高中物理【机械振动】知识点、规律总结

合集下载

高二物理机械振动知识点总结

高二物理机械振动知识点总结

高二物理机械振动知识点总结高二物理“机械振动和机械波”这一章是非重点章,下面是店铺给大家带来的高二物理机械振动知识点总结,希望对你有帮助。

高二物理机械振动知识点一、机械振动:物体在平衡位置附近所做的往复运动,叫机械振动。

1、平衡位置:机械振动的中心位置;2、机械振动的位移:以平衡位置为起点振动物体所在位置为终点的有向线段;3、回复力:使振动物体回到平衡位置的力;(1)回复力的方向始终指向平衡位置;(2)回复力不是一重特殊性质的力,而是物体所受外力的合力;4、机械振动的特点:(1)往复性; (2)周期性;二、简谐运动:物体所受回复力的大小与位移成正比,且方向始终指向平衡位置的运动;(1)回复力的大小与位移成正比;(2)回复力的方向与位移的方向相反;(3)计算公式:F=-Kx;如:音叉、摆钟、单摆、弹簧振子;三、全振动:振动物体如:从0出发,经A,再到O,再到A/,最后又回到0的周期性的过程叫全振动。

例1:从A至o,从o至A/,是一次全振动吗?例2:振动物体从A/,出发,试说出它的一次全振动过程;四、振幅:振动物体离开平衡位置的最大距离。

1、振幅用A表示;2、最大回复力F大=KA;3、物体完成一次全振动的路程为4A;4、振幅是表示物体振动强弱的物理量;振幅越大,振动越强,能量越大;五、周期:振动物体完成一次全振动所用的时间;1、T=t/n (t表示所用的总时间,n表示完成全振动的次数)2、振动物体从平衡位置到最远点,从最远点到平衡为置所用的时间相等,等于T/4;六、频率:振动物体在单位时间内完成全振动的次数;1、f=n/t;2、f=1/T;3、固有频率:由物体自身性质决定的频率;七、简谐运动的图像:表示作简谐运动的物体位移和时间关系的图像。

1、若从平衡位置开始计时,其图像为正弦曲线;2、若从最远点开始计时,其图像为余弦曲线;3、简谐运动图像的作用:(1)确定简谐运动的周期、频率、振幅;(2)确定任一时刻振动物体的位移;(3)比较不同时刻振动物体的速度、动能、势能的大小:离平衡位置跃进动能越大、速度越大,势能越小;(4)判断某一时刻振动物体的运动方向:质点必然向相邻的后一时刻所在位置运动4、作受迫振动的物体的振动频率等于驱动力的频率与其固有频率无关;物体发生共振的条件:物体的固有频率等于驱动力的频率;八、单摆:用一轻质细绳一端固定一小球,另一端固定在悬点的装置。

高中物理-机械振动

高中物理-机械振动

x/m
0.5
0
1
23
45 6
t/s
–0.5
1、物理意义:描述振动物体的位移随时间变化的规律 2、特点:是一条正弦(或余弦)函数图象
图象演示1 图象演示2
3、图象包含信息 x/m
0.5
0
t/s
–0.5
•读:A、T、各时刻位移x •判: ①各时刻F、a、速度v的方向
②某段时间内x、F、a、v、Ek、Ep、P 的变化情况
①计时器——摆钟(走时如何调整) ②测重力加速度 g = 4π2L / T2
摆钟
例3、一单摆在山脚下时,在一定时间内振动了N次,将 此单摆移至山顶上时,在相同时间内振动了(N–1)次, 则此山高度约为地球半径的多少倍?
1/(N–1)
▪类单摆
θ
Lθ1
L
L2
L2 L1

a q+
E
a
E
q+
例4、有一摆长为的单摆,悬点正下方某处有一小钉,当
如何?
例7、如图所示,将小球甲、乙、丙(者可视为质点)分
别从A、B、C三点由静止同时释放,最后都到达竖直面内
圆弧的最低点D,其中甲是从圆心A出发做自由落体运动,
乙沿弦轨道从一端B
到达另一端D,丙沿圆弧
轨道从C点运动到D点,
BA
且C点很靠近D点,如果
忽略一切摩擦阻力,那 么下列判断正确的是( A )
摆球经过平衡位置向左摆动时,摆线上部将被小钉挡住,
使摆长发生变化,现合摆球做小幅度摆动,摆球从右边最
高点M至左边最高点N运动过程的闪光照片,如图所示(悬
点和小钉未被摄入),P为摆动点的最低点,已知每相邻
两次闪光的时间间隔相等,由此可知,小钉与悬点的距离

高中物理必修三 讲义 17 A机械振动 基础版

高中物理必修三 讲义 17 A机械振动 基础版

机械振动考点一简谐运动的规律简谐运动1.定义:如果物体在运动方向上所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动.2.平衡位置:物体在振动过程中回复力为零的位置.3.回复力(1)定义:使物体在平衡位置附近做往复运动的力.(2)方向:总是指向平衡位置.(3)来源:属于效果力,可以是某一个力,也可以是几个力的合力或某个力的分力.技巧点拨例题精练1.(多选)一弹簧振子做简谐运动,则以下说法正确的是()A.振子的加速度方向始终指向平衡位置B.已知振动周期为T,若Δt=T,则在t时刻和(t+Δt)时刻振子运动的加速度一定相同C.若t时刻和(t+Δt)时刻弹簧的长度相等,则Δt一定为振动周期的整数倍D.振子的动能相等时,弹簧的长度不一定相等2.如图1所示,弹簧振子B上放一个物块A,在A与B一起做简谐运动的过程中,下列关于A受力的说法中正确的是()图1A.物块A受重力、支持力及弹簧对它的恒定的弹力B.物块A受重力、支持力及弹簧对它的大小和方向都随时间变化的弹力C.物块A受重力、支持力及B对它的恒定的摩擦力D.物块A受重力、支持力及B对它的非恒定的摩擦力考点二简谐运动图象的理解和应用简谐运动的图象1.物理意义:表示振子的位移随时间变化的规律,为正弦(或余弦)曲线.2.简谐运动的图象(1)从平衡位置开始计时,把开始运动的方向规定为正方向,函数表达式为x=A sin_ωt,图象如图2甲所示.图2(2)从正的最大位移处开始计时,函数表达式为x=A cos_ωt,图象如图乙所示.技巧点拨1.从图象可获取的信息图3(1)振幅A、周期T(或频率f)和初相位φ0(如图3所示).(2)某时刻振动质点离开平衡位置的位移.(3)某时刻质点速度的大小和方向:曲线上各点切线的斜率的大小和正负分别表示各时刻质点的速度大小和方向,速度的方向也可根据下一相邻时刻质点的位移的变化来确定.(4)某时刻质点的回复力和加速度的方向:回复力总是指向平衡位置,回复力和加速度的方向相同.(5)某段时间内质点的位移、回复力、加速度、速度、动能和势能的变化情况.2.简谐运动的对称性(如图4)图4(1)相隔Δt =(n +12)T (n =0,1,2…)的两个时刻,弹簧振子的位置关于平衡位置对称,位移等大反向(或都为零),速度等大反向(或都为零),加速度等大反向(或都为零).(2)相隔Δt =nT (n =1,2,3…)的两个时刻,弹簧振子在同一位置,位移、速度和加速度都相同. 例题精练3.(多选)一个质点以O 为中心做简谐运动,位移随时间变化的图象如图5,a 、b 、c 、d 表示质点在不同时刻的相应位置.下列说法正确的是( )图5A.质点通过位置c 时速度最大,加速度为零B.质点通过位置b 时,相对平衡位置的位移为A2C.质点从位置a 到位置c 和从位置b 到位置d 所用时间相等D.质点从位置a 到位置b 和从位置b 到位置c 的平均速度相等E.质点通过位置b 和通过位置d 时速度方向相同,加速度方向相反4.(多选)某质点做简谐运动,其位移与时间的关系式为x =3sin (2π3t +π2) cm ,则( )A.质点的振幅为3 cmB.质点振动的周期为3 sC.质点振动的周期为2π3sD.t =0.75 s 时刻,质点回到平衡位置考点三 单摆及其周期公式1.定义:如果细线的长度不可改变,细线的质量与小球相比可以忽略,球的直径与线的长度相比也可以忽略,这样的装置叫作单摆.(如图6)图62.视为简谐运动的条件:θ<5°.3.回复力:F =G 2=G sin θ.4.周期公式:T =2πl g. (1)l 为等效摆长,表示从悬点到摆球重心的距离. (2)g 为当地重力加速度.5.单摆的等时性:单摆的振动周期取决于摆长l 和重力加速度g ,与振幅和振子(小球)质量无关. 技巧点拨 单摆的受力特征(1)回复力:摆球重力沿与摆线垂直方向的分力,F 回=mg sin θ=-mgl x =-kx ,负号表示回复力F 回与位移x 的方向相反.(2)向心力:摆线的拉力和摆球重力沿摆线方向分力的合力充当向心力,F 向=F T -mg cos θ. (3)两点说明①当摆球在最高点时,F 向=0,F T =mg cos θ.②当摆球在最低点时,F 向=m v max 2l ,F 向最大,F T =mg +m v max 2l .例题精练5.(多选)关于单摆,下列说法正确的是( ) A.将单摆由沈阳移至广州,单摆周期变大 B.将单摆的摆角从4°改为2°,单摆的周期变小 C.当单摆的摆球运动到平衡位置时,摆球的速度最大 D.当单摆的摆球运动到平衡位置时,受到的合力为零考点四 受迫振动和共振1.受迫振动(1)概念:系统在驱动力作用下的振动.(2)振动特征:物体做受迫振动达到稳定后,物体振动的频率等于驱动力的频率,与物体的固有频率无关.2.共振(1)概念:当驱动力的频率等于固有频率时,物体做受迫振动的振幅最大的现象.(2)共振的条件:驱动力的频率等于固有频率.(3)共振的特征:共振时振幅最大.(4)共振曲线(如图7所示).图7f=f0时,A=A m,f与f0差别越大,物体做受迫振动的振幅越小.技巧点拨简谐运动、受迫振动和共振的比较技巧点拨6.(多选)一个单摆在地面上做受迫振动,其共振曲线(振幅A与驱动力频率f的关系)如图8所示,则()图8A.此单摆的固有周期为2 sB.此单摆的摆长约为1 mC.若摆长增大,单摆的固有频率增大D.若摆长增大,共振曲线的峰将向左移动7.(多选)如图9所示为受迫振动的演示装置,在一根张紧的绳子上悬挂几个摆球,可以用一个单摆(称为“驱动摆”)驱动另外几个单摆.下列说法正确的是()图9A.某个单摆摆动过程中多次通过同一位置时,速度可能不同但加速度一定相同B.如果驱动摆的摆长为L,则其他单摆的振动周期都等于2πL gC.驱动摆只把振动形式传播给其他单摆,不传播能量D.如果某个单摆的摆长等于驱动摆的摆长,则这个单摆的振幅最大综合练习一.选择题(共18小题)1.(宝山区校级期中)质点运动的位移x与时间t的关系如图所示,其中不属于机械振动的是()A.B.C.D.2.(东安区校级期末)关于简谐振动,下列说法中正确的是()A.回复力跟位移成正比,方向有时跟位移相同,有时跟位移方向相反B.加速度跟位移成正比,方向永远跟位移方向相反C .速度跟位移成反比,方向跟位移有时相同有时相反D .加速度跟回复力成反比,方向永远相同 3.(静安区二模)简谐运动属于( ) A .匀速运动B .匀加速运动C .匀变速运动D .变加速运动4.(和平区校级期末)如图所示,弹簧振子上下振动,白纸以速度v 向左匀速运动,振子所带墨笔在白纸上留下如图曲线,建立如图所示坐标,y 1、y 2、x 0、2x 0为纸上印迹的位置坐标,则( )A .该弹簧振子的振动周期为2x 0B .该弹簧振子的振幅为y 1C .该弹簧振子的平衡位置在弹簧原长处D .该弹簧振子的圆频率为πv x 05.(思明区校级期中)下列关于简谐振动的说法错误的是( ) A .物体在1个周期内通过的路程是4个振幅 B .物体在12个周期内通过的路程是2个振幅C .物体在32个周期内通过的路程是6个振幅D .物体在14个周期内通过的路程是1个振幅6.(思明区校级期中)一个质点做简谐运动的位移x 与时间t 的关系如图所示,由图可知( )A .频率是2HzB.振幅是5cmC.t=7.5s时的加速度最大D.t=9s时质点所受的合外力为零7.(思明区校级期中)一个质点在水平方向上做简谐运动的位移随时间变化的关系是x=5sin5πtcm,则下列判断正确的是()A.该简谐运动的周期是0.2sB.头1s内质点运动的路程是100cmC.0.4s到0.5s内质点的速度在逐渐减小D.t=0.6s时刻质点的动能为08.(六合区校级期末)在水平方向上做简谐运动的弹簧振子如图所示,受力情况是()A.重力、支持力和弹簧的弹力B.重力、支持力、弹簧弹力和回复力C.重力、支持力和回复力D.重力、支持力、摩擦力和回复力9.(日照期中)一弹簧振子做简谐运动,周期为T()A.若t时刻和(t+△t)时刻振子位移大小相等、方向相同,则△t一定等于T的整数倍B.若t时刻和(t+△t)时刻振子运动速度大小相等、方向相反,则△t一定等于T2的整数倍C.若△t=T2,则在t时刻和(t+△t)时刻振子运动的加速度大小一定相等D.若△t=T2,则在t时刻和(t+△t)时刻弹簧的长度一定相等10.(台江区校级期中)对单摆在竖直面内做简谐运动,下面说法中正确的是()A.摆球的回复力是它所受的合力B.摆球所受向心力处处相同C.摆球经过平衡位置时所受合外力为零D.摆球经过平衡位置时所受回复力为零11.(淮安月考)一单摆做简谐运动,在偏角增大的过程中,摆球的()A.位移增大B.速度增大C.回复力减小D.机械能减小12.(烟台期末)将一单摆的周期变为原来的2倍,下列措施可行的是( ) A .只将摆球的质量变为原来的12B .只将摆长变为原来的2倍C .只将摆长变为原来的4倍D .只将振幅变为原来的2倍13.(虹口区二模)某小组利用单摆测定当地重力加速度,最合理的装置是( )A .B .C .D .14.(南京模拟)某同学做“用单摆测定重力加速度”的实验时,下列做法正确的是( ) A .摆线要选择伸缩性大些的,并且尽可能短一些 B .摆球要选择质量大些、体积小些的 C .摆长一定的情况下,摆的振幅尽量大D .拉开摆球,在释放摆球的同时开始计时,当摆球回摆到开始位置时停止计时,记录的时间作为单摆周期的测量值15.(金山区二模)若单摆的摆长变大,摆球的质量变大,摆球离开平衡位置的最大摆角不变,则单摆振动的()A.周期不变,振幅不变B.周期不变,振幅变大C.周期变大,振幅不变D.周期变大,振幅变大16.(红桥区期末)做阻尼运动的弹簧振子,它的()A.周期越来越小B.位移越来越小C.振幅越来越小D.机械能保持不变17.(红桥区期中)弹簧上端固定,下端挂有一只条形磁铁,使磁铁上下做简谐运动,若在振动过程中把线圈靠近磁铁,如图所示,观察磁铁的振幅,将会发现()A.S闭合或断开时,振幅的变化相同B.S闭合时振幅逐渐增大,S断开时振幅不变C.S闭合时振幅减小,S断开时振幅不变D.S闭合或断开时,振幅不会变化18.(丰台区期中)如图所示,在一根张紧的水平绳上悬挂有五个摆,其中A、E的摆长相等。

机械振动概念、知识点总结

机械振动概念、知识点总结

机械振动概念、知识点总结1、机械振动:物体在平衡位置附近的往复运动。

例1:乒乓球在地面上的来回运动属于往复运动,不属于机械振动。

因为:乒乓球没有在平衡位置附近做往复运动。

(1)平衡位置:①物体所受回复力为零的位置。

②振动方向上,合力为零的位置。

③物体原来静止时的位置。

(2)机械振动的平衡位置不一定是振动范围的中心。

(3)机械振动的位移:以平衡位置为起点,偏离平衡位置的位移。

(4)回复力:沿振动方向,指向平衡位置的合力。

①回复力是某些性质力充当了回复力,所以回复力是效果力,不是性质力。

②回复力与合外力的关系: 直线振动(如弹簧振子):回复力一定等于振子的合外力,也就是说,振子的合外力全部充当回复力。

曲线振动(如单摆):回复力不一定等于振子的合外力。

③平衡位置,回复力为零。

例2:判断:机械振动中,振子的平衡位置是合外力(加速度)为零的位置。

答:错误。

正例:弹簧振子的平衡位置是合外力为零的位置。

反例:单摆中,小球的最低点为平衡位置,回复力为零, 但合外力为:2mv F F T mg L==-=合向 最低点时,小球速度最大,0v ≠,所以0F ≠合2、简谐运动(简谐运动是变加速运动,不是匀变速运动) (1)简谐运动定义:①位移随时间做正弦变化②回复力与位移的关系: F 回=-kx ,即:回复力大小与位移大小成正比。

(2)F 回,x ,v 的关系①F 回与x 的大小成正比,方向总是相反。

(F 回总是指向平衡位置,x 总是背离平衡位置) ②v 的大小与F 回,x 反变化,但方向无联系。

振动范围的两端:F 回,x 最大,v=0,最小 平衡位置: F 回=0,x =0最小,v 最大例3:判断:简谐振动加速度大小与位移成正比 答:错误。

正例:弹簧振子的F 合=F 回=-kx ,a=F 合/m=-kx/m ,a 与位移大小成正比反例:单摆中,小球在平衡位置时,位移为零,但0F ≠合,0a ≠,a 与位移大小不成正比。

高中物理 机械振动

高中物理 机械振动

高中物理机械振动机械振动是物理学中一个重要的概念,它在日常生活中有着广泛的应用。

从钟摆的摆动到汽车的悬挂系统,机械振动无处不在。

在高中物理课程中,学生将会学习关于机械振动的原理、特性以及相关的数学模型。

本文将介绍机械振动的基本概念,帮助读者更好地理解这一重要的物理现象。

一、机械振动的定义机械振动是物体围绕某一平衡位置以一定规律作往复或周期性运动的现象。

当物体受到外力作用时,会发生形变,从而产生振动。

例如,当一个弹簧挂上一个质点并受到拉伸后突然放开,弹簧会产生振动,这就是一种典型的机械振动现象。

二、机械振动的特性1.周期性:机械振动具有周期性,即物体围绕平衡位置做往复运动的时间间隔是固定的。

2.频率:振动的频率是指单位时间内振动的次数,通常用赫兹(Hz)来表示。

频率与振动周期成反比,频率越高,周期越短。

3.振幅:振动的振幅是指物体从平衡位置最大偏离的距离,振幅越大,振动的幅度就越大。

4.阻尼:阻尼是影响振动的一个重要因素,它会使振动逐渐减弱并最终停止。

可以通过增加摩擦力或其他方法来增加阻尼。

5.共振:共振是指当外力的频率与物体的固有频率相匹配时,物体会发生共振现象,振幅增大,甚至导致破坏。

三、机械振动的数学模型在高中物理课程中,学生将接触到机械振动的数学模型,其中最基本的就是简谐振动。

简谐振动是一种最简单的机械振动形式,其运动规律可以用正弦函数来描述。

对于简谐振动,有以下几个重要的物理量:1.位移(x):物体离开平衡位置的距离。

2.速度(v):物体运动的速度,与位移的导数有关。

3.加速度(a):物体运动的加速度,与速度的导数有关。

根据牛顿第二定律和胡克定律,可以建立简谐振动的运动方程:\[ m \cdot \frac{d^2x}{dt^2} = -kx \]其中,\( m \) 为物体的质量,\( k \) 为弹簧的劲度系数,\( x \) 为位移,\( t \) 为时间。

通过解微分方程,可以得到简谐振动的解析解,包括位移、速度和加速度随时间的变化规律。

高中物理机械振动知识点汇总

高中物理机械振动知识点汇总

机械振动. 重点、难点解析(一)机械振动物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。

回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。

产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。

b、阻力足够小。

(二)简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。

简谐振动是最简单,最基本的振动。

研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。

因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。

2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。

3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。

(三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。

1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。

2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。

振动的周期T跟频率f之间是倒数关系,即T=1/f。

振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。

(四)单摆:摆角小于5°的单摆是典型的简谐振动。

高三物理《机械振动》必备知识点

高三物理《机械振动》必备知识点

高三物理《机械振动》必备知识点
1.简谐振动F=-kx{F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π1/2{l:摆长,g:当地重力加速度值,成立条件:摆角θ&lt;100;l&gt;&gt;r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5.机械波、横波、纵波〔见第二册P2〕
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速0℃:332m/s;20℃:344m/s;30℃:349m/s;
8.波发生明显衍射条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同
0.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}
注:
物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是
波峰与波谷相遇处;
波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
干涉与衍射是波特有的;
振动图象与波动图象;
其它相关内容:超声波及其应用。

(完整版)机械振动和机械波知识点总结

(完整版)机械振动和机械波知识点总结

机械振动 考点一 简谐运动的描述与规律1. 机械振动:物体在平衡位置附近所做的往复运动,简称振动。

回复力是指振动物体所受的总是指向平衡位置的合外力。

回复力是产生振动的条件,它使物体总是在平衡位置附近振动。

它属于效果力,其效果是使物体再次回到平衡位置。

回复力可以是某一个力,也可以是几个力的合力或某个力的分力。

平衡位置是指物体所受回复力为零的位置!2.简谐运动: 物体在跟位移大小成正比并且总是指向平衡位置的回复力作用下的振动。

简谐运动属于最简单、最基本的振动形式,其振动过程关于平衡位置对称,是一种周期性的往复运动。

例如弹簧振子、单摆。

注: (1)描述简谐运动的物理量①位移x :由平衡位置指向振动质点所在位置的有向线段,是矢量.②振幅A :振动物体离开平衡位置的最大距离,是标量,它表示振动的强弱.③周期T 和频率f :物体完成一次全振动所需的时间叫做周期,而频率则等于单位时间 内完成全振动的次数.它们是表示振动快慢的物理量,二者互为倒数关系:T =1/f. (2)简谐运动的表达式①动力学表达式:F =-kx ,其中“-”表示回复力与位移的方向相反.②运动学表达式:x =A sin (ωt +φ),其中A 代表振幅,ω=2πf 表示简谐运动的快慢, (ωt +φ)代表简谐运动的相位,φ叫做初相.(可借助于做匀速圆周运动质点在水平方向的投影理解)(3)简谐运动的运动规律①变化规律:位移增大时⎩⎪⎨⎪⎧回复力、加速度增大⎭⎬⎫速度、动能减小势能增大机械能守恒振幅、周期、频率保持不变注意:这里所说的周期、频率为固有周期与固有频率,由振动系统本身构造决定。

振幅是反映振动强弱的物理量,也是反映振动系统所具备能量多少的物理量。

②对称规律:I 、做简谐运动的物体,在关于平衡位置对称的两点,回复力、位移、加速度具有等大反向的关系,另外速度的大小、动能具有对称性,速度的方向可能相同或相反.II 、振动物体来回通过相同的两点间的时间相等,如t BC =t CB ;振动物体经过关于平衡位置对称的等长的两线段的时间相等,如t BC =t B ′C ′,③运动的周期性特征:相隔T 或nT 的两个时刻振动物体处于同一位置且振动状态相同.注意:做简谐运动的物体在一个周期内的路程大小一定为4A ,半个周期内路程大小一定为2A ,四分之一个周期内路程大小不一定为A 。

高中物理机械振动知识点总结

高中物理机械振动知识点总结

一. 教案内容:第十一章机械振动本章知识复习归纳二. 重点、难点解读(一)机械振动物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。

回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。

产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。

b、阻力足够小。

(二)简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。

简谐振动是最简单,最基本的振动。

研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。

因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。

2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。

3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。

(三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。

1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。

2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。

振动的周期T跟频率f之间是倒数关系,即T=1/f。

振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。

(四)单摆:摆角小于5°的单摆是典型的简谐振动。

高中物理机械振动知识点详解和答案

高中物理机械振动知识点详解和答案

九、机械振动一、知识网络二、画龙点睛概念1、机械振动(1)平衡位置:物体振动时的中心位置,振动物体未开始振动时相对于参考系静止的位置,或沿振动方向所受合力等于零时所处的位置叫平衡位置。

(2)机械振动:物体在平衡位置附近所做的往复运动,叫做机械振动,通常简称为振动。

(3)振动特点:振动是一种往复运动,具有周期性和重复性2、简谐运动(1)弹簧振子:一个轻质弹簧联接一个质点,弹簧的另一端固定,就构成了一个弹簧振子。

(2)振动形成的原因①回复力:振动物体受到的总能使振动物体回到平衡位置,且始终指向平衡位置的力,叫回复力。

振动物体的平衡位置也可说成是振动物体振动时受到的回复力为零的位置。

②形成原因:振子离开平衡位置后,回复力的作用使振了回到平衡位置,振子的惯性使振子离开平衡位置;系统的阻力足够小。

(3)振动过程分析振子的运动A→O O→A′A′→O O→A对O点位移的方向向右向左向左向右(4)简谐运动的力学特征①简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫做简谐运动。

②动力学特征:回复力F与位移x之间的关系为F=-kx式中F为回复力,x为偏离平衡位置的位移,k是常数。

简谐运动的动力学特征是判断物体是否为简谐运动的依据。

③简谐运动的运动学特征a=-k m x加速度的大小与振动物体相对平衡位置的位移成正比,方向始终与位移方向相反,总指向平衡位置。

简谐运动加速度的大小和方向都在变化,是一种变加速运动。

简谐运动的运动学特征也可用来判断物体是否为简谐运动。

例题:试证明在竖直方向的弹簧振子做的也是简谐振运动。

证明:设O为振子的平衡位置,向下方向为正方向,此时弹簧形变量为x0,根据胡克定律得x0=mg/k当振子向下偏离平衡位置x时,回复力为F=mg-k(x+x0)则F=-kx所以此振动为简谐运动。

3、振幅、周期和频率⑴振幅①物理意义:振幅是描述振动强弱的物理量。

②定义:振动物体离开平衡位置的最大距离,叫做振动的振幅。

高中物理选修3-4机械振动_机械波_光学知识点(好全)

高中物理选修3-4机械振动_机械波_光学知识点(好全)

机械振动一、基本概念1.机械振动:物体(或物体一部分)在某一中心位置附近所做的往复运动2.回复力F:使物体返回平衡位置的力,回复力是根据效果(产生振动加速度,改变速度的大小,使物体回到平衡位置)命名的,回复力总指向平衡位置,回复力是某几个性质力沿振动方向的合力或是某一个性质力沿振动方向的分力。

(如①水平弹簧振子的回复力即为弹簧的弹力;②竖直悬挂的弹簧振子的回复力是弹簧弹力和重力的合力;③单摆的回复力是摆球所受重力在圆周切线方向的分力,不能说成是重力和拉力的合力)3.平衡位置:回复力为零的位置(物体原来静止的位置)。

物体振动经过平衡位置时不一定处于平衡状态即合外力不一定为零(例如单摆中平衡位置需要向心力)。

4.位移x:相对平衡位置的位移。

它总是以平衡位置为始点,方向由平衡位置指向物体所在的位置,物体经平衡位置时位移方向改变。

5.简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。

(1)动力学表达式为:F= -kxF=-kx是判断一个振动是不是简谐运动的充分必要条件。

凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。

(2)运动学表达式:x=A sin(ωt+φ)(3)简谐运动是变加速运动.物体经平衡位置时速度最大,物体在最大位移处时速度为零,且物体的速度在最大位移处改变方向。

(4)简谐运动的加速度:根据牛顿第二定律,做简谐运动的物体指向平衡位置的(或沿振动方向的)加速度mkxa -=.由此可知,加速度的大小跟位移大小成正比,其方向与位移方向总是相反。

故平衡位置F 、x 、a 均为零,最大位移处F 、x 、a 均为最大。

(5)简谐运动的振动物体经过同一位置时,其位移大小、方向是一定的,而速度方向不一定。

(6)简谐运动的对称性①瞬时量的对称性:做简谐运动的物体,在关于平衡位置对称的两点,回复力、位移、加速度具有等大反向的关系.速度的大小、动能也具有对称性,速度的方向可能相同或相反。

机械振动知识点.

机械振动知识点.

简谐运动及其图象知识点一:弹簧振子(一)弹簧振子如图,把连在一起的弹簧和小球穿在水平杆上,弹簧左端固定在支架上,小球可以在杆上滑动。

小球滑动时的摩擦力可以,弹簧的质量比小球的质量得多,也可忽略。

这样就成了一个弹簧振子。

注意:(1)小球原来的位置就是平衡位置。

小球在平衡位置附近所做的往复运动,是一种机械振动。

(2)小球的运动是平动,可以看作质点。

(3)弹簧振子是一个不考虑阻力,不考虑弹簧的,不考虑振子(金属小球)的的化的物理模型。

(二)弹簧振子的位移——时间图象(1)振动物体的位移是指由位置指向_的有向线段,可以说某时刻的位移。

说明:振动物体的位移与运动学中位移的含义不同,振子的位移总是相对于位置而言的,即初位置是位置,末位置是振子所在的位置。

(2)振子位移的变化规律曲线。

知识点二:简谐运动(一)简谐运动如果质点的位移与时间的关系遵从函数的规律,即它的振动图象(x-t图象)是一条正弦曲线,这样的振动,叫做简谐运动。

简谐运动是机械振动中最简单、最基本的振动。

弹簧振子的运动就是简谐运动。

(二)描述简谐运动的物理量(1)振幅(A)振幅是指振动物体离开位置的距离,是表征振动强弱的物理量。

一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是变的,而位移是时刻在变的。

(2)周期(T)和频率(f)振动物体完成一次所需的时间称为周期,单位是秒(s);单位时间内完成的次数称为频率,单位是赫兹(H Z)。

周期和频率都是描述振动快慢的物理量。

周期越小,频率越大,表示振动得越快。

周期和频率的关系是:(3)相位(φ)相位是表示物体振动步调的物理量,用相位来描述简谐运动在一个全振动中所处的阶段。

(三)固有周期、固有频率任何简谐运动都有共同的周期公式:2T=m是振动物体的,k是回复力系数,对弹簧振子来说k为弹簧的系数。

对一个确定的简谐运动系统来说,m和k都是恒量,所以T和f也是恒量,也就是说简谐运动的周期只由本身的特性决定,与振幅关,只由振子质量和回复力系数决定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 讲 机械振动
一、简谐运动 1.概念:质点的位移与时间的关系遵从_正__弦__函__数___的规律,即它的振动图象(x -t 图象)是一条_正__弦__曲___线__. 2.简谐运动的表达式 (1)动力学表达式:F=___-__k_x__,其中“-”表示回复力与__位__移__的方向相反. (2)运动学表达式:x=Asin(ωt+φ),其中 A 代表振幅,ω=__2_π_f___表示简谐运动的 快慢,(ωt+φ)代表简谐运动的_相__位___,φ 叫做初相.
3.做简谐运动的物体经过平衡位置时,回复力一定为零,但所受合外力不一定为 零,如单摆.
4.物体做受迫振动的频率一定等于驱动力的频率,但不一定等于系统的固有频率, 固有频率由系统本身决定.
考点一 简谐运动的特征
师生互动
受力特征 回复力 F=-kx,F(或 a)的大小与 x 的大小成正比,方向相反
靠近平衡位置时,a、F、x 都减小,v 增大;远离平衡位置时,a、F、x 运动特征
4.周期公式:T=2π
l g.
5.单摆的等时性:单摆的振动周期取决于摆长 l 和重力加速度 g,与振幅和振子(小
球)质量都没有关系.
四、受迫振动及共振
1.受迫振动 (1)概念:物体在_周__期__性___驱动力作用下的振动. (2)振动特征:受迫振动的频率等于_驱__动__力___的频率,与系统的_固__有__频__率___无关. 2.共振 (1)概念:当驱动力的频率等于_固__有__频__率___时,受迫振动的振幅最大的现象. (2)共振的条件:驱动力的频率等于_固__有__频__率___. (3)共振的特征:共振时_振__幅___最大.
受迫振动
共振
由驱动力提供
振动物体获得的能量 最大
机械工作时底座发生的振 共振筛、声音的共鸣


2.对共振的理解 (1)共振曲线:如图所示,横坐标为驱动力频率 f,纵坐标为振幅 A.它直观地反映了 驱动力频率对某固有频率为 f0 的振动系统受迫振动振幅的影响,由图可知,f 与 f0 越接 近,振幅 A 越大;当 f=f0 时,振幅 A 最大.
都增大,v 减小
振幅越大,能量越大.在运动过程中,系统的动能和势能相互转化,机 能量特征
械能守恒
质点的位移、回复力、加速度和速度随时间做周期性变化,变化周期就
周期性特征 是简谐运动的周期 T;动能和势能也随时间做周期性变化,其变化周期为 T 2 关于平衡位置 O 对称的两点,速度的大小、动能、势能相等,相对平衡
振动物体完成一次_全__振__动___所需时间 描述振动的__快__慢__,两者互为倒数:T
振动物体_单__位__时__间___内完成全振动的 次数
=1f
相位
ωt+φ
描述周期性运动在各个时刻所处的 _不__同__状__态___
二、简谐运动的图象 1.物理意义:表示振子的_位__移___随时间变化的规律,为正弦(或余弦)曲线. 2.简谐运动的图象 (1)从平衡位置开始计时,把开始运动的方向规定为正方向,函数表达式为 x= ____A_s_i_n_ω_t________,图象如图甲所示.
对称性特征 位置的位移大小相等;由对称点到平衡位置 O 用时相等
考点二 简谐运动的公式和图象
师生互动
1.简谐运动的公式
(1)简谐运动中位移随时间变化的表达式叫振动方程,一般表示为 x=Asin(ωt+φ).
(2)从平衡位置开始计时,函数表达式为 x=Asin ωt,从最大位移处开始计时,函数
表达式为 x=Acos ωt.
(4)共振曲线(如图所示). f=f0 时,A=__A_m___.f 与 f0 差别越大,物体做受迫振动的振幅_越__小___.
1.简谐运动是机械振动中最简单的一种理想化的振动,并不是所有的振动都是简 谐运动.
2.做简谐运动的物体远离平衡位置运动时,其位移、加速度、回复力均增大,而 速度减小;在关于平衡位置对称的两点,物体的位移、加速度、回复力均大小相等、方 向相反,而速度大小相等、方向可能相反也可能相同.
3.回复力 (1)定义:使物体返回到_平__衡__位__置___的力. (2)方向:时刻指向_平__衡__位__置___. (3)来源:振动物体所受的沿_振__动__方__向___的合力.
4.描述简谐运动的物理量
物理量
定义
意义
振幅 周期
频率
振动质点离开平衡位置的_最__大__距__离___
描述振动的__强__弱__
2.对简谐运动图象的认识 (1)简谐运动的图象是一条正弦或余弦曲线,如图所示.
(2)图象反映了质点的位移随时间变化的规律,不代表质点运动的轨迹.
3.图象信息 (1)由图象可以得出质点做简谐运动的振幅、周期和频率. (2)可以确定某时刻质点离开平衡位置的位移. (3)可以确定某时刻质点回复力、加速度的方向:因回复力总是指向平衡位置,故回 复力和加速度的方向在图象上总是指向 t 轴. (4)确定某时刻质点速度的方向:速度的方向可以通过下一时刻位移的变化来判定, 若下一时刻位移增加,振动质点的速度方向就是远离 t 轴,若下一时刻位移减小,振动 质点的速度方向就是指向 t 轴. (5)比较不同时刻回复力、加速度的大小. (6)比较不同时刻质点的动能、势能的大小.
(2)受迫振动中系统能量的量交换.
考点三 受迫振动和共振
1.自由振动、受迫振动和共振的关系比较
自由振动
受迫振动
受力情况
仅受回复力
受驱动力作用
振动周期 由系统本身性质决定,即 由驱动力的周期或频率决
或频率 固有周期 T0 或固有频率 f0 定,即 T=T 驱或 f=f 驱
师生互动
共振 受驱动力作用 T 驱=T0 或 f 驱=f0
自由振动 振动能量 振动物体的机械能不变 常见例子 弹簧振子或单摆(θ≤5°)
(2)从正的最大位移处开始计时,函数表达式为 x=____A_c_o_s_ω__t______,图象如图乙 所示.
三、单摆
1.定义:在细线的一端拴一个小球,另一端固定在悬点上,如果线的伸缩和质量
都不计,球的直径比线短得多,这样的装置叫做单摆. 2.视为简谐运动的条件:_θ_<_5_°_____.
3.回复力:F=G2=Gsin θ=mlgx.
相关文档
最新文档