*+3A+2E|=|-6A-1+3A+2E|=|ϕ(A)|=ϕ(1)⋅ϕ(2)⋅ϕ(-3)=-1⨯5⨯(-5)=25.13.设A、B都是n阶矩阵,且A可逆,证明AB与BA相似.证明 取P =A , 则P -1ABP =A -1ABA =BA ,即AB 与BA 相似.14. 设矩阵⎪⎪⎭⎫⎝⎛=50413102x A 可相似对角化, 求x .解 由)6()1(50413102||2---=---=-λλλλλλx E A ,得A 的特征值为λ1=6, λ2=λ3=1.因为A 可相似对角化, 所以对于λ2=λ3=1, 齐次线性方程组(A -E )x =0有两个线性无关的解, 因此R (A -E )=1. 由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-00030010140403101)(~x x E A r知当x =3时R (A -E )=1, 即x =3为所求.15. 已知p =(1, 1, -1)T 是矩阵⎪⎪⎭⎫⎝⎛---=2135212b a A 的一个特征向量.(1)求参数a , b 及特征向量p 所对应的特征值; 解 设λ是特征向量p 所对应的特征值, 则(A -λE )p =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛------0001112135212λλλb a ,解之得λ=-1, a =-3, b =0.(2)问A 能不能相似对角化?并说明理由. 解 由3)1(201335212||--=-------=-λλλλλE A ,得A 的特征值为λ1=λ2=λ3=1. 由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛----=-00011010111325211~r b E A知R (A -E )=2, 所以齐次线性方程组(A -E )x =0的基础解系只有一个解向量. 因此A 不能相似对角化.16. 试求一个正交的相似变换矩阵, 将下列对称阵化为对角阵:(1)⎪⎪⎭⎫⎝⎛----020212022;解 将所给矩阵记为A . 由λλλλ-------=-20212022E A =(1-λ)(λ-4)(λ+2),得矩阵A 的特征值为λ1=-2, λ2=1, λ3=4. 对于λ1=-2, 解方程(A +2E )x =0, 即0220232024321=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----x x x , 得特征向量(1, 2, 2)T , 单位化得T)32 ,32 ,31(1=p .对于λ2=1, 解方程(A -E )x =0, 即0120202021321=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-----x x x ,得特征向量(2, 1, -2)T , 单位化得T )32 ,31 ,32(2-=p .对于λ3=4, 解方程(A -4E )x =0, 即0420232022321=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-------x x x , 得特征向量(2, -2, 1)T , 单位化得T )31 ,32 ,32(3-=p . 于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(-2, 1, 4).(2)⎪⎪⎭⎫ ⎝⎛----542452222. (和书后答案不同,以书后答案为准,解题步骤可以参考)解 将所给矩阵记为A . 由λλλλ-------=-542452222E A =-(λ-1)2(λ-10),得矩阵A 的特征值为λ1=λ2=1, λ3=10. 对于λ1=λ2=1, 解方程(A -E )x =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----000442442221321x x x , 得线性无关特征向量(-2, 1, 0)T 和(2, 0, 1)T , 将它们正交化、单位化得T 0) 1, ,2(511-=p , T 5) ,4 ,2(5312=p .对于λ3=10, 解方程(A -10E )x =0, 即⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-------000542452228321x x x , 得特征向量(-1, -2, 2)T , 单位化得T )2 ,2 ,1(313--=p .于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(1, 1, 10).17. 设矩阵⎪⎪⎭⎫⎝⎛------=12422421x A 与⎪⎪⎭⎫ ⎝⎛-=Λy 45相似, 求x , y ; 并求一个正交阵P , 使P -1AP =Λ.解 已知相似矩阵有相同的特征值, 显然λ=5, λ=-4, λ=y 是Λ的特征值, 故它们也是A 的特征值. 因为λ=-4是A 的特征值, 所以0)4(9524242425|4|=-=---+---=+x x E A ,解之得x =4.已知相似矩阵的行列式相同, 因为100124242421||-=-------=A , y y2045||-=-=Λ,所以-20y =-100, y =5.对于λ=5, 解方程(A -5E )x =0, 得两个线性无关的特征向量(1, 0, -1)T , (1, -2, 0)T . 将它们正交化、单位化得T )1 ,0 ,1(211-=p , T )1 ,4 ,1(2312-=p .对于λ=-4, 解方程(A +4E )x =0, 得特征向量(2, 1, 2)T , 单位化得T )2 ,1 ,2(313=p .于是有正交矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=23132212343102313221P , 使P -1AP =Λ. 18. 设3阶方阵A 的特征值为λ1=2, λ2=-2, λ3=1; 对应的特征向量依次为p 1=(0, 1, 1)T ,p 2=(1, 1, 1)T , p 3=(1, 1, 0)T , 求A .解 令P =(p 1, p 2, p 3), 则P -1AP =diag(2, -2, 1)=Λ, A =P ΛP -1. 因为⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛=--11011101101111111011P ,所以⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=Λ=-1101110111000200020111111101P P A ⎪⎪⎪⎭⎫⎝⎛------=244354332. 19. 设3阶对称阵A 的特征值为λ1=1, λ2=-1, λ3=0; 对应λ1、λ2的特征向量依次为p 1=(1, 2, 2)T , p 2=(2, 1, -2)T , 求A .解 设⎪⎪⎭⎫⎝⎛=653542321x x x x x x x x x A , 则A p 1=2p 1, A p 2=-2p 2, 即 ⎪⎩⎪⎨⎧=++=++=++222222122653542321x x x x x x x x x , ---① ⎪⎩⎪⎨⎧=-+-=-+-=-+222122222653542321x x x x x x x x x . ---② 再由特征值的性质, 有x 1+x 4+x 6=λ1+λ2+λ3=0. ---③由①②③解得612131x x --=, 6221x x =, 634132x x -=,642131x x -=, 654132x x +=. 令x 6=0, 得311-=x , x 2=0, 323=x , 314=x , 325=x .因此⎪⎪⎭⎫ ⎝⎛-=022********A . 20. 设3阶对称矩阵A 的特征值λ1=6, λ2=3, λ3=3, 与特征值λ1=6对应的特征向量为p 1=(1, 1, 1)T , 求A .解 设⎪⎪⎭⎫⎝⎛=653542321x x x x x x x x x A .因为λ1=6对应的特征向量为p 1=(1, 1, 1)T , 所以有⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛1116111A , 即⎪⎩⎪⎨⎧=++=++=++666653542321x x x x x x x x x ---①. λ2=λ3=3是A 的二重特征值, 根据实对称矩阵的性质定理知R (A -3E )=1. 利用①可推出⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛---=-331113333653542653542321~x x x x x x x x x x x x x x x E A .因为R (A -3E )=1, 所以x 2=x 4-3=x 5且x 3=x 5=x 6-3, 解之得x 2=x 3=x 5=1, x 1=x 4=x 6=4.因此⎪⎪⎭⎫⎝⎛=411141114A .21. 设a =(a 1, a 2, ⋅⋅⋅, a n )T , a 1≠0, A =aa T .(1)证明λ=0是A 的n -1重特征值;证明 设λ是A 的任意一个特征值, x 是A 的对应于λ的特征向量, 则有 A x =λx ,λ2x =A 2x =aa T aa T x =a T a A x =λa T ax , 于是可得λ2=λa T a , 从而λ=0或λ=a T a .设λ1, λ2, ⋅ ⋅ ⋅, λn 是A 的所有特征值, 因为A =aa T 的主对角线性上的元素为a 12, a 22, ⋅ ⋅ ⋅, a n 2, 所以a 12+a 22+ ⋅ ⋅ ⋅ +a n 2=a T a =λ1+λ2+ ⋅ ⋅ ⋅ +λn ,这说明在λ1, λ2, ⋅ ⋅ ⋅, λn 中有且只有一个等于a T a , 而其余n -1个全为0, 即λ=0是A 的n -1重特征值.(2)求A 的非零特征值及n 个线性无关的特征向量. 解 设λ1=a T a , λ2= ⋅ ⋅ ⋅ =λn =0.因为A a =aa T a =(a T a )a =λ1a , 所以p 1=a 是对应于λ1=a T a 的特征向量.对于λ2= ⋅ ⋅ ⋅ =λn =0, 解方程A x =0, 即aa T x =0. 因为a ≠0, 所以a T x =0, 即a 1x 1+a 2x 2+ ⋅ ⋅ ⋅ +a n x n =0, 其线性无关解为p 2=(-a 2, a 1, 0, ⋅⋅⋅, 0)T , p 3=(-a 3, 0, a 1, ⋅⋅⋅, 0)T ,⋅ ⋅ ⋅,p n =(-a n , 0, 0, ⋅⋅⋅, a 1)T . 因此n 个线性无关特征向量构成的矩阵为⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-=⋅⋅⋅112212100), , ,(a a a aa a a nn n p p p . 22. 设⎪⎪⎭⎫⎝⎛-=340430241A , 求A 100. 解 由)5)(5)(1(340430241||+---=----=-λλλλλλλE A ,得A 的特征值为λ1=1, λ2=5, λ3=-5.对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(1, 0, 0)T . 对于λ1=5, 解方程(A -5E )x =0, 得特征向量p 2=(2, 1, 2)T . 对于λ1=-5, 解方程(A +5E )x =0, 得特征向量p 3=(1, -2, 1)T . 令P =(p 1, p 2, p 3), 则P -1AP =diag(1, 5, -5)=Λ,A =P ΛP -1, A 100=P Λ100P -1. 因为Λ100=diag(1, 5100, 5100),⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-=--1202105055112021012111P ,所以⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=12021050555112021012151100100100A ⎪⎪⎭⎫⎝⎛-=1001001005000501501.23. 在某国, 每年有比例为p 的农村居民移居城镇, 有比例为q 的城镇居民移居农村, 假设该国总人口数不变, 且上述人口迁移的规律也不变. 把n 年后农村人口和城镇人口占总人口的比例依次记为x n 和y n (x n +y n =1).(1)求关系式⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11中的矩阵A ;解 由题意知x n +1=x n +qy n -px n =(1-p )x n +qy n , y n +1=y n +px n -qy n = px n +(1-q )y n , 可用矩阵表示为⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛++n n n n y x q p q p y x 1111,因此⎪⎭⎫⎝⎛--=q p q p A 11.(2)设目前农村人口与城镇人口相等, 即⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛5.05.000y x , 求⎪⎭⎫ ⎝⎛n n y x .解 由⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11可知⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛00y x A y x n n n . 由)1)(1(11||q p q p qp E A ++--=----=-λλλλλ,得A 的特征值为λ1=1, λ2=r , 其中r =1-p -q .对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(q , p )T . 对于λ1=r , 解方程(A -rE )x =0, 得特征向量p 2=(-1, 1)T . 令⎪⎭⎫⎝⎛-==11) ,(21p q P p p , 则 P -1AP =diag(1, r )=Λ, A =P ΛP -1, A n =P Λn P -1. 于是11100111-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=p q r p q A n n⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=q p r p q q p n 11001111 ⎪⎭⎫ ⎝⎛+--++=n n n n qr p pr p qr q pr q q p 1, ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+--++=⎪⎭⎫ ⎝⎛5.05.01n n n n n n qr p pr p qr q pr q q p y x ⎪⎭⎫ ⎝⎛-+-++=n n r p q p r q p q q p )(2)(2)(21.24. (1)设⎪⎭⎫ ⎝⎛--=3223A , 求ϕ(A )=A 10-5A 9; 解 由)5)(1(3223||--=----=-λλλλλE A ,得A 的特征值为λ1=1, λ2=5.对于λ1=1, 解方程(A -E )x =0, 得单位特征向量T )1 ,1(21. 对于λ1=5, 解方程(A -5E )x =0, 得单位特征向量T )1 ,1(21-.于是有正交矩阵⎪⎭⎫ ⎝⎛-=111121P , 使得P -1AP =diag(1, 5)=Λ,从而A =P ΛP -1, A k =P Λk P -1. 因此 ϕ(A )=P ϕ(Λ)P -1=P (Λ10-5Λ9)P -1 =P [diag(1, 510)-5diag(1, 59)]P -1 =P diag(-4, 0)P -1⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=1111210004111121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛----=111122222. (2)设⎪⎪⎭⎫⎝⎛=122221212A , 求ϕ(A )=A 10-6A 9+5A 8.解 求得正交矩阵为⎪⎪⎪⎭⎫ ⎝⎛---=20223123161P , 使得P -1AP =diag(-1, 1, 5)=Λ, A =P ΛP -1. 于是 ϕ(A )=P ϕ(Λ)P -1=P (Λ10-6Λ9+5Λ8)P -1 =P [Λ8(Λ-E )(Λ-5E )]P -1=P diag(1, 1, 58)diag(-2, 0, 4)diag(-6, -4, 0)P -1 =P diag(12, 0, 0)P -1⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=222033211001220223123161⎪⎪⎭⎫⎝⎛----=4222112112.25. 用矩阵记号表示下列二次型: (1) f =x 2+4xy +4y 2+2xz +z 2+4yz ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=z y x z y x f 121242121) , ,(.(2) f =x 2+y 2-7z 2-2xy -4xz -4yz ; 解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-------=z y x z y x f 722211211) , ,(.(3) f =x 12+x 22+x 32+x 42-2x 1x 2+4x 1x 3-2x 1x 4+6x 2x 3-4x 2x 4.解⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛------=432143211021013223111211) , , ,(x x x x x x x x f . 26. 写出下列二次型的矩阵: (1)x x x ⎪⎭⎫ ⎝⎛=1312)(T f ;解 二次型的矩阵为⎪⎪⎭⎫⎝⎛=1222A . (2)x x x ⎪⎪⎭⎫⎝⎛=987654321)(Tf .解 二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛=975753531A .27. 求一个正交变换将下列二次型化成标准形: (1) f =2x 12+3x 22+3x 33+4x 2x 3;解 二次型的矩阵为⎪⎪⎭⎫⎝⎛=320230002A . 由)1)(5)(2(320230002λλλλλλλ---=---=-E A ,得A 的特征值为λ1=2, λ2=5, λ3=1. 当λ1=2时, 解方程(A -2E )x =0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-0001002101202100002~E A ,得特征向量(1, 0, 0)T . 取p 1=(1, 0, 0)T . 当λ2=5时, 解方程(A -5E )x =0, 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-0001100012202200035~E A ,得特征向量(0, 1, 1)T . 取T )21 ,21,0(2=p .当λ3=1时, 解方程(A -E )x =0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-000110001220220001~E A ,得特征向量(0, -1, 1)T . 取T )21 ,21 ,0(3-=p .于是有正交矩阵T =(p 1, p 2, p 3)和正交变换x =T y , 使f =2y 12+5y 22+y 32.(2) f =x 12+x 22+x 32+x 42+2x 1x 2-2x 1x 4-2x 2x 3+2x 3x 4.解 二次型矩阵为⎪⎪⎪⎭⎫⎝⎛----=1101111001111011A . 由2)1)(3)(1(1101111001111011--+=--------=-λλλλλλλλE A ,得A 的特征值为λ1=-1, λ2=3, λ3=λ4=1.当λ1=-1时, 可得单位特征向量T )21 ,21 ,21 ,21(1--=p .当λ2=3时, 可得单位特征向量T )21 ,21 ,21 ,21(2--=p . 当λ3=λ4=1时, 可得线性无关的单位特征向量T )0 ,21 ,0 ,21(3=p , T )21 ,0 ,21 ,0(4=p .于是有正交矩阵T =( p 1, p 2, p 3, p 4)和正交变换x =T y , 使f =-y 12+3y 22+y 32+y 42.28. 求一个正交变换把二次曲面的方程3x 2+5y 2+5z 2+4xy -4xz -10yz =1化成标准方程.解 二次型的矩阵为⎪⎪⎭⎫⎝⎛----=552552223A .由)11)(2(552552223||---=-------=-λλλλλλλE A , 得A 的特征值为λ1=2,λ2=11, λ3=0, .对于λ1=2, 解方程(A -2E )x =0, 得特征向量(4, -1, 1)T , 单位化得)231 ,231 ,234(1-=p .对于λ2=11, 解方程(A -11E )x =0, 得特征向量(1, 2, -2)T , 单位化得)32 ,32 ,31(2-=p .对于λ3=0, 解方程A x =0, 得特征向量(0, 1, 1)T , 单位化得)21 ,21,0(3=p . 于是有正交矩阵P =(p 1, p 2, p 3), 使P -1AP =diag(2, 11, 0), 从而有正交变换⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛w v u z y x 21322312132231031234,使原二次方程变为标准方程2u 2+11v 2=1.29. 明: 二次型f =x T A x 在||x ||=1时的最大值为矩阵A 的最大特征值. 证明 A 为实对称矩阵, 则有一正交矩阵T , 使得TAT -1=diag(λ1, λ2, ⋅ ⋅ ⋅, λn )=Λ成立, 其中λ1, λ2, ⋅ ⋅ ⋅, λn 为A 的特征值, 不妨设λ1最大. 作正交变换y =T x , 即x =T T y , 注意到T -1=T T , 有 f =x T A x =y T TAT T y =y T Λy =λ1y 12+λ2y 22+ ⋅ ⋅ ⋅ +λn y n 2. 因为y =T x 正交变换, 所以当||x ||=1时, 有||y ||=||x ||=1, 即y 12+y 22+ ⋅ ⋅ ⋅ +y n 2=1.因此f =λ1y 12+λ2y 22+ ⋅ ⋅ ⋅ +λn y n 2≤λ1,又当y 1=1, y 2=y 3=⋅ ⋅ ⋅=y n =0时f =λ1, 所以f max =λ1.30. 用配方法化下列二次形成规范形, 并写出所用变换的矩阵. (1) f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3; 解 f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3 =(x 1+x 2-2x 3)2+4x 2x 3+2x 22+x 32 =(x 1+x 2-2x 3)2-2x 22+(2x 2+x 3)2.令 ⎪⎩⎪⎨⎧+==-+=323223211222x x y x y x x x y , 即⎪⎪⎩⎪⎪⎨⎧+-==+-=323223211221225y y x y x y y y x , 二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛--=12002102251C .(2) f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3; 解 f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3 =(x 1+x 3)2+x 32+2x 2x 3; =(x 1+x 3)2-x 22+(x 2+x 3)2.令 ⎪⎩⎪⎨⎧+==+=32322311x x y x y x x y , 即⎪⎩⎪⎨⎧+-==-+=323223211y y x y x y y y x ,二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为⎪⎪⎭⎫⎝⎛--=110010111C .(3) f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3. 解 f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3.3223222212421)21(2x x x x x x -+++= 232322212)2(21)21(2x x x x x +-++=. 令 ⎪⎪⎩⎪⎪⎨⎧=-=+=333222112)2(21)21(2x y x x y x x y , 即⎪⎪⎩⎪⎪⎨⎧=+=--=33322321121222212121y x y y x y y y x , 二次型化为规范形f =y 12+y 22+y 32,所用的变换矩阵为⎪⎪⎭⎫ ⎝⎛--=10022011121C . 31. 设f =x 12+x 22+5x 32+2ax 1x 2-2x 1x 3+4x 2x 3为正定二次型, 求a .解 二次型的矩阵为⎪⎪⎭⎫⎝⎛--=5212111a a A , 其主子式为 a 11=1, 2111a a a -=, )45(5212111+-=--a a a a . 因为f 为正主二次型, 所以必有1-a 2>0且-a (5a +4)>0, 解之得054<<-a .32. 判别下列二次型的正定性:(1) f =-2x 12-6x 22-4x 32+2x 1x 2+2x 1x 3;。
线性代数第二章习题部分答案(
第二章向量组的线性相关性§2-1 §2-2 维向量,线性相关与线性无关(一)一、填空题1. 设3 α1−α +2 α2+α =5 α3+α , 其中α1=(2,5,1,3)T,α2=(10,1,5,10)T, α3=(4,1,−1,1)T, 则α= (1,2,3,4)T .2. 设α1=(1,1,1)T, α2=(2,1,1)T,α3=(0,2,4)T,则线性组合α1−3α2+α3= (−5,0,2)T .3. 设矩阵A= ,设βi为矩阵A的第i个列向量,则2β1+β2−β3= (−2,8,−2)T .二、试确定下列向量组的线性相关性1. α1=(2,1,0)T, α2=(1,2,1)T, α3=(1,1,1)T解:设k1α1+k2α2+k3α3=0,则k1 210 +k2 121 +k3 111 = 000即2k1+k2+k3=0k1+2k2+k3=0k2+k3=0k1+2k2+k3=0−3k2−k3=0k2+k3=0 k1+2k2+k3=0k2+k3=0k3=0 k1=k2=k3=0,线性无关。
2. α1=(1,−1,2)T, α2=(0,0,0)T, α3=(1,4,3)T线性相关三、设有向量组α1=(1,1,0)T, α2=(1,3,−1)T, α3=(5,−3,t)T,问t取何值时该向量组线性相关。
解:设k1α1+k2α2+k3α3=0,则k1 110 +k2 13−1 +k3 5−3t =0即k1+k2+5k3=0k1+3k2−3k3=0−k2+tk3=0k1+k2+5k3=0k2−4k3=0−k2+tk3=0k1+k2+5k3=0k1+3k2−3k3=0(t−4)k3=0所以,t=4, 线性相关; t≠4, 线性无关四、设a1,a2线性无关,a1+b,a2+b线性相关,求向量b用a1,a2线性表示的表示式。
解:因为a1+b,a2+b线性相关,所以存在不全为零的k1,k2,使得k1(a1+b)+k2(a2+b)=0, 即(k1+k2)b=−k1a1−k2a2.又因为a1,a2线性无关,所以k1+k2≠0,于是,b=−k1k1+k2a1−k2k1+k2a2.五、已知向量组α1,α2,⋯,α2n,令β1=α1+α2,β2=α2+α3,⋯,β2n=α2n+α1,求证向量组β1,β2,⋯,β2n线性相关。
线性代数习题解答第一二三章
β (图1)总习题一 一、问答题1. 试解释二、三阶行列式的几何意义.解 在平面解析几何中,已知两向量),(),,(2121b b a a ==βα如图,以βα,为邻边的平行四边形的面积为><=βαβα,sin ||||S 平行四边形,而||||,cos βαβαβα⋅>=< ,故|-1|2><=βαβα,sin ||||S 平行四边形 ||||21211221b b a a b a b a =-=这就是说,二阶行列式2121b b a a 表示平面上以),(),,(2121b b a a ==βα为邻边的平行四边形的有向面积,这里符号规定是当这个平行四边形由向量α沿逆时针方向转到向量β而得到时面积取正值;当这个平行四边形由向量α沿顺时针方向转到向量β而得到时面积取负值.空间三向量),,(),,,(),,,(321321321c c c b b b a a a ===γβα的混合积)(γβα⨯⋅的绝对值等于这三个向量张成的平行六面体的体积,即=平行六面体V |||)(321321321c c c b b b a a a |=⨯⋅γβα 三阶行列式321321321c c c b b b a a a 表示以γβα,,为相邻棱的平行六面体的有向体积,当γβα,,构成右手系时,体积取正值;当γβα,,构成左手系时,体积取负值.实际上改变任意两向量次序,取值符号改变.类比二、三阶行列式,n 阶行列式|,,,|D n n ααα 21=是由n 维向量n,,,ααα 21张成的n 维平行多面体的有向体积.尽管我们不能看见n 维平行多面体,但是有2,3维空间做蓝本,我们却能够通过现象抓住行列式概念的本质,进行想象.行列式的性质均可以通过几何直观解释,这就是了解几何背景的优势.- 2 - 习 题 解 答2. 行列式中元素的余子式、代数余子式与行列式有什么关系? 解 由定义知,在行列式ijn nD a ⨯=中,去掉元素ij a 所在的第i 行和第j 列后,保持相对位置不变得到的1n -阶行列式称为该元素的余子式,记为ij M .而把(1)i j ij M +-称为元素ij a 的代数余子式,记为ij A .由定义可知,元素的余子式及代数余子式与该元素的位置有关,而与该元素本身是什么数无关.因此,如果只改变行列式的某行(列)的各元素数值,并不会改变该行(列)原来的各元素对应的余子式和代数余子式.例如:在行列式1D =123451789-中,将第二行元素都换成1,得2D =123111789,那么2D 的第二行各元素的代数余子式与1D 的第二行各元素的代数余子式是分别对应相同的.利用此性质可以方便地计算行列式某些元素的代数余子式的某些线性组合.它们与行列式的关系主要表现在行列式按行(列)展开定理及其推论中,即⎩⎨⎧≠==∑=)(,0)(,1s i s i D A a sk nk ik , ⎩⎨⎧≠==∑=)(,0)(,1t j t j D A a kt nk kj . 3. 试从几何的角度解释三元线性方程组有唯一解的意义.解 线性方程组的解可以借助于子空间的概念来阐明,这样可以使线性方程组的解有了几何意义.设三元一次线性方程组⎪⎩⎪⎨⎧=++=++=++)()()(333332222211111πππ d z c y b x a d z c y b x a d z c y b x a , 三个方程在空间分别表示三个平面123,,πππ,该方程组有唯一解,就是说它们有唯一一个交点(如右图).这样以直观方式去理解三元线性方程组的解,就会比较顺利地迁移到对n 元线性方程组的解地理解上去。
经济数学线性代数第二章习题答案
习题二参考答案(A)1.设⎪⎪⎪⎭⎫ ⎝⎛=543212132131A ,⎪⎪⎪⎭⎫ ⎝⎛------=424222242242B ,求(1) B A 32+;(2) 若X 满足X B X A +=-2,求X .解:(1)⎪⎪⎪⎭⎫ ⎝⎛------+⎪⎪⎪⎭⎫ ⎝⎛=+42422224224254321213213132B A⎪⎪⎪⎭⎫ ⎝⎛----=2221824281828184. (2) 由X B X A +=-2得,B A X -=22,所以B A X 21+=⎪⎪⎪⎭⎫ ⎝⎛-------⎪⎪⎪⎭⎫ ⎝⎛=42422224224221543212132131⎪⎪⎪⎭⎫⎝⎛=351323013012.2.计算解:(1)⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--24317421432231321.(2)⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--86164233241121123.(3)⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛963642321)321(321.(4)10321)123(=⎪⎪⎪⎭⎫⎝⎛.(5)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x()⎪⎪⎪⎭⎫⎝⎛++++++=321333223113323222121313212111x x x x a x a x a x a x a x a x a x a x a 322331132112233322222111222x x a x x a x x a x a x a x a +++++=.3.已知两个线性变换⎪⎩⎪⎨⎧+-=-+=-=3213321231123232y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=-=213212211323zz y z z y z z y ,(1)试把这两个线性变换分别写成矩阵形式;(2)用矩阵乘法求连续施行上述变换的结果. 解:(1) 写成矩阵形式为⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛321321213121302y y y x x x ,⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛21321311231z z y y y .(2)连续施行上述变换有⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛21213214146155311231213121302z z z z x x x .4.某企业在一月份出口到三个国家的两种货物的数量以及两种货物的积各为多少?解:设矩阵⎪⎪⎭⎫ ⎝⎛=6001300100088012002000A ,⎪⎪⎭⎫ ⎝⎛=2.03.0P ,⎪⎪⎭⎫⎝⎛=05.0012.0W , ⎪⎪⎭⎫⎝⎛=6.012.0V ,则该企业出口到三个地区的货物总价值为()()384720080060013001000880120020002.03.0=⎪⎪⎭⎫⎝⎛=A P T ;总重量为()()6.1354.7974600130010008801200200005.0012.0=⎪⎪⎭⎫⎝⎛=A W T ; 总体积为()()6.46530084060013001000880120020006.012.0=⎪⎪⎭⎫⎝⎛=A V T .5.计算下列矩阵(其中n 为正整数).(1) n ⎪⎪⎭⎫ ⎝⎛0011; (2) n⎪⎪⎭⎫⎝⎛101λ; (3)nc b a ⎪⎪⎪⎭⎫⎝⎛000000; (4)n⎪⎪⎪⎪⎪⎭⎫⎝⎛------------1111111111111111.解: 2=n 时,⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛00110011001100112, 假设当k n =时,⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛001100110011k成立,则当1+=k n 时,⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛001100110011k ,有归纳法有⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛00110011n. (2) 2=n 时,⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛10211011011012λλλλ,假设当k n =时,⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛101101λλk k 成立,则 当1+=k n 时,⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+10)1(11011011011λλλλk kk , 有归纳法有⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛101101λλn n.(3) 2=n 时,⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛222200000000000000000000000c b a c b a c b a c b a , 假设当k n =时,⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛k k k kc b a c b a 000000000000成立,则 当1+=k n 时, ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛++++1111000000000000000000000000k k k kk c b ac b a c b a c b a , 有归纳法有⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛n n n nc b a c b a 00000000000. (4) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------=1111111111111111A , 2=n 时,⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------=4000040000400004111111111111111111111111111111112AE 22=,3=n 时,A A A A 2232==,于是,当k n 2=(k 为正整数)时,E E A A n k k n 2)2()(22===,当12+=k n (k 为正整数)时,A A E A A A A n k k k n 122122)2(-+====, 因此得⎩⎨⎧=-为奇数)(为偶数)n En EA n n n12(2.6.设0111)(a x a xa x a x f n n nn ++++=-- ,记E a A a A a A a A f n n nn 0111)(++++=-- ,称)(A f 为方阵A 的n 次多项式.现设1)(2+-=x x x f ,⎪⎪⎪⎭⎫ ⎝⎛-=211012113A ,求)(A f .解: E A A A f +-=2)(⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-=1000100012110121132110121132⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=100010001211012113527218538⎪⎪⎪⎭⎫ ⎝⎛--=416216426. 7.设矩阵A 、B 是可交换的,试证: (1) 22))((B A B A B A -=-+; (2) 2222)(B AB A B A ++=+.证明:因为矩阵A 、B 是可交换的,所以BA AB =,因此有(1) 22))((B AB BA A B A B A --+=-+22B A -=,(2) 222_)(B AB BA A B A +++=+222B AB A ++=. 8.设A 、B 是同阶矩阵,且)(21E B A +=,证明:A A =2的充分必要条件是E B =2.证明:必要性 如果 A A =2,则)(21)](21[2E B E B +=+, 由于矩阵B 与E 是可交换的,由上式得)(21)2(412E B E B B +=++ 整理得 E B =2.充分性 如果E B =2,则A EB E B B E B A =+=++=+=)(21)2(41)](21[222.9.设矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛------=a bcd b a d c c d a bd c b aA d c b a ,,,(均为实数), (1)计算TAA ;(2)利用(1)的结果,求A .解:(1)⎪⎪⎪⎪⎪⎭⎫⎝⎛------⎪⎪⎪⎪⎪⎭⎫⎝⎛------=a b cdb a dc cd a b d c b a a bcd b a d c c d a b d c b aAA T⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++++++++++++=2222222222222222000000000000d c b a d c b a d c b a d c b a(2)由(1)有422222)(d c b a A A A AA T T +++===,所以22222)(d c b a A +++=.10. 证明题:(1)对于任意的n m ⨯矩阵A ,则T AA 和A A T 均为对称矩阵. (2) 对于任意的n 阶矩阵A ,则T A A +为对称矩阵;而-A T A 为反对称矩阵.证明:(1) 因为TTTTTTAA A A AA ==)()(,所以T AA 为对称矩阵;又因为A A A A A A TTTTTT==)()(,所以A A T为对称矩阵.(2) 因为TTTTTTA A A A A A +=+=+)()(,所以TA A +为对称矩阵;又因为)()()(TTTTTTTA A A A A A A A --=-=-=-,所以T A A +为反对称矩阵.11.如果A 、B 是同阶对称阵,则AB 是对称阵的充分必要条件是AB BA =.证明:必要性 如果AB 是对称阵,则AB AB T=)(,即AB A B TT =,由已知有 B B A A TT==,,所以BA AB =.充分性 如果BA AB =,则AB BA A B AB T T T ===)(,所以AB 是对称阵.12.设n 阶矩阵A 的伴随矩阵为*A ,证明(1) 若 0=A ,则 0=*A ; (2) 1-*=n AA .证明:(1)假设0≠*A ,则E A A =-**1)(,由此得 O A E A A AA A ===-*-**11)()(,所以 O A =*,这与0≠*A 相矛盾,故0=A 时,有0=*A .(2) 由E A AA =*得,nA A A =*,若0≠A 时,有1-*=n AA ,若0=A 时,由(1)知0=*A ,等式也成立,故有1-*=n AA ,13.设n 阶矩阵A ,B ,C 满足E ABC =,则下列各式中哪一个必定成立?简述理由.(1)E ACB =,(2)E CBA =,(3)E BAC =,(4)E BCA =.解:由E ABC =可改写为E BC A =)(,即BC 是A 的逆矩阵,所以有E A BC =)(,即(4) 必定成立.类似可得(1)、(2)、(3)未必成立. 14.设A ,B 均为n 阶可逆矩阵,下列各式一定成立的有哪些?简述理由.(1) 1111])[(])[(----=TTA A ;(2) T T T A A ])[(])[(111---=;(3) k k A A )()(11--= (k 为正整数);(4) 111)(---+=+B A B A ; (5) T T TB A AB )()(])[(111---=; (6) ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛---O B A O O B A O 111. 解: (1)由于TTA A =--])[(11,T TA A =--11])[(,所以1111])[(])[(----=T T A A ,即(1)式一定成立.(2) 由于11])[(--=A A T T,T T A A =--])[(11,即(2)式不一定成立.(3) k kk A A A A A AA A )()()(111111------===,(3)式一定成立.(4)设⎪⎪⎭⎫⎝⎛=1001A ,⎪⎪⎭⎫ ⎝⎛--=1001B ,显然A 、B 都可逆,但是 O B A =+不可逆,故(4)式不成立.(5) 由于T T T T T T T B A B A A B AB )()()())()(])[(111111------===,即(5)式一定成立.(6) 由于⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----1111BA O O AB O BA OO B A O 但是11--BA AB 和不一定等于E ,故(6) 式不一定成立15.设A 是n 阶矩阵,满足O A k=k (是正整数),求证:A E -可逆, 并且121)(--++++=-k A A A E A E .证明:因为))((12-++++-k A A A E A Ek A E -= E =,所以A E -可逆,并且121)(--++++=-k A A A E A E .16.设A 是可逆矩阵,证明:其伴随矩阵*A 也可逆,且*--*=)()(11A A .证明:因为A 是可逆矩阵,所以0≠A ,由于E A AA =*,有E AA A=*1, 因此,伴随矩阵*A 也可逆. 由上述证明可知A AA 1)(1=-*, 又因为 E A A A 111))((-*--=,所以 A AA A A 1)(1)(111==--*-, 故 *--*=)()(11A A .17.设A 、B 和B A +均是可逆矩阵,试证:11--+B A 也可逆,并求其逆矩阵.解:11111-----+=+AB A A B A)(11--+=AB E A )(111---+=AB BB A11)(--+=B A B A ,由于A 、B 和B A +均是可逆矩阵,它们的乘积也可逆,所以有=+---111)(B A 111])([---+B A B A11111)()()(-----+=A A B B A A B B 1)(-+=.18.设A 为三阶矩阵,*A 是矩阵A 的伴随矩阵,已知21=A ,求 *--A A 2)3(1.解:因为21=A ,所以有A 可逆,且有211==--A A .而E A AA =*,于是1121--*==A A A A ,因此有*--A A 2)3(11131---=A A 132--=A 1278--=A 2716-=.19.用分块矩阵的乘法计算.(1)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---1102012124221011110200100001;(2)⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--020222202010111101.解:(1) 设⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---B A O E 1011110200100001, ⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---F E D C110201212422, 则⎪⎪⎭⎫⎝⎛B A O E ⎪⎪⎭⎫ ⎝⎛F E D C⎪⎪⎭⎫⎝⎛++=BF AD B AC DC而 ⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=+4433101112221102B AC , BF AD +⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=+35121011241102BF AS ,于是⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---3445332124221102012124221011110200100001. (2)设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--321010111101A A A ,()321020222202B B B =⎪⎪⎪⎭⎫⎝⎛--,则()⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛332313322212312111321321B A B A B A B A B A B A B A B A B A B B B A A A , 而()202210111=⎪⎪⎪⎭⎫ ⎝⎛-=B A ,()222010121-=⎪⎪⎪⎭⎫⎝⎛--=B A ,()202210131-=⎪⎪⎪⎭⎫ ⎝⎛--=B A ,()002211112=⎪⎪⎪⎭⎫ ⎝⎛-=B A ,()422011122=⎪⎪⎪⎭⎫ ⎝⎛--=B A ,()402211132-=⎪⎪⎪⎭⎫ ⎝⎛--=B A ,()202201013=⎪⎪⎪⎭⎫ ⎝⎛=B A ,()222001023-=⎪⎪⎪⎭⎫ ⎝⎛-=B A ,()202201033=⎪⎪⎪⎭⎫ ⎝⎛-=B A ,于是⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--222440222020222202010111101. 20.求分块矩阵的逆矩阵.(1) ⎪⎪⎪⎪⎪⎭⎫⎝⎛--4300110000110032; (2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----2000133412121211. 解:(1)记⎪⎪⎭⎫ ⎝⎛=1132A ,⎪⎪⎭⎫ ⎝⎛--=4311B ,则 11132-==A ,14311-=--=B ,所以A 、B 都可逆,且有⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛=--2131113211A ,⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--=--1314431111B ,于是⎪⎪⎪⎪⎪⎭⎫⎝⎛----=⎪⎪⎪⎪⎪⎭⎫⎝⎛---130014000021003143001100001100321.(2)记⎪⎪⎪⎭⎫ ⎝⎛----=334212211A ,)2(=B ,⎪⎪⎪⎭⎫⎝⎛-=111C ,因为04334212211≠=----=A ,022≠==B ,所以A 、B 均是可逆矩阵,且有 ⎪⎪⎪⎭⎫ ⎝⎛------=-3722524931A,)21(1=-B ,根据例2.17的结论有⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛-----11111B O CB A A B OC A , -=---11CB A ⎪⎪⎪⎭⎫ ⎝⎛------372252493⎪⎪⎪⎭⎫ ⎝⎛-111⎪⎪⎪⎪⎭⎫ ⎝⎛-=4255)21(,所以=⎪⎪⎭⎫⎝⎛-1B OC A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-------210004372252525493. 21.设A 为三阶矩阵,2-=A ,把A 按列分块为),,(321A A A A =, 其中j A )3,2,1(=j 为A 的第j 列,求(1) 231,2,A A A -; (2) 1213,2,3A A A A -. 解: (1) 231231,,2,2,A A A A A A -=- 321,,2A A A =A 2=4-=.(2) 1213,2,3A A A A -123,2,A A A =3212,,A A A = 1232,,A A A =- 2A =-4=.22.设A 为n 阶矩阵,把A 按列分块为),,,(21n A βββ =,j β),,2,1(n j =为A 的第j 列,试用n βββ,,,21 表示A A T .解:),,,(2121n T N T T T A A ββββββ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=n Tn T n T n n TT T n T T T ββββββββββββββββββ21222121211123.设A 为三阶可逆矩阵,若A 按行分块为⎪⎪⎪⎭⎫⎝⎛=321A A A A ,按列分块为),,(321B B B A =,试判断下列分块矩阵是否可逆.(1) ⎪⎪⎪⎭⎫ ⎝⎛+++133221A A A A A A ; (2) ),,(133221B B B B B B ---.解:(1)利用行列式的性质计算分块矩阵的行列式133232113323211332212)(2A A A A A A A A A A A A A A A A A A A A ++++=++++=+++133212A A A A A ++=33212A A A A +=3212A A A =02≠=A ,从而⎪⎪⎪⎭⎫⎝⎛+++133221A A A A A A 可逆.(2) 0,,,,1332133221=--=---B B B B O B B B B B B , 从而),,(133221B B B B B B ---不可逆.24.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=333231232221131211a a a a a a a a a A ,⎪⎪⎪⎭⎫⎝⎛+++=133312321131131211232221a a a a a a a a a a a a B , ⎪⎪⎪⎭⎫ ⎝⎛=1000010101P ,⎪⎪⎪⎭⎫⎝⎛=1010100012P ,则下列各式中哪一个必定成立?简述理由.(1)B P AP =21;(2)B P AP =12;(3)B A P P =21;(4)B A P P =12.解:因为A 的第一行加到第三行,再交换的第一行和第二行,从而得得到B ,故用2P 左乘A ,再左乘1P ,即B A P P =21,(3)式必定成立.25.求下列矩阵的等价标准形.(1)⎪⎪⎪⎭⎫ ⎝⎛--021123211; (2)⎪⎪⎪⎭⎫⎝⎛---433221; (3)⎪⎪⎪⎪⎪⎭⎫⎝⎛-34624216311230211111.解:(1)⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛--210550001210550211021123211⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛---→100010001300010001210110001. (2)⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---201001201021433221⎪⎪⎪⎭⎫ ⎝⎛→001001. (3)⎪⎪⎪⎪⎪⎭⎫⎝⎛-----→⎪⎪⎪⎪⎪⎭⎫⎝⎛-1022010520105201111134624216311230211111⎪⎪⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎪⎪⎭⎫⎝⎛-----→0070000000105200000110220105201052000001⎪⎪⎪⎪⎪⎭⎫⎝⎛→00000001000001000001. 26.用初等行变换求下列矩阵的逆矩阵.(1)⎪⎪⎪⎭⎫ ⎝⎛--121322011; (2)⎪⎪⎪⎭⎫⎝⎛300420531; (3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------111111*********1; (4)⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-000000000000000121nn a a a a ),,2,1(,0n i a i =≠.解:(1)⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛--101110012340001011100121010322001011 ⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛--→416100101110001011012340101110001011 ⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛--→416100315010314001416100101110001011,所以1121322011-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-----=416315314.(2)⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛3100100010420001531100300010420001531⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛→310010032210010350103131001000210210001531 ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--→31001003221001031231001, 所以=⎪⎪⎪⎭⎫ ⎝⎛-1300420531⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--31003221031231. (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------→⎪⎪⎪⎪⎪⎭⎫⎝⎛------1001022001012020001122000001111110001111010011110010111100011111⎪⎪⎪⎪⎪⎭⎫⎝⎛--------→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------→1111400000112200010120200001111111002200001122000101202000011111⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-------→⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---------→414141411000414********0414********0414141410001414141411000212121210200212121210020414141430111,所以=⎪⎪⎪⎪⎪⎭⎫⎝⎛-------11111111111111111⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------41414141414141414141414141414141. (4) ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-0100000000010000000000100000000010000121nn a a a a⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛→-01000000000100000000010000100000000121n n a a a a⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→-----000100000000001000000000100000000011112111n n a a a a, 所以=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--1121000000000000000 nn a a a a ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----0000000000000001112111n n a a a a. 27.解下列矩阵方程.(1) ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛3211024311X ; (2) ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛120311*********X ;(3) ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫⎝⎛--101311122131X ; (4) 设⎪⎪⎪⎭⎫ ⎝⎛---=101110011A ,且AX A X =+2,求X . 解:(1)因为14311=,所以矩阵⎪⎪⎭⎫⎝⎛4311可逆,在方程的两边左乘该矩阵的逆矩阵,得⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=-32110243111X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--=3211021314 ⎪⎪⎭⎫ ⎝⎛--=025127.(2) 因为1311211401=,所以矩阵⎪⎪⎪⎭⎫ ⎝⎛311211401可逆,在方程的两边右乘该矩阵的逆矩阵,得1311211*********-⎪⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫⎝⎛=111211********* ⎪⎪⎭⎫ ⎝⎛--=532100. (3) 设⎪⎪⎭⎫⎝⎛--=2131A ,⎪⎪⎭⎫⎝⎛--=1112B ,则1-=A ,1=B , 故矩阵B A ,都可逆,在方程的两边左乘1-A ,右乘1-B ,得11111210132131--⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛----=211110131132 ⎪⎪⎭⎫ ⎝⎛----=3345. (4)由AX A X =+2得,A X E A =-)2(,而⎪⎪⎪⎭⎫ ⎝⎛------=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---=-10111001110001000121011100112E A ,且02≠-E A ,所以E A 2-可逆,在A X E A =-)2(两边左乘1)2(--E A 得,A E A X 1)2(--=,又⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=--212121212121212121)2(1E A , 故⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=101110011212121212121212121X ⎪⎪⎪⎭⎫ ⎝⎛---=011101110. 28.求下列矩阵的秩.(1)⎪⎪⎪⎭⎫ ⎝⎛---443112112013;(2)⎪⎪⎪⎪⎪⎭⎫⎝⎛---10030116030242201211.解:(1) ⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---443120131211443112112013 ⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛----→000056401211564056401211, 所以该矩阵的秩是2.(2)⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫⎝⎛---1003014030000000121110030116030242201211⎪⎪⎪⎪⎪⎭⎫⎝⎛--→00000040001003001211, 所以该矩阵的秩是3.29.已知n 阶矩阵A 满足O E A A =--422,证明:E A +为可逆矩阵;并求1)(-+E A .解:由O E A A =--422得,E E A A =--322,即E E A E A =+-))(3(,所以E A +为可逆矩阵,E A E A 3)(1-=+-.30.已知n 阶矩阵A ,B 满足AB B A =+,(1) 证明:E B -为可逆矩阵;(2) 已知⎪⎪⎪⎭⎫ ⎝⎛-=200012031A ,求矩阵B .证明:(1)由AB B A =+得, )(E B A B -=, 即E E B A E B --=-)(, 整理的E E B E A =--))((, 因此E B -可逆,且E A E B -=--1)(.解:(2)由(1)得,1)(--=-E A E B , 即1)(--+=E A E B1100002030100010001-⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛= ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=20001310211.(B)1.若A 、B 是n 阶方阵,且AB E +可逆,则BA E +也可逆,且 A AB E B E BA E 11)()(--+-=+.证明:])()[(1A AB E B E BA E -+-+A AB E BAB A AB E B BA E 11)()(--+-+-+=A AB E E AB E B A AB E B BA E 11))(()(--+-+-+-+=E =,所以BA E +也可逆,且A AB E B E BA E 11)()(--+-=+.2. 设B 为可逆矩阵,A 、B 是同阶方阵,且O B AB A =++22,证明:A 和B A +都为可逆矩阵.证明:由O B AB A =++22得,22B AB A -=+,即2)(B B A A -=+, 由于B 为可逆矩阵,所以0≠B ,因而有 02≠-=+B B A A ,于是00≠+≠B A A ,所以A 和B A +都为可逆矩阵.3.已知实矩阵33)(⨯=ij a A 满足 (1) ij ij A a =)3,2,1,(=j i ,其中ij A 是ij a 的代数余子式;(2)011≠a ,计算A .解:由ij ij A a =)3,2,1,(=j i 得, E A AA AA T==*,于是 32A AAA T==,从而0=A 或1=A , 但由于011≠a 得,0213212211131312121111>++=++=a a a A a A a A a A , 因此 1=A .4.设A 、B 为同阶可逆矩阵,证明:***=A B AB )(. 证明:因为A 、B 为同阶可逆矩阵,所以有0≠=B A AB ,即AB 也可逆,而E AB AB AB =*))((, 于是AB AB AB 1)()(-*=B A A B 11--=))((11A A B B--=**=A B . 5.设矩阵B 的伴随矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-=*8031010100100001B , 且E AB BAB311+=--,求A .解:由题有E B B B =*,4B B B =*,所以 83==*BB ,即2=B .又E AB BAB 311+=--从而E ABE B 3)(1=--,B A E B 3)(=-,即 E A B E 3)(1=--于是 E A B B E 3)1(=-*,E A B E 3)21(=-*,E A B E 6)2(=-*, 故⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=-=-*1031060100600006)2(61B E A6.已知⎪⎪⎪⎭⎫ ⎝⎛---=111111111A , 且矩阵X 满足X AX A 21+=-*,其中*A 是A 的伴随矩阵,求矩阵X .解:由E A A A =*,X A X A 21+=-* 有AX E X A 2+=,于是 E X A E A =-)2(,所以 1)2(--=A E A X . 而4111111111=---=A ,于是⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛=-22222222211111111124000400042A E A ,所以⎪⎪⎪⎭⎫⎝⎛=-=-10111001141)2(1A E A X . 7.已知A 、B 都是n 阶矩阵,且满足E B B A 421-=-.其中E 为n 阶单位矩阵.(1) 证明:E A 2-可逆,并求1)2(--E A ;(2) 若⎪⎪⎪⎭⎫ ⎝⎛-=200021021B ,求矩阵A . 证明:(1) 由于E B B A 421-=-,因此A AB B 42-=, 于是E E A B AB 8842=+--, 即E E B E A 8)4)(2(=--,从而E A 2-可逆,且有)4(81)2(1E B E A -=--. 由(1)得1)4(82--=-E B E A ,即1)4(82--+=E B E A , 而11400040004200021021)4(--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫⎝⎛-=-E B1200021023-⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=21000838104141, 所以 ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----+⎪⎪⎪⎭⎫ ⎝⎛=2100083810414181000100012A ⎪⎪⎪⎭⎫ ⎝⎛---=200011020. 8.设n 阶矩阵A 满足A A =2,E 是n 阶单位矩阵,证明:n E A r A r =-+)()(.证明:因为A A =2,因此A A =2,即O E A A =-)(, 从而n E A r A r ≤-+)()(,又)()(A E r E A r -=-, 所以)()()()(A E r A r E A r A r -+=-+ )(A E A r -+≥n =,故 n E A r A r =-+)()(.9.设*A 是)2(≥n n 阶方阵A 的伴随矩阵,证明:⎪⎩⎪⎨⎧-<-===*1)(01)(1)()(n A r n A r n A r n A r 若若若.证明:(1) 因为n A r =)(,所以A 可逆,于是0≠A .而E A A A =*,因此*A 也可逆,故n A r =*)(.(2) 因为1)(-=n A r ,所以0=A ,于是0==*E A A A ,从而n A r A r ≤+*)()(,又 1)(-=n A r ,所以 1)(≤*A r .又1)(-=n A r 知A 中至少有一个1-n 阶子式不为零,所以1)(≥*A r ,从而1)(=*A r .(3) 因为1)(-<n A r ,所以A 中的任一1-n 阶子式为零,故0=*A ,所以0)(=*A r .10. 设A 为n 阶非奇异矩阵,α为n 维列向量,b 是常数.记分块矩阵⎪⎪⎭⎫ ⎝⎛-=*A A O EP T α,⎪⎪⎭⎫⎝⎛=b A Q T αα, 其中*A 是矩阵A 的伴随矩阵,E 为n 阶单位矩阵. (1)计算并化简PQ ;(2)证明:矩阵Q 可逆的充分必要条件是b A T ≠-αα1. 解:(1) 因为E A A A =*,所以⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-=*b A A A O EPQ T T ααα⎪⎪⎭⎫⎝⎛+-+-=**A b A A A A A T T T ααααα⎪⎪⎭⎫⎝⎛+-=-A b A A O A T ααα1 ⎪⎪⎭⎫⎝⎛-=-)(1αααA b A O A T . 证明:(2) 由(1)得 )(1ααα--=A b A OAPQ T ,即 )(12αα--⋅=A b A Q P T,而0≠==-=*A A E AA O E P T α,所以)(1αα--⋅=A b A Q T,由此可知,矩阵0≠Q 的充分必要条件是01≠--ααA b T,即矩阵Q 可逆的充分必要条件是b A T≠-αα1.。
新版线性代数1-2章练习和参考答案
;
10.设 A = ( a ij ) 3×3 , | A |= 2, Aij 表示 | A | 中元素 a ij 的代数余子式 (i, j = 1,2,3) ,则
( a11 A21 + a12 A22 + a13 A23 ) 2 + (a 21 A21 + a 22 A22 + a 23 A23 ) 2 + ( a 31 A21 + a 32 A22 + a 33 A23 ) 2 =
R ( A) _____ R ( B) ;
3.设一个 m × n 齐次线性方程组的系数矩阵为 A ,那么该方程组有无穷多个解的充分 必要条件是_______________;仅有零解的充分必要条件是 ;
x1 + 2 x 2 + x3 = 1 ⎧ ⎪ 4.已知方程 ⎨2 x1 + 3 x 2 + ( a + 2) x3 = 3 无解,则 a = ⎪ x + ax − 2 x = 4 1 2 3 ⎩
;
1 0 2 4 −1 x 3.行列式 2 2 −1 1 5 −2
;
4.设有行列式 D =
a1 − b1 a 2 − b1 # a n − b1
a1 − b2 " a1 − bn a 2 − b2 " a 2 − bn ,当 n = 1 时, D = # % # a n − b2 " a n − bn
⎧ λx1 + x 2 + x3 = 1 ⎪ 三、 λ 取何值时,非齐次线性方程组 ⎨ x1 + λx 2 + x3 = λ ⎪ x + x + λx = λ2 2 3 ⎩ 1
1.有唯一解;2.无解;3.有无穷多个解.
线性代数习题及解答
线性代数习题一说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,||α||表示向量α的长度,αT表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式111213212223313233a a a a a a a a a =2,则111213313233213122322333333a a a a a a a a a a a a ------=( ) A .-6 B .-3 C .3D .62.设矩阵A ,X 为同阶方阵,且A 可逆,若A (X -E )=E ,则矩阵X =( ) A .E +A -1B .E -AC .E +AD .E -A -13.设矩阵A ,B 均为可逆方阵,则以下结论正确的是( )A .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫⎪⎝⎭A B B .⎛⎫⎪⎝⎭A B 不可逆 C .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫ ⎪⎝⎭B AD .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫⎪⎝⎭A B 4.设α1,α2,…,αk 是n 维列向量,则α1,α2,…,αk 线性无关的充分必要条件是( )A .向量组α1,α2,…,αk 中任意两个向量线性无关B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示5.已知向量2(1,2,2,1),32(1,4,3,0),T T+=---+=--αβαβ则+αβ=( ) A .(0,-2,-1,1)TB .(-2,0,-1,1)TC .(1,-1,-2,0)TD .(2,-6,-5,-1)T6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是( ) A .1B .2C.3 D.47.设α是非齐次线性方程组Ax=b的解,β是其导出组Ax=0的解,则以下结论正确的是()A.α+β是Ax=0的解B.α+β是Ax=b的解C.β-α是Ax=b的解D.α-β是Ax=0的解8.设三阶方阵A的特征值分别为11,,324,则A-1的特征值为()A.12,4,3B.111,,243C.11,,324D.2,4,39.设矩阵A=121-,则与矩阵A相似的矩阵是()A.11123--B.01102C.211-D.121-10.以下关于正定矩阵叙述正确的是()A.正定矩阵的乘积一定是正定矩阵B.正定矩阵的行列式一定小于零C.正定矩阵的行列式一定大于零D.正定矩阵的差一定是正定矩阵二、填空题(本大题共10小题,每空2分,共20分)请在每小题的空格中填上正确答案,错填、不填均无分。
线性代数第二章习题及解答
解:令 X
−1
比较矩阵等式得
4
AX21 = E, AX22 = 0, BX12 + CX22 = E, BX11 + CX21 = 0, 于是 X21 = A−1 , X22 = 0 X12 = B −1 , X11 = −B −1 CA−1 15.A 的元素均为整数, 求证 A−1 的元素均为整数的充要条件是 |A| = ±1
那么 1 1 0 1 0 0 0 0
A=0 0 0 1 0 , 分别求 A−1 , B −1 1 1 0 1
和 C −1
(
解:A−1 = sin θ cos θ 1 2 2 B −1 = 1 1 −2 9 2 2 −2 1
cos θ
− sin θ
)
2
C
−1
0 = 0 0
1
−1 0 0
1 −1 1 0 2
1 −1
1 −1 1 −1
2 1
1 1 1
1 = 1
9.解矩阵方程
3
1 2 −1 2
0 X = −1 0 ; 10.解矩阵方程A 0 1 −2 3 1 0 0
aa7a是实对称矩阵且注意到ax我们仅对矩阵ab进行行初等变换将10如法炮制恕不赘述其结果为11
第二章练习题解答
( 1. 设 A = , 计算: 2A, 3B, A + B, 2A − 3B 1 1 1 3 1 1 2. 设 A = 2 1 2 , B = 2 −1 0 , 求 AB − BA. 1 0 2 1 2 3 1 a11 a12 · · · a1n 2 a21 a22 · · · a2n 0 3. 计算 . . . . . . . . . .. . an1 an2 · · · ann 0 ( ) ( ) ( 2 3 1 0 2 4. 已知 A = P ΛQ, 其中 P = ,Λ = ,Q = 1 2 0 −1 −1 2 −1 ,B = 1 2 A8 , A9 , A2n , A2n+1 , (n 为正整数) 解:An = P ΛQP ΛQ · · · P ΛQ
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习 题 二 解 答1. 两个零和对策问题.两个儿童玩石头--剪刀--布的游戏,每人的出法只能在{石头--剪刀--布}选择一种,当他们各选定一个出法(亦称策略)时,就确定了一个“局势”,也就得出了各自的输赢.若规定胜者得1分,负者得-1分,平手各得零分,则对于各种可能的局势(每一局势得分之和为零即零和),试用赢得矩阵来表示的A 得分.解011101110B A→-⎛⎫ ⎪- ⎪ ⎪-⎝⎭↓策略石头剪刀布石头策剪刀略布删了2. 有6名选手参加乒乓球比赛,成绩如下:选手1胜选手2,4,5,6负于3;选手2胜选手4,5,6负于1,3;选手3胜选手1,2,4负于5,6;选手4胜选手5,6负于1,2,3;选手5胜选手3,6负于1,2,4;若胜一场得1分,负一场得零分试用矩阵表示输赢状况,并排序.解 123456110111200111311100400011500101600100⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭ ,选手按胜多负少排序为1 2 3 4 5 6.2. 某种物资以3个产地运往4个销地,两次调运方案分别为矩阵A 与矩阵B .且357220430123A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,132021570648B ⎛⎫ ⎪= ⎪ ⎪⎝⎭试用矩阵表示各产地运往各销地两次的物资调运量.解 357213202043215701230648A B ⎛⎫⎛⎫⎪ ⎪+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3. 设111123111124111051A B ⎛⎫⎛⎫ ⎪ ⎪=-=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,,求32AB A -与TA B .解 1111231113331111242111111051111AB A ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-=----- ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭4. 某厂研究三种生产方法,生产甲、乙、丙三种产品,每种生产方法的每种产品数量用如下矩阵表示:若甲、乙、丙各种产品每单位的利润分别为10元,8元,7元,试用矩阵的乘法求出以何种方法获利最多.解 1072844759A ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,方法一获利最多.5. 设12101312A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,,问 (1)AB BA =吗(2)()2222A B A AB B +=++吗 (3)()()22A B A B A B +-=-吗 解 (1)AB BA ≠, 因为34124638AB BA ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,,所以AB BA ≠. (2)()2222A B A AB B +≠++因为 2225A B ⎛⎫+= ⎪⎝⎭但 2238681010162411812341527A AB B ⎛⎫⎛⎫⎛⎫⎛⎫++=++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以()2222A B A AB B +≠++(3)()()22A B A B A B +-≠- 因为 22022501A B A B ⎛⎫⎛⎫+=-=⎪ ⎪⎝⎭⎝⎭,,()()220206250109A B A B ⎛⎫⎛⎫⎛⎫+-== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,而 223810284113417A B ⎛⎫⎛⎫⎛⎫-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故()()22A B A B A B +-≠-6. 举反例说明下列命题是错误的: (1) 若2A O =,则A O =; (2)若2A A =,则A O =或A E =; (3)若AX AY =,且A O ≠,则X Y =.解 (1)取1111A O ⎛⎫=≠ ⎪--⎝⎭,而2A O =,(2)取1000A ⎛⎫=⎪⎝⎭,有A O A E ≠≠,,而2A A =, (3)取101010000001A X Y ⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,有X Y ≠,而AX AY =. 7. 设101A λ⎛⎫=⎪⎝⎭,求23kA A A L ,,,. 解 21010101121A AA λλλ⎛⎫⎛⎫⎛⎫===⎪⎪ ⎪⎝⎭⎝⎭⎝⎭;3210101021131A A A λλλ⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭;由此推出 ()10231k A k k λ⎛⎫==⎪⎝⎭L ,, 下面利用数学归纳法证明这个结论. 当12k k ==,时,结论显然成立. 假设1k -时结论成立,即有 ()11011k Ak λ-⎛⎫= ⎪-⎝⎭则对于k 时,有 ()11010101111kk A A A k k λλλ-⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,故结论成立.8.增加设100100A λλλ⎛⎫⎪= ⎪ ⎪⎝⎭,求kA .解 首先观察由此推测 121(1)200kk k kkk kk k k A k λλλλλλ----⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭(2)k ≥用数学归纳法证明:当2k =时,显然成立.假设k 时成立,则1k +时,由数学归纳法原理知: 121(1)200k k k kkk kk k k A k λλλλλλ----⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭8. 设A B 、都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB BA =.证明 由已知:T A A = T B B =充分性:由AB BA =,得T T AB B A =,所以()TAB AB = 即 AB 是对称矩阵. 必要性:由()TAB AB =得,T T B A AB =所以BA AB =.删了9. 设A B 、为n 矩阵,且A 为对称矩阵,证明T B AB 也是对称矩阵. 证明 已知:TA A =则 ()()TTTT T T T T B ABB B AA B A B B AB ===从而 T B AB 也是对称矩阵.11. 求下列矩阵的逆阵((1)、(3)用公式法和初等行变换法求解):()121342541-⎛⎫⎪- ⎪ ⎪-⎝⎭3 ()()12120n n a a a a a a ⎛⎫⎪ ⎪≠⎪ ⎪⎝⎭L O4,改()1234012300120001⎛⎫⎪⎪⎪⎪⎝⎭4解 (1) 公式法: 故 15221A --⎛⎫=⎪-⎝⎭初等行变换法: 所以 15221A --⎛⎫=⎪-⎝⎭.(2) 10A =≠ 故1A -存在 从而 1cos sin sin cos A θθθθ-⎛⎫=⎪-⎝⎭(3) 公式法;2A =, 故1A -存在 而 1222321361A A A =-==-故 11A A A -*=2101313221671-⎛⎫⎪ ⎪=-- ⎪⎪--⎝⎭初等行变换法:所以 12101313221671A --⎛⎫ ⎪ ⎪=-- ⎪ ⎪--⎝⎭.(4)由对角矩阵的性质知 12110101n a a A a -⎛⎫ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪⎝⎭O改()1212341000103412000123010001230100 2 00120010001200100001000100010001r r ⎛⎫⎛-⎫⎪⎪⎪ ⎪- ⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭u u u u u uu r 410. 解下列矩阵方程:(1) 25465321X -⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(2) 211113210432111X -⎛⎫-⎛⎫⎪= ⎪ ⎪⎝⎭ ⎪-⎝⎭;(3)010100143100001201001010120X -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭解 (1) 125461321X --⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭(2) 1211113210432111X --⎛⎫-⎛⎫ ⎪= ⎪ ⎪⎝⎭ ⎪-⎝⎭(3) 11143120120111X --⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪---⎝⎭⎝⎭⎝⎭删了13. 利用逆阵解下列线性方程组:解 (1) 方程组可表示为 123123122523513x x x ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭故 1123123112252035130x x x -⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭从而有 123100x x x =⎧⎪=⎨⎪=⎩(2) 方程组可表示为 123111221313250x x x --⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪--= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭故 1123111252131032503x x x ---⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭故有 123503x x x =⎧⎪=⎨⎪=⎩删了14. 把矩阵102120313043-⎛⎫ ⎪⎪ ⎪-⎝⎭化为行最简形矩阵解 102120313043-⎛⎫ ⎪ ⎪ ⎪-⎝⎭213123r r r r --−−−→102100130020-⎛⎫ ⎪- ⎪ ⎪-⎝⎭15. 设方阵A 满足22A A E O --=,证明A 与2A E +均可逆,并求其逆矩阵证明 由22A A E O --=得22A A E -=两端同时取行列式: 22A A -= 即 2A A E -=,故 0A ≠ 所以A 可逆,而22A E A +=2220A E A A +==≠ 故2A E +也可逆.由22A A E O --=得所以 11()2A A A E A E ---=,则11()2A A E -=- 又由22A A E O --=(2)3(2)4A E A A E E +-+=- 所以 11(2)(2)(3)4(2)A E A E A E A E --++-=-+ 则 11(2)(3)4A E E A -+=- .改11.设方阵A 满足225A A E O +-=,证明3A E +可逆,并求其逆矩阵.由225A A E O +-=得()()32A E A E E +-=,即()()132A E A E E +-=, 所以,()()1132A E A E -+=-. 12.已知对给定方阵A ,存在正整数k ,成立kA O =,试证E A -可逆,并指出()1E A --的表达式. 证明()()1k k E A E A E A A --=-+++L ,而kA O =,所以()()1k E A E A A E --+++=L ,则()1E A --=1k E A A -+++L 13.设A 为3阶方阵,12A =,求()125A A -*-. 解 因为11AA A-*=,所以1A A A *-=,代入,得 ()111111112555222A A A A A A A -*-----=-=-⋅12A -=-, 又11,AA E -==12A =,故12A -=. 14. 设方阵A 可逆,证明其伴随矩阵A *也可逆,且()()11A A -**-=.证明 由11AA A-*=,得1A A A *-=, 所以 当A 可逆时,有110nn A AA A-*-==≠,从而A *也可逆.因为1A A A *-=,所以()11AAA --*=,又()()1111A A A A A**---==,所以 另外:1 辅导书中n 阶矩阵A 的伴随矩阵为A *的性质证明. (1) AA A A A E **==P41.定理, (2) 当A 可逆时,1A A A *-= (证:由AA A E *=左乘A 逆得出); (3) 当A 可逆时,()()111AA A A-**-==(证:由1A A A *-=左乘A 得,AA A E *=由定理推论,得()11AA A-*=, 又()1111AA A E A E *----==左乘A ,得()11A A A*-=);(4) ()()TT AA **=(证:由,AA A E *=得()(),TTAA A E *=即()TT AA A E *=,同样()TT T AA A E A E *==,所以()()TT A A **=)(5) ()()1=1n A A *-*--(证:()()()()()()1==1,=1.nn A A A A A E A E A A A E ***------=--- 又,AA A E *=故()()1=1,n A A AA *-*--当A 可逆时,()()1=1n A A *-*--).(6) ()=AB B A ***(证:由()()=AB AB AB E A B E *=和()()()AB B A A BB A A B EA B AA B A E ******====,得()=AB B A ***);(7) ()2n AAA *-*=(证:AA A E *=, nAA A A A E A **===,当A 可逆时,10n A A -*=≠.同样()1n AA A E AE *-***==,左乘A ,得()1n AA AA AE AA *-***==,()1n A E A AA *-*=,故()2n A AA *-*=).(8) ,AA A E *=当A 可逆时,左乘1A -,11A AA A A -*-=,即1A A A *-=, 故111n n A A A A A A-*--===;(9).2..设n 阶矩阵A 的伴随矩阵为A *,证明:(1) 若0A =,则0A *=;(2) 1n A A -*=.证明(1) 用反证法证明.假设0A *≠则有1()A A E **-=,由此得11()()A AA A A E A O **-*-===A O *∴=,与0A *≠矛盾,故当0A =时,有0A *=.(2) 由于11AA A-*=, 则AA A E *=,取行列式得到: nA A A *=. 若0A ≠ 则1n A A-*=,若0A =由(1)知0A *=此时命题也成立. 故有1n A A-*=.15. 设131020101A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,2AB E A B +=+,求B .解 由2AB E A B +=+得 即()()()A E B A E A E -=-+因为 0011010100A E -==-≠,所以()A E -可逆,则加了16.设三阶矩阵A B ,满足关系:16A BA A BA -=+,且100210041007A ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭, 求B .加了17.设033110123A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,2AX A X =+,求X .删了19. 设033110123A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,2AB A B =+,求B .解 由2AB A B =+可得(2)A E B A -=故1(2)B A E A -=-1233033110110121123--⎛⎫⎛⎫ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭033123110⎛⎫ ⎪=- ⎪ ⎪⎝⎭删了21. 设1P AP -=Λ,其中14101102P ---⎛⎫⎛⎫=Λ ⎪ ⎪⎝⎭⎝⎭,=,求11A .解 因为1P AP -=Λ,故1A P P -=Λ 所以 11111A P P -=Λ而 11111110100202--⎛⎫⎛⎫Λ== ⎪ ⎪⎝⎭⎝⎭故 11111414103311021133A ⎛⎫ ⎪---⎛⎫⎛⎫= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭-- ⎪⎝⎭27312732683684⎛⎫= ⎪--⎝⎭删了22. 设AP P =Λ,其中111110211115P -⎛⎫⎛⎫ ⎪ ⎪=-Λ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,=,求()()8256A A E A A ϕ=-+.解 因为AP P =Λ,所以1A P P -=Λ;又 6P =-, 122213036121P -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,88115⎛⎫ ⎪Λ ⎪ ⎪⎝⎭= 所以 111112221102130361115121A P P --⎛⎫⎛⎫⎛⎫ ⎪⎪⎪=Λ=-- ⎪⎪⎪ ⎪⎪⎪--⎝⎭⎝⎭⎝⎭所以()()()()828565A A E A A A E A E A ϕ=-+=--又因为 100120020010232222001021020E A -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-=---=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭所以()8888888885522515122524522561522555A ϕ⎛⎫+-⋅-+ ⎪=-⋅+⋅-⋅ ⎪ ⎪-+-⋅+⎝⎭020222020⎛⎫ ⎪- ⎪ ⎪⎝⎭420222024⎛⎫⎪⎪ ⎪⎝⎭加了18已知AP P =Λ,其中100100210000211001P ⎛⎫⎛⎫⎪ ⎪=-Λ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,=,求A 及5A19. 设A B 、和A B +均可逆,证明11A B --+也可逆,并求其逆矩阵. 解 因为()1111A B A E CA BB B A ----+=+=+,由()()1A B A B E -++=得则()()1111AB A A B B B B E ----++==所以11A B --+可逆,其逆为()1A B A B -+. 解二 由()111111AA B B B A A B ------+=+=+,又A B 、和A B +均可逆,故()11A A B B --+可逆,所以,11A B --+也可逆.解三A B 、均可逆,11,A A E BBE --==,()()111111111111A B A E EB A BB A AB A B A B A A B B ------------+=+=+=+=+,所以,11A B --+也可逆,()()()()1111111A BA AB B B A B A -------+=+=+.20. 将矩阵2131425442622140A -⎛⎫ ⎪- ⎪= ⎪--- ⎪-⎝⎭化为行阶梯形矩阵,并求矩阵A 的一个最高阶非零子式.解 213241221312131425400124262001221400011r r r r r r A -+---⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪=−−−→ ⎪ ⎪---- ⎪ ⎪--⎝⎭⎝⎭B 的秩为3,其一个3阶非零子式为131012001--,对应于A 的3阶非零子式为131254262----. 故2131001200010000-⎛⎫ ⎪- ⎪ ⎪ ⎪⎝⎭即为矩阵A 的行阶梯形矩阵,矩阵A 的一个最高阶非零子式为131254262----. ,21.用初等变换法求下列矩阵的逆:(1)111211120⎛⎫ ⎪- ⎪ ⎪⎝⎭; (2)321315323⎛⎫ ⎪ ⎪ ⎪⎝⎭;(3)3201022112320121--⎛⎫ ⎪ ⎪ ⎪--- ⎪⎝⎭; (4)1357012300120001-⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭. 22. 求方阵A 的秩. 解 213141310011001310301001201020214570456r r r r r r A ---⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪=−−−→ ⎪ ⎪-- ⎪ ⎪⎝⎭⎝⎭ 所以 ()4R A =. 23.设A 为n 阶矩阵,且2A A =,证明()()R A R A E n +-=. 增加 矩阵秩的性质1. (){}0min ,m n R A m n ⨯≤≤P57;2. ()()R A R kA =其中0k ≠;3. ()()TR A R A =,即 行秩=列秩P57;4. 若,A B 等价,则()()R A R B =;P585. 若,P Q 是可逆矩阵,则()()()()R A R PA R AQ R PAQ ===;6. ()(){}()()()max ,R A R B R A B R A R B ≤≤,+;注: 证明()()()R A B R A R B ≤+,,特别地,当B b =为列向量时,有 证明 设12r αααL ,,,为A 的列向量极大线性无关组, 12t βββL ,,,为B 的列向量极大线性无关组,则()A B ,的列向量均可由()1212r t αααβββL L ,,,,,,,线性表出,而1212r t αααβββL L ,,,,,,,中线性无关的向量一定不超过r t +个,所以()()()R A B R A R B ≤+,.特别地,当B b =为列向量时,有()()1R A b R A ≤+,.为A 的列均可由()A B ,线性表出,B 的列均可由()A B ,线性表出,所以()()()()R A R A B R B R A B ≤≤,,,,于是()()()()max R A R B R A B ≤,,.7. ()()()R A B R A R B +≤+;证明一 因为()A B B R A B R B B +⎛⎫+≤ ⎪⎝⎭,对于方阵A B B B B +⎛⎫ ⎪⎝⎭作初等变换,有 1212r Er c Ec A B B A O A O B B B B O B --+⎛⎫⎛⎫⎛⎫−−−→−−−→ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 即E E A B B E O A O O E B B E E O B -+⎛⎫⎛⎫⎛⎫⎛⎫= ⎪⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭, 所以A B B A O R R B B O B +⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭从而()()()A O R A B R R A R B O B ⎛⎫+≤=+⎪⎝⎭. 证明二 ()()()E R A B R AE BE R A B E ⎡⎤⎛⎫+=+=⎢⎥ ⎪⎝⎭⎣⎦,()()()()min R A B n R A B R A R B ≤≤≤+⎡⎤⎣⎦,,,.证明三 因为A B +的列均可由()A B ,的列线性表出,所以()()()()R A B R A B R A R B +≤≤+,.8.()()(){}min R AB R A R B ≤,;.证明 设()()m l l n A B R A r R B s ⨯⨯==,,,.因为()R A r =,所以存在可逆矩阵 P Q 、,使得E O PAQ O O ⎛⎫= ⎪⎝⎭,于是 ()()()1E O R AB R PAB R PAQQ B R C O O -⎛⎫=== ⎪⎝⎭,其中 ()1ij C Q B c -== 所以 ()11110000n r rn b b E O b b R AB R C R O O ⎛⎫ ⎪ ⎪ ⎪⎛⎫== ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪ ⎪⎝⎭LM M LLM M L (※) 显然最右边一个矩阵的秩不超过它的非0行数(=r ),也不超过C 的秩(=s ),所以()()(){}min R AB R A R B ≤,.9.若m n n l A B O ⨯⨯=,则()()R A R B n ≤+;证明P146.24.设34432022O A O ⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭,求84A A ,. 解 34432022O A O ⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭,令13443A ⎛⎫= ⎪-⎝⎭ 22022A ⎛⎫= ⎪⎝⎭ 则12A O A O A ⎛⎫= ⎪⎝⎭故8182A O A O A ⎛⎫= ⎪⎝⎭8182A O O A ⎛⎫= ⎪⎝⎭5.设0A ≠,证明()()R AB R B =.证明 因为0A ≠,故A 可逆,则存在有限个初等矩阵12l P P P L ,,,,使12l A PP P =L ,于是 12lAB PP PB =L 由于初等矩阵左乘某一矩阵相当于对该矩阵进行了一次初等行变换,这个矩阵的秩不改变,从而即 ()()R AB R B =.2.设A 为n 阶方阵(2n ≥),A *为其伴随矩阵,证明证明 当()R A n =时,A 为满秩矩阵,故0A ≠.由AA A E *=,得n AA A A A E A **===,于是有10n A A -*=≠,则()R A n *=.当()1R A n =-时,由矩阵秩的定义知,A 中至少有一个1n -阶子式不为0,从而A *至少有一个元素不为0,所以()1R A *≥,另一方面,因()1R A n =-,故0A =,所以AA A E O *==根据秩的性质,有若A B ,为n 阶矩阵,且AB O =,则 ()()R A R B n +≤,有()()R A R A n *+≤,从而()()11R A n n *≤--=,故()1R A *=;当()1R A n <-时,由矩阵秩的定义知,A 的所有1n -阶子式全为0,从而A O *=,故()0R A *=. 27.设n 阶方阵A 和s 阶方阵B 均可逆,求1A O C B -⎛⎫ ⎪⎝⎭,利用这个结果求矩阵的逆矩阵.解 nn s n s s A O E O C B O E ⨯⎛⎫ ⎪⎝⎭利用这个结果取103021121412A B C ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,, 则由11111s s n s n n A O A O B C A B C B -----⨯⎛⎫⎛⎫= ⎪ ⎪ ⎪-⎝⎭⎝⎭得 112040111113212A B --⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭,, 114021201241111312113512224B CA ----⎛⎫⎛⎫⎛⎫⎛⎫=-⋅= ⎪⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭-, 则 1124080111212262424A B --⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭, 故 1100024000120012120012130124802412143526-⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪= ⎪ ⎪-- ⎪ ⎪--⎝⎭⎝⎭改25.设矩阵A 和B 均可逆,求分块矩阵O A B O ⎛⎫ ⎪⎝⎭的逆矩阵,并利用所得结果求矩阵0052002183005200⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭的逆矩阵.*26. 证明 AB A B =(A B 、为n 阶方阵). 证明 设()()ij ij A a B b ==,. 记2n 阶行列式为 而在D 中以1j b 乘第1列,2j b 乘第2列,…,nj b 乘第n 列,都加到第n j +列上()12j n =L ,,,,有 A CD E O =-,其中()()1122ijij i j i j in nj n C c c a b a b a b ==+++L ,,故C AB =,再对D 的行作()12i n j r r j n +↔=L ,,,,有 从而由第一章的例题结果有于是 AB A B =。