机械振动的各种应用
机械振动原理的应用案例
机械振动原理的应用案例1. 弹簧振子•案例描述:弹簧振子是机械振动中常见的一个案例,通过调整弹簧的初始位置和质点的质量来研究振动的特性。
•案例分析:–弹簧振子的基本原理是质点在弹簧作用下发生周期性的振动。
–当质点受到外力作用时,会出现振动现象,振动的特性包括振幅、周期、频率等。
•案例应用:–在建筑工程中,可以利用弹簧振子的原理设计减震系统,以抵消地震等外力对建筑物的影响。
–弹簧振子还可以应用于仪器和设备中的振动控制系统,如汽车悬挂系统和机械结构的振动减小系统。
2. 动力摆锤•案例描述:动力摆锤是一种利用机械振动原理来产生动能的装置,由摆锤和驱动器组成。
•案例分析:–动力摆锤的基本原理是通过摆锤的周期性摆动,将机械能转化为动能。
–摆锤的运动过程中,驱动器通过传递力量给摆锤,使其继续摆动,并且产生更大的动能。
•案例应用:–动力摆锤被广泛应用于发电站和工厂的能量回收系统中,以提高能源利用效率。
–在交通工具中,动力摆锤也可以作为动力传动装置,用于提供动力和减少能量消耗。
3. 震动筛网•案例描述:震动筛网是一种基于机械振动原理工作的筛分设备,广泛应用于矿石分类和颗粒物筛分等领域。
•案例分析:–震动筛网通过振动力将颗粒物在网面上进行筛分,根据颗粒物的大小和形状分别进行筛分和分离。
–筛分过程中,颗粒物受到机械振动的作用,产生相对运动,通过筛孔的大小来分离颗粒物。
•案例应用:–震动筛网广泛应用于矿山、建筑材料、化工等工业领域,用于颗粒物的筛分和分级。
–在环保领域,震动筛网也可以用于固液分离、废弃物处理和废水处理等环境工程。
4. 随机振动识别•案例描述:随机振动识别是一种利用机械振动信号进行故障诊断的方法,通过分析振动信号的频谱和特征来判断设备的状态。
•案例分析:–随机振动信号是由于设备的非理想性和环境的随机变化引起的。
–通过振动信号的频谱分析、时间序列分析和特征提取等方法,可以识别设备故障的类型和程度。
•案例应用:–随机振动识别被广泛应用于工业设备和机械设备的故障诊断和预测维护。
机械振动控制的理论与应用
机械振动控制的理论与应用机械振动控制是一门针对机械系统中振动现象进行控制的学问。
机械部件的振动是由于外力作用或自身固有特性引起的,而这些振动不仅会导致工作效率下降,还会对机械部件的寿命造成影响甚至产生寿命断裂。
因此,对于保证机械部件的正常运转,降低能源损失和维护成本,机械振动控制的理论和应用具有极为重要的意义。
机械振动的分类机械振动在工程实践中可以分为自由振动、强迫振动和共振振动三种类型。
自由振动是指机械系统在没有外力作用下,受到初始位移或初始速度的驱动,根据机械部件的固有特性产生的振动现象。
例如,我们可以将一根弹簧挂起,然后将其下端给予位置或速度的初始变动,可以观察到弹簧在不受外力的作用下自发产生的振动。
强制振动是指受到外力作用下的机械系统振动。
例如,可以将弹簧挂在木板上,并不断给予弹簧一个频率相同、振幅固定的外力作用,可以观察到弹簧振幅会在振动中逐渐呈现一个稳定的值。
共振振动是指外力的作用频率与机械部件的固有特性产生共振的振动现象。
例如,我们可以将机械系统的固有频率匹配到一个频率相对应的外力,可以观察到机件的振幅会剧烈增加,这种现象就叫共振。
机械振动控制的方法振动控制的方法可以分为主动振动控制和被动振动控制两类。
主动振动控制是指通过主动力或控制力的作用,改变系统的振动状态来控制机械振动。
这种控制方法需要采用控制器来对振动信号进行分析和控制处理,通过对控制器输出控制信号,对机械系统的振动状态进行主动控制,从而达到稳态或稳定变化的目的。
例如,在振动控制系统中增加主动阻尼器或作用力,通过调节阻尼力或作用力大小与方向,来抵消原有振动从而达到控制振动的效果。
被动振动控制是指通过机械部件或材料的改变来控制机械振动。
这种控制方法不需要控制器等外部力量的介入,而是通过改变机械系统的物理性质或结构来降低机械振动。
例如,在电机叶轮上增加凸缘来消除流体力学振动。
振动控制的方法还可以根据机械振动类型、控制器种类、控制策略等来进行分类。
机械振动在生活生产中的实际应用以及共振的危害
机械振动在生活生产中的实际应用以及共振的危害(一)、机械振动在生活生产中的实际应用机械振动,也简称为振动,物理学上是这样给它定义的:物体在平衡位置附近做往复运动的运动。
在现实生活中我们能看到很多机械都是运用机械振动这一学说理论来建造出来的。
比如筛分设备、输送设备、给料设备、粉碎设备等等机械设备都是将理论运用到现实生活中的结果。
以下我就举些例子来加以说明机械振动具体得在哪些产品中运用到了。
先说说筛分设备,筛分设备是机械振动在现实生活中运用的最多的产品。
比如热矿筛、旋振筛、脱水筛等各种各样的筛分设备。
顾名思义,筛分设备就是运用振动的知识和筛分部件将不同大小不同类型的物品区分开来,以减少劳动力和提到生产效率。
例如:热矿筛采用带偏心块的双轴激振器,双轴振动器两根轴上的偏心块由两台电动机分别带动做反向自同步旋转,使筛箱产生直线振动,筛体沿直线方向作周期性往复运动,从而达到筛分目的。
又如南方用的小型水稻落谷机,机箱里有一块筛网,由发动机带动连杆做往复运动,当水稻连同稻草落入筛网的时候,不停的振动会让稻谷通过筛网落入机箱存谷槽,以实现稻谷与稻草的分离,减少人力资源,提高了农业效率。
输送设备运用到机械振动也是很多的。
比如:螺旋输送机、往复式给料机、振动输送机、买刮板输送机等输送设备。
输送设备就是将物体从一个地方通过输送管道输送到另一个地方的设备,以节约人力资源,提高生产效率。
例如:广泛用于冶金、煤炭、建材、化工等行业中粉末状及颗粒状物料输送的振动输送机,采用电动机作为优质动源,使物料被抛起的同时通过输送管道做向前运动,达到输送的目的。
给料设备在某种程度上与输送设备有共同之处,例如:振动给料机、单管螺旋喂料机、振动料斗等设备。
就拿振动料斗来说吧,振动料斗是一种新型给料设备,安装在各种料仓下部,通过振动使物料活化,能够有效消除物料的起拱,堵塞和粘仓现象,解决料仓排料难的问题。
总而言之,机械振动在现实生活生产中的应用是多种多样的,有的是直接应用,有的是间接应用。
机械振动原理的例子
机械振动原理的例子
机械振动原理是指物体在形变、变形过程中,由于内部能量的存在,物体会产生一种周期性运动的现象。
以下是一些机械振动原理的例子。
1.弹簧振子
弹簧振子由质量块和弹簧组成,当质量块被拉开并释放时,弹簧就会开始振动。
在振动过程中,弹簧受力变化,从而产生周期性的变形,使质量块产生周期性的运动。
2.摆钟
摆钟由工作机构和摆杆组成,当摆杆被拉开并释放时,摆就会开始振动。
摆在摆钩和摆杆之间运动,摆杆的重心会在几个周期内完成一次往返运动。
3.压力表
压力表利用弹性元件(如弹簧)的变形来测量压力。
当压力作用于可动的弹性元件上时,它就会产生变形。
通过将压力的大小与弹性元件的变形相对应,可以测量出被测量体的压力大小。
4.发动机
发动机是一种将燃料转化为动力的机器。
发动机的基本原理是在活塞和汽缸之间产生压力差,将燃料燃烧放出的能量转化成机械能,从而产生动力。
5.飞机
飞机的主要原理是利用机翼的升力和推进机构的推力来使其飞行。
机翼的升力是由于空气在机翼的形状下被压缩而产生的,而推进机构则利用发动机产生的动力来推动飞机前进。
6.洛夫波
洛夫波是一种在飞行控制中广泛使用的机械振动技术。
它是通过控制飞机的滚转、俯仰和偏航来实现飞机的稳定和操纵。
7.特斯拉汽车
特斯拉汽车利用电动机产生的机械能来推动车辆前进。
电动机是由电池供电的,当电池电量充足时,可以提供足够的动力让汽车高速行驶。
总之,机械振动原理是应用广泛的物理原理之一,可以用于各种不同的机器和设备中,并且在近代科技的发展中具有重要的地位。
机械振动的各种应用
机械振动的各种应用机械振动的利用机械振动,也简称为振动,物理学上是这样给它定义的:物体在平衡位置附近做往复运动的运动。
在现实生活中我们能看到很多机械都是运用机械振动这一学说理论来建造出来的。
比如筛分设备、输送设备、给料设备、粉碎设备等等机械设备都是将理论运用到现实生活中的结果。
以下我就举些例子来加以说明机械振动具体得在哪些产品中运用到了。
先说道说道筛分设备,筛分设备就是机械振动在现实生活中运用的最少的产品。
比如说热矿捣、旋振筛、水解捣等各种各样的筛分设备。
顾名思义,筛分设备就是运用振动的科学知识和筛分部件将相同大小相同类型的物品区分开去,以增加劳动力和提及生产效率。
比如:热矿捣使用拎偏心块的双轴激振器,双轴振动器两根轴上的偏心块由两台电动机分别助推搞逆向自同步转动,并使筛箱产生直线振动,筛体沿直线方向并作周期性往复运动,从而达至筛分目的。
又例如南方用的小型水稻落谷机,机箱里存有一块筛网,由发动机助推连杆搞往复运动,当水稻联同稻草掉入筛网的时候,不停的振动可以使稻谷通过筛网掉入机箱存谷槽,以同时实现稻谷与稻草的拆分,增加人力资源,提升了农业效率。
输送设备运用到机械振动也是很多的。
比如:螺旋输送机、往复式给料机、振动输送机、买刮板输送机等输送设备。
输送设备就是将物体从一个地方通过输送管道输送到另一个地方的设备,以节约人力资源,提高生产效率。
例如:广泛用于冶金、煤炭、建材、化工等行业中粉末状及颗粒状物料输送的振动输送机,采用电动机作为优质动源,使物料被抛起的同时通过输送管道做向前运动,达到输送的目的。
给料设备在某种意义上与运送设备存有共同之处,比如:振动给料机、单管螺旋喂料机、振动车箱等设备。
就拎振动车箱来说吧,振动车箱就是一种新型给料设备,加装在各种料仓下部,通过振动并使物料活化,能有效率消解物料的起至拱形,阻塞和粘仓现象,化解料仓排料容易的问题。
以下我就举例来说明下。
一、机械震动在铸造生产中的利用1)熔炼及混合振动机由于振动筛分在筛分过程中各个物料颗粒均处于运动状态,且在筛面上作抛掷运动,因而筛分效率高,故在砂处理系统中基本上都采用振动筛。
运用高中物理学中的机械振动解决实际问题
运用高中物理学中的机械振动解决实际问题机械振动在解决实际问题中的应用机械振动是高中物理学中的一个核心概念,涉及到弹簧振子、单摆以及波动等方面的知识。
虽然我们经常可以在课堂中学习到这些知识,但是这些理论常常在我们的现实生活中得到了具体应用。
本文将介绍一些机械振动在实际问题中的应用,包括哪些物体受到振动的影响以及如何运用机械振动来解决实际问题。
1. 天气预报中的应用即使你不是物理学或工程专业的学生,你也应该对机械振动中的弹性波有一定的了解。
弹性波是介质中相对于静态平衡态的微小扰动,可以用于预测天气。
每个气压系统都会在空气中形成一个弹性波,而这个波可以通过一些特定的无线电设备来检测。
这个过程是通过对机械振动理论的研究和运用来实现的,可以给出非常准确的天气预报。
2. 汽车悬挂系统在生活中,我们每天都能看到汽车的悬挂系统。
通过运用弹簧振子的原理,汽车的悬挂系统可以帮助车辆在不平坦的路面上行驶,保证人体的舒适性和汽车的稳定性。
这一应用需要物理学和工程学的相互配合,通过对弹性理论的研究和机械操作来实现。
3. 地震监测地震是一种非常强烈的机械振动,可以对地球表面造成相当大的影响。
但是在地震到来之前,我们可以通过一些地震测量仪器来探测地下的小波动。
地震仪使用的基本原理是将劳斯维尔振子与一个漂移极小的闭环反馈系统结合起来,来实现对地震波的监测、测量和提高地震预警的能力。
这个过程同样涉及到对机械振动原理的了解和运用。
4. 振荡器的制造振荡器是电子设备中的一种装置,用来产生特定的脉冲和波形。
而构建一个稳定的电子振荡器需要依赖较为稳定的机械振动平台,以实现微小频谱域内权衡的阻尼、质量和弹性等比例常数的校准,使得其在振动信号频域上的压缩和拓宽非常小,是现代通讯技术、计算机技术和医疗设备等行业中不可或缺的设备。
5. 光学成像光学成像是一种将光信号转换为图像的过程。
使用的设备中涉及到了包括活塞运动以及弹簧振子等在内的机械振动装置,它们可以通过运用两种不同频率的信号相加来产生光斑和光学图像,并且经过沟通和优化来增加显微镜成像的分辨率和灵敏度,是现代医疗和微观成像技术的重要组成部分。
机械振动和简谐振动
机械振动和简谐振动机械振动是自然界和工程实践中常见的现象,而简谐振动则是机械振动中最为基本和重要的模型。
本文将介绍机械振动和简谐振动的概念、特点以及一些应用。
一、机械振动的概念和特点机械振动是物体围绕平衡位置做周期性的往复运动。
它可以是机械系统中的部件振动,也可以是整个机械系统的振动。
机械振动往往由质点或弹簧等弹性元件的弹力引起。
其特点如下:1. 周期性:机械振动的运动是周期性的,当物体围绕平衡位置做一次完整的往复运动后又回到同样的位置和状态。
这一周期性使得机械振动具有可预测性和可重复性。
2. 频率:机械振动的频率是其运动的重要特征,代表了单位时间内振动的次数。
频率与振动周期的倒数成正比,可以通过实验或计算得到。
3. 幅度:机械振动的幅度代表了振动的最大位移或最大速度。
幅度与振动的能量大小相关,可以通过实验或计算得到。
4. 阻尼和驱动力:机械振动中常常存在阻尼和外加驱动力。
阻尼消耗了振动的能量,而驱动力则为物体提供了能量,影响了振动的稳定性和特性。
5. 谐振现象:在机械振动中,当外加力的频率接近物体的固有频率时,会出现谐振现象。
谐振时,振动幅度最大,能量传递效率高。
二、简谐振动的概念和特点简谐振动是机械振动中最简单的一种形式,其模型假设了无阻尼和驱动力的作用。
简谐振动具有以下特点:1. 一维振动:简谐振动在物理模型中往往被假设为一维振动,即物体围绕一个平衡位置在一条直线上往复振动。
2. 束缚性:简谐振动在一个有限范围内进行,物体保持在某个平衡位置附近做往复运动,不会无限制地扩散或发散。
3. 固有频率:简谐振动的频率与物体的固有特性有关,而与外界的驱动力无关。
物体的固有频率可以通过实验或计算得到。
4. 振幅和相位:简谐振动的振幅和相位是其两个重要的参数。
振幅代表振动的最大位移或速度,而相位则代表振动的位置关系。
5. 能量守恒:在简谐振动中,能量在势能和动能之间周期性转换,总能量保持不变,体现了能量守恒定律。
机械振动的理论与应用
机械振动的理论与应用机械振动是指机械系统在受到外部激励或系统内部某种力的作用下,发生自由或强迫振动的现象。
它是在机械制造、运动控制、结构分析、信号处理、机械故障诊断和振动控制等领域得到广泛应用的重要基础理论。
本文将探讨机械振动的理论与应用,并举例说明其在实际中的应用。
一、机械振动的基本理论机械振动的基本理论包括振动信号的特征、振动系统的描述与分析方法和振动控制的原理等方面。
其中,振动信号的特征指振动信号中包含的振动频率、振幅和相位等特性;振动系统的描述与分析方法主要涉及到质点运动学、动力学和能量守恒原理等;振动控制的原理则是指控制理论中的反馈控制、前馈控制和模糊控制等。
在实际应用中,机械振动的分析和控制都要基于振动系统的模型。
根据振动系统的特点,通常可以将其分为单自由度振动系统和多自由度振动系统两类。
其中,单自由度振动系统是指系统中只有一个自由度方向运动的情况;而多自由度振动系统则是指系统中包含多个自由度运动的情况。
二、机械振动在实际中的应用1.机械制造在机械制造中,机械振动可用于检测机构的不平衡状况、机轴的转子平衡状况、齿轮齿形误差以及机床等制造设备的精度等方面。
例如,通过检测振动信号的频率和振幅来诊断机器设备的运转状态,进而预测其故障情况和损坏的时间,以便及时进行维修和更换。
2.运动控制在运动控制中,机械振动可用于控制机器设备的姿态、位置、速度和加速度等参数。
例如,在航空航天领域中,机械振动可用于控制飞行器的姿态和方向稳定,从而保证其飞行安全和稳定性。
3.结构分析在结构分析中,机械振动可用于评估结构物的稳定性和安全性。
例如,在建筑结构领域中,机械振动可用于评估建筑物的抗震性能,从而为其设计提供依据。
4.信号处理在信号处理中,机械振动可用于处理振动信号的频谱、功率谱、自相关函数和互相关函数等特征参数。
例如,在音乐合成领域中,机械振动可用于模拟和合成各种音效和乐器的声音。
5.机械故障诊断在机械故障诊断中,机械振动可用于检测机器设备的磨损、松动、故障和损坏。
机械振动原理的应用实例
机械振动原理的应用实例1. 引言机械振动是研究物体在力的作用下发生周期性往复运动的一门学科。
它广泛应用于多个领域,包括工程、物理、材料学等等。
本文将介绍几个机械振动原理的应用实例,以展示振动原理在不同领域的实际应用。
2. 汽车发动机的振动控制系统汽车发动机是一个典型的机械振动系统,它在运行过程中会产生各种振动,包括旋转振动、传动振动和气动振动等。
为了降低振动对乘坐舒适性和机械结构的影响,汽车发动机通常会配备振动控制系统。
这些系统利用质量块、阻尼器和弹簧等元件来消除或减小发动机的振动。
振动控制系统的工作原理基于机械振动中的阻尼和共振原理。
通过调整振动控制系统的参数,如质量块的质量和位置、阻尼器的刚度和阻尼系数等,可以达到减小或消除振动的目的,从而提高乘坐舒适性和延长发动机的寿命。
3. 建筑结构的地震响应控制地震是一种自然灾害,会对建筑结构产生巨大的破坏力。
为了保护建筑结构和减小地震对人们的影响,工程师借助机械振动原理设计了地震响应控制系统。
地震响应控制系统基于减振器的原理,通过在建筑结构中引入减振器,可以有效地减小地震力对结构的冲击。
减振器可以有很多种形式,如液流阻尼器、摩擦阻尼器等。
这些减振器通过消耗结构的振动能量来减小地震力的传递,从而减小建筑结构的地震响应。
4. 模态分析在航空工程中的应用模态分析是机械振动中常用的一种分析方法,用于研究结构的固有振动特性。
在航空工程中,模态分析可以应用于研究飞机的结构振动和疲劳寿命等问题。
通过模态分析,可以获取飞机结构的频率、振型和振动模式等信息。
这些信息对于飞机的设计和改进非常重要。
例如,在设计飞机机翼时,可以利用模态分析确定机翼的固有频率,以避免共振现象的发生。
此外,模态分析还可以帮助验证飞机结构的强度和稳定性,提高飞机的安全性和可靠性。
5. 实验室中的振动测试和分析机械振动的实验室测试和分析广泛应用于工程和科学研究中。
通过实验室测试,可以获取物体在振动环境中的响应特性,包括振幅、频率、相位等。
机械振动中的共振应用案例
机械振动中的共振应用案例引言:机械振动是指机械系统在外界激励下发生的周期性运动。
共振是机械振动中的一个重要现象,它在许多领域都有着广泛的应用。
本文将通过介绍几个共振应用案例,展示共振在机械振动中的重要性和应用价值。
一、桥梁共振桥梁是现代交通建设中不可或缺的重要构筑物,而共振对桥梁的影响也是不容忽视的。
在某些特定条件下,桥梁可能会发生共振,导致桥梁的破坏甚至倒塌。
这一现象在历史上曾多次发生,给人们的生命财产安全带来了巨大威胁。
因此,对桥梁的共振进行研究和监测是非常重要的。
通过合理设计和结构改进,可以有效地避免桥梁共振的发生,保障桥梁的安全性和稳定性。
二、音箱共振音箱是音频设备中的重要组成部分,而共振在音箱的设计和优化中扮演着重要角色。
共振可以使音箱的声音更加清晰、饱满,并提高音箱的音质。
在音箱的设计过程中,需要考虑共振频率和共振峰值的控制,以达到理想的音效效果。
同时,共振还可以用于音箱的低音扩展,通过调整共振腔体的尺寸和形状,使得音箱的低音表现更加出色。
三、振动筛分机共振振动筛分机是一种常见的工业设备,广泛应用于矿山、冶金、化工等行业。
在振动筛分机的工作过程中,共振可以提高筛分效率和分选精度。
通过调整振动筛分机的振动频率和振幅,可以使物料在筛孔上的停留时间减少,从而提高筛分速度。
同时,共振还可以改变物料在筛孔上的运动轨迹,使得物料的分选精度更高。
因此,在振动筛分机的设计和优化中,共振的应用是非常重要的。
四、共振传感器共振传感器是一种基于共振原理工作的传感器,广泛应用于工业自动化、环境监测等领域。
共振传感器通过检测共振频率的变化,实现对物理量的测量和监测。
例如,共振传感器可以用于测量压力、温度、湿度等参数。
由于共振传感器具有高灵敏度、快速响应和稳定性好的特点,因此在工业生产和科学研究中得到了广泛应用。
结语:机械振动中的共振应用案例举不胜举,上述只是其中的几个典型案例。
共振作为机械振动的重要现象,对于提高机械系统的性能和稳定性具有重要意义。
机械振动的特性及其应用
机械振动的特性及其应用引言:机械振动是指物体在受到外力或内部激励作用下,以某种规律在平衡位置附近作周期性的往复运动。
机械振动广泛应用于各个领域,如工程、物理学、生物学等。
本文将探讨机械振动的特性以及其在不同领域的应用。
一、机械振动的特性1. 振幅:指振动物体从平衡位置偏离的最大距离。
振幅决定了振动物体的能量大小。
2. 周期:指振动物体完成一个完整往复运动所需的时间。
周期与振动频率成反比。
3. 频率:指振动物体每秒钟完成的往复运动次数。
频率与周期成反比。
4. 相位:指振动物体的位置相对于某一参考点的偏移量。
相位可以用来描述振动物体的位置关系。
二、机械振动的应用1. 工程领域机械振动在工程领域中有着广泛的应用。
例如,在建筑工程中,通过对结构的振动特性进行分析,可以提高建筑物的抗震能力。
在机械工程中,振动测试可以用于检测机械设备的故障和性能。
此外,振动也广泛应用于声学工程、航空航天领域等。
2. 物理学研究机械振动是物理学研究中的重要课题之一。
通过对振动的研究,可以深入了解物体的力学性质和振动规律。
例如,弹簧振子的研究可以帮助我们理解简谐振动的特性。
同时,振动也是量子力学研究中的重要概念,与粒子的波动性密切相关。
3. 生物学应用在生物学领域,机械振动被广泛应用于生物体的研究和治疗中。
例如,通过对人体的振动反应进行分析,可以评估人体的平衡能力和神经系统功能。
振动治疗也被用于康复医学中,可以帮助恢复肌肉功能和缓解疼痛。
4. 音乐与艺术机械振动在音乐和艺术创作中起着重要的作用。
音乐乐器的演奏就是通过控制振动来产生声音。
不同乐器的振动特性和频率谐波的组合,赋予了音乐以丰富的音色和情感。
此外,振动也被艺术家们用于创作装置艺术和交互式艺术作品,为观众带来独特的体验。
结论:机械振动作为一种重要的物理现象,具有丰富的特性和广泛的应用。
无论是在工程领域中提高结构的稳定性,还是在物理学研究中深入探索物质的本质,机械振动都发挥着重要的作用。
机械振动的物理学原理与实际应用
机械振动的物理学原理与实际应用引言:机械振动是物体在受到外力作用下产生的周期性运动,它广泛应用于各个领域,如工程、物理学、生物学等。
在本文中,我们将探讨机械振动的物理学原理以及其在实际应用中的重要性。
一、机械振动的物理学原理机械振动的物理学原理可以通过谐振子模型来解释。
谐振子是一个理想化的模型,它由一个质点和一个弹簧组成。
当质点受到外力作用时,它会沿着弹簧的方向发生振动。
振动的频率和振幅取决于弹簧的劲度系数和质点的质量。
当外力的频率等于谐振频率时,振幅达到最大值,这种现象称为共振。
在实际应用中,机械振动的物理学原理可以用于设计和优化各种机械系统。
例如,在建筑工程中,通过对建筑物的振动特性进行分析,可以有效地预防地震等自然灾害对建筑物的破坏。
在航空航天领域,机械振动的物理学原理被广泛应用于飞机和火箭的设计中,以确保它们在高速飞行时的稳定性和安全性。
二、机械振动的实际应用1. 振动传感器振动传感器是一种可以测量物体振动状态的装置。
它通常由加速度传感器和信号处理器组成。
振动传感器广泛应用于机械设备的故障诊断和预测维护中。
通过监测设备的振动情况,可以及时发现并修复潜在的故障,从而提高设备的可靠性和寿命。
2. 震动台震动台是一种用于模拟地震和其他振动环境的设备。
它通常由电机、控制系统和振动台面组成。
震动台广泛应用于地震工程、航天航空等领域的研究和测试中。
通过在实验室中模拟真实的振动环境,可以评估和改进各种设备和结构的抗震性能。
3. 振动吸收器振动吸收器是一种用于减少机械系统振动的装置。
它通常由质量块和弹簧组成。
振动吸收器广泛应用于汽车、船舶等交通工具的悬挂系统中。
通过选择合适的质量块和弹簧参数,可以有效地减少车辆在行驶过程中的颠簸和震动,提高乘坐舒适性和操控性。
结论:机械振动作为一种重要的物理现象,在实际应用中发挥着重要的作用。
通过深入理解机械振动的物理学原理,我们可以设计和优化各种机械系统,提高设备的可靠性和性能。
机械振动的原理及应用实例
机械振动的原理及应用实例1. 机械振动的定义机械振动是指物体在某一点偏离其平衡位置并产生周期性的往复运动的现象。
它是由物体的势能和动能相互转换引起的,具有频率、振幅和相位等重要特征。
2. 机械振动的原理机械振动的原理主要涉及以下几个方面:•弹簧振子的原理–当物体受到外力作用偏离其平衡位置时,弹簧会产生恢复力,使物体向平衡位置做往复运动。
•谐振的原理–当外力的频率与物体固有频率相等时,物体会受到共振作用,振幅会不断增大,达到最大值。
•阻尼的原理–阻尼是指外力对物体振动产生的衰减作用,它可以分为无阻尼、临界阻尼和过阻尼三种。
•受迫振动的原理–当外力的频率与物体固有频率不同时,物体会发生受迫振动,产生共振现象。
3. 机械振动的应用实例机械振动在工程领域有着广泛的应用,以下是一些实际应用的例子:•汽车悬挂系统–汽车悬挂系统中的弹簧和减震器能够吸收道路不平坦所产生的振动,提高行驶的舒适性和稳定性。
•桥梁和建筑物的抗震设计–在桥梁和建筑物的抗震设计中,利用减震器和振动吸收器来减小地震产生的影响,保护结构的安全性。
•电动机–电动机中的转子受到的电力驱动会产生机械振动,通过控制振动的频率和振幅,可以实现电动机的正常运转。
•机械加工–在机械加工中,通过振动刀具和工件之间的相对运动,可以提高加工效率和表面质量。
•医疗领域–机械振动在医疗领域也有一定的应用,例如超声波治疗和体外震波碎石等。
•音乐产生–乐器中的声音是通过乐器的振动产生的,振动的频率和振幅决定了乐器发出的声音。
4. 结论机械振动作为一种物理现象,具有很多重要的应用。
从汽车悬挂系统到医疗领域,机械振动都发挥着重要的作用。
了解机械振动的原理和应用实例,可以帮助我们更好地应对相关问题,提高工作效率和生活质量。
机械振动技术的原理和应用
机械振动技术的原理和应用机械振动技术是一种通过激励物体并产生振动的技术,可用于许多不同的应用领域,包括工业、航空、建筑和医学。
本文将介绍机械振动技术的基本原理以及它在各个领域中的应用。
1. 基本原理机械振动技术的原理基于物体的自然频率。
当一个物体经过受力后产生振动时,其振动频率与物体的固有频率相匹配。
因此,通过对物体施加恰当的周期性力,可以激励物体并产生振动。
在机械振动中,最常用的方法之一是使用振动器。
振动器是一种能够在不同频率下产生振动的设备,可使用电动机、液压和气压等各种能源。
振动器通常包括一个驱动器和一个振幅调节器,用于控制振动强度和频率。
对于机械振动的特定应用,可以通过选择不同类型的振动器并调节其参数来实现振动效果。
例如,可以使用电动振动器产生高频振动以清洗零件表面;或使用液压振动器实现更大的振动幅度以进行混合或研磨。
2. 工业应用机械振动技术在工业领域中具有广泛的应用。
其中的一种应用是在制造过程中使用振动来控制材料的流动性。
例如,在混合物中添加振动可以增强混和效果,并改善材料的均匀性。
另一个应用是在清洗和去污方面。
通过在液体中添加振动,可以加速清洗效果,减少清洗时间,并提高效率。
此外,还可以使用高频振动来消除金属零件表面的污垢和碎片,从而防止锈蚀并延长零件寿命。
3. 航空应用在航空领域中,机械振动技术可用于航空器的结构分析和性能测试。
这些试验通常涉及到使用振动台来模拟不同频率下的振动,以评估航空器在不同条件下的稳定性和安全性。
同时,振动台还可用于模拟航空器在不同地形条件下的振动,以模拟飞行中可能遇到的不同风险和问题。
这样的试验可以帮助开发人员更好地预测飞机的行为,从而正确评估其安全性和可靠性。
4. 建筑应用机械振动技术可以用于建筑领域中的结构安全和更可靠的建筑设计。
例如,在桥梁、管道和大型机器的结构持久性方面,机械振动技术可用于评估结构极限和疲劳寿命。
此外,机械振动技术还可用于模拟地震和其他自然灾害的条件,并评估结构在这些情况下的表现和安全性。
机械振动的原理及应用论文
机械振动的原理及应用论文引言机械振动是指物体在作用力的作用下发生周期性的振动运动。
机械振动在工程学和物理学中具有重要的应用价值,对于了解动力学、噪声控制、振动减震等方面都具有重要的意义。
本文将介绍机械振动的基本原理,并探讨其在不同领域的应用。
机械振动的基本原理1.振动的定义–振动是指物体通过一定的载荷或激励作用下,沿某个方向围绕某一平衡位置做往复或周期性运动。
2.振动的特性–幅度:振动的最大偏离距离。
–频率:振动在单位时间内完成的周期数。
–周期:振动所需的时间。
–相位:振动状态与参考状态之间的时间差。
3.振动的力学模型–单自由度系统:一个自由度的质点系统,如单摆、弹簧振子等。
–多自由度系统:多个自由度的质点系统,如悬臂梁、弦振动等。
4.振动的方程–单自由度振动方程:描述单自由度系统的振动行为。
–多自由度振动方程:描述多自由度系统的振动行为。
机械振动的应用1.工程领域中的应用–振动传感器:用于测量和监控振动信号,广泛应用于工业设备的故障诊断与预测、结构健康监测等方面。
–振动减震:通过减少结构和设备的振动,降低噪声和震动对周围环境的影响。
–振动筛分:用于对颗粒物料进行分级和筛分,广泛应用于矿石、建材、化工等行业。
2.物理学中的应用–声学研究:振动是声波传播的基础,通过研究机械振动可以更好地理解声音的产生和传播规律。
–分子动力学研究:振动是分子间相互作用的表现形式之一,研究机械振动可以揭示物质的结构和性质。
3.生命科学中的应用–振动诊断:通过分析人体的振动信号,可以识别和监测身体的健康状况,有助于医学诊断和治疗。
–体育科学:研究人体运动中的振动特性,可以改善运动员的技术和训练方法。
结论机械振动作为一种重要的物理现象和工程应用,不仅在工程学中有着广泛的应用,还涉及到物理学、生命科学等多个学科领域。
通过对机械振动的研究和应用,可以更好地理解物体的运动规律,改善工程和生活中与振动相关的问题。
以上是对机械振动的原理及应用进行论述的文档,介绍了机械振动的基本原理和特性,并探讨了在工程、物理学和生命科学等领域中的应用。
机械震动原理的应用实例
机械震动原理的应用实例概述机械震动是指机械系统在工作过程中由于内外环境的影响而产生的振动现象。
机械震动可以是有益的,也可以是有害的。
本文将介绍几个机械震动原理的应用实例,以及该应用实例中的震动原理和实际效果。
实例一:岩石破碎机的振动筛分原理岩石破碎机是一种常用的破碎机械设备,主要用于岩石的破碎和筛分。
其工作原理是通过震动来使岩石颗粒发生相对位移,从而实现岩石的破碎和分离。
岩石破碎机中的震动是通过电机带动偏心轴进行的,偏心轴的旋转会产生一定的离心力,从而使破碎机产生振动。
在岩石破碎机的工作过程中,岩石经过进料口进入破碎腔,在破碎腔内受到高速旋转的锤头的冲击和撞击作用下,岩石发生破碎。
此时,筛网上的细颗粒会通过筛网的缝隙掉落到下方的料仓中,而粗颗粒会继续在破碎腔内被再次破碎,直到满足要求的粒度。
通过震动筛分的方式,可以将不同尺寸的岩石颗粒进行分离。
实际效果:岩石破碎机的振动筛分原理能够快速、高效地将岩石进行破碎和分离,满足不同工程和建筑的需要。
它可以使岩石破碎和筛分的过程更加快速、稳定,提高生产效率,并能够按照不同尺寸的需求对岩石进行分级。
实例二:振动磨光机的应用原理振动磨光机是一种常用的表面处理设备,主要用于对零件和工件进行抛光和磨削。
振动磨光机的工作原理是利用高频振动和摩擦力来实现对零件表面的磨削和抛光。
在振动磨光机中,零件和磨料通过容器放置在磨光机内部,然后启动机器,振动装置开始工作,产生高频振动。
高频振动会使磨料在零件表面产生摩擦,从而实现对零件表面的磨削和抛光。
同时,振动磨光机还可以通过调整振动频率和振动幅度来控制磨削的效果。
实际效果:振动磨光机的应用原理可以提高零件和工件的表面质量和光洁度,减少零件表面的磨损和粗糙度。
它可以在较短的时间内完成对大批量零件的磨削和抛光,提高生产效率和生产质量。
实例三:振动给料机的工作原理振动给料机是一种常用的输送设备,主要用于将物料从储料仓或储料斗中输送到下游生产线。
机械振动的原理及应用
机械振动的原理及应用一、什么是机械振动机械振动是指机械系统在受到外力作用或者自身固有特性发生变化时,产生周期性的运动或者摆动。
这种周期性的运动或摆动称为振动。
机械振动是机械工程中一个重要的研究领域,并在多个应用领域中发挥着重要作用。
二、机械振动的原理1.质点的简谐振动原理: 机械振动的基础理论是简谐振动。
简谐振动是指系统在外力作用下相对平衡位置做周期性的、大小和方向都相同的振动。
质点的简谐振动受到三个基本要素的影响:质点的质量、弹性恢复力和外力。
2.刚体的振动原理:刚体的振动与质点不同,无论是平动还是转动,都涉及到刚体上不同点之间的相对位置关系。
刚体的振动可以分为平动和转动两种类型。
刚体的振动受到质心的平动和转动之间的耦合效应所影响。
三、机械振动的应用1.振动工具和设备:机械振动被广泛应用于各种振动工具和设备中,例如振动筛、振动给料机、振动输送机等。
这些设备通过振动来实现物料的分离、输送和排放等功能。
2.振动检测与诊断:机械振动可用于检测和诊断装置或系统的故障。
通过监测和分析机械系统的振动特征,可以判断设备是否存在故障、预测故障发生的可能性以及确定故障的类型和位置。
3.振动控制与消除:机械振动在诸多领域中可能会引起一些负面影响,如噪音、损坏和疲劳等。
因此,控制和消除机械振动成为许多工程项目的重点。
采用合适的设计和控制方法,可以有效地减少机械振动,提高设备的性能和使用寿命。
4.振动能量回收:机械振动能量的回收利用成为一种新型的能源开发方式。
通过将机械系统中产生的振动能量转化为电能或其他可用能源,可以提高能源利用效率,减少对传统能源的依赖。
四、机械振动的未来发展与趋势1.智能化发展:随着科技的进步,机械振动领域也逐渐向着智能化、自动化的方向发展。
智能化振动控制系统的出现,将会更加准确地进行振动监测、诊断和控制,提高设备的效率和性能。
2.节能与环保:在全球节能与环保的背景下,减少机械振动对环境和人体健康的影响成为一个重要的课题。
振动技术在工程中的应用
振动技术在工程中的应用一、引言振动技术是一种非常重要的工程技术,在机械、建筑、航空、地震等领域都有广泛的应用。
振动技术可以帮助我们解决许多问题,例如减少噪音、提高机器效率等。
本文将介绍振动技术在工程中的应用。
二、振动技术的基本原理振动是物体沿某一方向周期性运动的现象,其基本特点是周期性和可重复性。
振动的基本参数包括频率、幅值和相位。
频率指单位时间内振动完成的周期数,单位为赫兹(Hz);幅值指物体在振动过程中偏离平衡位置的最大距离;相位指物体在某一时刻相对于平衡位置所处的位置。
三、机械领域中的应用1. 振动筛分振动筛分是利用振荡器产生机械振动,使筛网产生高频微小摆动,从而使物料在筛面上快速分层分离的过程。
这种方法可以有效地提高筛分效率,并且可以适用于各种不同颗粒大小和形状的物料。
2. 振动加工振动加工是利用振动器产生机械振动,使加工件在加工过程中得到有效的冲击和摩擦力,从而提高加工效率和质量。
振动加工可以适用于各种材料的加工,例如金属、陶瓷、塑料等。
四、建筑领域中的应用1. 振动隔离振动隔离是一种通过改变建筑物结构或使用隔震装置来减少地震、风力等外部因素对建筑物造成的影响的方法。
这种方法可以有效地保护建筑物和其中的人员财产安全。
2. 声学优化振动技术可以帮助我们优化建筑声学效果,例如减少噪音、提高声音品质等。
通过在建筑结构中添加吸音材料或使用特殊设计的墙面和天花板,可以有效地降低室内噪音水平。
五、航空领域中的应用1. 振动测试振动测试是一种通过对航空器进行机械振动测试来检测其结构是否牢固、是否存在缺陷等问题的方法。
这种方法可以帮助我们保证航空器的安全性和可靠性。
2. 振动控制振动控制是一种通过在航空器结构中添加振动控制系统来减少其在飞行过程中受到的机械振动影响的方法。
这种方法可以有效地提高航空器的稳定性和安全性。
六、地震领域中的应用1. 地震预测振动技术可以帮助我们对地震进行预测,例如通过对地表振动信号进行分析来判断地震是否即将发生。
机械振动的基本原理及应用
机械振动的基本原理及应用机械振动是指物体在离平衡位置产生周期性的运动。
它是自然界中普遍存在的物理现象,同时也是现代工程领域中不可或缺的基本理论。
机械振动的基本原理可以用简谐振动模型来说明,下面我们就来详细了解一下机械振动的基本原理及其应用。
一、机械振动的基本原理机械振动的基本原理可以通过简谐振动模型来说明,简谐振动是指物体在一个固定位置上周期性地来回运动。
在简谐振动模型中,物体受到的外力可以表示为一个正弦函数的形式,即F(t) = Fmsin(ωt)。
其中Fm代表振幅,ω代表角频率,t代表时间。
当物体受到的外力为这种形式时,它就会产生周期性的简谐振动。
在简谐振动中,振幅、频率、周期、角速度、频率与周期之间的关系以及振幅的减小等都是需要特别关注的因素。
振幅是指物体振动的最大偏移量,频率是指单位时间内振动的次数,周期是指一个完整振动所需的时间。
角速度是指单位时间内物体运动的角度,频率和周期和角速度之间的关系为ω = 2πf = 2π/T。
而振幅的减小则是由于机械能损失所导致的,随着时间的推移,振幅会逐渐减小,直到物体停止振动。
二、机械振动的应用机械振动在现代工程领域中有着广泛的应用,以下介绍其中几个方面。
1.机械制造:机械振动在机械制造过程中有着重要的应用,可以用来检测机械零部件的磨损程度或存在的故障。
通过在装配前对机械零部件进行振动测试,可以及时发现存在问题的零部件,并及时更换、修理,避免出现生产事故。
2.建筑工程:在建筑工程中,振动也有着重要的应用。
比如在高层建筑中,为了保证建筑结构的稳定性,需要对建筑结构进行振动测试,以确保整个建筑物可以承受强风、地震等自然灾害的影响。
此外,在桥梁工程中,也需要对桥梁结构进行振动测试,以确保桥梁在不同负荷下的震动能力。
3.机器设备:在机器设备领域中,机械振动同样有着广泛的应用。
比如在车辆制造领域中,需要对汽车的悬挂系统、发动机等进行振动测试,以检测车辆性能是否符合国家标准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械振动的利用
机械振动,也简称为振动,物理学上是这样给它定义的:物体在平衡位置附近做往复运动的运动。
在现实生活中我们能看到很多机械都是运用机械振动这一学说理论来建造出来的。
比如筛分设备、输送设备、给料设备、粉碎设备等等机械设备都是将理论运用到现实生活中的结果。
以下我就举些例子来加以说明机械振动具体得在哪些产品中运用到了。
先说说筛分设备,筛分设备是机械振动在现实生活中运用的最多的产品。
比如热矿筛、旋振筛、脱水筛等各种各样的筛分设备。
顾名思义,筛分设备就是运用振动的知识和筛分部件将不同大小不同类型的物品区分开来,以减少劳动力和提到生产效率。
例如:热矿筛采用带偏心块的双轴激振器,双轴振动器两根轴上的偏心块由两台电动机分别带动做反向自同步旋转,使筛箱产生直线振动,筛体沿直线方向作周期性往复运动,从而达到筛分目的。
又如南方用的小型水稻落谷机,机箱里有一块筛网,由发动机带动连杆做往复运动,当水稻连同稻草落入筛网的时候,不停的振动会让稻谷通过筛网落入机箱存谷槽,以实现稻谷与稻草的分离,减少人力资源,提高了农业效率。
输送设备运用到机械振动也是很多的。
比如:螺旋输送机、往复式给料机、振动输送机、买刮板输送机等输送设备。
输送设备就是将物体从一个地方通过输送管道输送到另一个地方的设备,以节约人力资源,提高生产效率。
例如:广泛用于冶金、煤炭、建材、化工等行业中粉末状及颗粒状物料输送的振动输送机,采用电动机作为优质动源,使物料被抛起的同时通过输送管道做向前运动,达到输送的目的。
给料设备在某种程度上与输送设备有共同之处,例如:振动给料机、单管螺旋喂料机、振动料斗等设备。
就拿振动料斗来说吧,振动料斗是一种新型给料设备,安装在各种料仓下部,通过振动使物料活化,能够有效消除物料的起拱,堵塞和粘仓现象,解决料仓排料难的问题。
以下我就举例来说明下。
一、机械震动在铸造生产中的利用
1)分选及混合振动机
由于振动筛分在筛分过程中各个物料颗粒均处于运动状态,且在筛面上作抛掷运动,因而筛分效率高,故在砂处理系统中基本上都采用振动筛。
但目前所用的振动筛基本上只有直线振动筛和单轴圆振动两种机型,这两种筛子适用于新砂和水分不高的旧砂筛分。
振动筛是一种多行业、用途广泛的筛分设备,在一定的条件下它在砂处理中的应用更显示出其优越性。
目前国内砂处理线上应用的多是中小型振动筛,国外已有每小时处理旧砂能力达700吨的直线振动筛。
2)冷却及烘干振动机
以对流传热方式为主的冷却和烘干机的工作原理是相同的,即促进物料与气流的充分接触而进行热交换。
仅以热交换的条件来看,搅拌式冷却器内运转时只有部分物料处于动态,且搅拌摩擦所产生的部分热量又会传给物料。
且在振动过
程中全部物料均处于动态,且自上而下的各料层之间的冲击速度递减,这不仅使总料层厚度膨胀,且越接近振动床面的料层间隙越大,有利于气流通过,为热交换创造了条件。
我国在振动流态化烘干及冷却技术方面曾进行过许多研究工作,自二十世纪七十年代初在北京玛钢厂使用以来也积累了不少经验。
但由于沸腾板的结构、振动机运行的稳定可靠性及气流自动控制等问题尚未很好地解决,因而影响了该技术的开发和应用。
国外近年来已把流态化振动冷却机作为旧砂再生系统的一种高效能设备,砂处理量从15t/h到700t/h。
3)振动清理及时效处理
振动清理及时效处理,在国外铸件清理机械基本上每隔十年就有一个新的突破性发展.从二十世纪60年代的间歇式抛丸滚筒,到70年代的匪续抛丸清理滚筒、80年代的振动抛丸清理滚筒,90年代发展为振动连续抛丸清理滚筒。
无论从设备还是从清理工艺来看,振动连续抛丸清理部具有显著的特点和优点,铸件轴向运动的同时做高速翻转,且其速度可随零件要求的不同而进行调节,因而铸件的各个部位都可得到很好地清理。
既可单个铸件依次进入滚筒进行清理,也可大小不同的铸件混合清理;既适合于发动机一类的短铸件的清理,也适合曲轴一类长铸件的清理。
从清理质量和效益来看,振动连续抛丸清理是很有发展前途的清理技术。
二、机械振动在土木工程中的利用
1)地基振动压实技术
地基振动压实是在动荷载作用下强迫土体振动,以降低土粒之间摩擦力且使之“液化”,削弱土粒之间的力学联系,并在一定的超载压力或土体自重力作用下,排出土体中部分孔隙水和气体,降低土体的孔隙度且使土粒重新排列,从而达到压实地基且改善其承载性能的目的。
2)振动打桩技术
振动打桩技术的工作机理是通过桩体将振源的动能传递给土体,强迫土体产生振动、土粒在振动激励下摩擦力减少,在桩自重力和激振力的共同作用下把桩沉入地基中
3)地基加固振冲技术
振冲技术是软土地基加固的重要手段之一。
振动器工作时,土体发生“液化”现象,使土的结构重新调整、土粒重新排列,从而显著降低土的孔隙度、提高其密实度而达到加固地基的目的。
振冲加固砂土地基主要是减小土的孔隙率、提高其相对密度,砂土地基振冲加固后的相对密度可达92%~95%,振冲加固粘土地基主要是形成碎石桩,与周围土体形成“复合地基”,并使粘土排水固结,
以提高地基的承载力。
三、机械振动在医疗诊断中的利用
1)振动治疗是一种古老的物理疗法,但是迄今为止,尚没有人全面论述过这一治疗方法,没有归纳成为一类正规的医疗体系。
分类:依据产生振动的能源、振动本身的物理性质、对人体的作用范围等,简要归纳如下:
机械振动疗法:因机械原因产生的振动,如偏t2,轮振动器、电磁振动器、手法产生的振动等。
电致振动疗法:因交变电流产生的振动,如低频电流导致的肌纤维颤动。
磁致振动疗法:因交变磁场产生的振动。
自主振动疗法:有人体自身引起的振动,如跳动、肌肉过度紧张性颤动(用力过度)引起的振动。
适应证
已知机械振动疗法的主要适应证有:①呼吸系统:老年慢性支气管炎、慢性阻塞性肺疾病、支气管哮喘、胸部(心、肺)手术后呼吸困难等。
②心血管系统:高血压、心肌病(心肌肥大、心力衰竭)等的辅助治疗。
⑧消化系统:老年性消化不良、便秘、胆囊炎、胆道结石等。
⑧泌尿系统:泌尿系结石(肾结石)、炎症等的辅助治疗。
⑥皮肤:可用于疤痕软化等的辅助治疗。
⑥骨关节系统:骨折、骨质疏松、关节挛缩、肌肉(肌腱)等软组织损伤、肌肉疲劳综合征(运动过度)、肌肉痉挛、腰痛(姿势性)、肩关节周围炎、颈椎病等。
⑦神经系统:特发性射精障碍、脊髓损伤后射精障碍、周围神经损伤后遗浅感觉障碍、空间忽略症等。
⑧其他:肥胖症、慢性疲劳征等的辅助治疗”。
2)振动用于诊断
振动用于诊断的实例,较为经典的有用于测量听力及本体感觉等的音叉试验,较为新型的是利用一种振动测量计,测量振动的感觉阈,或研究感觉缺失的量,且因为它测量范围广、可信度高,对研究、记录严重神经病变的发展情况很有意义。
特别是糖尿病性神经病变时,由于生物感觉阈计只能用于轻到中度神经病变的检测,而此时最大感觉阈值已超出了其测量范围,因此,振动测量计应用于诊断更具优越性。
近年还有利用振动刺激试验来辅助评价胎儿在宫内的状态,提高产前胎儿监护质量。
四、小结
总而言之,机械振动在现实生活生产中的应用是多种多样的,有的是直接应用,有的是间接应用。
总之,科学的力量是强大的,只有把科学转变为科技才能造化人类,造福社会。
机械振动不论在工程技术方面还是生活应用方面都起了越
来越重要的作用,但目前国内振动的研究与国外还有差距,随着科学技术的发展,机械振动学的地位越来越高。
本人认为今后应加大对机械振动的研究力度,以期振动在生产生活中发挥更大的作用。