微波实验
微波技术实验报告
微波技术实验报告一、实验目的1.了解微波技术的基本原理;2.掌握微波技术的实验操作方法;3.学习使用微波仪器对电磁波进行测量和分析。
二、实验器材与材料1.微波台;2.微波发射源;3.微波接收天线;4.微波功率计;5.微波衰减器;6.信号发生器;7.示波器。
三、实验原理微波技术是指在频率范围为3x10^9Hz至3x10^11Hz的电磁波中进行的技术应用。
在实验中,我们将使用微波发射源和接收天线来产生和接收微波信号,使用微波功率计来测量微波的功率,同时利用微波衰减器来调整微波的功率级别。
信号发生器用于产生不同频率的信号,并通过示波器来观察和记录波形。
四、实验步骤与结果1.首先接通微波台的电源,并调节微波发射源的频率和功率级别;2.将接收天线与发射源对准,调整天线角度,使得信号强度最大;3.使用微波功率计测量微波的功率,并记录结果;4.调整微波衰减器的衰减值,观察微波发射源输出功率的变化,并记录衰减值和功率值的对应关系;5.使用信号发生器产生不同频率的信号,并通过示波器观察和记录波形。
实验结果如下:1.频率为2.4GHz时,微波发射源的功率为6dBm;2.衰减值为20dB时,微波功率为0dBm;3.衰减值为30dB时,微波功率为-10dBm;4.信号发生器产生的频率为2.5GHz时,示波器上显示的波形为正弦波。
五、实验分析与讨论实验结果表明,微波功率与衰减值存在线性关系,当衰减值增大时,微波功率随之减小。
这是因为微波衰减器通过在传输线中引入衰减器元件,使微波信号的幅度减小。
当信号发生器产生的频率与微波发射源的频率接近时,示波器上观察到的波形为正弦波,说明微波信号正常传输。
六、实验结论通过本次实验,我们了解了微波技术的基本原理,掌握了微波技术的实验操作方法,并学会了使用微波仪器对电磁波进行测量和分析。
实验结果验证了微波功率与衰减值的线性关系,同时观察到了信号发生器产生的频率与微波发射源频率接近时的正弦波形。
微波的布拉格衍射(范文4篇)
微波的布拉格衍射(范文4篇)以下是网友分享的关于微波的布拉格衍射的资料4篇,希望对您有所帮助,就爱阅读感谢您的支持。
《微波的布拉格衍射范文一》实验十、微波布拉格衍射实验目的1、了解与学习微波产生的基本原理以及传播和接收等基本特性。
2、观测模拟晶体的微波布拉格衍射现象。
实验仪器DHMS-1型微波光学综合实验仪一套,包括:三厘米微波信号源、固态微波震荡器、衰减器、隔离器、发射喇叭、接收喇叭、检波器、检波信号数显器、可旋转载物平台和支架,以及实验用附件(晶体模型、读数机构等)。
实验原理微波的产生微波波长从1m到0.1mm,其频率范围从300MHz~3000GHz,是无线电波中波长最短的电磁波。
微波波长介于一般无线电波与光波之间,因此微波有似光性,它不仅具有无线电波的性质,还具有光波的性质,即具有光的直射传播、反射、折射、衍射、干涉等现象。
由于微波的波长比光波的波长在量级上大10000倍左右,因此用微波进行波动实验将比光学方法更简便和直观。
本实验装置由微波三厘米固态信号电源、固态微波震荡器、衰减器、发射喇叭、载物平台、接收喇叭、检波器、液晶显示器等组成。
(选件:简单立方交替模型等)图1 1 调谐杆 2 谐振腔3输出孔 4 体效应管 5 偏压引线 6负载体效应振荡器经微波三厘米固态信号电源供电,使得体效应管内的载流子在半导体材料内运动,产生微波,经调谐杆调制到所要产生的频率。
产生的微波经过衰减器(可以调节输出功率)由发射喇叭向空间发射(发射信号电矢量的偏振方向垂直于水平面)。
微波碰到载物台上的选件,将在空间上重新分布。
接收喇叭通过短波导管与放在谐振腔中的检波二极管连接,可以检测微波在平面分布,检波二极管将微波转化为电信号,通过A/D转化,由液晶显示器显示。
模拟晶体的布拉格衍射实验布拉格衍射是用X射线研究微观晶体结构的一种方法。
因为X射线的波长与晶体的晶格常数同数量级,所以一般采用X射线研究微观晶体的结构。
实验十五微波的技术实验
实验十五 微波技术实验【实验目的】1.学习微波基础知识和掌握微波基本测量技术;2.学习用微波作为观测手段来研究物理现象的基本原理和实验方法。
即包含“学微波”和“用微波”两个方面。
本实验重点要求掌握体效应振荡器的使用方法,了解微波测试系统的组成及调试方法,学会微波频率、驻波比、波导波长、微波功率、微波衰减等的测量,通过实验了解微波的产生和微波的波导传输知识。
【实验原理】见微波基本知识部分,请同学进行仔细的阅读后再进行试验,进行本实验之前,必须阅读相关的资料初步了解和熟悉下列问题:1.微波测试系统应由那几部分组成?2.清楚了解各微波器件的作用及工作原理。
3.理解体效应振荡器的基本工作原理。
4.学会选频放大器的正确使用。
5.怎样调节体效应振荡器的振荡频率?6.理解用吸收式频率计测量微波频率的原理和方法。
7.理解晶体检波器的功用和使用方法。
8.理解可变衰减器的功用和使用方法。
9.了解驻波测量线的工作原理和使用方法。
(学生可自己设计检测方案)【实验用微波信号源】——体效应管振荡器(微波固态源)在微波实验系统中,用体效应砷化镓二极管作微波振荡器。
下面将对它进行介绍。
1.效体应管的工作特性在n 型GaAs 半导体材料上施加直流偏压b V 后,起初电流随电压线性增长,但是当所加偏压使材料内的平均电场超过每厘米3KV 以上某个阈值电场T E (与T E 对应的外加电压V T 称为阈值电压)时,电流发生微波振荡。
实验证明这种电流振荡是由于“高电场偶极子畴”在阴极附近周期性地形成,并被阳极吸收这一过程造成的。
图1 n 型GaAs 导带结构示意图n 型GaAs 的导带结构示意图如图1所示。
它有两个导电能谷:L 谷和U 谷。
它们的能量相差0.36eV 。
通常,在低电场下,导电的电子绝大部分在L 谷中,它们的平均速度L v E μ=,即随电场E 线性的增大;当电场大于某个阔值T E 后,L 谷中的电子获得足够的能量而向U 谷转移,以后随电场继续增加,这样转移的电子越来越多,电子的平均速度v E μ=将反向随电场的增加而减小。
微波实验报告
微波实验报告微波实验报告引言:微波是一种电磁波,波长在1mm到1m之间,频率范围为300MHz到300GHz。
微波在通信、雷达、医学、食品加热等领域有着广泛的应用。
本实验旨在通过实际操作和观察,了解微波的特性和应用。
实验一:微波传播特性实验目的:观察微波在不同介质中的传播特性。
实验器材:微波发生器、微波接收器、不同介质样品(如玻璃、木头、金属等)。
实验步骤:1. 将微波发生器和接收器连接好,并设置合适的频率和功率。
2. 将不同介质样品放置在微波传播路径上,观察微波的传播情况。
实验结果:观察到微波在不同介质中的传播情况不同。
在玻璃中,微波能够较好地传播,而在金属中,微波会被完全反射或吸收。
实验二:微波反射和折射实验目的:观察微波在不同介质间的反射和折射现象。
实验器材:微波发生器、微波接收器、反射板、折射板。
实验步骤:1. 将微波发生器和接收器连接好,并设置合适的频率和功率。
2. 将反射板放置在微波传播路径上,观察微波的反射情况。
3. 将折射板放置在微波传播路径上,观察微波的折射情况。
实验结果:观察到微波在反射板上会发生反射,反射角等于入射角。
在折射板上,微波会发生折射,根据折射定律,入射角和折射角之间存在一定的关系。
实验三:微波干涉实验目的:观察微波的干涉现象。
实验器材:微波发生器、微波接收器、干涉板。
实验步骤:1. 将微波发生器和接收器连接好,并设置合适的频率和功率。
2. 将干涉板放置在微波传播路径上,观察微波的干涉情况。
实验结果:观察到微波在干涉板上会出现明暗相间的干涉条纹。
根据干涉现象的特点,可以推测微波是一种具有波动性质的电磁波。
实验四:微波加热实验目的:观察微波对物体的加热效果。
实验器材:微波发生器、微波接收器、食物样品。
实验步骤:1. 将微波发生器和接收器连接好,并设置合适的频率和功率。
2. 将食物样品放置在微波传播路径上,观察微波对食物的加热效果。
实验结果:观察到微波对食物样品有较好的加热效果,食物在微波的作用下能够迅速加热。
微波基本测量实验报告
微波基本测量实验报告微波基本测量实验报告引言:微波技术是现代通信、雷达、天文学等领域的重要组成部分。
为了更好地了解微波的特性和应用,本实验旨在通过基本的测量实验,探索微波的传输、反射和干涉等现象,并对实验结果进行分析和讨论。
一、实验装置和原理本实验使用的实验装置包括微波发生器、微波导波管、微波检波器、微波衰减器等。
微波发生器产生微波信号,经由微波导波管传输到被测物体,再通过微波检波器接收并测量微波信号的强度。
微波衰减器用于调节微波信号的强度,以便进行不同强度的测量。
二、实验过程和结果1. 传输实验将微波发生器与微波检波器分别连接到微波导波管的两端,调节发生器的频率和功率,记录检波器的读数。
随着发生器功率的增加,检波器读数也相应增加,说明微波信号能够稳定传输。
2. 反射实验将微波发生器与微波检波器连接到微波导波管的同一端,将导波管的另一端暴露在空气中,调节发生器的功率,记录检波器的读数。
随着功率的增加,检波器读数也增加,表明微波信号在导波管与空气之间发生了反射。
3. 干涉实验将两根微波导波管分别连接到微波发生器和微波检波器上,将两根导波管的另一端合并在一起,调节发生器的功率,记录检波器的读数。
随着功率的增加,检波器读数呈现周期性的变化,表明微波信号在导波管之间发生了干涉。
三、实验结果分析1. 传输实验结果表明,微波信号能够稳定传输,说明微波导波管具有良好的传输特性。
传输实验中,微波信号的强度与发生器功率呈正相关关系,这与微波信号的传输损耗有关。
2. 反射实验结果表明,微波信号在导波管与空气之间发生了反射。
反射实验中,微波信号的强度与发生器功率呈正相关关系,说明反射信号的强度与输入信号的强度相关。
3. 干涉实验结果表明,微波信号在导波管之间发生了干涉。
干涉实验中,微波信号的强度呈现周期性的变化,这与导波管的长度和微波信号的频率有关。
当导波管的长度等于微波信号的波长的整数倍时,干涉现象最为明显。
四、实验总结通过本次微波基本测量实验,我们对微波的传输、反射和干涉等现象有了更深入的了解。
物理实验 微波光学实验
5.10 微波光学实验【实验目的】1. 学习测定微波波长的方法 2. 学习布拉格衍射的原理和方法 3. 学习晶体分析的初步知识【实验原理】1. 微波的特性微波波长在1mm ——1m 之间,频率为3×108Hz ——3×1011Hz 。
具有波长短、频率高、穿透性强、量子特性的特点。
2. 微波的产生方法微波需要采用微波谐振腔和微波电子管或微波晶体管来产生: (1) 谐振腔通常为一个闭合的腔体,其内表面用良导体制成。
(2) 体效应二极管是利用砷化镓、砷化铟、磷化铟等化合物制成的半导体固体振荡器。
(3) 微波信号的检测,需要高频相应微波二极管。
3. 晶体的布拉格衍射晶体可以看成等距、平行晶面重复排列而成,称晶面族。
晶面族可以用晶面指数表示。
晶面指数定义为:原在所在平面在x 、y 、z 三个坐标轴上的截距长度的倒数的简单整数比,又称密勒指数,用(h ,k ,l )表示。
最近邻的两个晶面间的距离用d hkl 表示。
当射线以掠射角投射到某晶体时,在第一个晶面上点阵的散射和下面晶面点阵的散射相互干涉。
对同一层的散射线,在这个方向射线产生相长干涉。
对于不同层的散射线,光程差为波长的整数倍时,各个面的散射线相互加强,形成光强的极大,这就是晶体对射线的布拉格衍射:2sin ,1,2,3,4d n n q l ==鬃鬃鬃由于sin 1q £,只有2d l <时,才会产生衍射。
实际晶体的晶格常数为810cm -,只有波长很小的X 射线才能产生衍射,微波不能对实际晶体产生衍射。
【实验内容】1. 用微波干涉仪测定微波波长如图,活动镜移动距离L ,微安表将显示一连串的极大值和极小值。
波相位若相差2π的整数倍,则干涉加强;相差π的奇数倍,则出现相应的干涉极小值。
如果在距离L 上极小值恰好出现n +1次,则:02n nL x x l==- 移动移动镜相继出现4-5个干涉极小值测定x 0、x n ,重复测量多次,求出微波波长,利用仪器上的频率值大致验证测量及求解是否正确。
26实验二十六、微波光学实验
实验二十六微波光学实验(科-403)实验内容微波与可见光一样同属电磁波,不过波长较长:0.1mm-1m,本实验主要验证微波具有光波的性质,即直线传播、反射、折射、干涉等现象。
1、反射实验将金属板平面安装在支架上,金属板面法线与底座指示线方向一致(初始位置为0°)。
转动平台,改变入射微波的入射角,然后转动装有微波接收器的活动臂,并在液晶显示器上找到一最大值,测出此时的反射角。
如果此时电表显示太大或者太小,调节发射波强度。
测量要求入射角在30°至65°之间。
2、单缝衍射调整单缝衍射板的缝宽(约2厘米),将单缝衍射板安装在底座上,使衍射板与微波入射方向垂直。
调整信号使接收器电表显示接近满度,然后在单缝的两侧,每改变衍射角2°读取一次电表的读数。
3、双缝干涉调整双缝干涉板的缝宽(约2厘米),将双缝干涉板安装在底座上,使干涉板与微波入射方向垂直。
调整信号使接收器电表显示接近满度,然后在双缝的两侧,每改变衍射角1°读取一次电表的读数。
4、偏振实验调整微波发射器与接收器喇叭口至互相平行且共轴正对,取下平台上所有物品。
调整信号使接收器电表指示接近满度,然后旋转接收器喇叭口,使接收器与发射器产生相对偏转,每隔5°记录电表读数,直至90°,验证马吕斯定律。
5、迈克尔逊干涉按教材P.241图4所示放置半透板以及反射板。
转动移动反射板下的读数手柄改变反射板位置,观察微波接收器电表,当显示各极小值时,记录移动板的位置,计算反射板改变的距离⊿L,求出微波的波长λ。
6、布拉格衍射两个喇叭口的位置同反射实验。
模拟晶体点阵的金属球点阵插在专用支架的中心孔上。
使晶面法线正对小平台的零刻度线,入射角取30°到60°之间,寻找一级衍射最大的角度位置,通过衍射角计算金属球点阵的间距。
(整理)微波技术实验
微波技术实验微波技术是近代发展起来的一门尖端技术,以其高效、均匀、节能、环保等诸多优点受到普遍关注,在科学研究中也是一种重要的观测手段,并广泛应用于国防军事、科学研究、医疗卫生等领域。
随着社会向信息化、数字化的迈进,作为无线传输信息的主要手段,微波技术将发挥更为重要的作用。
本实验旨在通过观测微波的产生和传播的特性,使同学们了解微波的基本知识,掌握常用微波元器件的原理和使用方法,学习若干种微波测量方法,并理解微波通信的基本原理,为从事与微波有关的工作打下基础。
一、微波的性质微波是无线电波中波长最短的电磁波,其波长在1mm~1m范围,频率范围处于光波和广播电视所采用的无线电波之间,为300MHz~300GHz。
微波又分为分米波、厘米波和毫米波。
微波具有电磁波的一切特性,但因其波长的特殊性,微波在产生、传输、接收和应用等方面跟其他波段很不相同,具有下述几个独特的性质,主要表现在:(1)波长短。
其波长比地球上一般物体的几何尺寸小得多或在同一数量级上,具有直线传播的特性。
利用这个特点能在微波波段制成方向性极强的无线系统,也可以接收到地面和宇宙空间各种物体发射回来的微弱回波,从而确定物体的方位和距离,广泛用于通信、雷达、导航等领域。
(2)频率高。
微波的频率很高,电磁振荡周期(10-9~10-12s)很短,与电子在电真空器件中的渡越时间相似。
因此,低频的电子器件在微波阶段都不能使用,而必须采用原理上完全不同的微波电子管、微波固体器件和量子器件来代替。
在不太大的相对带宽下可用带宽很宽,所以信息容量大。
此外,作为能量,可用于微波加热、微波武器等。
(3)量子特性。
在微波波段,电磁波每个量子的能量范围大约是10-6~10-3eV,能被很多的原子分子吸收或发射,成为研究物质结构的重要手段,发展了微波波谱学和量子电子学等尖端学科,并研制了低噪音的量子放大器和极为准确的分子钟与原子钟。
(4)似光性,微波介于一般无线电波与光波之间,它不仅具有无线电波的性质,还具有光波的性质,以光速直线传播,有反射、衍射、干涉等现象。
微波实验
微波实验【目的】光是一种电磁波,一般可见光的波长为0.4μm~0.7μm(1μm=610 m),由于这么小的波长在实验上不易观察与操作,故本实验利用一波长约为3cm之微波来探索一些光的现象。
图一即为各种不同波长范围之电磁波谱。
【原理】1.驻波(standing waves):圖一電磁波譜当两电磁波在空间中相遇时,其波形会彼此重迭(superpose),也就是此合成波的电场为这两电磁波个别的电场之和,这就是所谓的重迭原理(superposition principle)。
今考虑两个有相同的频率,但以相反方向行进的电磁波在空间中相遇的情形。
以数学式来表示的话,一个向负X 轴方向行进的波,可表示成)sin(),(1t kx y t x y m ω+= (1)式中,m y 表振幅,k 为角波数(angular wave number),ω为角频率(f πω2=,f 为频率)。
图二(a)所示,即为此行进波分别在时间t=0 , t=T/4 , t=T/2 ,及 t=3T/4 ( T=1/f , T 为周期)各不同时间的波形。
而一个向正X 轴方向行进的波则表示成)sin(),(2t kx y t x y m ω-= (2)其图形则图标于图二(b)。
当此两波相遇,其合成波可依重迭原理得: ),(),(),(21t x y t x y t x y +==)]sin()[sin(t kx t kx y m ωω-++(3) 利用和差化积的公式圖二)2cos()2sin(2sin sin βαβαβα-+=+则(3)式可改写成kx t y t x y m sin ]cos 2[),(ω= (4)从上式可看出,此合成波不再是行进波,因为如果在某个瞬间来看此波,则(4)式中,方括号内的项t y m ωcos 2可视为此合成波的振幅,所以此合成波在空间中只是随着时间改变振幅大小的弦波,并不会行进,故称之为驻波。
驻波之形成则图示于图二(c)。
近代物理实验报告—微波原理
近代物理实验报告—微波原理微波原理实验报告|实验名称 | 微波原理实验|实验目标 | 理解和使用微波设备的基本原理|实验内容 | 1.测量晶体管的存取比;2.直流和交流参数之比较;3.同步电路及其应用;4.时域参数测量摘要本实验使用微波设备揭示并测量了晶体管的存取比,比较了直流和交流参数,检测了同步电路及其应用,并使用时域参数测量等实验技术,初步探讨了微波原理。
一、实验原理微波技术可用于传输信号或接收信号,工作在微波波段的有源器件叫做微波管,在微波设备中,微波管起到信号传输和放大的作用。
此外,在微波设备中,还可使用电容和电感,实现过滤、耦合和衰减等功能。
二、实验设备本实验需要用到实验装置上微波振荡器、钳表、功率计、微波射频tri-coupler 、内反射器、外反射器以及一些直流和交流参数测量的仪器设备。
三、实验流程(1)控制实验装置并调试实验设备,使微波振荡器的输出信号能够稳定地通过内反射器及耦合装置的输入口进入晶体管,并通过外反射器口输出;(2)检测晶体管输入和输出负载端口的参数,根据负载电极与电极和管子之间的参数变化,测量晶体管的存取比;(3)比较直流和交流参数,测量实验物体的增益及极化现象,并确定低噪声放大器(LNA)的设计及性能参数;(4)构建同步电路,实现微波收发机系统的同步采样信号;(5)检测同步电路的性能参数,测量时域参数,并确定微波分立器的参数,如分频比和阻抗匹配等。
四、实验结果1.晶体管的存取比测量结果显示,在最佳负载情况下,晶体管的可存取比约为21dB。
2.室温下,静态单端参数测试表明,晶体管的直流负载电流为11.3mA,直流增益为3.88dB。
在交流情况下,晶体管的增益约为9.9dB,极化比大约为119.7dB。
3.测试同步电路的结果表明,频率响应具有高增益性的参数符合预期,其增益为77dB,衰减为 -34dB。
4.测试时域参数的结果表明,分立器的分频比为0.99,阻抗匹配度大约为30dB。
微波技术实验报告
一、实验目的1. 了解微波技术的原理和基本概念;2. 掌握微波元件的基本特性及测量方法;3. 学习微波网络分析仪的使用方法;4. 培养实际操作能力和团队协作精神。
二、实验原理微波技术是研究频率在300MHz至300GHz范围内电磁波的产生、传播、辐射、调制和接收等问题的学科。
本实验主要涉及微波元件、微波网络分析仪等设备的使用,以及微波参数的测量。
1. 微波元件:微波元件是微波技术中的基本组成部分,主要包括传输线、谐振器、滤波器、衰减器、隔离器、定向耦合器等。
这些元件在微波系统中起到传输、选择、匹配、隔离等作用。
2. 微波网络分析仪:微波网络分析仪是一种用于测量微波网络性能的仪器,可以测量网络的S参数、衰减、相位等参数。
三、实验内容1. 微波元件特性测量(1)实验目的:掌握微波元件的特性测量方法,了解其基本参数。
(2)实验原理:利用微波网络分析仪测量微波元件的S参数,通过S参数计算出微波元件的反射系数、传输系数、驻波比等参数。
(3)实验步骤:a. 将待测微波元件接入微波网络分析仪;b. 调整微波网络分析仪的频率,进行扫频测量;c. 记录微波元件的S参数;d. 分析S参数,计算反射系数、传输系数、驻波比等参数。
2. 微波网络分析仪的使用(1)实验目的:掌握微波网络分析仪的基本操作,了解其功能。
(2)实验原理:微波网络分析仪通过测量微波网络的S参数,可以分析微波网络的性能。
(3)实验步骤:a. 打开微波网络分析仪,进行自检;b. 设置测量参数,如频率、扫描范围等;c. 连接待测微波网络,进行测量;d. 分析测量结果,了解微波网络的性能。
3. 微波系统调试(1)实验目的:了解微波系统的调试方法,掌握调试技巧。
(2)实验原理:通过调整微波系统中的元件参数,使系统达到最佳性能。
(3)实验步骤:a. 连接微波系统,设置初始参数;b. 进行系统测试,观察性能指标;c. 根据测试结果,调整元件参数;d. 重复测试和调整,直至系统性能满足要求。
北理工微波实验报告
北理工微波实验报告1. 引言微波技术是当今通信领域中非常重要的一项技术。
微波在通信、雷达、卫星导航等方面都有广泛应用。
本实验旨在通过实际操作,熟悉微波实验仪器的使用和微波实验的基本原理。
2. 实验目的- 了解微波实验仪器的组成和基本原理- 掌握微波实验仪器的操作方法- 学习微波实验中的重要参数的测量方法3. 实验装置和仪器本实验使用的实验装置和仪器主要包括:- 微波信号源- 微波导管- 微波频率计- 微波功率计- 微波衰减器- 波导短路器和电阻负载4. 实验步骤4.1 测量微波信号源频率稳定度使用微波频率计测量微波信号源输出频率,并记录。
4.2 测量不同功率时微波信号源输出频率固定微波信号源的频率,调整微波功率计上的衰减器,测量不同功率下的微波信号源输出频率。
4.3 测量不同频率时微波信号源输出功率固定微波功率,调节微波信号源频率,使用微波功率计测量不同频率下微波信号源的输出功率。
4.4 测量微波信号源的调制深度将调制信号接入微波信号源的调制输入端口,调整调制信号的幅度,并观察微波信号源的输出功率变化。
通过测量最大输出功率和最小输出功率的差值,计算调制深度。
4.5 测量微波信号源的谐波水平将微波信号源的输出信号接入频谱分析仪,测量不同谐波的振幅,并根据测量结果分析微波信号源的谐波水平。
5. 数据处理与分析5.1 微波信号源的频率稳定度根据频率计测量结果计算微波信号源的频率稳定度,并与厂家提供的规格进行比较。
5.2 微波信号源的调制深度根据测量结果计算微波信号源的调制深度,并与厂家提供的规格进行比较。
5.3 微波信号源的谐波水平根据频谱分析仪测量结果分析微波信号源的谐波水平,并与厂家提供的规格进行比较。
6. 结论通过本实验,我们对微波实验仪器的使用和微波实验的基本原理有了更深入的了解。
我们掌握了微波信号源频率稳定度、功率调制深度和谐波水平的测量方法,并通过数据处理与分析,了解了微波信号源的性能。
实验结果与厂家提供的规格相符,说明我们的测量结果是可靠的。
微波实验实验报告
微波实验实验报告微波实验实验报告引言:微波是一种电磁波,具有较高的频率和较短的波长。
在现代科技中,微波被广泛应用于通信、雷达、烹饪等领域。
本次实验旨在通过实际操作,探究微波的特性和应用。
一、实验目的本实验旨在通过实际操作,了解微波的特性和应用。
具体目标如下:1. 掌握微波的产生和传播原理;2. 研究微波在不同介质中的传播特性;3. 实践微波在烹饪中的应用。
二、实验器材和材料1. 微波发生器;2. 微波传输系统;3. 不同介质样品;4. 高频检波器;5. 微波炉。
三、实验步骤与结果1. 实验一:微波的产生和传播原理将微波发生器与微波传输系统连接,调节微波的频率和功率,观察微波在传输系统中的传播情况。
结果显示,微波在传输系统中呈直线传播,并且能够穿透一些非金属材料。
2. 实验二:微波在不同介质中的传播特性将不同介质样品分别放置在微波传输系统中,观察微波在不同介质中的传播情况。
实验结果显示,微波在不同介质中的传播速度和路径发生了变化。
在介质的界面处,微波会发生反射、折射等现象。
这些现象可以用光学中的折射定律和反射定律来解释。
3. 实验三:微波在烹饪中的应用将食物样品放置在微波炉中,设置适当的时间和功率,观察微波在烹饪中的应用效果。
实验结果显示,微波能够快速加热食物,并且能够均匀加热。
这是因为微波能够与食物中的水分子发生共振,使其产生热量。
四、实验讨论与分析1. 微波的产生和传播原理微波的产生和传播是基于电磁波的原理。
微波发生器通过电磁振荡产生微波,微波传输系统将微波传输到目标位置。
微波在传输系统中呈直线传播,这是因为微波具有较高的频率和较短的波长,能够穿透一些非金属材料。
2. 微波在不同介质中的传播特性微波在不同介质中的传播速度和路径会发生变化,这是因为介质的折射率不同。
当微波从一种介质传播到另一种介质时,会发生反射、折射等现象。
这些现象可以用光学中的折射定律和反射定律来解释。
3. 微波在烹饪中的应用微波在烹饪中的应用是基于微波与食物中的水分子发生共振的原理。
微波实验报告心得
一、实验背景微波技术是一门涉及电磁场、微波电路、微波系统等方面的综合性学科。
在当今信息时代,微波技术已经广泛应用于通信、雷达、遥感、医学等领域。
为了更好地掌握微波技术的基本原理和应用,我们进行了微波实验,通过实际操作加深对微波技术的理解和认识。
二、实验目的1. 理解微波的基本原理,掌握微波传播、传输和辐射的特性。
2. 掌握微波测量技术,包括S参数测量、阻抗测量、衰减测量等。
3. 学习微波元件和微波系统的设计方法,提高动手能力。
4. 培养团队协作精神,提高沟通与交流能力。
三、实验内容1. 微波基本原理实验通过实验,我们学习了微波传播、传输和辐射的基本原理。
实验中,我们观察了微波在介质中的传播特性,掌握了微波在传输线中的传输特性,了解了微波在空间中的辐射特性。
2. 微波测量技术实验在微波测量技术实验中,我们学习了S参数测量、阻抗测量、衰减测量等基本方法。
通过实验,我们掌握了使用矢量网络分析仪进行S参数测量的操作步骤,了解了S参数在不同频率下的变化规律;同时,我们还学会了使用阻抗测量仪和衰减测量仪进行阻抗和衰减测量,为后续的微波元件和微波系统设计奠定了基础。
3. 微波元件和微波系统设计实验在微波元件和微波系统设计实验中,我们学习了微波元件的设计方法,包括阻抗匹配、滤波器设计、耦合器设计等。
通过实验,我们掌握了使用阻抗匹配器实现负载匹配的方法,了解了滤波器、耦合器等微波元件的基本原理和设计方法。
四、实验心得1. 理论与实践相结合通过本次微波实验,我深刻体会到理论与实践相结合的重要性。
在实验过程中,我们将理论知识应用于实际操作,不仅加深了对微波技术的理解,还提高了动手能力。
2. 团队协作与沟通实验过程中,我们分成小组进行操作,相互协作,共同完成实验任务。
在这个过程中,我们学会了如何与他人沟通、协调,提高了团队协作能力。
3. 严谨的实验态度实验过程中,我们严格按照实验步骤进行操作,认真记录实验数据,对实验结果进行分析和总结。
微波光特性实验
微波光特性实验一、实验原理1、微波的反射如图1所示,一束微波从发射喇叭A 发出,射向金属板MN ,入射角为i ,由于微波的传播遵循反射定律,因此在反射方向的位置上,只有接收喇叭B 处在反射角i i ='时,接收到的微波强度最大,即反射角等于入射角。
2、 微波的单缝衍射 图1 微波的衍射原理与光波的衍射完全相同。
当一束微波入射到与波长可以比拟的狭缝时,它就要发生衍射现象如图2所示。
设微波 波长为λ,狭缝宽度为a ,衍射角为ϕ,当λϕk a ±=sin , ,3,2,1=k 时,在狭缝后面出现衍射波强度的极小值。
当2)12(sin λϕ+±=k a , ,2,1,0=k 时, 在狭缝后面出现衍射波强度的极大值。
(中间 图2 极大在0=k 处)3、微波的双缝干涉微波的传播遵守干涉规律,如图3所示,当一束波长为λ的微波垂直入射到金属板的两条狭缝上,则每条狭缝就是次波源。
由两缝发出的次波是相干波,因此在金属板后面的空间中,将产生干涉现象。
设狭缝宽度为a ,两缝间的距离为 b ,则由干涉原理可知,当λϕk b a ±=+sin )(, ,3,2,1=k 时,干涉加强; 图3 当2)12(sin )(λϕ+=+k b a , ,2,1,0=k 时, M N干涉减弱。
4、微波的迈克尔逊干涉如图4所示,在微波前进的方向上放置成450的半透射板MN ,由于A 、B 处全反射的图4作用,两列波再次回到半透射板并到达接收喇叭处。
于是接收喇叭收到两束同频率,振动方向一致的两列波。
如果这两列波的相位差为π2的整数倍,则干涉加强;当相位差为π的奇数倍,则干涉减弱。
假设入射的微波波长为λ,经A 、B 反射后到达接收喇叭的波程差为δ, 当λδk =, 2,1,0±±=k 时,连在接收喇叭上的指示器有极大示数; 当2)12(λδ+=k , 2,1,0±±=k 时,连在接收喇叭上的指示器有极小示数;当A 不动,将反射板B 移动距离L ,则两列波到达接收喇叭的波程差为L 2=δ,假设从某一级极大开始记数,测n 出个极大值,则由λn L =2得到nL 2=λ,即可测出微波的波长。
微波偏振实验测波长
微波偏振实验测波长
微波偏振实验是一种用于测量微波波长的方法。
可以通过使用微波源和微波天线进行实验。
实验步骤如下:
1. 准备微波源和微波天线。
微波源可以是一个微波发生器,微波天线可以是一个可以轻易调整方向的微波天线。
2. 将微波源和微波天线连接起来。
确保连接稳固。
3. 将微波天线的方向设定为垂直于微波源的方向。
4. 打开微波源并开始发射微波信号。
5. 在一定距离内,使用一个光学平行板来衰减微波信号,直至无法观察到微波信号的存在。
6. 调整微波天线的方向,使得微波信号再次出现。
测量此时微波天线的角度。
7. 根据微波天线的角度和实验设置的距离,可以计算出微波的波长。
需要注意的是,微波偏振实验测量的波长是在微波频率范围内的波长。
微波波长通常在几毫米到几十厘米之间。
微波实验报告频率测量
一、实验目的1. 理解微波的基本特性及其在实验中的应用。
2. 掌握微波频率测量的原理和方法。
3. 通过实验,验证微波频率测量方法的有效性。
4. 提高对微波测量仪器的操作能力。
二、实验原理微波是一种高频电磁波,其频率范围在300MHz到300GHz之间。
微波的频率测量对于雷达、通信、电子对抗等领域至关重要。
微波频率的测量通常采用以下几种方法:1. 波长-频率关系法:根据微波的波长和光速,通过公式 \( f =\frac{c}{\lambda} \) 计算频率,其中 \( f \) 为频率,\( c \) 为光速,\( \lambda \) 为波长。
2. 示波器测量法:利用示波器观察微波信号的周期,通过公式 \( f =\frac{1}{T} \) 计算频率,其中 \( T \) 为周期。
3. 频谱分析仪测量法:利用频谱分析仪直接测量微波信号的频率。
三、实验仪器与设备1. 微波信号发生器2. 波导3. 检波器4. 示波器5. 频谱分析仪6. 波长计7. 量角器8. 计时器四、实验步骤1. 波长-频率关系法:- 将微波信号发生器输出信号通过波导传输。
- 利用波长计测量微波信号在波导中的波长。
- 根据公式 \( f = \frac{c}{\lambda} \) 计算微波频率。
2. 示波器测量法:- 将微波信号发生器输出信号通过波导传输。
- 将微波信号连接到示波器上。
- 观察示波器上的波形,测量信号周期。
- 根据公式 \( f = \frac{1}{T} \) 计算微波频率。
3. 频谱分析仪测量法:- 将微波信号发生器输出信号通过波导传输。
- 将微波信号连接到频谱分析仪上。
- 观察频谱分析仪上的频谱图,找到微波信号的频率峰。
- 读取频率值。
五、实验结果与分析1. 波长-频率关系法:测量得到微波信号的波长为 \( \lambda = 10 \) cm,根据公式 \( f = \frac{c}{\lambda} \),计算得到微波频率为 \( f = 3 \times10^8 \) Hz。
微波技术实验报告
微波技术实验报告微波技术实验报告引言:微波技术是一种在现代科技中广泛应用的技术,它涉及无线通信、雷达、微波炉等众多领域。
本实验旨在探究微波技术的原理和应用,通过实际操作来加深对微波技术的理解和掌握。
一、实验目的本实验的主要目的是研究微波技术的传输特性和应用,通过实验来验证微波的反射、折射和透射现象,并观察微波在波导中的传输情况。
同时,我们还将探索微波技术在通信和雷达领域的应用。
二、实验原理微波是一种电磁波,波长介于射频波和红外线之间。
它的频率高、波长短,具有穿透力强、传输速度快等特点,因此在通信和雷达等领域得到广泛应用。
微波的传输特性与其频率、波长、传输介质等因素有关。
三、实验设备和材料本实验所需的设备和材料包括微波发生器、微波接收器、微波波导、反射板、透射板、折射板等。
四、实验步骤1. 首先,我们将微波发生器和微波接收器连接起来,形成一个微波传输系统。
2. 然后,我们将微波波导与微波传输系统连接,观察微波在波导中的传输情况。
3. 接下来,我们将反射板放置在微波传输系统的路径上,观察微波的反射现象。
4. 紧接着,我们将透射板放置在微波传输系统的路径上,观察微波的透射现象。
5. 最后,我们将折射板放置在微波传输系统的路径上,观察微波的折射现象。
五、实验结果和分析通过实验观察和数据记录,我们得出以下结论:1. 微波在波导中的传输情况较好,传输损耗较小,适用于远距离通信和雷达应用。
2. 微波在反射板上发生反射现象,反射角度等于入射角度,符合反射定律。
3. 微波在透射板上发生透射现象,透射角度与入射角度有关,符合折射定律。
4. 微波在折射板上发生折射现象,折射角度与入射角度、两种介质的折射率有关,符合折射定律。
六、实验应用微波技术在通信和雷达领域有着广泛的应用。
其中,微波通信是一种基于微波技术的无线通信方式,它具有传输速度快、抗干扰能力强等优点,被广泛应用于移动通信、卫星通信等领域。
而雷达则是一种利用微波技术进行探测和测量的装置,它在军事、气象、航空等领域发挥着重要作用。
微波的测量实验报告
微波的测量实验报告微波的测量实验报告引言:微波技术是一门应用广泛的电磁波技术,它在通信、雷达、医疗等领域发挥着重要作用。
本实验旨在通过测量微波信号的传输特性和功率传输特性,探索微波的性质和应用。
实验一:微波信号的传输特性在实验一中,我们使用了一台微波信号发生器、一根微波传输线和一台微波功率计。
首先,我们将微波信号发生器的输出端连接到微波传输线的输入端,然后将微波传输线的输出端连接到微波功率计。
接下来,我们调节微波信号发生器的频率,并通过微波功率计测量微波信号的功率。
实验结果表明,微波信号的传输特性与频率密切相关。
当微波信号的频率增加时,传输线上的功率损耗也会增加。
这是因为微波信号在传输过程中会受到传输线的阻抗匹配、衰减和反射等因素的影响。
因此,在实际应用中,我们需要根据传输线的特性和工作频率来选择合适的传输线,以确保信号传输的稳定和可靠。
实验二:微波功率传输特性在实验二中,我们使用了一台微波信号发生器、一根微波传输线、一台微波功率计和一个负载。
首先,我们将微波信号发生器的输出端连接到微波传输线的输入端,然后将微波传输线的输出端连接到负载。
接下来,我们调节微波信号发生器的功率,并通过微波功率计测量微波信号在传输线和负载上的功率。
实验结果表明,微波功率的传输特性与功率和负载的阻抗匹配程度密切相关。
当功率和负载的阻抗匹配较好时,微波功率能够有效地传输到负载上,并且功率损耗较小。
然而,当功率和负载的阻抗不匹配时,微波功率会发生反射和衰减,导致功率损耗增加。
因此,在微波电路设计中,我们需要注意功率和负载的阻抗匹配问题,以提高功率传输效率。
实验三:微波的应用微波技术在通信、雷达、医疗等领域有着广泛的应用。
在通信领域,微波信号可以传输大量的数据,并且具有较高的传输速率和稳定性。
在雷达领域,微波信号可以用于探测和测量目标物体的距离、速度和方位。
在医疗领域,微波信号可以用于医学成像和治疗,如MRI和微波消融术等。
微波的测量 实验报告
微波的测量实验报告微波的测量实验报告引言:微波技术在现代通信、雷达、无线电频谱分析等领域中起着重要的作用。
测量微波信号的参数是了解和分析微波系统性能的基础。
本实验旨在通过一系列测量,探究微波的特性和性能,并分析测量结果的准确性和可靠性。
实验一:微波信号的频率测量在本实验中,我们使用频率计来测量微波信号的频率。
首先,将微波信号源与频率计连接,并设置频率计的测量范围。
然后,调节微波信号源的频率,记录频率计的测量结果。
通过多次测量,我们可以得到微波信号的频率范围和频率分布情况。
实验结果显示,微波信号的频率在特定范围内波动较小,表明微波信号源的频率稳定性较好。
同时,我们还发现微波信号的频率分布呈正态分布,符合统计规律。
这些结果对于微波系统的设计和优化具有重要的参考价值。
实验二:微波信号的功率测量微波信号的功率是衡量其强度和传输性能的重要指标。
在本实验中,我们使用功率计来测量微波信号的功率。
首先,将微波信号源与功率计连接,并设置功率计的测量范围。
然后,调节微波信号源的输出功率,记录功率计的测量结果。
通过多次测量,我们可以得到微波信号的功率范围和功率分布情况。
实验结果显示,微波信号的功率与微波信号源的输出功率呈线性关系,即功率随输出功率的增加而增加。
同时,我们还发现微波信号的功率分布呈正态分布,表明微波信号的功率稳定性较好。
这些结果对于微波系统的功率控制和传输性能的优化具有重要的参考价值。
实验三:微波信号的衰减测量在微波传输过程中,由于信号传播介质和传输线的损耗,信号的强度会逐渐减弱。
在本实验中,我们使用衰减器来模拟微波信号的衰减情况,并使用功率计测量衰减后的微波信号的功率。
通过调节衰减器的衰减量,我们可以探究微波信号的衰减规律和衰减程度。
实验结果显示,微波信号的衰减与衰减器的衰减量呈线性关系,即衰减随衰减量的增加而增加。
同时,我们还发现微波信号的衰减程度与传输介质和传输线的特性有关,不同介质和线路的衰减程度不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、实验仪器
DH1121型三厘米固态信号发生器,DH926型微波分光仪,微安表, DH1121型三厘米固态信号发生器,DH926型微波分光仪,微安表,模拟晶体 型三厘米固态信号发生器 型微波分光仪 实验装置见图。在固定臂 上装有微波 实验装置见图。在固定臂3上装有微波 信号发生器1和发射喇叭 活动臂16 和发射喇叭2, 信号发生器 和发射喇叭 ,活动臂 上装有接收喇叭15,衰减器14, 上装有接收喇叭 ,衰减器 ,检波 及调谐短路活塞12。微安表11与 器13及调谐短路活塞 。微安表 与 及调谐短路活塞 检波器13相连作指示器用 分光玻璃6 相连作指示器用。 检波器 相连作指示器用。分光玻璃 插在微波分光仪刻度盘10中心孔中 中心孔中, 插在微波分光仪刻度盘 中心孔中, 其与固定臂的夹角可通过转动刻度盘 上的载物台加以调节, 上的载物台加以调节,并由刻度盘读 取角度值。固定金属板5插在固定插孔 取角度值。固定金属板 插在固定插孔 可动金属板7插在读数机构 插在读数机构8的插 中,可动金属板 插在读数机构 的插 孔中。 孔中。转动读数机构手轮可移动金属 的位置并读出其所在位置的读数。 板7的位置并读出其所在位置的读数。 的位置并读出其所在位置的读数
微波实验
南京理工大学 物理实验中心
提纲
一、背景介绍 二、实验目的 三、实验原理 四、实验仪器 五、实验内容与步骤 六、注意事项 七、思考题
--概念 一、背景介绍 --概念
微波的定义 微波是指波长在1mm~1m范围内,相 范围内, 微波是指波长在 范围内 应频率在300~300000MHz之间的电磁波。 应频率在 之间的电磁波。 之间的电磁波 微波的特点 波长短 频率高,周期短 量子特性 某 频率高, 些波段的微波能畅通无阻地穿过电离层。 些波段的微波能畅通无阻地穿过电离层。 微波的产生 可用反射式速调管。 可用反射式速调管。实验中还用一种产生 微波振荡的半导体器件,即体效应二极管。 微波振荡的半导体器件,即体效应二极管。 在该管两端加电压, 在该管两端加电压,当管内电场略大于阈 值时, 值时,会出现电流的不均匀涨落而形成微波振 荡。
2.布喇格衍射 2.布喇格衍射 ①调整仪器,将模拟晶体放到载物台上; 调整仪器,将模拟晶体放到载物台上; ②用(100)晶面验证布喇格定律,转动晶体, (100)晶面验证布喇格定律,转动晶体, 晶面验证布喇格定律 使晶面的法线与发射喇叭,接收喇叭轴线垂直, 使晶面的法线与发射喇叭,接收喇叭轴线垂直, 调节衰减器和短路活塞,使微安表指向最大值; 调节衰减器和短路活塞,使微安表指向最大值; ③测量不同的掠射角θ,来寻找一级和二级掠 测量不同的掠射角θ 射角; 射角; ④计算,验证布喇格定律; 计算,验证布喇格定律; ⑤已知波长,用(110)和(100)晶面测立方晶体 已知波长, (110)和(100)晶面测立方晶体 的晶格常数
∆ = (2k + 1)λ (k = 0,±1,±2,...)
时,显示电流极小。沿微波传输 方向移 显示电流极小。 动B,第一次电流极大时记录金属板 ,第一次电流极大时记录金属板B 的位置,继续移动B,观察到第n个极大 的位置,继续移动 ,观察到第 个极大 值时记录位置, 值时记录位置,光程差
∆ = 2(l n − l1 ) = (n − 1)λ ∴λ = 2(l n − l1 ) n −1
二、实验目的
用迈克尔逊干涉法测定微波波长; 加深对微波具有类似光线直线传播性质 的理解; 用模拟晶格观察微波的布拉格衍射; 学习X 学习X射线分析晶体结构的基本知识。
µJ = −g
µB
h
PJ = γ PJ
三、实验原理
1.测微波波长: 测微波波长: 测微波波长 微波麦克尔逊干涉仪的原理与光学麦克尔逊干涉仪的原理基本相同。 微波麦克尔逊干涉仪的原理与光麦克尔逊干涉仪的原理基本相同。 图中A为固定金属板, 为可移动金属板 为可移动金属板A 图中 为固定金属板,B为可移动金属板 为固定金属板 互相垂直, 与B互相垂直,分光玻璃 互相垂直 分光玻璃MM’与A和B均 与 和 均 度角。 成45度角。两束微波在接受喇叭处相遇, 度角 两束微波在接受喇叭处相遇, 波程差 ∆ = kλ (k = 0,±1,±2,...) 时,显示电流极大;当波程差 显示电流极大;
2.布喇格衍射 布喇格衍射 固态物质可以分为晶体和非晶体两种。原子或离子, ①固态物质可以分为晶体和非晶体两种。原子或离子,分子在三维空间内 按一定周期有规则地排列的晶体的骨架称为晶格。晶格可作为X射线的衍 按一定周期有规则地排列的晶体的骨架称为晶格。晶格可作为 射线的衍 射光栅,最简单的晶格式立方体结构,边长a为晶格常数 为晶格常数。 射光栅,最简单的晶格式立方体结构,边长 为晶格常数。 晶格的结点可看成分布在互相平行,距离相等的平面平面族上。 ②晶格的结点可看成分布在互相平行,距离相等的平面平面族上。每一组 这样的平面族称为一组晶面。以晶面与xyz三坐标轴截距的倒数比乘以其 这样的平面族称为一组晶面。以晶面与 三坐标轴截距的倒数比乘以其 分母的最小公倍数得密勒指数hkl, 分母的最小公倍数得密勒指数 ,晶面间距
数据处理
测微波波长: 测微波波长:
极大值位 置(mm)
l1
l2
l3
l4
l5
波长λ 波长λ
1 2 3 平均
布喇格衍射 晶面 100 110 120 θ左 θ右 θ平均 2dsinθ n E
六、注意事项
在接通微波信号发生器电源之前,必须 在接通微波信号发生器电源之前, 先将衰减器调整到中值5附近, 先将衰减器调整到中值5附近,其它仪器 状态不要随意调节。 状态不要随意调节。 在实验过程中,由于晶格的不对称, 在实验过程中,由于晶格的不对称,造 成数据(掠射角)的的左右不一致。 成数据(掠射角)的的左右不一致。为了 减小实验误差, 减小实验误差,采用左右平均方法可得 到较好的结果。 到较好的结果。
d hkl = a h2 + k 2 + l 2 , d100 = a, d110 = a 2 , d120 = a 5
波长为λ的单色 射线以掠射角 入射, 波长为 的单色X射线以掠射角 入射,按 的单色 射线以掠射角θ入射 掠射角的反射角方向进行观察, 与 的光 掠射角的反射角方向进行观察,C与D的光 程差δ=2dsinθ,当δ=nλ时产生干涉极大值, 时产生干涉极大值, 程差 , = 时产生干涉极大值 这就是布喇格定律 ③本实验采用模拟晶格和微波来观察和研 究布喇格衍射。 究布喇格衍射。
微波的传输 微波的传输线有同轴传输线, 微波的传输线有同轴传输线,微带线和金属 波导管等。用得最多的是矩形波导管。 波导管等。用得最多的是矩形波导管。 谐振腔 谐振腔是一个封闭的金属导体空腔, 谐振腔是一个封闭的金属导体空腔,通过其与 波导的公共壁上的小孔实现与波导的耦合。 波导的公共壁上的小孔实现与波导的耦合。它可有效地 防止电磁波辐射,使电磁场局限在空腔内部。 防止电磁波辐射,使电磁场局限在空腔内部。 微波的接受 微波接受装置如图。 微波接受装置如图。接受喇叭收到信号后先经衰减器再经检波二极 管后接到微安表上。 管后接到微安表上。
五、实验内容与步骤
1.测定微波波长 1.测定微波波长 ①先将活动臂与固定臂调成直线状态,调整喇叭; 先将活动臂与固定臂调成直线状态,调整喇叭; ②搭麦克尔逊干涉线路; 搭麦克尔逊干涉线路; ③调节衰减器,然后调节短路活塞,使微安表指针 调节衰减器,然后调节短路活塞, 达到极大值; 达到极大值; ④转动读数机构手轮,测第一个极大值;测出第n 转动读数机构手轮,测第一个极大值;测出第n 个极大值,记录读数; 个极大值,记录读数; ⑤计算波长,求不确定度。 计算波长,求不确定度。
七、思考题
1、ESR的基本原理是怎样的? ESR的基本原理是怎样的? 2、样品应位于什么位置?为什么? 3、扫场电压的作用是什么? 3、在微波段ESR实验中,应怎样调节微波系统 、在微波段ESR实验中,应怎样调节微波系统 才能搜索到共振信号? 才能搜索到共振信号?为什么?