回归分析简答题演示教学

合集下载

《回归分析》PPT课件

《回归分析》PPT课件
在回归分析中,若自变量间中/高相关,则某些与因变量有关系的变量会被排除在回 归模型之外
多元共线性
即数学上的线性相依,指在回归模型中 预测变量本身间有很高的相关。
有很多评价指标,如容差(容忍度)、 VIF,特征值
特征值若小于0.01,预测变量间可能存在多元共线性;
方差比例:若有两个或多个自变量在一个特征值上高于0.8 或 0.7以上,表示 可能存在多元共线性
整理成表格
表1 福利措施、同侪关系、适应学习对组织效能的影响
Beta
t
福利 0.180 5.513*
措施
**
同侪 0.264 8.166*
关系
**
适应 0.369 12.558
学习
***
R=0.73 R2=0.5 F=464.
阶层回归
如第一层自变量为福利措施 第二层为同辈关系 第三层为适应学习
学习完毕请自行删除
什么是回归分析
用一定的数学模型来表述变量相关关系 的方法。
一元线性回归
最简单的回归是只涉及一个因变量和一个自变量一元 线性回归,此时的表达式为:
y= 0+ 1 x+ y为因变量,x为自变量或预测变量, 0为截距即当
x=0时y的值, 1为斜率即1个单位的x变化对应 1个单 位y的变化。 是误差,服从N(0, σ2)的正态分布,不 同观察值之间是相互。
练习
“组织效能.sav”
15回归系数及检验组织效能0180福利措施0264同侪关系0369适应学习在回归分析中若自变量间中高相关则某些与因变量有关系的变量会被排除在回归模型之外容差及方差膨胀系数vif检验多元回归分析的共线性问题
《回归分析》PPT课件
本课件PPT仅供学习使用 本课件PPT仅供学习使用 本课件PPT仅供学习使用

回归分析专题教育课件

回归分析专题教育课件
第十二章 回归分析
学习目的 掌握简朴线性回归模型基本原理。 掌握最小平措施。 掌握测定系数。 了解模型假定。 掌握明显性检验 学会用回归方程进行估计和预测。 了解残差分析。
1
习题
1. P370-1 2. P372-7 3. P380-18
4. P380-20 5. P388-28 6. P393-35
2
案例讨论: 1.这个案例都告诉了我们哪些信息? 2.经过阅读这个案例你受到哪些启发?
3
根据一种变量(或更多变量)来估计 某一变量旳措施,统计上称为回归分析 (Regression analysis)。
回归分析中,待估计旳变量称为因变 量(Dependent variables),用y表达;用来 估计因变量旳变量称为自变量 (Independent variables),用x表达。
yˆ b0 b1 x (12.4)
yˆ :y 旳估计值
b0 :0 旳估计值
b1 : 1 旳估计值
18
19
第二节 最小平措施
最小平措施(Least squares method), 也称最小二乘法,是将回归模型旳方差之 和最小化,以得到一系列方程,从这些方 程中解出模型中需要旳参数旳一种措施。
落在拒绝域。所以,总体斜率 1 0 旳假
设被拒绝,阐明X与Y之间线性关系是明显
旳。
即 12 条 航 线 上 , 波 音 737 飞 机 在 飞 行
500公里和其他条件相同情况下,其乘客数
量与飞行成本之间旳线性关系是明显旳。
57
单个回归系数旳明显性检验旳几点阐明
为何要检验回归系数是否等于0?
假如总体中旳回归系数等于零,阐明相应旳自变 量对y缺乏解释能力,在这种情况下我们可能需 要中回归方程中去掉这个自变量。

回归分析 ppt课件

回归分析 ppt课件
8
回归分析
9
回归分析
1.模型拟合情况: 模型的拟合情况反映了模型对数据的解释能力。修正
的可决系数(调整R方)越大,模型的解释能力越强。
观察结果1,模型的拟合优度也就是对数据的解释能力一般,修正的 决定系数为0.326;
10
回归分析
2.方差分析: 方差分析反映了模型整体的显著性,一般将模型的检验
19
回归分析
曲线回归分析只适用于模型只有一个自变量且可以化为 线性形式的情形,并且只有11种固定曲线函数可供选择,而 实际问题更为复杂,使用曲线回归分析便无法做出准确的分 析,这时候就需用到非线性回归分析。它是一种功能更强大 的处理非线性问题的方法,可以使用用户自定义任意形式的 函数,从而更加准确地描述变量之间的关系。
回归分析
1
回归分析
•寻求有关联(相关)的变量之间的关系,是指 通过提供变量之间的数学表达式来定量描述变 量间相关关系的数学过程。
•主要内容:
1.从一组样本数据出发,确定这些变量间的定量关系式; 2.对这些关系式的可信度进行各种统计检验 3.从影响某一变量的诸多变量中,判断哪些变量的影响显著, 哪些不显著 4.利用求得的关系式进行预测和控制
观察结果3,模型中的常数项是3.601,t值为24.205,显著性为 0.000;通货膨胀的系数是0.157, t值为2.315,显著性为0.049。所 12以,两个结果都是显著的。
回归分析
结论:
一元线性回归方程: y=a+bx
写出最终模型的表达式为: R(失业率)=3.601+0.157*I(通货膨胀率) 这意味着通货膨胀率每增加一点,失业率就增加 0.157点;
P值(Sig)与0.05作比较,如果小于0.05,即为显著。

回归分析的基本知识点及习题

回归分析的基本知识点及习题

回归分析的基本知识点及习题本周难点:(1)求回归直线方程,会用所学的知识对实际问题进行回归分析.(2)掌握回归分析的实际价值与基本思想.(3)能运用自己所学的知识对具体案例进行检验与说明.(4)残差变量的解释;(5)偏差平方和分解的思想;1.回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫作回归直线。

求回归直线方程的一般步骤:①作出散点图(由样本点是否呈条状分布来判断两个量是否具有线性相关关系),若存在线性相关关系→②求回归系数→③写出回归直线方程,并利用回归直线方程进行预测说明.2.回归分析:对具有相关关系的两个变量进行统计分析的一种常用方法。

建立回归模型的基本步骤是:①确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量;②画好确定好的解释变量和预报变量的散点图,观察它们之间的关系(线性关系).③由经验确定回归方程的类型.④按一定规则估计回归方程中的参数(最小二乘法);⑤得出结论后在分析残差图是否异常,若存在异常,则检验数据是否有误,后模型是否合适等.4.残差变量的主要来源:(1)用线性回归模型近似真实模型(真实模型是客观存在的,通常我们并不知道真实模型到底是什么)所引起的误差。

可能存在非线性的函数能够更好地描述与之间的关系,但是现在却用线性函数来表述这种关系,结果就会产生误差。

这种由于模型近似所引起的误差包含在中。

(2)忽略了某些因素的影响。

影响变量的因素不只变量一个,可能还包含其他许多因素(例如在描述身高和体重关系的模型中,体重不仅受身高的影响,还会受遗传基因、饮食习惯、生长环境等其他因素的影响),但通常它们每一个因素的影响可能都是比较小的,它们的影响都体现在中。

(3)观测误差。

由于测量工具等原因,得到的的观测值一般是有误差的(比如一个人的体重是确定的数,不同的秤可能会得到不同的观测值,它们与真实值之间存在误差),这样的误差也包含在中。

回归分析法PPT课件

回归分析法PPT课件

线性回归模型的参数估计
最小二乘法
通过最小化误差平方和的方法来估计 模型参数。
最大似然估计
通过最大化似然函数的方法来估计模 型参数。
参数估计的步骤
包括数据收集、模型设定、参数初值、 迭代计算等步骤。
参数估计的注意事项
包括异常值处理、多重共线性、自变 量间的交互作用等。
线性回归模型的假设检验
假设检验的基本原理
回归分析法的历史与发展
总结词
回归分析法自19世纪末诞生以来,经历 了多个发展阶段,不断完善和改进。
VS
详细描述
19世纪末,英国统计学家Francis Galton 在研究遗传学时提出了回归分析法的概念 。后来,统计学家R.A. Fisher对其进行了 改进和发展,提出了线性回归分析和方差 分析的方法。随着计算机技术的发展,回 归分析法的应用越来越广泛,并出现了多 种新的回归模型和技术,如多元回归、岭 回归、套索回归等。
回归分析法的应用场景
总结词
回归分析法广泛应用于各个领域,如经济学、金融学、生物学、医学等。
详细描述
在经济学中,回归分析法用于研究影响经济发展的各种因素,如GDP、消费、投资等;在金融学中,回归分析法 用于股票价格、收益率等金融变量的预测;在生物学和医学中,回归分析法用于研究疾病发生、药物疗效等因素 与结果之间的关系。
梯度下降法
基于目标函数对参数的偏导数, 通过不断更新参数值来最小化目 标函数,实现参数的迭代优化。
非线性回归模型的假设检验
1 2
模型检验
对非线性回归模型的适用性和有效性进行检验, 包括残差分析、正态性检验、异方差性检验等。
参数检验
通过t检验、z检验等方法对非线性回归模型的参 数进行假设检验,以验证参数的显著性和可信度。

回归分析法(PPT)

回归分析法(PPT)
第五章
5.1 回归分析概述
回归分析法
5.2 一元线性回归分析法
5.3 多元线性回归分析法
5.4 非线性回归分析法
9/4/2018
1
信息分析方法与应用
第五章 学习目标
回归分析法
掌握一元回归分析法的数学模型、参数估计、回归 检验及在实际中的应用 掌握多元回归分析法的数学模型、参数估计、回归 检验及在实际中的应用 掌握非线性回归分析法的各种回归模型、参数估计、 回归检验及在实际中的应用 了解回归、回归分析的定义,回归变量之间的关系, 回归分析的类型 理解回归分析发的应用步骤
9/4/2018
33
信息分析方法与应用
5.4 非线性回归分析法
④据此,可以在对2009年~2018年的经济预测基 础上预测出相应的商品流通费用水平如表5–9。
9/4/2018
34
信ቤተ መጻሕፍቲ ባይዱ分析方法与应用
5.5 回归分析软件
(1)SPSS软件 SPSS 的基本功能包括数据管理、统计分析、 图表分析、输出管理等等。SPSS统计分析过程包 括描述性统计、均值比较、一般线性模型、相关 分析回归分析、对数线性模型、聚类分析、数据 简化、生存分析、时间序列分析、多重响应等几 大类,每类中又分好几个统计过程,比如回归分 析中又分线性回归分析、曲线估计、Logistic 回归、 Probit回归、加权估计、两阶段最小二乘法、非线 性回归等多个统计过程,而且每个过程中又允许 用户选择不同的方法及参数。
5.2.3回归检验 3.F检验
F检验的一般步骤如下:①计算F值;②对于给定的显
著水平a,查自由度为1,n-2的F分布的临界值表,得临界 F 值: ;③比较T值与 值的大小,如果 则认为线性回归显著,一元回归模型成立,否则认为线性 回归不显著,一元回归模型不成立。

回归分析的基本知识点及习题

回归分析的基本知识点及习题

回归分析的基本知识点及习题本周难点:(1)求回归直线方程,会用所学的知识对实际问题进行回归分析.(2)掌握回归分析的实际价值与基本思想.(3)能运用自己所学的知识对具体案例进行检验与说明.(4)残差变量的解释;(5)偏差平方和分解的思想;1.回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫作回归直线。

求回归直线方程的一般步骤:①作出散点图(由样本点是否呈条状分布来判断两个量是否具有线性相关关系),若存在线性相关关系→②求回归系数→③写出回归直线方程,并利用回归直线方程进行预测说明.2.回归分析:对具有相关关系的两个变量进行统计分析的一种常用方法。

建立回归模型的基本步骤是:①确定研究对象,明确哪个变量是解释变量,哪个变量是预报变量;②画好确定好的解释变量和预报变量的散点图,观察它们之间的关系(线性关系).③由经验确定回归方程的类型.④按一定规则估计回归方程中的参数(最小二乘法);⑤得出结论后在分析残差图是否异常,若存在异常,则检验数据是否有误,后模型是否合适等.4.残差变量的主要来源:(1)用线性回归模型近似真实模型(真实模型是客观存在的,通常我们并不知道真实模型到底是什么)所引起的误差。

可能存在非线性的函数能够更好地描述与之间的关系,但是现在却用线性函数来表述这种关系,结果就会产生误差。

这种由于模型近似所引起的误差包含在中。

(2)忽略了某些因素的影响。

影响变量的因素不只变量一个,可能还包含其他许多因素(例如在描述身高和体重关系的模型中,体重不仅受身高的影响,还会受遗传基因、饮食习惯、生长环境等其他因素的影响),但通常它们每一个因素的影响可能都是比较小的,它们的影响都体现在中。

(3)观测误差。

由于测量工具等原因,得到的的观测值一般是有误差的(比如一个人的体重是确定的数,不同的秤可能会得到不同的观测值,它们与真实值之间存在误差),这样的误差也包含在中。

回归分析学习课件PPT课件

回归分析学习课件PPT课件
03 网格搜索
为了找到最优的参数组合,可以使用网格搜索方 法对参数空间进行穷举或随机搜索,通过比较不 同参数组合下的预测性能来选择最优的参数。
非线性回归模型的假设检验与评估
假设检验
与线性回归模型类似,非线性回归模型也需要进行假设检验,以检验模型是否满足某些统计假 设,如误差项的独立性、同方差性等。
整估计。
最大似然法
03
基于似然函数的最大值来估计参数,能够同时估计参数和模型
选择。
多元回归模型的假设检验与评估
线性假设检验
检验回归模型的线性关系 是否成立,通常使用F检 验或t检验。
异方差性检验
检验回归模型残差的异方 差性,常用的方法有图检 验、White检验和 Goldfeld-Quandt检验。
多重共线性检验
检验回归模型中自变量之 间的多重共线性问题,常 用的方法有VIF、条件指数 等。
模型评估指标
包括R方、调整R方、AIC、 BIC等指标,用于评估模 型的拟合优度和预测能力。
05
回归分析的实践应用
案例一:股票价格预测
总结词
通过历史数据建立回归模型,预测未来股票 价格走势。
详细描述
利用股票市场的历史数据,如开盘价、收盘价、成 交量等,通过回归分析方法建立模型,预测未来股 票价格的走势。
描述因变量与自变量之间的非线性关系,通过变 换或使用其他方法来适应非线性关系。
03 混合效应回归模型
同时考虑固定效应和随机效应,适用于面板数据 或重复测量数据。
多元回归模型的参数估计
最小二乘法
01
通过最小化残差平方和来估计参数,是最常用的参数估计方法。
加权最小二乘法
02
适用于异方差性数据,通过给不同观测值赋予不同的权重来调

《回归分析)》课件

《回归分析)》课件

收集和整理相关数据,并进行数据清洗和变量转换,为模型建立做准备。
2
模型的建立和检验
选择适当的回归模型,进行参数估计和模型检验,确保模型的准确性和可靠性。
3
模型的应用和解释
利用已建立的模型进行预测和解释因变量的变化,探索自变量对因变量的影响。
回归因变量之间的关系。
非线性回归分析
使用非线性模型来描述自变 量和因变量之间的关系。
多元回归分析
考虑多个自变量对因变量的 影响,并建立多元回归模型。
回归分析的评价指标
• 实际因子与预测因子之间的相关系数 • 平均绝对误差 • 可决系数
回归分析的应用
经济学领域
回归分析可用于预测经济因素 之间的关系,如GDP与失业率的 关系。
社会学领域
回归分析可用于研究社会现象 和行为之间的关系,如教育水 平与收入的关系。
工程学领域
回归分析可用于工程问题的预 测和优化,如建筑材料的强度 与耐久性的关系。
回归分析的限制条件
• 不同因素的关系并非线性 • 自变量之间的相关性 • 数据量的大小和均匀性
总结和展望
回归分析是一种强大的工具,能够帮助我们理解变量之间的关系,并进行预 测和解释。未来,随着数据科学的发展,回归分析在各个领域的应用将会更 加广泛。
《回归分析)》PPT课件
回归分析是一种用于研究变量之间关系的统计方法。本课程将介绍回归分析 的定义、步骤、类型、评价指标以及应用领域,并探讨其限制条件。
什么是回归分析
回归分析是一种统计方法,用于研究自变量和因变量之间的关系。通过建立 数学模型,预测和解释因变量的变化。
回归分析的步骤
1
数据的收集和处理

第七章回归分析

第七章回归分析
(一)检验原理
根据样本数据计算出的回归可能有一定的抽样 误差。为了考查这两个变量在总体内是否存在线性 关系,以及回归方程对估计预测因变量的有效性如 何,使回归方程能够应用以前,首先应进行显著性 检验。
一元线性回归方程的显著性,有以下三种等效的检 验方法:
一种是对回归方程进行方差分析。即计算观 测值与估算值之间有无显著差异。
第七章回归分析
第一步,确定回归方程中的解释变量和被解释变量
第二步,确定回归方程 如果被解释变量和解释变量之间存在性关系,
则应进行线性回归分析,建立线性回归模型;如果被 解释变量和解释变量之间存在非线性关系,则应进行 非线性回归分析,建立非线性回归模型。
(二)一元线性方程的确定
二、一元线性回归方程检验
二、多元回归方程的假设检验
对多元回归方程的假设检验,包含两个方面的 检验:一是对整个自变量对依变量的综合效应检验, 称为多元回归检验;二是对每个自变量对依变量的 效应检验,称为偏回归系数检验。
(一)多元回归关系的假设检验
(二)偏回归关系的假设检验
第四节 逐步回归分析
一、逐步回归原理
剔除不显著自变量的过程称为自变量的统计选 择,所得的仅包含显著自变量的多元回归方程,叫 做最优的多元线性回归方程。
二、逐步回归分析步骤
三、逐步回归方程检验 逐步回归方程检验同多元回归方程的假设检验
另一种是对两个变量的相关系数进行与总体 零相关的显著性检验。若相关系数显著,则回归 方程也显著,即表明两个变量存在线性关系,否 则反之。
最后一种是对回归系数进行显著性检验。
(二)检验方法
第三节 多元回归分析 一、多元线性回归方程的建立 (一)多元回归方程式
(二)多元回归统计数的计算

自考概率论课件 第九章 回归分析

自考概率论课件 第九章 回归分析

2 2 i 1 n i 1 n
2
Lxy ( xi x)( yi y) ( xi x) yi xi yi nx y
i 1 i 1
n
n
i 1
二、 β0 与 β1 的点估计——最小二乘估计 1.最小二乘估计原则:对变量 x与 y 进行n 次独立 观察得到的样本(x1, y1 ), ( x2 ,y2 ), , ( xn , yn) ,则 模型具体化为 yi= β0+ β1 xi+εi i = 1,2,…,n ˆ ˆ (1)设β 与 β 的点估计分别为 , ,则回归直线为
4.货币储蓄量与利率
二、回归模型:回归分析中,变量Y和X之间的不确
定关系不能用一个精确的函数关系表示出来,是因 为有随机因素的影响,仿照函数中的称呼,把X对Y 的影响用f(X)表示,随机因素对Y的影响用记作 e ,将 Y的值分成两部分: Y= f(X)+e (1) 式(1)称为回归模型 1. e为随机误差:一般要求其均值为 0 ,即E e = 0 2.Y为因变量:因有随机误差的影响,所以总是随机的
1 n y yi n i1
2
Lxx ( xi x) xi nx
2 2 i 1 n i 1
n
i 1
n
n
Lxy ( xi x)( yi y) xi yi nx y
i 1
ˆ ˆ ˆ Lxy , y x 1 0 1 Lxx
§ 9.1 回归直线方程的建立 9.1.1 回归分析的概念 一、回归分析:如果变量Y和X之间有一定的联系, 且在大量的试验中, Y和X之间的不确定关系能呈现 出明显的规律性,研究Y和X之间的近似的函数关系 的一种方法就是回归分析 例如:1.某商品的需求量与价格

应用回归分析简答题

应用回归分析简答题

应用回归分析简答题1. 回归分析与相关分析的区别与联系是什么?回归分析与相关分析的区别与联系是什么?答:相关分析与回归分析有密切的联系,它们都是对变量间相关关系的研究,二者可以相互补充。

相关分析可以表明变量间相关关系的性质和程度,只有当变量间存在一定程度的相关关系时,进行回归分析去寻求相关的具体数学形式才有实际的意义。

同时,在进行相关分析时如果要具体确定变量间相关的具体数学形式,又要依赖于回归分析,而且相关分析中相关系数的确定也是建立在回归分析基础上的。

二者的区别:(1)相关分析中,变量x 和变量y 处于平等的地位;回归分析中,变量y 称为因变量,处在被解释的地位,x 称为自变量,用于预测因变量的变化;(2)相关分析中所涉及的变量x 和 y 都是随机变量;回归分析中,因变量 y 是随机变量,自变量 x 可以是随机变量,也可以是非随机的确定变量; (3)相关分析主要是描述两个变量之间线性关系的密切程度;回归分析不仅可以揭示变量 x 对变量 y 的影响大小,还可以由回归方程进行预测和控制。

制。

2. 线性回归模型的基本假设是什么?线性回归模型的基本假设是什么?(1)Gauss-Markov 假设:a. 误差项e i是一个期望值为0的随机变量,即()0e =i E ;b. 对于自变量12,,,p x xx 的所有值,e i的方差都相同,即2()e s =i D ; c.误差项e i 是彼此相互无关的,即(,)0,=¹i j Cov i j e e (2)解释变量12,,,p x x x 是非随机变量,观测值12,,,i i ip x x x是常数;(3)正态分布的假定:2(0,)es iN ;(4)为了便于数学上的处理,要求>n p 。

3. Gauss-Markov 假设中的三个条件的统计意义是什么?答:a. 误差项e i 是一个期望值为0的随机变量,即()0e =i E ,其统计意义是表明误差项不包含任何系统的趋势,观测值i y 小于或大于均值()i E y 的波动完全是一种随机性; b. 对于自变量12,,,p x x x 的所有值,e i 的方差都相同,即2()e s =i D ,表明要求不同次的观测i y 在其均值附近波动的程度是一样的;c.误差项e i 是彼此相互无关的,即(,)0,e e =¹i j Cov i j ,表明要求不同次的观 测i y 是互不相关的。

应用回归分析简答题及答案

应用回归分析简答题及答案

应用回归分析简答题及答案4.为什么要对回归模型进行检验答:当模型的未知参数估计出来后,就初步建立了一个回归模型。

建立回归模型的目的是应用他来研究经济问题,但如果马上就用这个模型去做预测、控制和分析,显然是不够慎重的。

因为这个模型是否真正揭示了被解释变量与解释变量之间的关系,必须通过对模型的检验才能决定。

5.讨论样本容量n与自变量个数p的关系,他们对模型的参数估计有何影响答:在多元线性回归模型中,样本容量n与自变量个数p的关系是:n>p。

如果n<=p对模型的参数估计会带来严重的影响。

因为:(1)在多元线性回归模型中,有p+1个待估参数B,所以样本容量的个数应该大于解释变量的个数,否则参数无法估计。

(2)解释变量X 是确定性变量,要求rank(X)=p+1<n,表明设计矩阵X中的自变量列之间不相关,样本容量的个数应该大于解释变量的个数,X是一个满秩矩阵。

7.如何正确理解回归方程显着性检验拒绝Ho,接受Ho答:(1)一般情况下,当Ho:B1=0被接受时,表明y的取值倾向不随x的值按线性关系变化,这种状况的原因可能是变量y与x之间的相关关系不显着,也可能虽然变量y与x之间的相关关系显着,但这种相关关系不是线性的而是非线性的。

(2)当Ho:B1=0被拒绝时,没有其他信息,只能认为因变量y对自变量x是有效的,但并没有说明回归的有效程度,不能断言y与x之间就一定是线性相关关系,而不是曲线关系或其他的关系。

8.一个回归方程的复相关系数R=,样本决定系数R8=, 我们能断定这个回归方程就很理想吗答:1.在样本容量较少,变两个数较大时,决定系数的值容易接近1,而此时可能F检验或者关于回归系数的t检验,所建立的回归方程都没能通过。

2.样本决定系数和复相关系数接近1只能说明Y 与自变量XI,X2,…,Xp整体上的线性关系成立,而不能判断回归方程和每个自变量都是显着的,还需进行F检验和t检验。

3.在应用过程中发现,在样本量一定的情况下,如果在模型中增加解释变量必定使得自由度减少,使得R。

回归分析模型PPT学习教案

回归分析模型PPT学习教案

t
9
10 11 12 13 14 15
y 56 38 36 32 21 19 15
第26页/共28页
二次回归模型为
y2 1.9897t2 51.1394t 347.8967
三次回归模型为
y3 0.1777t3 6.2557t2 79.3303t 391.4095
第27页/共28页
x2 100 110 90 150 210 150 250 270 300 250
y 102 100 120 77 46 93 26 69 65 85
yˆ ˆ0 ˆ1x1 ˆ2x2 66.5176 0.4139x1 0.2698x2
第16页/共28页
例4.3 某销售公司将其连续18个月的库存占用资金 情况、广告投入的费用、员工薪酬以及销售额等方 面的数据做了汇总。该公司的管理人员试图根据这 些数据找到销售额与其他3个变量之间的关系,以便 进行销售额预测并为未来的工作决策提供参考依据 。 (1)试建立销售额的回归模型; (2)如果未来某月库存资金额为150万元,广告投 入预算为45万元,员工薪酬总额为27万元,试根据 建立的回归模型预测该月的销售额。
2
i 1
(n 2)ˆe ]
n
(xi x )2
i 1
参数 2的置信水平为1 的置信区间为
n
n
( yi yˆi )2
( yi yˆi )2
[
i 1
2 1
(n
2)
,
i 1
2
(n
2)
]
2
2
第6页/共28页
用 y0 的回归值yˆ0 ˆ0 ˆ1x0 作为 y0 的预测值, 同时y0 的置信水平为1 的预测区间为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、作多元线性回归分析时,自变量与因变量之间的影响关系一定是线性形式的吗?多元线性回归分析中的线性关系是指什么变量之间存在线性关系?答:作多元线性回归分析时,自变量与因变量之间的影响关系不一定是线性形式。

当自变量与因变量是非线性关系时可以通过某种变量代换,将其变为线性关系,然后再做回归分析。

多元线性回归分析的线性关系指的是随机变量间的关系,因变量y与回归系数B i 间存在线性关系。

多元线性回归的条件是:(1)各自变量间不存在多重共线性;(2)各自变量与残差独立;(3)各残差间相互独立并服从正态分布;(4)Y 与每一自变量X 有线性关系。

2、回归分析的基本思想与步骤基本思想:所谓回归分析,是在掌握大量观察数据的基础上,利用数理统计方法建立因变量与自变量之间的回归关系函数表达式(称回归方程式)。

回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。

此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。

通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理。

步骤:1)确定回归方程中的解释变量和被解释变量。

2)确定回归模型根据函数拟合方式,通过观察散点图确定应通过哪种数学模型来描述回归线。

如果被解释变量和解释变量之间存在线性关系,则应进行线性回归分析,建立线性回归模型;如果被解释变量和解释变量之间存在非线性关系,则应进行非线性回归分析,建立非线性回归模型。

3)建立回归方程根据收集到的样本数据以及前步所确定的回归模型,在一定的统计拟合准则下估计出模型中的各个参数,得到一个确定的回归方程。

4)对回归方程进行各种检验由于回归方程是在样本数据基础上得到的,回归方程是否真实地反映了事物总体间的统计关系,以及回归方程能否用于预测等都需要进行检验。

5)利用回归方程进行预测3、多重共线性问题、不良后果、解决方法多重共线性是指线性回归模型中的自变量之间由于存在精确相关关系或高度相关关系而使模型估计失真或难以估计准确。

常见的是近似的多重共线性关系,即存在不全为0的p个常数C i,C2,…,Cp使得C i X ii+C2X i2 +…+CpXip ~0,i=1,2,…n不良后果:模型存在完全的多重共线性,则资料阵X的秩<p+1,从而无法得到回归参数的估计量。

对于近似多重共线性情况,虽有r(X)=p+1,但|X T X| ~ 0,从而矩阵( X T X)-1的主对角线上的元素很大,使得估计的参数向量的协方差阵的对角线上的元素也很大,导致普通最小二乘参数估计量并非有效。

检验方法:方差扩大因子( VIF )法和特征根判定法方差扩大因子表达式为:VIF i=1/(1-R i2),其中R i为自变量xi对其余自变量作回归分析的复相关系数。

当VIF i很大时,表明自变量间存在多重共线性。

解决方法:当发现自变量存在严重的多重共线性时,可以通过剔除一些不重要的自变量、增大样本容量、对回归系数做有偏估计(如采用岭回归法、主成分法、偏最小二乘法等)等方法来克服多重共线性。

4、为什么要进行回归方程的显著性检验?答:对于任意给定的一组观测数据(xi1,xi2,...,xip;yi) ,(i=1,2,...,n) ,我们都可以建立回归方程。

但实际问题很可能y 与自变量x1,x2,...,xp 之间根本不存在线性关系,这时建立起来的回归方程的效果一定很差,即回归值yi 实际上不能拟合真实的值yi。

即使整个回归方程的效果是显著的,在多元的情况下,是否每个变量都起着显著的作用呢?因此还需要对各个回归系数进行显著性检验,对于回归效果不显著的自变量,我们可以从回归方程中剔除,而只保留起重要作用的自变量,这样可以使回归方程更简练。

5、统计性的依据是什么?给出一个回归方程如何做显著性检验?统计性的依据是方差分析。

对于多元线性回归方程作显著性检验就是要看自变量x1,x2,...xp从整体上对随机变量y 是否有明显的影响,即检验假设H0: B 1=B 2=...= B p=0 H1:至少有某个B i 工0,1<=i<=p如果H0被接受,则表明y与x1,x2,...xp之间不存在线性关系,为了说明如何进行检验,我们首先要建立方差分析表。

在进行显著性检验中,我们可以用F统计量来检验回归方程的显著性,也可以用P 值法做检验。

F 统计量是:F=MSR/MSE=[SSR/p]/[SSE/(n-p-1)]当H0为真时,F~F(p,n-p-1)。

给定显著性水平a,查F分布表得临界值F1-a (p,n-p-1),计算F的观测值,若F0<= F1-a (p,n-p-1),贝U接受H0,即认为在显著性水平a之下,认为y与x1,x2,...xp之间线性关系不显著。

利用P值法做显著性检验十分方便,这里的P值是P(F>F0),定显著性水平a,若p<a,则拒绝H0,反之接受H0。

6、回归系数的显著性检验回归方程通过了显著性检验并不意味着每个自变量xi都对y有显著影响。

而回归系数的显著性检验的目的就是从回归方程中剔除那些对y的影响不显著的自变量,从而建立一个较为有效的回归方程。

如果自变量xi对y无影响,则在线性模型中,B i=0检验xi的影响是否显著等价于检验假设HO:B i=0 , H1:B i工0对给定的显著性水平a,当|ti|>t a 12(n-p-1)时,拒绝H0。

反之,则接受H0。

7、数据的中心化和标准化目的:解决利用回归方程分析实际问题时遇到的诸多自变量量纲不一致的问题。

数据中心化处理的几何意义:相当于将坐标原点移至样本中心,而坐标系的平移并不改变直线的斜率,只改变了截距。

8、通过对残差进行分析,可以在一定程度上回答下列问题:1) 回归函数线性假定的可行性;2) 误差项的等方差假设的合理性;3) 误差项独立性假设的合理性;4) 误差项是否符合正态分布;5) 观测值中是否存在异常值;6) 是否在模型中遗漏了某些重要的自变量9、标准化回归方程与非标准化回归方程有何不同?在怎样的情况下需要将变量标准化?标准化回归方程就是将自变量因变量都标准化后的方程。

在SPSS输出的回归系数中有一列是标准化的回归系数,由于都标准化了,因此标准化方程中没有常数项了。

对数据标准化,即将原始数据减去相应变量的均数后再除以该变量的标准差,计算得到的回归方程称为标准化回归方程,相应的回归系数为标准化回归系数。

一般情况下的回归,并不必须标准化,直接回归即可。

在做主成分分析包括因子分析时,则必须标准化。

10、回归分析和相关分析的区别和联系相关分析和回归分析都是对客观事物数量依存关系的分析,均有一元和多元,线性与非线性之分,在应用中相互结合渗透,但仍有差别,主要是:(1)相关分析主要刻画两类变量间线性相关的密切程度,而回归分析则是揭示一个变量如何与其他变量相联系,并可由回归方程进行控制和预测(2)在相关分析中,变量y与x处于平等的地位,在回归分析中,因变量y处于被解释的特殊地位( 3)在相关分析中所涉及的变量y 与x 完全是随机变量;而在回归分析中因变量y 是随机变量,自变量可以是随机变量也可以是非随机变量。

一般来说,只有存在相关关系才可以进行回归分析,相关程度越高,回归分析的结果就越可靠。

11、回归方程的基本假定?(1)回归函数的线性假设(2)误差项的等方差假设(3)误差项的独立性假设(4)误差项的正态分布假设12、运用回归分析解决问题时,回归变量的选择理论依据的什么?选择回归变量时应注意哪些问题?(1)从拟合角度考虑,可以采用修正的复相关系数达到最大的准则准则1:修正的复相关系数R a2达到最大。

因为:R a2=1-MSE/(SST/(n-1))从这个关系式容易看出,R a2达到最大时,MSE达到最小(2)从预测的角度考虑,可以采用预测平方和达到最小的准则及C p准则准则2:预测平方和PRES$达到最小准则3: (C p准则)( 3)从极大似然估计角度考虑,可以采用赤池信息量化准则( AIC 准则)准则4:赤池信息量达到最小AIC=nln(SSE p)+2p选择AIC值最小的回归方程为最优回归方程自变量的选择问题可以看成是应该采用全模型还是选模型的问题全模型正确误用选模型:全模型相应参数为有偏估计,选模型预测也是有偏的。

选模型的参数估计和预测残差以及均方差都有较小的方差。

选模型正确误用全模型,全模型参数估计和预测是有偏估计,而全模型预测值的方差和均方差大于选模型相应的方差。

上述结论说明丢掉那些对应变量影响不大的,或虽有影响,但难于观测的自变量是有利的。

13、逐步回归方法的基本思想与步骤基本思想:有进有出。

具体做法是将变量一个一个引入,引入变量的条件是通过了偏F 统计量的检验,同时,每引入一个新变量后,对已入选方程的老变量进行检测,将经检验认为不显著的变量剔除,此过程经过若干步,直到既不能引入新变量又不能剔除老变量为止。

基本步骤:(1)对于每个自变量x i(1< i < m),拟合m个一元线性回归模型,若F I(1)>F E,则所选择含有自变量x i1的回归模型为当前模型,否则,没有变量引入模型,选择过程结束,即认为所有自变量对y 的影响均不显著。

(2)在第一步的基础上,再将其余的m-1个自变量分别加入此模型中,得到m-1 个二元回归方程,若若F i1⑵〉F E则将自变量X i2引入模型,进一步考察X i2引入模型后,X ii对y的影响是否仍显著,若F l⑵< F D,贝捌除X i。

(3)在第二步的基础上再将其余的m-2个自变量分别加入此模型中,拟合各个模型并计算偏F统计量值,与F E比较决定是否又新变量引入,如果有新的变量引入,还需要检验原模型中的老变量是否因为这个新变量的引入而不再显著,那样就应该被剔除。

重复以上步骤,直到没有新的变量进入模型,同时在模型中的老变量都不能被剔除,贝结束选择过程。

相关文档
最新文档