温度检测系统的设计
多路温度检测系统的设计与研究

1 绪论温度是一个很重要的物理参数,自然界中任何物理、化学过程都紧密地与温度相联系。
在工业生产过程中,温度检测和控制都直接和安全生产、产品质最、生产效率、节约能源等重大技术经济指标相联系,因此在国民经济的各个领域中都受到普遍重视。
温度检测类仪表作为温度计量工具,也因此得到广泛应用。
随着科学技术的发展,这类仪表的发展也日新月异。
特别是随着计算机技术的迅猛发展,以单片机为主的嵌入式系统已广泛应用于工业控制领域,形成了智能化的测量控制仪器,从而引起了仪器仪表结构的根本性变革。
1.1 温度检测类仪表的现状传统的机械式温度检测仪表在工矿企业中己经有上百年的历史了。
一般均具有指示温度的功能,由于测温原理的不同,不同的仪表在报警、记录、控制变送、远传等方面的性能差别很大。
例如热电阻温度计,它的测温范围是-200℃~650℃,测量准确,可用于低温或温差测量,能够指示报警、远传、控制变送,但维护工作量大并且不能记录;光学温度计测温范围是300℃~3200℃,携带使用方便,价格便宜,但是它只能目测,也就是说必须熟练才能测准,而且不能报警、远传、控制变送。
近年来由于微电子学的进步以及计算机应用的日益广泛,智能化测量控制仪表己经取得了巨大的进展。
我国的单片机开发应用始于80 年代。
在这20 年中单片机应用向纵深发展,技术日趋成熟。
智能仪表在测量过程自动化,测量结果的数据处理以及功能的多样化方面。
都取得了巨大的进展。
目前在研制高精度、高性能、多功能的测量控制仪表时,几乎没有不考虑采用单片机使之成为智能仪表的。
从技术背景来说,硬件集成电路的不断发展和创新也是一个重要因素。
各种集成电路芯片都在朝超大规模、全CMOS 化的方向发展,从而使用户具有了更大选择范围。
这类仪器能够解决许多传统仪器不能或不易解决的问题,同时还能简化仪表电路,提高仪表的可靠性,降低仪表的成本以及加快新产品的开发速度。
智能化控制仪表的整个工作过程都是在软件程序的控制下自动完成的。
嵌入式温度测量系统的设计与实现

嵌入式温度测量系统的设计与实现嵌入式温度测量系统是一种基于嵌入式技术和传感器技术的温度测量系统。
随着科技的发展,嵌入式温度测量系统越来越受到人们的关注。
下面我们就来探讨一下嵌入式温度测量系统的设计与实现。
一、设计嵌入式温度测量系统设计步骤如下:1. 确定系统需求:包括测量温度范围、精度、测量间隔、数据处理方式等参数。
2. 确定选用的传感器类型:根据测量要求,选择相应的温度传感器类型。
如NTC热敏电阻、热电偶、热电阻等。
3. 建立硬件电路:设计合适的硬件电路,将传感器与处理器连接。
准确采集温度数据。
4. 编写软件程序:编写合适的软件程序,将采集到的温度数据处理,并作为输出。
5. 实现数据通信:根据系统的需求,设计合适的通信方式,将数据及时的传输给其他设备。
二、实现嵌入式温度测量系统实现步骤如下:1. 选用适当的芯片:根据自己的需求,选用适当的芯片,比如常用的stm32、arduino、MCU等。
2. 选用合适的传感器:根据需求,选择合适的温度传感器,如DS18B20, TLM9941ISHJ, Thermocouple Type-K等传感器。
3. 搭建硬件电路:利用电路设计软件,设计出嵌入式温度测量系统的硬件电路,并制造出PCB板。
4. 编写相应软件:利用相应的开发工具,编写出嵌入式温度测量系统的软件程序。
5. 调试和测试:将硬件连接好后,通过调试和测试程序,确保嵌入式温度测量系统的功能达到预期。
三、总结嵌入式温度测量系统是一种实用性强且功能高的温度测量系统。
不同的系统设计有不同的实现方法,本文只是简单的介绍了嵌入式温度测量系统的设计与实现步骤。
对于嵌入式技术爱好者来说,希望能够通过学习本文获得一些有价值的内容。
温度检测系统设计报告模板

温度检测系统设计报告模板1. 引言温度检测是现代社会中广泛应用于各个领域的一项重要技术。
不论是工业生产中的温控系统,还是医疗领域中的体温监测,都需要可靠准确的温度检测系统来提供数据支持。
本报告旨在介绍一种基于传感器技术的温度检测系统的设计方案。
2. 系统设计2.1 系统概述本温度检测系统主要由以下几个部分组成:- 传感器模块- 数据采集模块- 数据处理模块- 数据显示模块2.2 传感器模块传感器模块是温度检测系统的核心部分,用于实时感知周围的温度信息。
常见的温度传感器有热电偶、热敏电阻和半导体温度传感器等。
在本设计方案中,我们选择了半导体温度传感器作为主要传感器。
2.3 数据采集模块数据采集模块用于将传感器模块采集到的温度数据进行模拟转数字(A/D)转换,并将其转化为计算机可读的数据传输格式,如数字信号或模拟信号。
常用的数据采集芯片有MAX31855 和ADS1115 等。
2.4 数据处理模块数据处理模块接收从数据采集模块传输过来的温度数据,并进行必要的数据处理和分析。
其中包括常见的数据滤波、校准和温度单位转换等操作。
此外,如果需要实现更复杂的功能,如报警、数据存储等,也可在该模块进行相应的逻辑设计。
2.5 数据显示模块数据显示模块将处理后的温度数据以直观的方式进行展示,供用户实时监测和观察。
常见的数据显示方式包括数码管、液晶屏、计算机图形界面等。
3. 系统实现3.1 硬件实现在硬件实现方面,我们选用了Arduino 控制板作为主控制器,并通过相关传感器模块和数据采集模块与之连接。
具体连接方式可参考相关文档和示例。
3.2 软件实现在软件实现方面,我们采用了Arduino 的开发环境进行程序编写和上传。
具体程序设计涉及到传感器的读取和校准、数据传输和处理,以及数据显示等方面。
4. 系统测试为了验证系统的性能和准确性,我们进行了一系列的系统测试。
首先对传感器模块进行了静态和动态的温度测试,并与标准温度计进行了对比。
基于单片机的温湿度监测系统毕业设计

基于单片机的温湿度监测系统毕业设计一、引言在现代生活和工业生产中,对环境温湿度的准确监测和控制具有重要意义。
温湿度的变化可能会影响产品质量、设备运行以及人们的生活舒适度。
因此,设计一个可靠、精确且易于使用的温湿度监测系统是十分必要的。
本毕业设计旨在基于单片机技术开发一款实用的温湿度监测系统。
二、系统总体设计(一)系统功能需求该监测系统应能够实时采集环境的温度和湿度数据,并将其显示在屏幕上。
同时,系统应具备数据存储功能,以便后续分析和查询。
此外,还应设置报警阈值,当温湿度超出设定范围时能发出警报。
(二)系统组成本系统主要由传感器模块、单片机控制模块、显示模块、存储模块和报警模块组成。
传感器模块负责采集环境温湿度数据,选用了精度高、稳定性好的DHT11 温湿度传感器。
单片机控制模块作为系统的核心,采用了 STC89C52 单片机,负责处理传感器采集到的数据、控制其他模块的工作以及进行逻辑判断。
显示模块采用了液晶显示屏(LCD1602),能够清晰地显示当前的温湿度值。
存储模块使用了 EEPROM 芯片,用于保存历史数据。
报警模块则通过蜂鸣器和指示灯实现,当温湿度异常时发出声光报警。
三、硬件设计(一)传感器接口电路DHT11 传感器与单片机通过单总线进行通信,连接时需要注意数据线的上拉电阻。
(二)单片机最小系统STC89C52 单片机的最小系统包括时钟电路和复位电路。
时钟电路采用晶振和电容组成,为单片机提供稳定的时钟信号。
复位电路用于系统初始化和异常情况下的复位操作。
(三)显示电路LCD1602 通过并行接口与单片机连接,需要配置相应的控制引脚和数据引脚。
(四)存储电路EEPROM 芯片通过 I2C 总线与单片机通信,实现数据的存储和读取。
(五)报警电路蜂鸣器通过三极管驱动,指示灯通过限流电阻连接到单片机的引脚,由单片机控制其工作状态。
四、软件设计(一)主程序流程系统上电后,首先进行初始化操作,包括单片机内部寄存器的设置、传感器的初始化、显示模块的初始化等。
校园智慧测温系统设计方案

校园智慧测温系统设计方案设计方案:校园智慧测温系统一、概述随着新冠疫情的爆发,校园要加强防控工作,特别是对师生的体温监测。
传统的测温方式存在不便、不精准等问题,因此需要设计一套校园智慧测温系统,以提高体温监测的效率和准确性。
二、系统设计要求1. 实时测温:系统能够实时监测师生的体温,及时发现异常情况。
2. 高准确性:测温的准确性必须达到国家标准,并能够准确识别异常体温。
3. 高效率:系统能够快速地进行测温,不影响师生的正常上课。
4. 安全性:系统对师生的个人信息进行保护,确保隐私不被泄露。
5. 数据分析:系统能够统计分析师生的体温数据,并生成报告,为后续防控工作提供参考。
三、系统组成(一)测温设备1. 非接触式红外测温仪:使用红外技术,可以实现远距离、非接触的体温测量。
2. 摄像头:用于拍摄师生的面部图像,与体温测量数据进行关联。
(二)数据处理及记录系统1. 服务器:用于存储和处理测温数据。
2. 数据库:存储师生的个人信息和体温数据,确保数据的安全性和隐私保护。
3. 数据处理算法:对收集到的体温数据进行分析和处理,识别异常体温。
4. 前端显示界面:向师生展示测温结果,同时可以显示历史数据和统计报告。
(三)报警系统1. 报警装置:当系统检测到异常体温时,通过声音、灯光等方式进行报警。
2. 短信通知:同时向相关人员发送短信通知,包括校医和相关部门。
(四)管理系统1. 用户管理:对师生的个人信息进行录入和管理,包括姓名、年级、班级等。
2. 记录管理:对测温数据进行记录和管理,包括时间、测温数值等。
3. 统计报告:生成师生测温数据的统计报告,为后续防控工作提供参考。
四、系统工作流程(一)师生测温1. 师生排队,按序通过测温通道。
2. 进入测温通道后,系统自动进行体温测量,同时拍摄面部图像。
3. 系统将体温数据和面部图像进行关联,并传送至数据处理及记录系统。
4. 数据处理及记录系统对数据进行处理和分析,判断是否存在异常体温。
基于单片机的室内温湿度检测系统的设计

基于单片机的室内温湿度检测系统的设计
一、系统简介
本系统基于单片机,能够实时检测室内的温度和湿度,显示在
液晶屏幕上,并可通过串口输出到PC端进行进一步数据处理和存储。
该系统适用于家庭、办公室和实验室等场所的温湿度检测。
二、硬件设计
系统采用了DHT11数字温湿度传感器来实时检测室内温度和湿度,采用STC89C52单片机作为控制器,通过LCD1602液晶屏幕显示
温湿度信息,并通过串口与PC进行数据通信。
三、软件设计
1、采集数据
系统通过DHT11数字温湿度传感器采集室内的温度和湿度数据,通过单片机IO口与DHT11传感器进行通信。
采集到的数据通过计算
得到实际温湿度值,并通过串口发送给PC端进行进一步处理。
2、显示数据
系统将采集到的室内温湿度数据通过LCD1602液晶屏幕进行显示,可以实时观察室内温湿度值。
3、通信数据
系统可以通过串口与PC进行数据通信,将数据发送到PC端进
行存储和进一步数据处理。
四、系统优化
为了提高系统的稳定性和精度,需要进行优化,包括以下几点:
1、添加温湿度校准功能,校准传感器的测量误差。
2、添加系统自检功能,确保系统正常工作。
3、系统可以添加温湿度报警功能,当温湿度超过设定阈值时,系统会自动发送报警信息给PC端。
以上是基于单片机的室内温湿度检测系统的设计。
温度检测系统的设计【文献综述】

毕业论文文献综述机械设计制造及其自动化温度检测系统的设计温度检测与控制在国外研究较早,始于20世纪70年代。
先是采用模拟式的组合仪表,采集现场信息并进行指示、记录和控制。
80年代末出现了分布式控制系统。
目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。
现在世界各国的温度测控技术发展很快,一些国家在实现自动化的基础上正向着完全自动化、无人化的方向发展。
在国内,我国对于温度测控技术的研究较晚,始于20世纪80年代。
我国工程技术人员在吸收发达国家温度测控技术的基础上,才掌握了温度室内微机控制技术,该技术仅限于对温度的单项环境因子的控制。
我国温度测控设施计算机应用,在总体上正从消化吸收、简单应用阶段向实用化、综合性应用阶段过渡和发展。
在技术上,以单片机控制的单参数单回路系统居多,尚无真正意义上的多参数综合控制系统,与发达国家相比,存在较大差距。
我国温度测量控制现状还远远没有达到工厂化的程度,生产实际中仍然有许多问题困扰着我们,存在着装备配套能力差,产业化程度低,环境控制水平落后,软硬件资源不能共享和可靠性差等缺点。
近些年来,一些科学家通过对温度检测研究发现太阳辐射或许是气温变暖主要因素温度检测的设计中,单片机是这个系统的核心部分。
单片微型计算机简称单片机,典型的嵌入式微控制器(Microcontroller Unit),常用英文字母的缩写MCU表示单片机,它最早是被用在工业控制领域。
单片机由芯片内仅有CPU的专用处理器发展而来。
早期的单片机都是8位或4位的。
其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。
此后在8031上发展出了MCS51系列单片机系统。
基于这一系统的单片机系统直到现在还在广泛使用。
随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。
90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。
随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。
基于单片机的温湿度检测系统的设计

基于单片机的温湿度检测系统的设计一、引言温湿度是常见的环境参数,对于很多应用而言,如农业、生物、仓储等,温湿度的监测非常重要。
因此,设计并实现一个基于单片机的温湿度检测系统是非常有实际意义的。
本文将介绍该温湿度检测系统的设计方案,并详细阐述其硬件和软件实现。
二、系统设计方案1.硬件设计(1)传感器选择温湿度传感器的选择非常关键,常用的温湿度传感器包括DHT11、DHT22、SHT11等。
根据不同应用场景的精度和成本要求,选择相应的传感器。
(2)单片机选择单片机是整个系统的核心,需要选择性能稳定、易于编程的单片机。
常用的单片机有51系列、AVR系列等,也可以选择ARM系列的单片机。
(3)电路设计温湿度传感器与单片机的连接电路包括供电电路和数据通信电路。
供电电路通常采用稳压电源,并根据传感器的工作电压进行相应的电压转换。
数据通信电路使用串行通信方式。
2.软件设计(1)数据采集单片机通过串行通信方式从温湿度传感器读取温湿度数据。
根据传感器的通信协议,编写相应的代码实现数据采集功能。
(2)数据处理将采集到的温湿度数据进行处理,可以进行数据滤波、校准等操作,以提高数据的准确性和可靠性。
(3)结果显示设计一个LCD显示屏接口,将处理后的温湿度数据通过串行通信方式发送到LCD显示屏上显示出来。
三、系统实现及测试1.硬件实现按照上述设计方案,进行硬件电路的实现。
连接传感器和单片机,搭建稳定的供电电路,并确保电路连接无误。
2.软件实现根据设计方案,使用相应的开发工具编写单片机的代码。
包括数据采集、数据处理和结果显示等功能的实现。
3.系统测试将温湿度检测系统放置在不同的环境条件下,观察测试结果是否与真实值相符。
同时,进行长时间的测试,以验证系统的稳定性和可靠性。
四、系统优化优化系统的稳定性和功耗,可以采用以下方法:1.优化供电电路,减小电路噪声和干扰,提高电路的稳定性。
2.优化代码,减小程序的存储空间和运行时间,降低功耗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业论文开题报告
机械设计制造及其自动化
温度检测系统的设计
一、选题的背景和意义
在当今社会里,温度和人类的生产、生活有着很密切的联系,同时在工业生产中也是一个很重要的基本工艺参数,例如在机械、石油、化工、电子等各类工业中经常需要对温度进行检测然后进行控制。
如今人们的生活水平不断提高,自然也越来越开始关心自己的生活环境,空气中温度的改变会直接影响一个人的舒适感和情绪,所以对温度的检测和控制的研究非常需要的。
总之,环境温度的检测仪器的设计和开发有着很好的市场前景和实用价值。
温度是生产生活中主要的环境参数,对其进行准确的检测有着很重要的意义。
炼钢炉中温度不正常,会大大影响钢铁质量;人的体温不正常了,说明人生病了;蔬菜大棚中的温度不正常了,就可能引起蔬菜死亡或生长受影响。
准确的获得温度值,能更好的提高生活质量和生产力。
二、研究目标与主要内容
本设计是基于AT89S52单片机为核心处理器的温度检测系统。
系统采用AT89S52单片为主控CPU机,DS18B20为温度传感器,点阵字符形液晶显示器LCD1602,蜂鸣器,4个按键构成一个完整的温度检测系统。
主要功能为:单片机读取DS18B20中的数据并转为温度数据,同时将温度值显示在LCD1602上,检测范围为0摄氏度到99摄氏度,精度为0.5摄氏度;温度报警功能,温度上限报警值可以通过按键进行调整,报警状态也可以通过设置按键进行选择。
1引言
1.1温度检测的研究背景
1.2温度检测的意义
1.3本论文研究的主要内容
2系统硬件设计
2.1系统方案论述
2.1.1单片机选择
2.1.2显示器件的选择2.1.3温度传感器选择2.2系统模块功能介绍2.2.1单片机模块
2.3.2温度传感器模块2.3.3按键模块
2.3.4液晶显示模块
2.3.5蜂鸣器报警模块
3系统软件设计
3.1系统软件整体设计3.2系统子模块程序设计3.2.1显示模块程序设计3.2.2测温模块程序设计3.2.3按键模块程序设计4系统软硬件调试
5实物制作及调试
参考文献
致谢
附录一:电路图
附录二:源程序
三、拟采取的研究方法、研究手段及技术路线、实验方案等
本设计是基于AT89S52单片机为核心处理器的温度检测系统。
系统采用AT89S52单片为主控CPU机,DS18B20为温度传感器,点阵字符形液晶显示器LCD1602,蜂鸣器,4个按键构成一个完整的温度检测系统。
程序方面是通过Proteus软件,用C语言编写的程序。
能够比较精确地实现对环境温度的检测,检检测范围为0摄氏度到99摄氏度,精度为0.5摄氏度;温度报警功能,温度上限报警值可以通过按键进行调整,报警状态也可以通过设置按键进行选择。
设计出传感器的接线电路,显示器的连接电路,元件的选择。
程序方面是通过KEIL软件仿真,用汇编语言编写的程序。
四、参考文献
[1]胡学海.单片机原理及应用系统设计[M].电子工业出版社,2005.
[2]刘彦文.基于ARM7TDMI的S3C44B0X微处理器技术清华大学出版社,2009:18-26.[3]张毅刚彭喜元.单片机原理与应用设计电子工业出版社,2010:10-14.[4]李平等.单片机入门与开发[M].机械工业出版社,2008.
[5]董传岱,于云华.数字电子技术,东营:石油大学出版社,2003.
[6]刘畅生.传感器简明手册及应用电路.西安:西安电子科技大学出版社,2005.[7]李道华.传感器电路分析与设计.武汉:武汉大学出版社,2000.
[8]王东峰等.单片机C语言应用100例[M].电子工业出版社,2009.
[9]沙占友,集成化智能传感器原理与应用.北京:电子工业出版社,2004.[10]Chuen Chien Lee.Fuzz Logic in control system :FuzzyLogic Controller-Part 1.IEEETrans,on Systems,Man,and Cybemetic 1955.
[11]Chalabi ZS ,Zhou W .Optimalcontrol methods for agricultural
systems .ActaHorticulturae,1995.
五、研究的整体方案与工作进度安排(内容、步骤、时间)
2010.11.15~2010.11.20文献查阅、了解单片机原理
2010.11.21~2010.11.25献查阅、温度检测及如何利用单片机完成温度检测2010.11.26~2010.11.30资料收集、文献查阅、并完成外文资料翻译
2010.12.01~2010.12.10资料收集、文献查阅、并完成文献综述和开题报告2010.12.10~2011.01.08温度检测装置的设计与制作
2011.01.09~2011.02.09进行功能仿真,调整设计方案
2011.02.10~2011.02.28撰写论文初稿
2011.03.01~2011.03.24完善制作设计
2011.03.25~2011.04.20论文修改定稿,完成其他相关文档
2011.04.21~2011.05.02准备毕业答辩材料
六、研究的预期目标及主要特点及创新点
本设计的核心是AT89S52单片机,它一种低功耗、高性能的8位微控制器,具有8K程序存储器空间和256个字节的RAM空间。
编译速度快,使用灵活。
可通过软件编程实现对模拟信号的采集,存储数据的输出以及各种测量,逻辑控制等功能。
本设计传感器部分采用DS18B20数字化温度传感器,DS18B20测温相对比较简单,而且在一定范围内固定精度为0.5度,在一般的日常生活生产中已经达到要求了。
显示
部分采用液晶LCD1602。
程序方面是通过KEIL软件仿真,用汇编语言编写的程序。
本设计的一大创新是在工业生产中通过对温度检测来提高生产效率并且在生产过程中更好的加以控制。