最新初三圆的基本性质知识点总结
初三圆知识点
![初三圆知识点](https://img.taocdn.com/s3/m/be856fc2f424ccbff121dd36a32d7375a517c653.png)
初三圆知识点圆是初中数学中非常重要的一个图形,也是中考的重点和热点内容。
下面我们来详细了解一下初三圆的相关知识点。
一、圆的定义圆是平面内到定点的距离等于定长的点的集合。
这个定点称为圆心,定长称为半径。
圆的标准方程为:$(x a)^2 +(y b)^2 = r^2$,其中$(a,b)$为圆心坐标,$r$为半径。
二、圆的性质1、圆的对称性圆是轴对称图形,其对称轴是任意一条通过圆心的直线。
圆是中心对称图形,其对称中心是圆心。
2、垂径定理垂直于弦的直径平分弦且平分弦所对的两条弧。
垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
3、弧、弦、圆心角的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。
4、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。
圆周角定理的推论:同弧或等弧所对的圆周角相等。
半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
三、圆的位置关系1、点与圆的位置关系设点到圆心的距离为$d$,圆的半径为$r$,则有:点在圆外:$d > r$点在圆上:$d = r$点在圆内:$d < r$2、直线与圆的位置关系设圆心到直线的距离为$d$,圆的半径为$r$,则有:直线与圆相离:$d > r$,没有公共点。
直线与圆相切:$d = r$,有一个公共点。
直线与圆相交:$d < r$,有两个公共点。
3、圆与圆的位置关系设两圆的圆心距为$d$,两圆的半径分别为$R$和$r$($R >r$),则有:两圆外离:$d > R + r$,没有公共点。
两圆外切:$d = R + r$,有一个公共点。
两圆相交:$R r < d < R + r$,有两个公共点。
两圆内切:$d = R r$,有一个公共点。
两圆内含:$d < R r$,没有公共点。
四、圆的周长和面积1、圆的周长圆的周长公式为$C = 2\pi r$,其中$\pi$是圆周率,约等于 314,$r$是圆的半径。
九年级圆的知识点讲义
![九年级圆的知识点讲义](https://img.taocdn.com/s3/m/05b0243ccd1755270722192e453610661ed95ad9.png)
九年级圆的知识点讲义1. 什么是圆?圆是平面上所有到一个固定点距离都相等的点的集合。
这个固定点称为圆心,到圆心的距离称为半径。
2. 圆的基本要素圆的基本要素包括圆心、半径、直径、弧和弦。
- 圆心:圆的中心点,用字母O表示。
- 半径:从圆心到圆上任意一点的距离,用字母r表示。
- 直径:穿过圆心的线段,并且两个端点都在圆上,直径的长度是半径的两倍,用字母d表示。
- 弧:圆上两点间的一段弯曲部分。
- 弦:圆上任意两点间直线段。
3. 圆的性质(1)半径相等性质:圆上任意两点之间的半径都相等。
(2)直径长为两倍性质:圆的直径长等于其半径的两倍,即d=2r。
(3)弧长和弧度性质:圆的弧长与圆心角的度数成正比,弧长等于圆周率π乘以半径的长度,用公式l = πr表示。
(4)圆周率π:π是一个无理数,大约等于3.14,用来计算圆的周长和面积。
4. 圆的坐标系表示圆可以在平面直角坐标系中表示为一个方程。
以圆心坐标为(h,k),半径为r的圆表示为:(x - h)² + (y - k)² = r²5. 圆的相关公式和定理(1)周长计算公式:圆的周长等于直径乘以π,或等于2倍半径乘以π,用公式C = πd或C = 2πr表示。
(2)面积计算公式:圆的面积等于半径的平方乘以π,用公式A = πr²表示。
(3)相交弧的性质:当两个圆相交时,它们的相交弧的度数之和等于360度。
(4)切线和半径垂直定理:切线和半径之间的夹角是直角。
6. 圆的应用圆在生活和科学中有广泛的应用,例如建筑结构中的圆形拱门、运动学中的圆周运动、天文学中的星体运动轨迹等等。
以上就是九年级圆的知识点讲义。
希望这份讲义能够帮助你更好地理解和掌握圆的相关知识。
九年级数学圆知识点梳理
![九年级数学圆知识点梳理](https://img.taocdn.com/s3/m/d0390962cec789eb172ded630b1c59eef8c79ad3.png)
九年级数学圆知识点梳理一、圆的定义与特点圆是由平面上离定点(圆心)距离相等的点构成的图形。
圆的特点有:1. 圆心:圆中心点的位置。
2. 半径:连接圆心和圆上任意一点的线段的长度,即半径。
3. 直径:通过圆心的两个点所构成的线段,即直径。
直径的长度是半径的两倍。
4. 弧:连接圆上两点的弧。
5. 圆周:由圆上所有点组成的曲线,也叫圆周。
二、圆的计算公式1. 圆的周长公式:C = 2πr,其中C代表圆的周长,r代表圆的半径。
π取近似值3.14。
2. 圆的面积公式:S = πr²,其中S代表圆的面积,r代表圆的半径。
三、圆的相交关系1. 相离:两个圆没有任何公共点,彼此之间没有交集。
2. 外切:两个圆相切于一点,且外切的圆没有穿过另一个圆。
3. 相交:两个圆有公共点,且相交的圆穿过另一个圆。
4. 内切:一个圆刚好位于另一个圆内部,并且两圆相切于一点。
5. 同心圆:有相同的圆心,但半径不同的圆。
四、圆的性质和定理1. 弧与角度的关系:圆心角是以圆心为顶点的角,圆心角的度数等于其所对应的弧所对角的度数。
2. 弧长公式:弧长等于圆周的$\frac{1}{n}$,其中n是圆周上被划分的几等分,m是圆周上的弧所对应的角的角度。
3. 弧与切线的关系:圆上的切线与切点处的弧垂直。
4. 切线定理:当一条直线与圆相切时,切点与切线的连线垂直于半径。
5. 弦的性质:如果两个弦在圆内或圆外相交,那么穿过内圆或外圆的弦的两边相乘的和等于其他穿过的弦的两边相乘的和。
6. 弧度制:以圆心为顶点的角所对应的弧长与半径的比值等于一个常数,即弧度制。
7. 平行切线定理:平行于切线的直线也是切线。
8. 平行弦定理:当两个弦平行时,两个弦的长度之比等于两个弦所对应的弧的长度之比。
五、圆的应用1. 几何画图:根据已知的圆心、半径、弦、切线等元素要求画出几何图形。
2. 圆的作图:根据已知条件画出满足要求的圆。
3. 物体的运动轨迹:物体在圆周运动时,物体的位置与时间的关系可表示为圆。
圆知识点总结初三
![圆知识点总结初三](https://img.taocdn.com/s3/m/a495a46ae3bd960590c69ec3d5bbfd0a7956d590.png)
圆知识点总结初三
一、基础概念
圆:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。
固定的端点O叫做圆心,线段OA叫做半径。
弧、弦、直径:在圆上,由圆心到圆上任意一点的线段叫做半径,由圆上两点所连成的线段(直径和直径所截得的线段除外),叫做弦,而由圆上两点所截得的线段,叫做直径。
圆周角:顶点在圆上,两边和圆相交的角叫做圆周角。
二、圆的性质
圆的对称性:圆既是中心对称图形,也是轴对称图形。
弦与直径的关系:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。
弦与半径的关系:垂直于弦的半径平分这条弦,并且平分这条弦所对的两条弧。
直径与半径的关系:过圆心且垂直于弦的直径必平分这条弦。
同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
圆心角与圆周角的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
切线与半径的关系:圆的切线垂直于经过切点的半径。
切线长定理:从圆外一点引圆的两条切线,它们的切线长相等。
三、圆的计算
圆的周长公式:C = 2πr,其中r为圆的半径。
圆的面积公式:S = πr²,其中r为圆的半径。
扇形面积公式:扇形面积= (θ/360)πr²,其中θ为扇形的圆心角(单位为度),r为圆的半径。
九年级圆的知识点总结
![九年级圆的知识点总结](https://img.taocdn.com/s3/m/2b31a219c950ad02de80d4d8d15abe23482f03b2.png)
九年级圆的知识点总结一、圆的基本定义1. 圆的定义:平面上所有与给定点(圆心)距离相等的点的集合。
2. 圆心(O):圆心是圆的中心点,所有圆上的点到圆心的距离都等于半径。
3. 半径(r):圆心到圆上任意一点的距离。
4. 直径(d):通过圆心的最长弦,是半径的两倍长度。
5. 弦(c):连接圆上任意两点的线段。
6. 弧(a):圆上两点之间的圆周部分。
7. 优弧:大于半圆的弧。
8. 劣弧:小于半圆的弧。
9. 半圆:圆的一半,由直径所界定的弧。
10. 切线(t):与圆只有一个公共点的直线。
二、圆的性质1. 所有半径的长度相等。
2. 直径是圆内最长的弦。
3. 圆的任意两点之间的弧,优弧总是大于劣弧。
4. 切线与半径相交于圆外的一点,形成直角。
5. 圆周角定理:圆周上任意一点引出的两条半径与圆周所形成的角,其大小是圆心角的一半。
6. 圆心角定理:同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
三、圆的计算公式1. 圆的周长(C):C = πd = 2πr2. 圆的面积(A):A = πr²3. 扇形面积:S = (θ/360) × πr²,其中θ是扇形的中心角的度数。
4. 弓形面积:S = (θ/360) × πr² - (θ/360) × rθ/2,其中θ是弓形的中心角的度数。
四、圆的应用问题1. 圆与直线的关系:相交、相切、相离。
2. 圆与圆的关系:内含、外离、相交、内切、外切。
3. 圆的切线问题:求切线长度、切点坐标等。
4. 圆的弦长问题:根据圆心距、半径、弦心距等求弦长。
5. 圆的面积问题:根据圆的半径、直径、周长等求面积。
五、圆的作图方法1. 用圆规画圆:确定圆心和半径,旋转圆规即可画出圆。
2. 作圆的切线:通过圆外一点作圆的切线,需要利用圆心到切点的垂线与切线垂直的性质。
3. 作圆的中垂线:连接圆上任意两点,作其中点的垂线,即为圆的中垂线。
数学九年级下册圆的知识点
![数学九年级下册圆的知识点](https://img.taocdn.com/s3/m/4b6d698c09a1284ac850ad02de80d4d8d05a0154.png)
数学九年级下册圆的知识点圆是数学几何中的一个重要概念,广泛应用于各个领域。
在九年级的数学学习中,我们将更加深入地学习圆的相关知识。
本文将围绕圆的定义、性质、公式和应用等方面展开详细介绍。
一、圆的定义在数学中,圆是由平面上到一个固定点距离相等的所有点组成的图形。
其中,距离固定点最远的点称为圆的半径,固定点称为圆心。
圆心与圆上任意一点之间的线段称为半径。
二、圆的性质1. 圆的半径相等性质:圆上任意两点间的线段都是半径,且长度相等。
2. 圆的直径性质:圆的直径是圆上任意两点的连线,且长度是半径的两倍。
3. 圆的弦性质:圆上的弦分为等弦和不等弦两种。
等弦对应的弦长相等,而不等弦对应的弦长不相等。
4. 圆的切线性质:过圆上一点可以作无数条切线,这些切线与以该点为顶点的两条切线相等,且相互垂直。
三、圆的公式1. 圆的周长公式:圆的周长称为圆周长,通常用C表示,公式为C = 2πr,其中r为圆的半径,π取近似值3.14。
2. 圆的面积公式:圆的面积称为圆面积,通常用A表示,公式为A = πr²,其中r为圆的半径,π取近似值3.14。
四、圆的应用1. 圆的运动学应用:在物理学中,圆的运动学应用非常广泛,例如机械运动中的回转运动、行星围绕太阳的椭圆轨道等。
2. 圆的建筑应用:在建筑学中,圆被广泛应用于设计和构建中,例如建筑物中的圆形窗户、圆形拱门等。
3. 圆的电子应用:在电子工程中,圆被广泛应用于电路板设计、天线设计等领域。
4. 圆的地理应用:在地理学中,圆被用于表示地球的形状,地球是近似于一个球体。
总结:在数学九年级下册中,我们系统学习了圆的定义、性质、公式和应用等知识点。
掌握了这些知识,我们能够更好地理解圆的特性,应用于各种实际问题中。
通过灵活运用圆的相关知识,我们可以提高解决问题的能力和思维能力,为今后的数学学习打下坚实的基础。
九年级数学圆形知识点归纳
![九年级数学圆形知识点归纳](https://img.taocdn.com/s3/m/00ca554178563c1ec5da50e2524de518964bd3ec.png)
九年级数学圆形知识点归纳九年级数学学习中,我们接触到了许多有关圆形的知识。
本文将对这些知识进行归纳总结,以便更好地了解和掌握圆形的特性和运用。
一、圆的定义和性质圆是由平面上与一个固定点的距离相等的所有点组成的图形,这个固定点称为圆心,距离称为半径。
圆的性质有以下几个要点:1. 圆上的任意点与圆心的距离都相等。
2. 圆的直径是两个任意点在圆上连线的最长线段,它的长度是圆的半径的两倍。
3. 圆的弧是两个点在圆上连线所得到的曲线部分。
4. 圆心角是以圆心为顶点的角,它的度数等于所对的弧所在圆周的度数。
二、圆的计算公式在解决圆的相关问题时,我们需要运用一些计算公式。
以下是常见的圆的计算公式:1. 圆的周长公式:C = 2πr,其中C表示圆的周长,r表示半径,π取近似值3.14。
2. 圆的面积公式:S = πr²,其中S表示圆的面积。
三、圆的相关定理1. 同圆弧所对的圆心角相等。
2. 等弧所对的圆心角相等。
3. 在同一个圆或等圆中,圆心角大的所对的弧也大,圆心角小的所对的弧也小。
4. 在同一个圆或等圆中,与同一弧相交的弦所对的圆心角相等。
四、切线和切点的性质1. 切线是与圆只有一个交点的直线。
2. 在切点处,切线垂直于半径。
3. 半径和切线之间的夹角是直角。
五、圆锥和圆柱体1. 圆锥是以一个圆为底面,上方以一个顶点为端点的三维图形。
2. 圆柱体是以一个圆为底面,上下底面平行且等大小的三维图形。
六、几何图形的应用在生活中,我们经常会遇到一些与圆相关的几何图形。
以下是一些常见的应用场景:1. 钟表:钟表的表盘就是一个圆形,指针所指的位置是圆上的点。
2. 气球:气球形状都是圆形,用圆的表面面积计算气球的充气量。
3. 轮胎:轮胎是车辆底盘的重要组成部分,轮胎的结构和运动都与圆形有关。
通过对九年级数学圆形知识点的归纳总结,我们对圆形的定义、性质、计算公式、相关定理,以及在几何图形应用中的实际场景有了更深入的理解。
初中数学九年级圆的知识点
![初中数学九年级圆的知识点](https://img.taocdn.com/s3/m/9a5d8d1da4e9856a561252d380eb6294dd8822cc.png)
初中数学九年级圆的知识点圆是初中数学中的一个重要的图形,它具有独特的性质和应用。
在九年级的数学学习中,我们需要掌握圆的基本知识和相关的定理。
本文将依次介绍圆的定义、圆的性质、弦与弧、切线与切点、圆内接四边形以及圆的应用等内容。
一、圆的定义圆是指平面上到一个定点距离相等的所有点的集合。
定点称为圆心,所有到圆心距离等于半径的点构成圆。
圆通常用字母O表示圆心,字母r表示半径。
二、圆的性质1. 圆上任意两点之间的距离等于半径的长度。
2. 圆心角是位于圆上两条半径的夹角,它的度数等于所对的弧上的角度。
3. 弧度制中,一个圆的弧长等于圆心角的弧度数乘以半径。
三、弦与弧1. 弦是圆上两点之间的线段,它等于弧的直径。
2. 弧是圆上两点之间的一段曲线,它的度数等于对应的圆心角的度数。
四、切线与切点1. 切线是与圆相切于圆上一点的直线。
2. 切点是切线与圆的交点,切线与半径的夹角为90度。
五、圆内接四边形1. 圆内接四边形是指一个四边形的四个顶点都在圆上,且每条边都是弧。
2. 圆内接四边形的两个对角线互相垂直且平分。
六、圆的应用1. 圆的周长公式:C = 2πr,其中C表示圆的周长,r表示半径,π近似等于3.14。
2. 圆的面积公式:A = πr²,其中A表示圆的面积,r表示半径,π近似等于3.14。
3. 圆柱体、圆锥体、圆球等几何体的计算都与圆密切相关。
通过对初中数学九年级圆的知识点的学习,我们不仅能够了解圆的定义和性质,还能够应用圆的相关定理解决实际问题。
掌握圆的知识将为我们的数学学习打下坚实的基础,并在日常生活中发挥重要作用。
让我们积极投入学习,深入理解圆的知识,提升自己的数学水平!。
九年级圆的知识点总结
![九年级圆的知识点总结](https://img.taocdn.com/s3/m/cc6936cf9f3143323968011ca300a6c30c22f100.png)
九年级圆的知识点总结九年级数学课程中,圆是一个重要的几何图形。
本文将对九年级圆的相关知识点进行总结,包括圆的定义、圆的性质、圆的元素和圆的应用。
一、圆的定义圆是由平面上离一个定点距离相等的所有点组成的集合。
这个定点叫做圆心,距离叫做半径。
二、圆的性质1. 圆的半径相等的两个圆是相等的。
2. 圆的直径是任意两点在圆上的端点所确定的线段,等于圆的半径的两倍。
3. 圆上任意一点与圆心的距离等于半径的长度。
4. 圆上的任意一条弧,它所对应的圆心角的度数等于弧上的弧度数。
三、圆的元素1. 直径:通过圆心的两个端点构成的线段,是圆的最长的一条线段。
2. 弧:圆上的一部分,可以由两个端点和连接两个端点的弧线构成。
3. 弦:圆上的一条线段,连接圆上的任意两个点,不能通过圆心。
4. 切线:与圆相切于圆的一条线,切点为切线与圆相交的唯一一点。
四、圆的应用1. 圆的面积和周长:圆的面积公式为A=πr²,周长公式为C=2πr。
2. 弧长和扇形面积:弧长公式为L=θr,其中θ为弧度;扇形面积公式为S=θr²/2。
3. 圆与其他几何图形的关系:圆与直线的交点、圆与弦的位置关系等。
在实际应用中,圆经常出现在测量和建模等领域。
比如在测量中,我们常用圆盘测量直径或周长。
在建模中,圆可以用来模拟轮胎、乒乓球等实物的形状。
九年级圆的知识点总结到此结束。
通过对圆的定义、性质、元素和应用的学习,可以帮助我们更好地理解和应用圆的概念。
掌握这些基础知识,有助于我们在解决相关问题时能够准确、高效地运用圆的相关概念和公式。
初三圆的知识点总结
![初三圆的知识点总结](https://img.taocdn.com/s3/m/20ebc409326c1eb91a37f111f18583d049640fb2.png)
初三圆的知识点总结圆是初中数学中的重要概念之一,而初三阶段则是圆的学习重点。
在初三阶段,学生需要掌握圆的定义、性质、相关定理和应用。
下面我们来总结一下初三圆的知识点。
一、圆的定义和性质1. 圆的定义圆是由平面上到定点的距离等于定长的所有点构成的集合。
定点叫圆心,定长叫半径。
通常记作圆O,圆心为O,半径为r。
2. 圆的性质(1)圆的直径、半径、弧长和圆心角的关系:一个圆的直径是圆的一条弧上的两个端点,直径等于圆的半径的两倍。
(2)圆的周长公式:圆的周长等于2πr,其中r为圆的半径。
(3)圆的面积公式:圆的面积等于πr²,其中r为圆的半径。
(4)切线定理:在圆上的切线和半径垂直,切点、圆心和切线上的半径构成直角三角形。
二、圆的相关定理1. 圆心角定理定理:在同一个圆或等圆上的圆心角等于其对应弧所对的圆周角的一半。
结论:圆心角相等的弧是等弧。
2. 弧长定理定理:在同一个圆或等圆上,相等圆心角所对的弧相等,反之,相等弧对应的圆心角相等。
3. 弧度和角度定理:弧长与半径之比叫做弧度制下的角度。
1弧度(rad)=57.3°。
结论:弧长l=rθ,其中θ为弧度。
4. 正弦定理和余弦定理正弦定理:在一个三角形ABC中,a/sinA=b/sinB=c/sinC。
余弦定理:在一个三角形ABC中,a²=b²+c²-2bc*cosA。
5. 切线定理定理:在圆上的切线和半径垂直。
6. 切线与弦的关系定理:在圆上,如果一条切线和一条弦相交,那么切线和弦的交点与圆心的连线垂直。
三、圆的相关应用1. 圆的相关应用(1)圆的插值:根据圆的相关性质和定理求出圆的周长、面积及其相关角度。
(2)圆的相关推理:利用圆的性质和相关定理解决与圆相关的问题。
2. 圆的实际应用(1)工程中的车轮和齿轮。
(2)地理中的经纬度。
(3)天文中的星座和行星轨道。
(4)生活中的钟面和圆形的器物。
以上就是初三圆的知识点总结,希望对你的学习有所帮助。
圆九年级圆知识点归纳
![圆九年级圆知识点归纳](https://img.taocdn.com/s3/m/5edfdbe151e2524de518964bcf84b9d528ea2cad.png)
圆九年级圆知识点归纳圆是数学中的一个重要概念,在九年级的数学课程中也是必修的内容之一。
本文将主要介绍九年级数学中关于圆的知识点,包括圆的基本概念、圆的性质以及与圆相关的一些定理和公式。
1. 圆的基本概念:圆是平面上所有与一个固定点距离相等的点的集合。
这个固定点称为圆心,用O表示。
而与圆心距离相等的距离称为半径,用r 表示。
圆的边界称为圆周,圆周上的任意一点与圆心的连线称为半径。
2. 圆的性质:(1)圆的直径是通过圆心的两个点之间的线段,它的长度等于圆的半径的两倍。
(2)圆的周长是圆周的长度,用C表示。
根据定义,圆周的长度等于半径乘以2π(π是一个常数,约等于3.14),即C = 2πr。
(3)圆的面积是圆内部的所有点组成的区域,用A表示。
圆的面积公式为A = πr²。
3. 圆的相关定理和公式:(1)弧长定理:一个圆周的弧长可以表示为θ/360°乘以圆的周长。
其中,θ是对应的圆心角的度数。
(2)圆心角定理:一个圆心角的度数等于它所对应的弧长的长度除以圆的半径。
(3)切线定理:如果一条直线与圆相切,那么这条直线与圆的半径的斜率相乘的结果等于-1。
(4)切线长定理:从切点到切线外一点的线段与切线相切,这条线段的长度等于这个切点与圆心连线的长度。
4. 圆的应用:圆在日常生活和工程中有着广泛的应用。
例如,轮子和齿轮就是圆的应用之一。
轮子的圆形设计可以减小与地面的摩擦力,使车辆行驶更顺畅。
齿轮是机械设备中的传动部件,由多个圆形齿突出,通过齿与齿之间的啮合来实现动力传递。
总结:通过对九年级数学中与圆相关的知识点的归纳和梳理,我们可以更好地理解和应用这些概念、定理和公式。
圆作为几何学中的一个基础概念,无论是在数学学科中还是在实际中都有着重要的作用。
希望通过学习和掌握这些知识,能够对九年级的数学学习有所帮助。
九年级数学圆的知识点总结大全
![九年级数学圆的知识点总结大全](https://img.taocdn.com/s3/m/3c7d5f550a4e767f5acfa1c7aa00b52acfc79c25.png)
一、圆的定义和性质1.圆的定义:平面上到定点的距离等于定长的点的集合。
2.圆的要素:圆心、半径、圆周。
3.圆的性质:(1)半径相等的两个圆是同心圆;(2)同圆中,圆心角等于圆周角的1/2;(3)同弧上的两条弦所对的圆心角相等;(4)圆心角相等的弧相等;(5)相等弧所对的弦相等;(6)正多边形的内角和是定值,因此内接于一个圆的正多边形的各个内角相等;(7)直径是弦中最长的。
二、弧与圆周角1.弧的定义:圆上两点间的弧是以这两点为端点的两条互不相交的圆弧中,长的那一段。
2.弧的性质:(1)圆周角所对的弧是唯一确定的;(2)全周角所对的弧是定长的。
3.圆周角的定义:以圆心为端点的两条互不相交的射线所夹的角。
4.圆周角的度量:可以用角的度数来衡量。
三、切线与弦1.切线的定义:切线是与圆只有一个公共点的直线。
2.切线与半径的关系:切线与半径的关系是切线⊥半径。
3.弦的定义:两点之间的线段叫做弦。
4.弦的性质:(1)圆内的弦比它们所对的圆心角小,而且与一个圆心角的两个弧所对的弧一样;(2)相等的弦所对的圆心角相等。
四、相交弦定理1.弦上的点:如果一个点在弦上,则这个点到两个端点的距离相等。
2.相交弦定理:如果两个弦相交于圆内的一个点,则这两个弦上的两个点一定分别在另一个弦上的两侧。
五、余弦定理1.面积的性质:圆内、圆外的面积相等,夹在一个圆内的圆周弧的面积也相等。
2.余弦定理:在一个圆上,任意两条弧所对的圆心角的余弦值相等。
六、正多边形的面积公式1.正六边形的面积:正六边形的面积=3×(边长)²×√3÷22.正八边形的面积:正八边形的面积=2×(边长)²×√23.正十二边形的面积:正十二边形的面积=3×(边长)²×√34. 正十六边形的面积:正十六边形的面积=4×(边长)²×tan(22.5°)。
九年级数学圆的知识点总结大全
![九年级数学圆的知识点总结大全](https://img.taocdn.com/s3/m/3f87dd4d854769eae009581b6bd97f192279bfc7.png)
圆的知识点总结:一、圆的定义和性质:1.圆的定义:平面上到一个定点的距离恒定的点的轨迹称为圆。
2.圆的性质:(1)圆的半径相等的两个圆,称为相等的圆。
(2)圆的直径是任何一条穿过圆心的线段,它的两个端点都在圆上。
(3)圆的弦是任何一条连接圆上两点的线段。
(4)圆心角是顶点在圆心的角。
(5)弧是圆上的一段弯曲部分。
(6)弦长是弦的长度。
(7)弧长是弧所对的圆心角所对应的圆周上的弧所对应的弧长。
(8)圆内角是圆内部构成的角。
(9)圆周角是拓展到同弧所对应的圆心角。
二、圆的构造:1.以三点确定一个圆:通过三点构造两条垂直平分线,其交点即为圆心,半径为圆心到点的距离。
2.以圆心和一个点确定一个圆:以圆心为中心,该点到圆心的距离作为半径。
3.以圆上两点确定一个圆:以两点为直径的线段的中点为圆心,该线段长度的一半为半径。
三、圆的基本元素的关系:1.半径和直径的关系:直径是半径的两倍。
2.弧的关系:相等的圆周角对应的弧相等,幅弧对应的圆心角相等。
3.圆心角和弧的关系:圆心角等于其所对的弧的弧长所对应的圆心角的一半。
四、圆的性质和定理:1.圆心角的性质和定理:(1)同圆的圆心角相等。
(2)同弧的圆心角相等。
(3)对径的邻角互补,即它们的和为180°。
2.弦的性质和定理:(1)在圆上,如果一个正方形的对角线两个端点和落在圆上,那么它的两边就是两条弦,这两条弦是相等的。
(2)在圆中,如果两条弦相交,并且两对交点分别相连,则交点两侧形成的四个角对应的弧那么他们的和是不变。
3.弧的性质和定理:(1)在圆中,如果两个圆弧所封的圆心角相等,则它们所封的圆弧相等。
(2)在圆中,相等的弧对应的圆心角相等。
4.切线和切线定理:(1)切线与半径的关系:切点处的切线垂直于通过该切点的半径。
(2)切线与弦的关系:切线与弦的切点角相等。
(3)切线与圆心角的关系:切线与半径的夹角等于切点处所对的圆心角的一半。
(4)两切线定理:两个切线分别切割一个圆,则切线的外部分段长度的积等于两切点外部分段长度的积。
初三数学圆的知识点总结
![初三数学圆的知识点总结](https://img.taocdn.com/s3/m/a1bd33eab1717fd5360cba1aa8114431b90d8ede.png)
初三数学圆的知识点总结一、圆的相关概念1.圆的定义圆是平面上到一个点的距离等于定长的所有点的集合。
这个距离被称为圆的半径,记作r。
圆的大小用圆的半径r来表示。
2.圆的要素圆是由圆心和半径确定的,其中圆心是到圆上任意一点的距离都相等的点,半径是从圆心到圆上的任意一点的距离。
3.圆的基本性质(1)圆的任意直径都等于其半径的两倍。
(2)圆的周长C等于2πr(周长与圆的直径、半径间的关系)。
(3)圆的面积S等于πr²(圆的面积与半径的关系)。
二、圆的常见问题及解题方法1.圆的周长和面积的计算问题对于周长和面积的计算问题,一般需要根据给出的条件,按照具体的计算公式计算得出结果。
2.圆的图形问题在图形问题中,通常遇到的问题有圆与直线的相交关系、圆与圆的位置关系等问题。
解决这些问题通常需要利用圆的性质、基本定理进行分析。
三、圆的相关定理1.圆心角定理圆心角定义:圆心角是以圆心为顶点的角。
当圆心角对应的弧长是整个圆周长的m分之n时,圆心角的度数是360°的m分之n。
当弧长为s时,圆心角的度数是(s/πr)×360°。
2.圆周角定理两条相交弦所夹角的大小,与它们所对的弧有关。
圆周角是以圆周作为边的角。
圆周角等于它所对圆周的两条弧的有关角的度数之和。
3.正比例定理如果两个圆的半径成正比,则这两个圆的面积成正比;如果两个圆的面积成正比,则这两个圆的周长成正比。
四、圆的应用1.工程设计中的圆在工程设计中,圆形是最常见的图形之一,比如在设计轮胎、车轮等产品时都会使用到圆的知识。
2.日常生活中的圆在日常生活中,圆形也是常见的,比如钟表、盘子、足球等都是圆形的。
对于这些物体,我们也可以通过圆的知识对其周长、面积等进行计算和分析。
3.数学问题中的圆圆的知识在解决数学问题中也是必不可少的,比如在几何问题中,计算圆的周长、面积等都需要运用圆的相关知识。
总之,初三数学圆的知识点包括了圆的基本概念、常见问题及解题方法、相关定理和应用等内容。
九年级圆的所有知识点
![九年级圆的所有知识点](https://img.taocdn.com/s3/m/397f56318f9951e79b89680203d8ce2f00666502.png)
九年级圆的所有知识点圆是几何学中的重要概念,它在我们的日常生活中无处不在。
在九年级的数学学习中,我们将学习关于圆的各种知识点。
本文将全面介绍九年级圆的所有知识点,包括圆的定义、性质、常见公式以及应用等内容。
一、圆的定义及性质圆是由平面上所有到定点的距离都相等的点构成的集合。
圆由圆心和半径来确定,圆心是圆上任何一点到定点的距离都相等,半径则是圆心到圆上任何一点的距离。
圆的性质包括:1. 圆上任意两点之间的线段都是弦,而直径是一条通过圆心且两端点在圆上的弦,它将圆分为两个相等的半圆。
2. 圆上任意一条弦都可作为直径,且直径的长度是半圆周长的两倍。
3. 圆上每个点到圆心的距离都相等,这个距离就是半径,圆周上所有点到圆心的距离都等于半径的长度。
4. 圆周上的一个角,其对应的弧所对应的圆心角相等,即圆心角的度数等于弧度数。
5. 切线与半径的垂直性质:一条切线与通过切点的半径垂直相交。
二、圆的周长和面积公式1. 周长公式:圆的周长等于直径的长度乘以π(圆周率)。
周长 = 直径× π 或者周长 = 2 ×半径× π。
2. 面积公式:圆的面积等于半径的平方乘以π。
面积 = 半径² × π 或者面积 = (直径/2)² × π。
三、圆的应用圆不仅仅在数学中有着重要的地位,它也广泛应用于生活和其他学科中。
以下是圆的一些常见应用:1. 几何设计:圆形是设计中最基本的形状之一,它常常被用来表达和传达各种美学和构图原则。
2. 圆形建筑:许多建筑物采用圆形设计,如剧院、圆形体育场等,这样可以使观众坐在任何位置上都能获得更好的视觉体验。
3. 圆形运动:许多体育运动中都有圆形运动的要素,例如足球、篮球等球类运动,球场也常常是圆形或半圆形的。
4. 圆的应用于物理学中的轨迹:圆形轨迹出现在一些著名的物理学定律中,如牛顿的万有引力定律中行星的椭圆轨道。
综上所述,九年级圆的知识点包括了圆的定义、性质、周长和面积公式以及常见应用等方面。
圆的全部知识点总结初中
![圆的全部知识点总结初中](https://img.taocdn.com/s3/m/cc08ccccbdeb19e8b8f67c1cfad6195f302be878.png)
圆的全部知识点总结初中一、基本概念圆是平面上的一个几何图形,由平面上离一个固定点距离不超过一定值的所有点组成。
这个固定点称为圆心,这个固定距离称为半径。
圆的边界叫做圆周,两个半径的端点连线叫做直径。
圆的基本元素包括圆心、半径、圆周、直径。
二、圆的性质1. 圆的半径相等在同一个圆中,所有的半径都相等,这是圆的基本性质之一。
2. 圆的周长和面积圆的周长和面积是圆的重要属性。
圆的周长可以通过公式C=2πr进行计算,其中r为半径,π为圆周率。
圆的面积可以通过公式A=πr^2进行计算。
3. 弧和角圆的圆周可以被分成若干个弧,当弧的长度正好等于半径时,这个角称为圆心角。
圆周上的任意一点和圆心之间的连线称为弧,圆周上的弧相对于圆心的角称为弧度。
4. 圆心角的性质在同一个圆中,圆心角的度数是弧长半径的两倍。
即圆心角的度数等于以这个角所对应的弧长所对应的圆心角的弧长的两倍。
5. 弧长和扇形面积弧是圆周的一部分,它的长度可以通过公式L=2πr×(α/360)进行计算,其中α为对应的圆心角的度数。
扇形是圆心角对应的部分,它的面积可以通过公式S=πr^2×(α/360)进行计算。
6. 相交圆的性质当两个圆相交时,它们的交点可以构成两个弧和四个圆心角,根据圆的性质可以得到诸多推论。
7. 圆与直线的关系圆与直线的关系包括内切、外切、相交、相离等情况,而且这些关系会受到垂直角、周角、对顶角等角的影响。
8. 圆的应用圆是几何学中最基本的图形之一,它在生活中有着广泛的应用。
例如,圆形的轮子、钟表、铁路、汽车轨道等都离不开圆的几何原理。
三、常见的圆的定理1. 切线定理当直线与圆相切时,切线与圆的切点之间的连线垂直于半径。
2. 圆的对称性圆具有各种对称性,包括中心对称、轴对称等。
3. 圆心角和弧的关系圆心角和其所对应的弧的关系是两者之间的重要性质,可以帮助解决各种与圆相关的题目。
四、圆的相关解题技巧1. 圆的基本计算掌握圆的周长和面积的计算公式是解题的基础。
初三数学:圆知识点归纳
![初三数学:圆知识点归纳](https://img.taocdn.com/s3/m/2fd9c3ad7f1922791788e832.png)
初三数学:圆知识点归纳 【一】圆的定义。
1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
【二】圆的各元素。
1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
【三】圆的基本性质。
1、圆的对称性。
(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是旋转对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角三角形的外心就是斜边的中点。
)8、直线与圆的位置关系。
d表示圆心到直线的距离,r表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。
9、平面直角坐标系中,A(x1,y1)、B(x2,y2)。
那么AB=〔x1+x2,y1+y2〕10、圆的切线判定。
(1)d=r时,直线是圆的切线。
初三圆知识点总结(3篇)
![初三圆知识点总结(3篇)](https://img.taocdn.com/s3/m/5a0ad4c881eb6294dd88d0d233d4b14e85243e62.png)
初三圆知识点总结(3篇)初三圆学问点总结11、圆的有关概念:〔1〕确定一个圆的要素是圆心和半径。
〔2〕①连结圆上任意两点的线段叫做弦。
②经过圆心的弦叫做直径。
③圆上任意两点间的部分叫做圆弧,简称弧。
④小于半圆周的圆弧叫做劣弧。
⑤大于半圆周的圆弧叫做优弧。
⑥在同圆或等圆中,能够相互重合的弧叫做等弧。
⑦顶点在圆上,并且两边和圆相交的角叫圆周角。
⑧经过三角形三个顶点可以画一个圆,并且只能画一个,经过三角形三个顶点的圆叫做三角形的外接圆,三角形外接圆的圆心叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形,外心是三角形各边中垂线的交点;直角三角形外接圆半径等于斜边的一半。
⑨与三角形各边都相切的圆叫做三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆外切三角形,三角形的内心就是三角形三条内角平分线的交点。
2、圆的有关性质〔1〕定理在同圆或等圆中,假如圆心角相等,那么它所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
推论在同圆或等圆中,假如两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分别相等。
〔2〕垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论1:①平分弦〔不是直径〕的直径垂直于弦,并且平分弦所对的两条弧。
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
〔3〕圆周角定理:一条弧所对的圆周角等于该弧所对的圆心角的一半。
推论1在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等。
推论2半圆或直径所对的圆周角都相等,都等于90 。
90 的圆周角所对的弦是圆的直径。
推论3假如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
〔4〕切线的判定与性质:判定定理:经过半径的外端且垂直与这条半径的直线是圆的切线。
初中数学九年级上圆的知识点
![初中数学九年级上圆的知识点](https://img.taocdn.com/s3/m/6604bd7fa9956bec0975f46527d3240c8547a16a.png)
初中数学九年级上圆的知识点圆是初中数学九年级上的一个重要知识点,下面将从圆的定义、圆的性质、圆的相关定理以及圆的应用等方面进行论述。
一、圆的定义圆是平面上的重要几何图形之一,是由与一个定点距离相等的所有点构成的集合。
这个定点称为圆心,距离称为半径,用字母r表示。
圆通常用圆的轮廓线表示,在数学表达中用字母O表示。
二、圆的性质1. 圆的任意两点到圆心的距离相等。
这意味着圆上的每一个点到圆心的距离都相等,即圆的半径。
2. 圆的直径是圆上任意两点之间的最长距离。
直径的长度是半径的两倍。
3. 圆的弦是圆上任意两点之间的线段。
弦不一定通过圆心,可以在圆内或圆外。
4. 圆上的切线垂直于半径。
切线是与圆相切的线,与圆的切点处的半径垂直。
三、圆的相关定理1. 弧与角的关系圆上的弧对应的圆心角是两个端点在圆心所对应的角,它们的度数相等。
2. 弧长与圆周角的关系圆的弧长是圆心角所对应的弧所在圆的一部分的长度,弧长等于这个圆心角所对应的圆周角度数的比值。
3. 弦长与弦心角的关系弦上的弦长是弦心角所对应的弦所在圆的一部分的长度,弦长等于这个弦心角所对应的圆周角度数的比值的2倍。
4. 割线定理割线是两个切点之间的线段,割线上的两个切线段长度乘积等于这条割线与这两个切点之间的弦段长度乘积。
四、圆的应用1. 圆的测量圆的周长等于圆周上的任意一段弧长,即C=πd或C=2πr,其中d为直径,r为半径。
圆的面积等于圆内所包围的面积,即S=πr²。
2. 圆的位置关系两个圆之间的位置关系可以分为外切、内切、相交、相离四种情况,通过判断两个圆心的距离与两个圆的半径之间的关系可以确定两个圆的位置关系。
3. 圆的轴对称与旋转对称圆具有轴对称性和旋转对称性,利用这个特性可以解决一些与圆相关的问题。
综上所述,圆是初中数学九年级上的重要知识点,通过对圆的定义、性质、相关定理和应用进行论述,可以帮助同学们更好地理解和掌握圆的知识,提高数学学科的学习成绩。
初三数学圆的知识点总结
![初三数学圆的知识点总结](https://img.taocdn.com/s3/m/23fce59d2dc58bd63186bceb19e8b8f67c1cefbf.png)
初三数学圆的知识点总结### 初三数学圆的知识点总结#### 一、圆的定义圆是一个平面内所有与给定点(圆心)距离相等的点的集合。
这个距离称为半径。
#### 二、圆的基本性质1. 圆心:圆的中心点,用字母O表示。
2. 半径:从圆心到圆上任意一点的距离,用r表示。
3. 直径:通过圆心的最长弦,长度是半径的两倍。
4. 圆周角:顶点在圆周上的角。
5. 内接角:顶点在圆内,两边分别与圆相交的角。
#### 三、圆的方程1. 标准方程:\((x - h)^2 + (y - k)^2 = r^2\),其中(h, k)是圆心的坐标,r是半径。
2. 一般方程:\(Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0\),可以转化为标准方程。
#### 四、圆的面积与周长1. 面积公式:\(A = \pi r^2\)。
2. 周长公式:\(C = 2\pi r\)。
#### 五、圆与直线的关系1. 切线:与圆只有一个交点的直线。
2. 割线:与圆有两个交点的直线。
3. 弦:连接圆上两点的线段。
#### 六、圆与圆的位置关系1. 内含:一个圆完全在另一个圆内。
2. 外离:两个圆没有公共点。
3. 相交:两个圆有两个公共点。
4. 外切:两个圆相切于一个点。
#### 七、圆周角定理1. 圆周角等于它所对的弧所对的圆心角的一半。
2. 半圆周角等于90°。
#### 八、圆的切线性质1. 切线垂直于通过切点的半径。
2. 切线与圆相切于一点。
#### 九、圆的内接多边形1. 正多边形:所有边和角都相等的多边形。
2. 内接圆:多边形的顶点都在圆上。
#### 十、圆的外接圆1. 外接圆:所有顶点都在圆上的圆。
#### 十一、圆的弧长与扇形1. 弧长:圆上两点之间的曲线长度。
2. 扇形:圆心角和它所对的弧以及圆周上的两点所围成的图形。
#### 十二、圆的垂径定理1. 垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、点和圆的位置关系: 如果P是圆所在平面内的一点,d 表示P到
圆心的距离,r表示圆的半径,则: (1)d<r → 圆内 (2)d=r → 圆上 (3)d>r → 圆外
__________________________________________________
4、三角形的外接圆 经过三角形的三个顶点的圆叫做三角形的外接圆, 外接圆的圆心叫做三角形的外心,三角形叫做圆的内 接三角形。三角形的外心到各顶点距离相等。 一个三角形有且仅有一个外接圆,但一个圆有无数 内接三角形。
2、与圆有关的概念 (1)弦和直径(连结圆上任意两点的线段BC叫做弦, 经过圆心的弦AB叫做直径) (2)弧和半圆(圆上任意两点间的部分叫做弧,圆 的任意一条直径的两个端点分圆成两条弧,每一条弧 都叫做半圆) (3)等圆(半径相等的两个圆叫做等圆)
__________________________________________________
《圆的基本性质》知识点总结
1.在一个平面内,线段OA绕它固定的 一个端点O旋转一周,另一个端点A随 之旋转所形成的封闭曲线叫做圆。固 定的端点O叫做圆心,线段OA叫做半径, 以点O为圆心的圆,记作☉O,读作 “圆O” 。
__________________________________________________
__________________________________________________
6、圆心角定理:在同圆或等圆中,如果两个圆心角、两条弧、两条
弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量
都分别相等。
7、圆周角定理: 一条弧所对的圆周角等于它所对的 圆心角的一半 。
推论:
(对的弦是
直径 。
(2)同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周
角所对的弧也相等。
__________________________________________________
8、弧长及扇形的面积圆锥的侧面积和全面积
(1)弧长公式:
l nr
180
nr 2 1
(2)扇形的面积公式:
lr
360 2
rl (3)圆锥的侧面积公式:
(4)圆锥的表面积公式: rl r 2
__________________________________________________
5、垂径定理:垂直于弦的直径平分这条弦,并 且平分弦所对的两条弧。 推论:
(1)平分弦(不是直径)的直径垂直于弦, 并且平分弦所对的两条弧;
(2)平分弧的直径,垂直平分弧所对的弦。
__________________________________________________