五年级奥数练习题--一元一次方程

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级奥数练习题--一元一次方程

1、算式:把数用运算符号与运算顺序符号连接起来是算式

2、等式:表示相等关系的式子

3、方程:含有未知数的等式

4、方程命名:未知数的个数代表元,未知数的次数:n 元a 次方程就是含有n 个未知数,且含未知数项最高次数是a 的方程

例如:一元一次方程:含有一个未知数,并且未知数的指数是1的方程;

如:37x +=,71539q +=,222468m ⨯

+=(), 一元一次方程的能使一元一次方程左右两边相等的未知数的值;

如:4x =是方程37x +=的解,3q =是方程81539q +=的解,

5、解方程:求方程的解的过程叫解方程。所以我们做方程的题时要先写“解”字,表示求方程的解的过程开始,也就是开始“解方程”。

6、方程的能使方程左右两断相等的未知数的值叫方程的解

四、解方程的步骤

1、解方程的一般步骤是:去分母、去括号、移项、合并同类项、化未知数系数为1。

2、移项变号:根据等式的基本性质可以把方程的某一项从等号的一边移到另一边,但一定要注意改变原来的符号。我们常说“移项变号”。

3、移项的目的:是为了把含有x 的未知项和数字项分别放在等号的两端,使“未知项=数字项”,从而求出方程的解。

4、怎样检验方程的解的正确性?

判断一个数是不是方程的解,就要把这个数代入原方程,看方程两边结果是否相同。

模块一、简单的一元一次方程 【例 1】 解下列一元一次方程:⑴ 38x +=;⑵ 83x -=;⑶ 39x ÷=;⑷ 39x =.

【巩固】 (1)解方程:38x +=

(2)解方程:96x -=

(3)解方程:39x =

(4)解方程42x ÷=

【例 2】 解方程:4338x x +=+

【巩固】 解方程:138142x x +=+

例题精讲

【例 3】 解方程:4631x x -=-

【巩固】 解方程:12432x x -=-

【例 4】 解下列一元一次方程:⑴ 41563x x +=+;⑵ 123718x x -=-.

【巩固】 解下列一元一次方程:⑴ 204322x x +=-;⑵ 153194x x -=-.

【例 5】 解方程:()6318x +=

【巩固】 解方程:12(3)7x x +-=+

【巩固】 解方程:()()2331x x +=+

【巩固】 解方程3(21)4(3)x x -=-

【例 6】 解方程:()1234x x --=

【巩固】 解方程:()1530639x x +-=

【例 7】 解方程:()15233x x --=

【巩固】 解方程:()232692x x +-=-

【巩固】 解方程12(3)7x x +-=+

【巩固】 解下列一元一次方程:⑴ 6324x +=(

); ⑵ 1836x x --=().

【例 8】 解方程:()()413123x x x +--=+

【例 9】 解方程132(23)5(2)x x --=--

【巩固】 解下列一元一次方程:⑴ 3221x x -+=(

);⑵ 6417x x --=().

【巩固】 解下列一元一次方程:⑴ 73222x x -+=();⑵ 55103x x +=-().

模块二、含有分数的一元一次方程

【例 10】 解方程22240(40)56555

x x x x ++--⨯+=

【例11】解下列一元一次方程:⑴316727321

x x x

+÷++÷=+

()();⑵53423968

x x x

+÷-=+÷

()()

【例12】解方程:213

1

48 y y

--

=-

【巩固】解方程

100100

25 5060

x x

--

-=+

【巩固】解方程2476 23 x x

+-

=

【例13】解方程0.30.60.030.02

1

0.10.02

x x

-+

=-

【例14】解方程13 75

x

x

+

= +

【例15】解方程(32):(23)4:7

x x

-+=

【巩固】解方程:(30.5):(43)4:9

x x

-+=

【例16】解方程

32

1 275

x

+=

-

相关文档
最新文档