水通道蛋白
说说“水通道蛋白”
细胞表达系统 中研究了其水 通道 功能 5, 从 而证 实细 胞膜上存在转运水 的通道 蛋 白。随着更 多 C H I P 2 8同 系物 的发现 , 水 通 道蛋 白家 族被 命 名为 A q u a p o r i n , 而
C H I P 2 8也随之改称为 A q u a p o r i n一1 ( A Q P 1 ) 【 6 J 。A g r e
・
6 O・
生 物学 教学 2 0 1 5 年( 第4 0 卷) 第6 期
说说“ 水 通 道 蛋 白’ ’
邓 鹏 杨晓霜 ( 广 东 省 深 圳 市 科 学 高 中5 1 8 1 2 9 )
摘 要 水通道蛋白普 遍存在 于动、 植 物及微生 物细胞 中, 是构成 水分运输 的特异性通道 。本文 以哺乳 动物 为例 , 对水 通道蛋 白 水通道蛋 白 水分 跨 膜运输 细胞膜
1 . 1 一级结 构 水通 道蛋 白 的一级 结构是 由两个 同
半环在折 叠 中形 成一 个 可 以运输 水 分 子 的孔 道 … 。
A Q P三级结构在脂双层 两侧开 口处较 宽 , 而通 道 中心 较窄 , 因此被称为 “ 沙漏 ” 模型 。1 9 9 7年 , Wa l z和 u 对 水通道蛋 白电子摄 像和 三维结 构进行 分 析报 道 , 印证 了“ 沙漏 ” 模 型【 9 , 1 0 J 。
~
之间存在着密切 的、 精确 的 、 严 格调控 的生物学 机 制 ,
共同控制着生物 的遗传 。
主 要 参 考 文 献
1 7 3
【 3 ] 王镜岩 , 朱圣庚 , 徐 长法 . 2 0 0 2 . 生物化学下 册 ( 第 3版) . 北京 : 高
铁死亡 水通道蛋白
铁死亡水通道蛋白-概述说明以及解释1.引言1.1 概述铁死亡是一种与水通道蛋白功能紧密相关的现象,它在生物体内产生了广泛的研究兴趣。
铁作为生物体内重要的营养元素,参与了许多生理过程的调节和维持,包括氧运输、能量代谢和DNA合成等。
水通道蛋白则是一类跨膜蛋白,主要负责水的跨膜运输。
它们的关系影响着生物体内水分平衡、细胞内外渗透压的维持以及许多其他重要的生物过程。
本文旨在探讨铁与水通道蛋白之间的关联,并分析铁死亡对生物体的影响。
我们将首先回顾铁的重要性,介绍其在生物体内的作用与功能。
随后,我们将重点讨论水通道蛋白的功能及其在维持细胞内外渗透压平衡中的作用。
在此基础上,我们将深入探讨铁与水通道蛋白之间的关系,并阐述铁对水通道蛋白的调控机制。
接下来,我们将详细讨论铁死亡对生物体的影响。
铁死亡是指铁的水平过高或过低导致的一系列生理和病理变化。
我们将重点探讨铁死亡对水通道蛋白的损害,以及由此引发的水分失衡和细胞功能障碍等问题。
最后,我们将对铁死亡的意义进行归纳和总结,并探讨水通道蛋白在疾病治疗和生物技术领域的潜在应用。
同时,我们还将提出一些对策和建议,以有效预防或治疗铁死亡引起的相关问题。
通过对这一重要领域的深入研究,我们可以更好地理解铁与水通道蛋白之间的相互作用,为相关疾病的治疗和新药开发提供科学依据。
相信本文的内容将对相关领域的学者和研究人员具有一定的参考和指导价值。
1.2 文章结构文章结构:本文采用以下结构进行组织和呈现。
首先,在引言中概述了本文的主要内容和目的,以及将要讨论的问题。
接下来,正文部分分为四个章节,具体涵盖了铁的重要性、水通道蛋白的功能、铁与水通道蛋白的关系以及铁死亡的影响。
在每个章节中,将以相关的研究和实例来说明所探讨的问题。
最后,在结论部分总结了本文的重点观点,并提出了关于铁死亡意义、水通道蛋白潜在应用、对策和建议等方面的讨论。
在整篇文章中,通过理论探讨和实证研究相结合的方式,旨在深入剖析铁死亡和水通道蛋白的相关知识,并探讨其在生物学和医学领域中的重要性和应用前景。
水通道蛋白的名词解释
水通道蛋白的名词解释水通道蛋白是一类存在于生物体细胞膜上的蛋白质,其主要功能是调节细胞内外水分的平衡。
这些蛋白质以其独特的细胞膜通透性,通常被形容为“细胞的水渠”。
尽管细胞膜对水具有一定的渗透性,但水通道蛋白的出现使得水分的跨膜运输变得更加高效和方便。
水通道蛋白主要通过形成一个微小的通道,让水分子直接穿过细胞膜,从而加速细胞内外的水分交换。
水通道蛋白最早被发现于红细胞膜,其中最为著名的是被称为Aquaporin-1(AQP1)的蛋白质。
AQP1被发现能够高效地传输水分子,使其成为研究者们研究水通道蛋白的重要起点。
此后,越来越多的水通道蛋白被发现,它们在各种生物体的细胞膜上广泛存在。
水通道蛋白家族主要包括两类:小分子量蛋白(20~35kDa)和大分子量蛋白(约为50~90kDa)。
小分子量蛋白包括AQP1、AQP2和AQP4等,它们主要负责水分子的传输。
大分子量蛋白则包括AQP0、AQP5和AQP6等,除了与水分交换有关,这些蛋白质还可能参与其他细胞功能的调节。
水通道蛋白在生物体中具有广泛而重要的作用。
例如,在人体内,水通道蛋白在器官和组织中起着维持水分平衡的关键作用。
当体内水分过多或过少时,水通道蛋白能够根据需要调整细胞膜的通透性,控制水分大量吸收或排泄。
这一过程在保持人体内部环境稳定方面非常重要。
此外,水通道蛋白还在植物、昆虫、微生物等生物体中发挥着类似的功能。
在植物体内,水通道蛋白不仅参与了水分的吸收和输送,还对维持细胞渗透稳定性和调节植物生长发育起到了重要作用。
在昆虫和微生物中,水通道蛋白也发挥着类似的水分调节作用,确保它们能够在不同环境下生存和繁衍。
随着科学技术的发展,研究人员对水通道蛋白进行了深入的研究。
他们通过结构生物学、细胞生物学以及分子生物学等多种手段,揭示了水通道蛋白的分子结构和生理功能,并进一步研究了其与疾病之间的关系。
例如,某些疾病,如肾脏功能障碍、肿瘤、水肿等,与水通道蛋白的异常表达或功能失调密切相关。
水通道蛋白
水通道蛋白水通道蛋白是介导水跨膜转运的一大膜蛋白家族,分布于高等脊椎动物上皮细胞或内皮细胞。
结构上由28-KDa 亚单位组成四聚体,每个亚单位构成孔径约的水孔通道,在渗透压驱动下实现水双向跨膜转运【1】。
目前11 种亚型已经在哺乳动物中被确定,各种亚型的体内分布具有组织特异性,其中水通道蛋白-4 (Aquaporin 4,AQP4)以极化形式集中分布于中枢神经系统脑毛细血管周边的星形胶质细胞足突或室管膜细胞【2】。
血脑屏障为脑内另一调控水平衡的复合体,由无窗孔的脑毛细血管内皮细胞及细胞间紧密连接、基底膜、星形胶质细胞等组成,介于血液和中枢神经系统之间,限制血液中某些离子、大分子物质转移到脑实质,此屏障作用为维持CNS 内环境稳定、保障脑功能正常行使提供了重要保障。
BBB 分化发育过程中脑毛细血管内皮细胞间紧密连接的形成虽被认为是其成熟的标志,但BBB 生理功能的实现有赖于各组成成分间的相互作用。
近来对星形胶质细胞调控BBB 物质交换和脑内水平衡方面的作用日益受到重视,并认为与AQP4 表达有关。
本文就AQP4 与血脑屏障发育及其完整性关系的研究进展作一综述。
分化发育过程中AQP4 的表达目前由于对鸡胚视顶盖中血管及BBB 分化的研究已较完善,因此常被用于BBB 的研究模型。
Nico 及其同事【3】采用免疫细胞化学、分子生物学技术研究了鸡胚视顶盖AQP4 在BBB 分化发育过程的动态表达。
免疫电镜显示鸡胚视顶盖发育第9 d,BBB仅由不规则的内皮细胞组成,内皮细胞间紧密连接尚未形成,AQP4 未见表达。
待发育至第14 d,Western blot 技术首次在约30 kDa 链附近检测出AQP4 的免疫活性,电镜下显示短的内皮细胞间紧密连接已形成,并串联构成BBB 的微血管,星形胶质细胞间断黏附于血管壁,AQP4 不连续地表达于血管周边,血管周围仍然存在小空隙。
发育第20 d BBB 成熟,内皮细胞间紧密连接形成,BBB 微血管被星形胶质细胞紧紧包被,血管周边星形胶质细胞足突上的AQP4 呈现强阳性表达,且冷冻断裂研究显示AQP4 的正交排列阵也同步形成。
细胞膜上的水通道蛋白
细胞膜上的水通道蛋白作者:Marokko摘要:物质的跨膜运输是细胞维持正常生命活动的基础之一。
主要分为被动运输,主动运输,胞吞作用及胞吐作用。
但是事实上细胞的物质转运过程中,透过脂双层的简单扩散现象很少,绝大多数情况下,物质是通过载体或者通道来转运的。
离子、葡萄糖、核苷酸等物质有的是通过质膜上的运输蛋白的协助,按浓度梯度扩散进入质膜的,有的则是通过主动运输的方式进行转运。
而维持细胞之间的跨膜运输的膜转运蛋白则主要分为载体蛋白与通道蛋白。
其中通道蛋白(channel protein)是跨膜的亲水性通道,允许适当大小的离子顺浓度梯度通过,故又称离子通道。
有些通道蛋白长期开放,如钾泄漏通道;有些通道蛋白平时处于关闭状态,仅在特定刺激下才打开,又称为门通道(gated channel).而水扩散通过人工膜的速率很低,所以人们推测膜上有水通道.1991年Agre发现第一个水通道蛋白CHIP28 (28 KD ),目前在人类细胞中已发现的此类蛋白至少有11种,被命名为水通道蛋白(Aquaporin,AQP)。
水通道蛋白广泛存在于生物体中的各组织部位,影响着生物机体水代谢的过程。
随着分子生物学技术的进步,对水通道蛋白的基础研究已经比较深入和成熟。
目的可以利用水通道蛋白研究的基础成果,阐释临床水代谢障碍类疾病的发病机理提供可能的解决思路。
关键词:跨膜运输,通道蛋白,水通道蛋白正文:包括人类在内的大多数生物都是由细胞组成的。
单个细胞就像一个由城墙围起来的微小城镇,有用的物质不断被运进来,废物被不断运出去。
早在100多年前,人们就猜测细胞这一微小城镇的城墙中存在着很多“城门”,它们只允许特定的分子或离子出入。
这就是细胞之间的跨膜运输。
物质的跨膜运输主要分为被动运输,主动运输,胞吞作用及胞吐作用。
而事实上细胞的物质转运过程中,透过脂双层的简单扩散现象很少,绝大多数情况下,物质是通过载体或者通道来转运的。
下图分别为载体蛋白与通道蛋白。
水通道蛋白在动物疾病发生过程中的作用研究进展
动物医学进展,021,42(3)=102-105Progress in Veterinary Medicine水通道蛋白在动物疾病发生过程中的作用研究进展张玉婷,张琪,郭抗抗,许信刚*,周宏超*(西北农林科技大学动物医学院,陕西杨凌712100)摘要:水通道蛋白(AQP)是细胞上存在的一种膜孔道蛋白。
动物、植物、微生物细胞上均有水通道蛋白的表达,其主要功能是参与机体的水与电解质代谢。
近年来,针对水通道蛋白在机体所发挥的功能方面研究较多,发现水通道蛋白不仅参与机体生理方面的调控,而且在一些疾病的发生发展过程中也发挥重要的作用。
综述概括了水通道蛋白在脑、肺、肾脏、肠道等组织器官的定位;重点阐述了水通道蛋白在动物脑部疾病、肺部疾病、肾脏疾病、肠道疾病发展过程中所发生的变化。
旨在为患病动物出现水与电解质代谢紊乱症状时,对水通道蛋白发生的变化研究提供参考。
关键词:水通道蛋白;脑水肿;肺动脉高压;肾损伤;腹泻中图分类号:S852.2文献标识码:A 文章编号=^^5038^1)3-0102-0.-1水通道蛋白(aquaporin,AQP)作为一种水转运蛋白在机体各个部位广泛分布,尤其在涉及水液输送的组织细胞内分布量较多,例如在大脑、胃、肠道,肾脏及膀胱等器官均有表达,水通道蛋白在保持机体内环境稳态方面发挥重要作用,增强了机体的代谢能力[]。
研究发现,哺乳动物体内所表达的水通道蛋白已经有13种亚型,分别为AQP0、AQP1、AQP2、AQP3、AQP4、AQP5、AQP6、AQP7、AQP8、AQP9、AQP10、AQP11、AQP12。
水通道蛋白家族根据各个亚型在机体发挥的功能不同,可分为3类:①单纯的水通道蛋白,如AQP1,AQP2,AQP4, AQP5;②水甘油通道蛋白,如AQP3,AQP9、AQP10;③超级水通道蛋白,如AQP6,AQP8, AQP11、AQP12[]。
近年来,某些疾病的发生与水通道蛋白异常表达现象,得到了广泛的关注。
水通道蛋白综述与展望
水通道蛋白水通道- 从原子结构到临床医学生物膜的透水性在生理学上是一个长期存在的问题,但负责此类蛋白质的蛋白质仍然未知,直到发现水通道蛋白1(AQP1)水通道蛋白。
AQP1由渗透梯度驱动的水选择性渗透。
人类AQP1的原子结构最近被定义。
四聚体的每个亚基含有允许水分子单文件通过但中断氢键通过质子所需的单独水孔。
已经鉴定了至少10种哺乳动物水通道蛋白,并且它们被水(水通道蛋白)或水加甘油(水甘油聚糖)选择性渗透。
表达位点与临床表型密切相关,从先天性白内障到肾源性尿崩症。
在植物,微生物,无脊椎动物和脊椎动物中发现超过200个水通道蛋白家族成员,并且它们对这些生物体的生理学的重要性正在被揭开。
在20世纪20年代发现脂质双层提供了当沐浴在较低或较高pH或含有毒性浓度的Ca2 +或其他溶质的细胞外液中时细胞如何维持其最佳细胞内环境的解释。
从1950年代开始发现离子通道,交换剂和共转运体为溶质的跨膜运动提供了分子解释。
然而,长期以来,假定水的输送是由于通过脂质双层的简单扩散。
来自具有高膜渗透性的多个实验系统的观察,例如两栖膀胱和哺乳动物红细胞,表明通过脂质双层的扩散不是水跨越膜的唯一途径。
虽然提出了各种解释,但直到10年前发现AQP1才能知道分子水- 特异性转运蛋白(Preston等,1999)。
现在人们普遍同意扩散和通道介导的水分运动都存在。
通过所有生物膜以相对较低的速度发生扩散。
水通道蛋白水通道发现于上皮细胞的一部分10至100倍的水渗透能力。
值得注意的是,水通道蛋白水通道的选择性非常高,甚至质子(H3O +)被排斥。
在大多数组织中,扩散是双向的,因为水进入细胞并从细胞释放,而水通道蛋白介导的体内水流则由渗透或液压梯度引导。
扩散的化学抑制剂是未知的,扩散发生在高Ea(Arrhenius活化能)。
相比之下,大多数哺乳动物水通道蛋白受汞的抑制,Ea等同于大量溶液中水的扩散(〜5 kcal mol_1)。
水通道蛋白的发现说明了偶发性在生物学研究中的重要性,并且引起了上游流体运输过程中水如何穿过生物膜的范式的完全转变。
水通道蛋白
水通道蛋白的发现
Agre等(1988)在分离纯化红细胞膜上的Rh多肽时,发现 了一个28 kD的疏水性跨膜蛋白,称为形成通道的整合膜 蛋白28(channel-forming inte—gral membrane protein, CHIP28),1991年完成了其eDNA克隆(Verkman,2003)。 但当时并不知道该蛋白的功能,在进行功能鉴定时,将体 外转录合成的CHIP28 eDNA注入非洲爪蟾的卵母细胞中, 发现在低渗溶液中,卵母细胞迅速膨胀,并于5 min内破 裂。为进一步确定其功能,又将其构于蛋白磷脂体内,通 过活化能及渗透系数的测定及后来的抑制剂敏感性等研究, 证实其为水通道蛋白。从此确定了细胞膜上存在转运水的 特异性通道蛋白,并称CHIP28为Aquaporinl(AQPl)。
•
20世纪80年代中期,美国科学家彼得· 阿格雷研究了不 同的细胞膜蛋白,经过反复研究,他发现一种被称为水通 道蛋白的细胞膜蛋白就是人们寻找已久的水通道。为了验 证自己的发现,阿格雷把含有水通道蛋白的细胞和去除了 这种蛋白的细胞进行了对比试验,结果前者能够吸水,后 者不能。为进一步验证,他又制造了两种人造细胞膜,一 种含有水通道蛋白,一种则不含这种蛋白。他将这两种人 造细胞膜分别做成泡状物,然后放在水中,结果第一种泡 状物吸收了很多水而膨胀,第二种则没有变化。这些充分 说明水通道蛋白具有吸收水分子的功能,就是水通道。
学奖。
Peter Agre
Roderick MacKinnon
• 2000年,阿格雷与其他研究人员
一起公布了世界第一张水通道蛋 白的高清晰度立体照片。照片揭 示了这种蛋白的特殊结构只允许 水分子通过。 • 水通道的发现开辟了一个新的研 究领域。目前,科学家发现水通 道蛋白广泛存在于动物、植物和 微生物中,它的种类很多,仅人 体内就有11种。它具有十分重要 的功能,比如在人的肾脏中就起 着关键的过滤作用。通常一个成 年人每天要产生170升的原尿, 这些原尿经肾脏肾小球中的水通 道蛋白的过滤,其中大部分水分 被人体循环利用,最终只有约1 升的尿液排出人体。
水通道蛋白的基本结构与特异性通透机理
水通道蛋白的基本结构与特异性通透机理王晶桑建利(北京师范大学生命科学学院北京 100875)摘要水通道蛋白是一个具有跨膜运输水分子功能的蛋白家族。
从1988 年Agre 等发现水通道蛋白起,目前在不同物种中已经发现了200 余种水通道蛋白,其中存在哺乳动物体内的有13 种。
概述了水通道蛋白的结构、组织特异性分布及特异性通透机理。
关键词水通道蛋白水分跨膜转运水分子的跨膜转运对维持不同区域的液体平衡和内环境稳态非常重要。
水分子作为一种不带电荷且半径极小的极性分子,很早被证实能通过自由扩散穿透脂质双分子层。
在发现水通道蛋白以前,人们一直认为这是水分子透过质膜的唯一方式。
但通过实验发现,红细胞和肾小管细胞中水的通透速率之快远非简单扩散强度所能提供的,因此猜测,质膜上可能存在某种通道介导水的转运。
1 水通道蛋白的发现1988年,Agre 等从人类红细胞膜上纯化分离分子量为32×106的Rh 多肽时,偶然鉴定到一种新的分子量为28×106的整合膜蛋白,并且通过免疫印迹发现这类蛋白也存在于肾脏的近端肾小管中[1],把它称为类通道整合膜蛋白(channel-like integralmembrane protein, CHIP28)。
随后,在1991 年Agre 和Preston 成功克隆得到了CHIP28 的cDNA,通过分析其编码的氨基酸序列,发现CHIP28 含有6个跨膜区域、2个N-糖基化位点、且N 端和C 端都位于膜的胞质一侧。
另外,对比CHIP28 与早期从牛晶体纤维中克隆得到的主要内源性蛋白(major intrinsicprotein,MIP)的DNA 序列,发现二者具有高度同源性。
由于很早以前就证实了MIP 家族的成员蛋白参与形成允许水和其他小分子通透的膜通道,因此,推测CHIP28 可能也具有类似功能[2]。
1992 年,Preston 等通过在非洲爪蟾的卵母细胞中表达CHIP28,首次证实它是一种水通道蛋白。
水通道蛋白
• 生物体的主要组成部分是水溶液,水溶液占人体
重量的70%。生物体内的水溶液主要由水分子和 各种离子组成。它们在细胞膜通道中的进进出出 可以实现细胞的很多功能。
• 20世纪50年代中期,科学家发现,细胞膜中存在
着某种通道只允许水分子出入,人们称之为水通 道。因为水对于生命至关重要,可以说水通道是 最重要的一种细胞膜通道。尽管科学家发现存在 水通道,但水通道到底是什么却一直是个谜。
• 水通道蛋白的简介 • 发现历程 • 发展前景
什么是水通道蛋白?
• 即蛋白质在膜内,形
成专门输送水的穿膜 通道,存在于红细胞 和肾组织中,由4个 相同的亚基组成,每 个亚基(28 kDa)含6个 穿膜α螺旋,极大地 增加膜的水通透性。
• 水通道蛋白是专门运输水的跨膜蛋白,其
基因结构、基因表达调控、染色体定位、 蛋白质结构、组织分布和生理功能得到了 较为深入的研究。
美国波士顿附近的小镇伯灵 顿长大,1982年在塔夫 茨医学院获医学博士,现为 洛克菲勒大学分子神经生物 学和生物物理学教授。
• 彼得•阿格雷,1949年生
于美国明尼苏达州小城诺 斯菲尔德,1974年在巴 尔的摩约翰斯•霍普金斯 大学医学院获医学博士, 现为该学院生物化学教授 和医学教授。2004年来 到杜克大学,担任医学院 副院长。
发展前景
• 很多疾病,比如一些神经系统疾病和心血管疾病
就是由于细胞膜通道功能紊乱造成的,对细胞膜 通道的研究可以帮助科学家寻找具体的病因,并 研制相应药物。
• 水通道的发现开辟了一个新的研究领域。目前,
科学家发现水通道蛋白广泛存在于动物、植物和 微生物中,它的种类很多,仅人体内就有11种。 它具有十分重要的功能,比如在人的肾脏中就起 着关键的过滤作用。通常一个成年人每天要产生 170升的原尿,这些原尿经肾脏肾小球中的水通道 蛋白的过滤,其中大部分水分被人体循环利用, 最终只有约1升的尿液排出人体。
水通道蛋白相关疾病阅读材料
四.水通道蛋白相关疾病当水通道蛋白的调节出现紊乱的时候,则可能引起多种疾病。
(一)肾脏水通道蛋白和相关疾病研究表明,水通道蛋白基因突变将引起尿崩症(diabetesinsipidus,DI)。
尿崩症广义上讲是指多饮、低比重尿和低渗尿为特征的一组综合征。
目前报道的多数遗传性肾性尿崩症病例是以X连锁方式遗传的,由编码V2 受体的基因突变引起,另外的病例则是由于编码AQP2基因的突变引起,以常染色体显性或隐性方式遗传[11]。
(二)肺部水通道蛋白和相关疾病肺水通道蛋白的异常与肺疾病的关系已有诸多实验报道。
AQP可能参与肺水肿的发病机制。
在各种肺损伤中,存在着大量的水的异常跨膜转运及在肺组织中的异常聚集等情况,这些情况均可能与水通道蛋白有关。
在小鼠病毒性肺炎模型中,发现AQP1和AQP5在鼠肺中的表达降低,这说明肺水在肺间质中聚集的重要原因就是水通道蛋白的减少,导致水不能及时排出而出现水肿。
哮喘发作时,水分子运动在气道阻塞中起重要作用,特别在冷哮喘或运动哮喘时, 上皮黏膜下血管(含AQP1) 、气管及支气管(含AQP3 和AQP4) 的肿胀是形成气道阻塞的重要原因[1]。
从而说明了水通道蛋白和哮喘的发生也有密切关系。
(三)水通道蛋白及癌症水通道蛋白在肿瘤组织的表达及其与肿瘤细胞转移的关系可能将会是今后研究的热门。
多年研究表明,为满足快速增殖、分裂和侵袭转移的需要,肿瘤细胞内一系列酶的活性和表达会发生改变,细胞基本结构成分如蛋白质、脂类和核酸的合成加强。
癌细胞的所有生命活动都离不开水的微环境和参与,癌细胞比正常细胞更需要水分子的快速跨膜转运。
目前的研究表明,部分AQPs在肿瘤组织中表达明显增高或降低。
在脑胶质瘤中水通道蛋白的表达明显增多,脑胶质瘤多伴有脑水肿的发生。
经证实,AQP 1和AQP4在脑胶质瘤中的表达明显高于正常组织,且在星型细胞的表达量与恶性程度有直接关系[8]。
AQPs同时还可能促进肿瘤血管增生,增强肿瘤血管渗透性,在肿瘤的生长和扩散、侵袭和转移中有重要作用。
膜转运蛋白的类型及区别
膜转运蛋白的类型及区别膜转运蛋白是一类存在于细胞膜上的蛋白质,能够通过细胞膜将物质从细胞内转运到细胞外或者从细胞外转运到细胞内。
根据其结构和功能的不同,膜转运蛋白可以分为多种类型,下面将分别介绍这些类型及其区别。
1. 离子通道蛋白(Ion Channel Proteins)离子通道蛋白是一类能够形成离子通道的蛋白质,通过这些通道,离子可以在细胞膜上快速通透。
离子通道蛋白根据对离子的选择性可分为阳离子通道和阴离子通道。
阳离子通道蛋白主要负责钠、钾、钙等阳离子的传输,而阴离子通道蛋白则主要负责氯离子和其他阴离子的传输。
离子通道蛋白的开闭状态通常受到电压、配体或其他信号的调控。
2. 载体蛋白(Carrier Proteins)载体蛋白是一类能够将物质从一个细胞膜侧转运到另一个细胞膜侧的蛋白质。
通过结合物质并经过构象变化,载体蛋白可以将物质从高浓度区域转运到低浓度区域,这个过程不需要能量的消耗。
载体蛋白在细胞内物质的摄取、排泄和信号传导等过程中起到重要作用。
3. 水通道蛋白(Aquaporins)水通道蛋白是一种特殊的膜转运蛋白,它具有高度选择性地传输水分子。
水通道蛋白能够形成水分子通过的通道,使得水分子能够快速地通过细胞膜进入或者离开细胞。
水通道蛋白在维持细胞内外水分平衡、调节细胞内压力和保护细胞免受渗透胁迫等方面发挥着重要的作用。
4. ABC转运体(ABC Transporters)ABC转运体是一类能够通过ATP酶活化的方式将物质跨越细胞膜的转运蛋白。
它们通过耗能的方式将物质从低浓度区域转运到高浓度区域,这个过程需要ATP的参与。
ABC转运体在多种物质的转运中起到关键作用,包括药物的转运、细胞内代谢产物的排泄等。
5. P型转运酶(P-type ATPases)P型转运酶是一类能够通过ATP酶活化的方式将物质跨越细胞膜的转运蛋白。
与ABC转运体不同的是,P型转运酶在转运过程中直接利用ATP水解产生的能量。
水通道蛋白4的研究进展
水通道蛋白4的研究进展水通道蛋白4(AQP4)是一种与水的通透性有关的蛋白,主要存在于中枢神经系统,并广泛表达于中枢神经系统的星形胶质细胞、脉络丛上皮细胞、室管膜上皮细胞等支持细胞中,目前大量研究表明,AQP4不仅与脑水肿的发生发展密切相关,同时还参与多种神经系统疾病的病理过程,对临床神经系统疾病的诊断及治疗具有重要的意义,本文就AQP4与几种常见神经系统疾病的联系作一综述。
水通道蛋白(aquaporins,AQPS)就是一組与水的通透性有关的蛋白,其中AQP1最早被发现,随后又陆续发现了包括AQP0-AQP12在内的13种水通道蛋白,其中AQP1、AQP3、AQP4、AQP5、AQP8和AQP9主要存在于哺乳动物的脑组织中,尤以AQP4的存在及表达最为重要,参与了脑水肿及多种神经系统疾病的发展。
1 AQP4基本结构及分布AQP4基因位于人类染色体18q11.2与q12.1的连接处,包含4个外显子,负责127、55、27、92位氨基酸序列的编码,3个内含子位于其间。
从结构上看,其包括6个跨膜结构和A、C、E 3个细胞外环和B、D 2个细胞内环。
AQP4的四级结构是由相对分子质量约34 KD的4个具有独立活性的且均含有6条疏水性跨膜结构的单体组成的四聚体,每个单体的6条疏水性跨膜结构形成类似沙漏的水通道,仅允许单线通过1个水分子。
AQP4主要分布于中枢神经系统的星形胶质细胞、脉络丛上皮细胞、室管膜上皮细胞等支持细胞中,并大量表达在星形胶质细胞足突、胶质界膜、软脑膜及室管膜与其下星形胶质细胞的空隙中,目前尚未发现其在兴奋性细胞中表达[1]。
此外,AQP4呈极性分布于星形胶质细胞足突上,锚定蛋白和细胞周围环境对其这种分布起到了一定的作用[2]。
由此可以简单的通过AQP4的分布及表达特点推断其与中枢系统的水平衡有关。
2 AQP4与Kir4.1内向整流钾离子通道4.1(Inwardly rectifying K+ channel,Kir4.1)是中枢神经系统的一种膜蛋白,其具有内向整流的特点并能通过调节胞外过高的钾离子浓度而维持内环境的稳态。
水通道蛋白研究进展
水通道蛋白研究进展水通道蛋白是一种专门负责水分子跨膜运输的蛋白,对于生物体的水分平衡和调节具有重要意义。
近年来,随着研究的深入,水通道蛋白的作用机制和应用领域逐渐引起人们的。
本文将概述水通道蛋白的基本概念、分类、功能,并重点介绍其研究进展。
水通道蛋白概述水通道蛋白是一种位于细胞膜上的运输蛋白,主要负责水分子在细胞膜上的跨膜运输。
水通道蛋白可根据其分布位置和功能不同分为不同类型,例如:AQP0、AQP1、AQP2等。
这些蛋白在细胞膜上形成水通道,帮助水分子快速、高效地通过细胞膜,从而维持细胞内外水平衡及细胞生长代谢。
水通道蛋白研究进展1、水通道蛋白的分子结构与功能关系水通道蛋白的分子结构由6个跨膜片段组成,形成一种特定的构象,从而有利于水分子通过。
不同的水通道蛋白具有不同的构象和功能,例如:AQP0主要分布于视网膜色素上皮细胞,参与调节眼部水分平衡;AQP1主要分布于肾脏、膀胱等器官,参与调节水平衡和尿生成;AQP2主要分布于肾小管和集合管,参与调节尿浓缩和稀释。
2、水通道蛋白的研究方法与技术目前,水通道蛋白的研究方法主要包括以下几种:基因克隆、表达与纯化;蛋白质结晶与结构解析;功能及动力学研究等。
这些方法分别从基因、蛋白质和功能等方面对水通道蛋白进行研究。
同时,随着生物技术的发展,如荧光标记、基因敲除等技术也为水通道蛋白研究提供了有力支持。
3、水通道蛋白的应用领域与展望水通道蛋白在生物学、医学等领域具有广泛的应用价值。
首先,水通道蛋白参与维持生物体内环境稳态,对治疗与预防水肿、脱水等疾病具有重要意义。
例如,AQP1在急性肾损伤和慢性肾功能衰竭等疾病中表达异常,成为治疗上述疾病的潜在靶点。
此外,水通道蛋白还与某些肿瘤细胞的生长和转移密切相关,因此有望为肿瘤治疗提供新思路。
其次,水通道蛋白在物质跨膜转运、药物研发等方面也具有潜在应用价值。
例如,通过研究AQP4在脑内的分布和作用机制,有助于理解脑内物质跨膜转运的规律,为药物研发提供新靶点。
水通道蛋白
发展前景
• 很多疾病,比如一些神经系统疾病和心血管疾病 很多疾病,比如一些神经系统疾病和心血管疾病
就是由于细胞膜通道功能紊乱造成的,对细胞膜 通道的研究可以帮助科学家寻找具体的病因,并 研制相应药物。 水通道的发现开辟了一个新的研究领域。目前, 科学家发现水通道蛋白广泛存在于动物、植物和 科学家发现水通道蛋白广泛存在于动物、植物和 微生物中,它的种类很多,仅人体内就有11种。 微生物中,它的种类很多,仅人体内就有11种。 它具有十分重要的功能,比如在人的肾脏中就起 它具有十分重要的功能,比如在人的肾脏中就起 着关键的过滤作用。通常一个成年人每天要产生 170升的原尿,这些原尿经肾脏肾小球中的水通道 170升的原尿,这些原尿经肾脏肾小球中的水通道 蛋白的过滤,其中大部分水分被人体循环利用, 最终只有约1升的尿液排出人体。
• 1988年,罗德里克·麦金农利用X射线晶体 1988年,罗德里克·
成像技术获得了世界第一张离子通道的高 成像技术获得了世界第一张离子通道的高 清晰度照片,并第一次从原子层次揭示了 清晰度照片,并第一次从原子层次揭示了 离子通道的工作原理。这张照片上的离子 通道取自青链霉菌,也是一种蛋白。麦金 通道取自青链霉菌,也是一种蛋白。麦金 农的方法是革命性的,它可以让科学家观 测离子在进入离子通道前的状态,在通道 中的状态,以及穿过通道后的状态。对水 通道和离子通道的研究意义重大。
• 生物体的主要组成部分是水溶液,水溶液占人体
浅析植物水通道蛋白的研究进展-植物学论文-生物学论文
浅析植物水通道蛋白的研究进展-植物学论文-生物学论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——水通道蛋白(也称水孔蛋白,AQPs)促使着水分的双向跨膜运动,它所介导的自由水快速被动地跨生物膜转运,是水进出细胞的主要途径。
第1 次从分子水平上证实细胞膜上存在水转运通道蛋白是Pe-ter Agre 研究小组[1]于1988 年从血红细胞和肾小管中分离纯化出的CHIP28 蛋白,并由实验证明了CHIP28 蛋白具有允许水分子进入的功能。
CHIP28 蛋白也因此被重新命名为l 号水通道蛋白(AQPl)。
第1 个植物水通道蛋白---2-TIP 是Maurel 等[2]于1993 年从拟南芥Arabidopsis thaliana 中分离出来的。
目前,已经从细菌、酵母、植物、动物中分离出多种水通道蛋白的同源基因,并且证明水通道蛋白除了担负细胞间或细胞内外水分子输导的功能,还参与细胞伸长与分化、气孔运动等生理过程。
本文主要从水通道蛋白家族成员组成、结构、生理功能及表达等方面对植物水通道蛋白的研究进展进行系统介绍。
1 水通道蛋白家族成员植物水通道蛋白的结构与动物水通道蛋白同属于一个古老的跨膜通道蛋白MIP 超家族。
已经测序的植物基因组揭示植物水通道蛋白是一个超家族:拟南芥中有38 个水通道蛋白基因编码的35 种水通道蛋白同源蛋白,其中10 个属于液泡膜水通道及其类似蛋白,13 个为质膜水通道及其类似蛋白,12 个属于NLM 类。
此外,玉米Zea mays 和水稻Oryza sativa 中分别有35 个和33 个水通道蛋白基因[3]. Johan-son 等[4]根据氨基酸序列同源性和亚细胞定位将水通道蛋白划分为5 个家族:质膜内在蛋白(PIPs),液泡膜内在蛋白(TIPs),类Nodulin26(NOD26)膜内在蛋白(NIPs),小的碱性膜内在蛋白(SIPs)和类GlpF 膜内在蛋白(GIPs)。
水通道蛋白
长期以来普遍认为对于水的运输方式主要有两种:即 简单的扩散方式和借助离子通道通过磷脂双分子层。 近些年研究者发现某些细胞在低渗溶液中对水的通透 性很高, 很难用简单扩散来解释。因此,人们推测水的跨 膜转运除了简单扩散外, 还存在某种特殊的机制, 并提出 了水通道的概念。
ห้องสมุดไป่ตู้
对细胞膜通道的研究可以帮助科学家寻找一些神经系统疾 病和心血管疾病具体的病因,并研制相应药物。 目前已发现人
体内至少有11种(AQP0~AQP10)水通道蛋白,其中大部分存在肾脏、大脑、 眼睛和心脏中.
水通道的发现开辟了一个新的研究领域。 比如在人的肾脏 中就起着关键的过滤作用。 利用不同的细胞膜通道,可以调节细胞的功能,从而达到 治疗疾病的目的,为揭示中医药的科学原理提供重要的途径。
上图:注入水通道蛋白AQP1mRNA的蛙卵细胞在蒸 馏水中迅速膨胀 下图:正常蛙卵细胞
水通道蛋白 (Aquaporin, AQP),又名水孔蛋 白,是一种位于细胞 膜上对水专一的通道 蛋白(内在膜蛋白), 在细胞膜上组成“孔 道”,可控制水的进 出,具有介导水的跨 膜转运和调节体内水 代谢平衡的功能。 水通道是快速跨 膜运输水的专用通路。
基本骨架:(6个贯穿膜两面的长α螺旋) 两个嵌入但不贯穿膜的短α螺旋 (顶对顶放置,相对的顶端各拥有一个 Asn-Pro-Ala(NPA)氨基酸组单元。它 们使得这种顶对顶结构得以稳定存在。)
四聚体 通道管
构成
单聚体(即一个AQP1 分子) 是独立的功能单元
AQP的蛋白构形为 仅能使水分子通过之 原因。
水通道蛋白的发现及对人体的作用
水通道蛋白的发现及对人体的作用刘彦成(渭南师范学院环境与生命科学系陕西渭南 714000)摘要:水通道蛋白(aquaporin,AQP) 是一种对水专一的通道蛋白。
具有介导水的跨膜转运和调节体内水代谢平衡的功能。
水通道蛋白调节失控与水平衡紊乱等一系列疾病密切相关。
关键词:细胞膜;水通道蛋白(AQP);跨膜转运;疾病;调节Abstract:The pass of water protein (aquaporin, AQP) is one kind of adding water single-minded channel protein.Has lies between leads the water the cross membrane transportation and the adjustment body domestic waters metabolism balance function.Pass of water protein adjustment out of control and level balance disorder and so on a series of disease close correlation.Key word:Cell membrane pass of water protein (AQP) cross membrane transportation disease adjusts1 水通道蛋白的发现1.1 细胞膜的运输方式细胞是构成生物的基本单位,细胞与细胞之间则是通过细胞膜来沟通和实现基本的生命活动。
细胞膜的主要成分为磷脂和蛋白质,其结构为磷脂双分子层,磷脂双分子层上有糖蛋白,糖蛋白所在一侧为细胞外侧。
物质跨膜运输可分为自图1 细胞膜的立体结构由扩散(不需能量、载体),协助扩散(不需要能量、需载体),主动运输(要能量、需载体)三种。
还有一些大分子物质是通过胞吞、胞吐方式通过细胞膜,它们需要能量、不要载体。
水通道蛋白名词解释
水通道蛋白名词解释
水通道蛋白(aquaporin)是一类存在于细胞膜上的跨膜蛋白,其功能是调节细胞内外水分的平衡。
水通道蛋白是由8个跨膜α螺旋结构组成,形成一个具有水分子通过能力的通道。
它们广泛存在于多种生物体的细胞膜上,包括植物、动物和微生物等。
水通道蛋白的主要功能是促进水分子在细胞膜上的快速跨膜传递。
由于水分子是极性的,无法通过细胞膜的疏水层,而水通道蛋白则提供了一个高度选择性通道,使水分子能够迅速通过细胞膜而不受阻碍。
水通道蛋白的通道结构限制了其他溶质的通过,从而确保水分子的优先通道。
除了调节水分平衡外,水通道蛋白还在细胞内外水分调节以及保护细胞免受渗透压和压力变化等环境因素的影响中发挥重要作用。
在植物中,水通道蛋白在根系中的表达调控了植物对于土壤中水分的吸收和利用。
在人体中,水通道蛋白在肾脏、眼睛和脑组织等重要器官中的表达与正常的水平维持和离子浓度平衡密切相关。
水通道蛋白的发现为我们深入了解细胞内外水分平衡的调控机制提
供了重要的线索。
通过研究水通道蛋白的结构和功能,人们可以进一步探索其在疾病发生和发展中的作用,为相关疾病的治疗和预防提供新的策略和途径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水通道蛋白
水通道蛋白(Aquaporin),又名水孔蛋白,是一种位于细胞膜上的蛋白质(内在膜蛋白),在细胞膜上组成“孔道”,可控制水在细胞的进出,就像是“细胞的水泵”一样。
水通道是由约翰霍普金斯大学医学院的美国科学家彼得·阿格雷所发现,他与通过X射线晶体学技术确认钾离子通道结构的洛克斐勒大学霍华休斯医学研究中心的罗德里克·麦金农共同荣获了2003年诺贝尔化学奖。
水分子经过Aquaporin时会形成单一纵列,进入弯曲狭窄的通道内,内部的偶极力与极性会帮助水分子旋转,以适当角度穿越狭窄的通道,因此Aquaporin的蛋白构形为仅能使水分子通过之原因
水通道蛋白的发现
编辑
Agre等(1988)在分离纯化红细胞膜上的Rh多肽时,发现了一个28 kD的疏水性跨膜蛋白,称为形成通道的整合膜蛋白28(channel-forming inte—gral membrane protein,CHIP28),1991年完成了其cDNA克隆(Verkman,2003)。
但当时并不知道该蛋白的功能,在进行功能鉴定时,将体外转录合成的CHIP28 mDNA 注入非洲爪蟾的卵母细胞中,发现在低渗溶液中,卵母细胞迅速膨胀,并于5 min 内破裂。
为进一步确定其功能,又将其构于蛋白磷脂体内,通过活化能及渗透系数的测定及后来的抑制剂敏感性等研究,证实其为水通道蛋白。
从此确定了细胞膜上存在转运水的特异性通道蛋白,并称CHIP28为Aquaporinl(AQPl)。
水通道蛋白分类
编辑
AQP0
AQP0最初称之为主体内在蛋白(major intrinsic protein,MIP),在晶状体纤维中细胞中表达丰富,与晶状体的透明度有关.AQpo的突变可能导致晶状体水肿和白内障。
小鼠缺乏AQPO将患先天性白内障[61]。
AQP1
AQP1是1988年发现的,开始将这种蛋白称为通道形成整合蛋白(CHIP),是人的红细胞膜的一
种主要蛋白。
它可以使红细胞快速膨胀和收缩以适应细胞间渗透性的变化。
AQP1蛋白也存在于
其他组织的细胞中。
AQP1及它的同系物能够让水自由通过(不必结合),但是不允许离子或是其他
的小分子(包括蛋白质)通过。
AQP1是由四个相同的亚基构成,每个亚基的相对分子质量为28kDa,每个亚基有六个跨膜结构
域,在跨膜结构域2与3、5与6之间有一个环状结构,是水通过的通道。
另外,AQP1的氨基端和羧基端
的氨基酸序列是严格对称的,因此,同源跨膜区(1,4、2,5、3,6)在质膜的脂双层中的方向相反。
AQP1
对水的通透性受氯化汞的可逆性抑制,对汞的敏感位点是结构域5与6之间的189位的半胱氨酸。
其
他几种AQP1与肾功能有关。
Peter Agre教授因发现水通道蛋白获得2003年诺贝尔化学奖
AQPl在质膜中以四聚体的形式存在,每个单体都由6个贯穿膜两面的长a螺旋构成基本骨架,其间还有两个嵌入但不贯穿膜的短a螺旋[4]。
每个单体蛋白的中空部分都形成具有高度选择性的通道,只允许水分子跨膜运输而不允许带电质子或其他离子通过,在功能上都可以作为一个独立水通道
存在位置
哺乳类动物中的水通道蛋白
目前已知哺乳类动物体内的水通道蛋白有十三种,其中六种位于肾脏,但科学家对于其他水通道蛋白的存在仍有疑虑。
最受关注的几项水通道蛋白比较如下:种类位置功能
水通道蛋白1肾脏(apical ly)近端小管曲部(PCT)近端小管直部(PST)
亨利氏环下降细端(tDLH)
水分再吸
收
水通道蛋白2肾脏(apical ly) ICTCCTOMCDIMCD
对抗利尿
激素
作出重吸
收反应
水通道蛋白3肾脏(basolaterally) medullary collecting duct
水分再吸
收
水通道蛋白4肾脏(basolaterally) medullary collecting duct
水分再吸
收。