伺服电机如何进行选型

合集下载

伺服电机的选型计算方法

伺服电机的选型计算方法

伺服电机的选型计算方法伺服电机是一种应用于自动控制系统中的电动机,它具有高精度、高速度、高可靠性和高动态性等特点,广泛应用于工业自动化领域。

在进行伺服电机选型计算时,需要考虑以下几个方面:1.负载特性分析:首先需要对负载进行特性分析,包括负载的惯性矩、负载力矩和负载转矩等参数的测量和计算。

负载特性分析是伺服电机选型计算的基础,它直接影响到电机输出的动力和转速。

2.动力需求计算:在进行伺服电机选型计算时,需要考虑到所需的动力大小。

动力大小与负载的力矩和转速有关,可以通过下式计算:动力大小=负载力矩×负载转速动力大小的计算可以参考负载特性分析中得到的参数。

3.转矩需求计算:转矩需求是指伺服电机在运行过程中所需的最大转矩。

转矩需求可以通过下式计算:转矩需求=负载转矩+惯性转矩负载转矩和惯性转矩可以通过负载特性分析中得到的参数进行计算。

4.速度需求计算:速度需求是指伺服电机在运行过程中所需的最大转速。

速度需求可以通过下式计算:速度需求=负载转速+加速度×加速时间负载转速是伺服电机在运行过程中所需的最大转速,加速度是伺服电机在加速阶段的加速度大小,加速时间是加速阶段的时间。

5.动态性能计算:伺服电机的动态性能是指其快速响应的能力,包括动态转矩响应和动态速度响应。

动态性能的计算需要考虑到转矩和速度的波动范围,以及加速度和减速度的大小。

6.选型参数计算:在进行伺服电机选型计算时,还需要考虑到电机的额定功率、额定转矩、额定转速、额定电压和额定电流等参数。

这些参数可以通过上述计算得到,也可以通过伺服电机的性能曲线和规格表进行查询。

总之,伺服电机的选型计算方法需要综合考虑负载特性、动力需求、转矩需求、速度需求和动态性能等方面的因素。

同时,还需要根据具体的应用场景和要求进行合理的选型。

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项伺服电机是一种精密控制器件,广泛应用于各种自动化设备和机械领域。

在进行伺服电机选型时,需要考虑多个因素,包括负载特性、控制精度、环境条件、成本等,才能选择到最适合的产品。

下面将介绍一些伺服电机选型的原则和注意事项,希望能为大家在选择伺服电机时提供一些帮助。

一、负载特性在进行伺服电机选型时,首先要考虑的是负载特性。

需要根据负载的特点来选择合适的伺服电机。

负载的特性可以通过负载转矩和负载惯量来描述。

负载转矩是指负载所需的最大转矩,而负载惯量则是负载对于运动的惯性。

根据负载的特性,可以确定所需的伺服电机的转矩和速度范围,以便选择合适的型号。

二、控制精度在伺服系统中,控制精度是非常重要的指标。

控制精度取决于伺服电机的性能和控制器的精度。

需要根据实际需要确定所需的控制精度,然后选择合适的伺服电机和控制器。

控制系统的动态响应速度也是一个重要的指标,需要根据实际应用来确定。

三、环境条件在选择伺服电机时,还需要考虑环境条件。

包括温度、湿度、震动等因素。

一些特殊的工作环境可能需要选择耐高温、防尘防水等特殊的型号。

还需要考虑伺服电机的安装方式和外壳材质等因素,以确保伺服电机可以在恶劣的环境条件下正常运行。

四、成本在进行伺服电机选型时,成本是一个重要的考虑因素。

除了伺服电机本身的成本外,还需要考虑安装、维护和使用成本。

需要综合考虑各种因素,选择性价比最高的产品。

还需要考虑产品的品牌和售后服务等因素,确保选择到性能可靠、服务完善的产品。

五、其他注意事项1. 选型人员需要了解伺服电机的基本原理和性能指标,避免因为对产品不熟悉而选择错误的型号。

2. 需要对负载特性进行准确的测量和分析,以确保选型的准确性。

3. 在选择伺服电机时,还需要考虑到未来的发展需求,以避免产品在后期无法满足实际需求的情况。

伺服电机选型是一个复杂的过程,需要综合考虑多个因素才能选择到最合适的产品。

希望上述原则和注意事项能够帮助大家在伺服电机选型时有所帮助。

伺服电机的选型计算办法

伺服电机的选型计算办法

伺服电机的选型计算办法一、确定负载惯量:负载惯量是指伺服电机需要驱动的负载系统的惯性矩阵。

负载的形状、质量、分布和转动部件的位置等都会影响到负载的惯性矩阵。

1.如果负载是刚体,惯性矩阵可以通过测量负载的质量和尺寸,并进行计算得到。

2.如果负载是连续变形的物体,可以通过将其分为多个刚体部分,分别计算惯性矩阵,再进行合成得到整个负载的惯性矩阵。

二、计算定格转矩和定格转速:1.根据应用的工作周期,计算出所需的平均定格转矩。

定格转矩是指电机在长时间运行情况下,能够稳定输出的转矩。

2.根据应用的工作周期和速度要求,计算出所需的平均定格转速。

定格转速是指电机能够稳定运行的最大转速。

三、选择电机型号:1.根据定格转矩和定格转速的要求,查找电机制造商提供的电机规格表,找到满足要求的电机型号。

2.选择电机型号时还需要考虑其他因素,如电机的功率、最大转矩、过载能力、加速度能力等。

根据具体应用的需求进行综合考虑,选取合适的电机型号。

四、校核选型:1.根据选择的电机型号,计算电机的部分负载转矩和转矩脉冲响应时间。

与应用要求进行比较,确保选型的合理性。

2.根据负载惯量和转矩要求,计算伺服电机的加速时间。

与应用的加速要求进行比较,确保选型的合理性。

3.根据电机的定格转矩和转速,计算电机的输出功率。

与应用的功率需求进行比较,确保选型的合理性。

五、其他因素考虑:除了上述的基本选型计算办法外,还需考虑其他因素,例如电机的可靠性、寿命、环境适应性、维护和保养成本等。

总结:伺服电机的选型计算是一个综合考虑电机的转矩、转速、功率和其他性能指标的过程。

根据负载的惯性矩阵、应用的工作周期和速度要求,选择合适的电机型号,并进行校核以确保选型的合理性。

同时,还需要考虑其他因素,如电机的可靠性、寿命和维护成本等。

以上是伺服电机选型计算的一般步骤,具体要根据具体的应用需求来选择,需要结合实际情况进行综合决策。

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项伺服电机是一种能够输出力矩的机电传动装置,可以将输入的电信号转化成相应的运动规律。

因其具有速度高、精度高、响应快等特点,广泛应用于机械制造、自动化设备、机器人、航空航天等领域。

在选择伺服电机时,需要考虑多种因素,包括性能、规格、成本、环境等。

下面我们将详细介绍伺服电机选型的原则和注意事项。

一、伺服电机选型的原则1. 性能匹配原则:选择伺服电机时,需充分考虑其输出功率、转速范围、定位精度、响应速度等性能指标,确保能够满足实际应用的要求。

通常情况下,需根据具体的负载特性、作业环境以及工作要求等方面综合考虑。

2. 稳定性原则:伺服电机在工作中需要具有稳定的运行特性,因此在选型时需要注意其输出稳定性、温升特性、抗扰性等指标,以确保其在各种工况下都能够稳定运行。

3. 经济性原则:在选型时,需综合考虑伺服电机的成本、维护费用、能耗等因素,选择性价比较高的产品。

在确保性能和质量的前提下,尽量降低成本。

4. 可靠性原则:伺服电机作为机械传动的重要部件,其可靠性直接关系到设备的稳定运行。

因此在选型时需选择品质可靠、性能稳定的产品,尽量避免使用劣质产品。

5. 适用性原则:伺服电机的选型需考虑其适用范围和使用环境,例如是否需要防尘防水、是否需要防爆功能、工作温度范围等。

选型时需根据实际工况选择适合的产品。

6. 可维护性原则:选型时需考虑伺服电机的可维护性,例如易损件的更换和维护难易程度、厂家售后服务的支持等方面,以确保设备的长期稳定运行。

1. 了解负载特性:在选型前需要充分了解实际应用中的负载特性,包括负载的惯性、摩擦力、阻尼力等,以便合理选择伺服电机的输出功率和转矩。

2. 确定运动要求:需明确了解设备对于速度、加速度、定位精度等方面的要求,以便选择适合的伺服电机类型和规格。

3. 注意温升和过载能力:在选型时需考虑伺服电机的持续运行能力和过载能力,以确保其在长期工作和瞬时过载情况下都能够正常运行。

伺服电机选型技术指南

伺服电机选型技术指南

伺服电机选型技术指南伺服电机是一种能够控制位置、速度和力矩的电机,被广泛应用于自动化控制系统中。

伺服电机的选型十分重要,它直接影响到系统的性能和稳定性。

本文将为大家介绍伺服电机的选型技术指南。

一、了解应用需求在选型之前,首先需要了解应用的需求和要求。

包括但不限于电机的扭矩要求、转速要求、精度要求等。

这些要求将指导我们在选型时考虑哪些因素,并帮助我们找到最适合的伺服电机。

二、根据工作负载选择电机类型根据应用的负载特性,我们可以选择适合的电机类型。

常见的伺服电机类型包括直流伺服电机(DC Servo Motor)、交流伺服电机(AC Servo Motor)、步进电机(Stepper Motor)等。

根据负载特性(如惯性、摩擦力矩等)选择合适的电机类型,以保证系统能够提供足够的扭矩和速度。

三、考虑动态性能伺服电机的动态性能非常重要,尤其是对于需要高速定位控制的应用。

动态性能主要由响应时间、加速时间和减速时间决定。

响应时间是指系统从接收到指令开始到开始变化的时间,加速时间和减速时间分别是将电机从静止状态加速到工作速度和从工作速度减速到静止状态所需的时间。

根据应用的需求,选择合适的动态性能指标,确保系统的响应速度和准确性。

四、考虑系统稳定性伺服系统的稳定性对于一些高精度和高速度应用非常重要。

系统的稳定性与伺服电机的增益和带宽有关。

增益是指系统对输入信号的放大倍数,带宽是指系统能够输出到给定频率的能力。

增益和带宽应根据系统的性能要求进行调整,以保证系统的稳定性和可靠性。

五、考虑环境条件环境条件也是选择伺服电机的重要因素。

包括但不限于温度、湿度、尘土等。

特殊的环境条件可能需要选择具有防护性能的电机,以确保电机的正常运行和寿命。

六、查看技术参数和规格在选型之前,我们还需要查看伺服电机的技术参数和规格。

包括额定电压、额定功率、最大扭矩、最高转速等。

同时,还需要了解电机的接口和控制方式,以确保电机可以与控制系统兼容。

伺服电机选型流程

伺服电机选型流程

伺服电机选型流程
选择适当的伺服电机需要考虑多个因素,下面是一个通用的伺服电机选型流程:
1.确定负载特性:首先需要确定要控制的负载的重量、形状、大小、惯性、速度和加速度等特性,以此来确定所需的驱动力和扭矩。

2.选择控制器:根据负载的特性,选择适当的控制器,以便精确控制电机的速度、位置和加速度等参数。

3.计算所需的功率:根据负载的特性和控制器的要求,计算所需的功率。

4.选择电机类型:根据负载的特性和所需的功率,选择适当的伺服电机类型,如交流或直流、有刷或无刷、带或不带减速器等。

5.确定电机尺寸:根据所选的电机类型和功率,确定所需的电机尺寸,包括直径、长度和安装方式等。

6.确定编码器分辨率:编码器是用于反馈电机位置的装置,需要选择适当的分辨率以便实现所需的位置控制精度。

7.确定供电电压:根据所选的电机类型和控制器要求,确定所需的供电电压和电流。

8.选择附件:根据具体应用需求,选择适当的附件,如制动器、冷却器、联轴器和连接器等。

9.进行性能验证:进行实际测试以验证电机的性能是否符合要求。

总之,伺服电机选型需要考虑多个因素,需要综合考虑负载特性、控制器要求、功率、电机类型、编码器分辨率、供电电压、附件和性能验证等因素。

1/ 1。

伺服电机选型指南

伺服电机选型指南

伺服电机选型指南伺服电机是一种能够精准控制位置、速度和加速度的电动机,广泛应用于机器人、自动化设备、数控机床、医疗设备等领域。

选型合适的伺服电机对于机械设备的性能和稳定性有着重要的影响。

本文将从电机的参数、性能、适用环境等方面介绍伺服电机的选型指南。

一、电机参数1.功率:功率是电机输出能力的重要指标,根据设备的工作负载和所需功率大小选择合适的电机功率。

一般来说,电机的额定功率应大于设备最大负载功率的1.2倍左右。

2.转矩:电机转矩是指电机输出的扭矩大小,与设备的负载特性密切相关。

根据设备所需的最大转矩选择合适的电机转矩。

一般来说,电机的额定转矩应大于设备最大负载转矩的1.2倍左右。

3.转速:电机转速是指电机输出的转速大小,与设备运动速度有关。

根据设备所需的最大转速选择合适的电机转速。

一般来说,电机的额定转速应大于设备最大运动速度的1.2倍左右。

4.控制精度:伺服电机能够实现更高的控制精度和位置重复性,根据设备所需的控制精度选择合适的伺服电机。

一般来说,控制精度为±0.01°的伺服电机可以满足大多数应用的需求。

二、电机性能1.动态响应:动态响应是指伺服电机在响应控制指令时的速度和加速度特性。

对于需要快速响应和高加速度的应用,选择具有较好动态响应性能的伺服电机。

2.脉冲宽度调制(PWM)频率:PWM频率决定了电机控制的精度和稳定性,一般来说,选择具有较高PWM频率的伺服电机可以实现更精准的控制效果。

3.调速范围:伺服电机的调速范围指的是从最低转速到最高转速的比值,较大的调速范围能够满足更广泛的应用需求。

4.效率:电机的效率是指电机输出功率与输入功率之比,高效率的电机能够降低能源消耗和热量排放。

三、适用环境1.温度:伺服电机的工作温度范围应与设备所处环境温度相匹配,一般来说,工作温度范围为-20°C到40°C的伺服电机可以适应大多数应用环境。

2.湿度:对于湿度较高的工作环境,选择具有较高防潮性能的伺服电机。

伺服电机选型方法

伺服电机选型方法

伺服电机选型方法伺服电机是一种高性能驱动装置,具有位置、速度和力矩控制的特点。

在机械系统中,伺服电机广泛应用于工业机械、飞行器、机器人等领域。

因此,正确选择合适的伺服电机对于保证系统性能和运行稳定性非常重要。

本文将介绍伺服电机的选型方法。

1.确定负载特性:首先,需要确定负载的特性,包括需要控制的位置、速度和力矩范围。

负载的质量、惯性和摩擦等参数也需要考虑。

这些参数对于电机的选型具有重要影响。

2.确定运行条件:确定伺服电机的工作条件,如环境温度、湿度和海拔等情况。

这些因素也会影响电机的性能和选择。

3.选用正确的电机类型:根据负载特性和运行条件,选择合适的电机类型,如直流伺服电机、交流伺服电机或步进电机。

直流伺服电机通常适用于需要高精度和高速度控制的应用,而交流伺服电机适用于需要高扭矩输出和适应不同负载的应用。

4.计算负载转矩要求:根据负载的特性和应用要求,计算所需的转矩范围。

这可以通过测量或计算负载的惯性、阻力和力矩来实现。

5.评估电机性能:选择多个候选电机后,需要评估其性能参数,如额定扭矩、额定转速、额定电压和额定电流。

还需要考虑电机的动态响应特性,如响应时间和精确度。

6.选用合适的控制器:根据选定的电机类型和性能参数,选择合适的控制器。

控制器应具有与电机相匹配的控制模式和通信接口。

7.选择适当的电源:考虑到伺服电机的功耗和性能要求,选择适当的电源。

电源应能够提供所需的电压和电流。

8.考虑成本和可靠性:选择伺服电机时,还需要考虑其成本和可靠性。

质量好、性能稳定的电机可能更贵,但在长期使用中可能更可靠,减少维护和更换的成本。

9.进行实验验证:在选择电机之前,可以进行实验验证,通过实际测试来验证伺服电机是否能够满足负载和应用的要求。

综上所述,伺服电机的选型需要综合考虑负载特性、运行条件、电机类型、负载转矩要求、电机性能、控制器选择、电源选择、成本和可靠性等因素。

通过合理的选型,确保伺服电机能够满足系统的性能和应用要求。

伺服电机分类与选型流程

伺服电机分类与选型流程

伺服电机分类与选型流程伺服电机是一种能够根据控制信号来驱动机械系统运动的电机。

它具有高精度、高控制性能和高可靠性的特点,广泛应用于工业自动化控制、仪器仪表和机器人等领域。

根据应用场景的不同,伺服电机可以分为直流伺服电机和交流伺服电机两大类,每一类又有其各自的特点和选型要点。

一、直流伺服电机的分类与选型流程:1.分类:直流伺服电机根据电源电压的不同可以分为低压直流伺服电机(12V、24V)和高压直流伺服电机(48V、60V、72V等)。

2.选型流程:(1)确定应用场景:根据具体应用的需要,确定伺服电机的功率、扭矩和转速等参数。

(2)验证电源电压:根据选定的电机功率和转速要求,验证电源电压是否能够满足电机的工作要求。

如果电源电压不足,则需要使用电源升压器或者选择合适的电压级别的伺服电机。

(3)确定电机型号:根据电机的工作要求,包括负载特性、控制要求和环境要求等,确定合适的电机型号。

(4)选取驱动器:根据电机的功率和控制要求,选取合适的驱动器。

驱动器的选择要考虑到驱动器的保护功能、通信接口和控制算法等因素。

(5)试运行与调试:在选定的电机和驱动器之间进行试运行和调试,验证系统的性能和稳定性。

二、交流伺服电机的分类与选型流程:1.分类:交流伺服电机根据电机的控制方式可以分为位置控制型和矢量控制型。

位置控制型伺服电机根据电机转子结构的不同可以分为无刷交流伺服电机(BLAC)和有刷交流伺服电机(BLDC);矢量控制型伺服电机则可以分为感应交流伺服电机(IM)和永磁同步交流伺服电机(PMSM)。

2.选型流程:(1)确定应用场景:根据具体应用的需要,确定伺服电机的功率、扭矩和转速等参数。

(2)验证电源电压:根据选定的电机功率和转速要求,验证电源电压是否能够满足电机的工作要求。

如果电源电压不足,则需要使用电源升压器或者选择合适的电压级别的伺服电机。

(3)确定电机型号:根据电机的工作要求,包括负载特性、控制要求和环境要求等,确定合适的电机型号。

简述伺服电动机的选型步骤

简述伺服电动机的选型步骤

简述伺服电动机的选型步骤伺服电动机是一种能够准确控制位置、速度和加速度的电动机。

在进行伺服电动机的选型时,需要考虑多个因素,包括负载要求、控制系统、环境条件等。

下面将详细介绍伺服电动机的选型步骤。

第一步:确定负载要求在选择伺服电动机之前,首先需要了解负载的特性和要求。

负载特性包括负载的质量、惯性、摩擦力和阻力等。

而负载要求则包括位置精度、速度范围、加速度和工作周期等。

通过确定负载的特性和要求,可以为后续的选型提供重要的信息。

第二步:确定控制系统伺服电动机一般需要与控制系统配合使用,因此在选型之前需要确定控制系统的类型和性能要求。

控制系统可以分为开环和闭环两种。

开环控制系统只能估计负载的位置和速度信息,无法准确控制。

闭环控制系统通过反馈传感器获取负载的实际位置和速度信息,并根据误差来调整输出信号,实现精确控制。

根据实际需求选择合适的控制系统类型,以确保系统的性能要求能够得到满足。

第三步:计算负载惯量负载的惯量是伺服电动机选型中非常重要的参数之一、惯量可以通过测量负载的质量和尺寸,并进行计算得到。

负载的惯量决定了电机需要提供的扭矩大小,因此需要根据负载的惯量来选择合适的电机。

第四步:计算负载扭矩在选型时,需要考虑电动机输出扭矩的大小。

负载扭矩可以通过负载的阻力和惯性来计算得到。

阻力可以通过测量得到,而惯性可以通过负载的质量和尺寸计算得到。

根据负载的扭矩需求来选择适当的电机。

第五步:选择合适的电机类型和规格根据前面的步骤,确定负载的特性和要求、控制系统类型和性能要求、负载的惯量和扭矩等参数后,可以选择合适的伺服电动机类型和规格。

根据负载的特性和要求,选择适当的电机类型,如直流伺服电动机、交流伺服电动机或步进电动机等。

然后,根据负载的惯量和扭矩要求,选择合适的电机规格,包括电机尺寸、额定扭矩和额定转速等。

第六步:考虑环境条件和可靠性要求选型时,还需要考虑环境条件和可靠性要求。

环境条件包括温度、湿度、震动和腐蚀等因素。

伺服电机选型指南

伺服电机选型指南

伺服电机选型指南导言:伺服电机是一种能够根据控制信号实现位置、速度和力矩控制的电机。

它具有高精度、高速度响应、高功率密度等优点,被广泛应用于自动化设备、机器人、数控系统等领域。

在选型伺服电机时,需要考虑多个因素,如要求的动态性能、机械结构、环境条件等。

下面将介绍一些选型伺服电机的指南。

一、确定性能需求:在选型伺服电机之前,首先需要明确所需要的性能需求。

动态性能是伺服电机最重要的指标之一,包括速度响应、加速度、定位精度等。

同时,还需要考虑所需的力矩范围、功率密度、温升、定位误差余量等指标。

根据具体应用的要求,确定这些性能需求。

二、了解机械结构:伺服电机的选型还需要了解机械结构。

机械结构将直接影响伺服电机的扭矩、惯量、安装方式等。

根据具体的机械结构来选择适合的伺服电机类型,如直线伺服电机、旋转伺服电机等。

三、选择合适的控制器:伺服电机的控制器是伺服系统的核心部分,它将影响伺服电机的性能以及系统的稳定性。

在选型伺服电机时,需要考虑是否配备合适的控制器,以及控制器的控制算法、通信接口等。

四、考虑环境条件:伺服电机的工作环境条件也是选型考虑的重要因素之一、工作环境的温度、湿度、振动等都会对伺服电机的性能和寿命产生影响。

因此,在选型伺服电机时,需要考虑环境条件,并选择适合的防尘、防水等级别。

五、参考厂家技术指标:在选型伺服电机时,可以参考厂家提供的技术指标。

常见的技术指标包括额定电流、额定功率、峰值扭矩、峰值电流、转矩常数、惯性等。

根据应用的需求和机械结构,选择符合要求的技术指标。

六、了解市场状况:在选型伺服电机之前,还可以了解一下市场上的主流产品和技术趋势。

通过了解市场情况,可以选择性价比更高的产品或技术,从而更好地满足应用需求。

总结:伺服电机的选型对于应用系统的性能和稳定性具有重要影响,因此在选型时需要考虑性能需求、机械结构、控制器、环境条件、厂家技术指标以及市场状况等因素。

通过综合考虑这些因素,可以选择到满足要求的伺服电机,从而提升应用系统的性能和效益。

伺服电机的选型及计算教程【老师附干货】

伺服电机的选型及计算教程【老师附干货】

以下为伺服电机的选型及计算教程,一起来看看吧!一、伺服电机的选型步骤:每种型号伺服电机的规格项内均有额定转矩、最大转矩及伺服电机惯量等参数各参数与负载转矩及负载惯量间必定有相关联系存在,选用伺服电机的输出转矩应符合负载机构的运动条件要求,如加速度的快慢、机构的重量;机构的运动方式(水平、垂直旋转)等;运动条件与伺服电机输出功率无直接关系,但是一般伺服电机输出功率越高,相对输出转矩也会越高。

因此不但机构重量会影响伺服电机的选用,运动条件也会改变伺服电机的选用。

惯量越大时,需要越大的加速及减速转矩,加速及减速时间越短时,也需要越大的伺服电机输出转矩。

选用伺服电机规格时,依下列步骤进行。

(1)明确负载机构的运动条件要求,即加/减速的快慢、运动速度、机构的重量、机构的运动方式等。

(2)依据运行条件要求选用合适的负载惯量计算公式计算出机构的负载惯量。

(3)依据负载惯量与伺服电机惯量选出适当的假选定伺服电机规格。

(4)结合初选的伺服电机惯量与负载惯量,计算出加速转矩及减速转矩。

(5)依据负载重量、配置方式、摩擦系数、运行效效率计算出负载转矩。

(6)初选伺服电机的最大输出转矩必须大于加速转矩+负载转矩;如不符合条件,必须选用其他型号计算验证直至符符合要求。

(7)依据负载转矩、加速转矩、减速转矩及保持转矩计算出连续瞬时转矩。

(8)初选伺服电机的额定转矩必须大于连续瞬时转矩,如,如果不符合条件,必须选用其他型号计算验证直至符合要求。

(9)完成选定。

二、最简单伺服电机选型计算方式:伺服电机选择的时候,首先一个要考虑的就是功率的选择。

一般应注意以下两点:1、如果电机功率选得过小。

就会出现“小马拉大车”现象,造成电机长期过载,使其绝缘因发热而损坏,甚至电机被烧毁。

2、如果电机功率选得过大。

就会出现“大马拉小车“现象,其输出机械功率不能得到充分利用,功率因数和效率都不高,不但对用户和电网不利。

而且还会造成电能浪费。

也就是说,电机功率既不能太大,也不能太小,要正确选择电机的功率,必须经过以下计算或比较:P=:F*V/100(其中P是计算功率,单位是KW,F是所需拉力,单位是N,V是工作机线速度m/s)此外。

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项
伺服电机是一种可以精密控制位置和速度的电机。

在使用伺服电机时,需要根据具体的应用场景选型。

下面介绍一下伺服电机选型的原则和注意事项。

一、选型原则
1. 电机输出功率选择:根据所需的输出扭矩和转速来选择选择电机输出功率。

2. 电机扭矩选择:根据应用中的负载特点选择适合的扭矩范围的电机。

4. 电机控制方式选择:根据应用场景选取适合的通信方式,是否支持多轴联动以及其它基本控制功能。

5. 电机的精度选择:选择符合精度要求的电机。

二、选型注意事项
1. 环境温度:环境温度是选型的一个非常重要的因素,因为电机在运行时会产生热量,如果工作环境温度过高,就会影响电机的使用寿命。

2. 额定电压:电机的额定电压需要符合工作环境的电源条件,不能超出电机的电压范围。

3. 性能要求:应根据具体的应用场景,如加速、减速、负载变化等进行选型。

4. 扭矩曲线:扭矩曲线可以显示电机的性能,如低速扭矩和最大扭矩,以及电机性能曲线的平滑程度等,因此,在选型时需要注重扭矩曲线的性能。

5. 成本选择:除了技术性能之外,成本也是考虑选型的重要因素之一,需要根据可承受的经济压力选择价格适宜的伺服电机。

在选型之前,应该要考虑设备所使用的情况,具体的应用场景,这样才能选对更适合的伺服电机,这样才能使整个系统更加稳定可靠。

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项伺服电机是一种能够精确控制位置、速度和加速度的电机,通常被应用于需要高精度运动控制的领域,如机械加工、自动化设备、航空航天等。

在选择伺服电机时,需要考虑多种因素,包括额定转矩、响应速度、控制精度、功耗等特性。

以下将介绍一些伺服电机选型的原则和注意事项。

一、原则1. 根据应用需求确定技术指标在选择伺服电机时,首先需要明确应用需求,确定需要控制的位置、速度和加速度范围,以及所需的定位精度、动态响应性能等技术指标。

根据这些技术指标,可以选择适合的伺服电机。

2. 考虑负载特性负载特性是选择伺服电机的重要考量因素之一。

不同的应用需要承载不同的负载,包括惯性负载、摩擦负载、惯性摩擦负载等。

根据负载特性选择适合的伺服电机,可以提高系统的稳定性和性能。

3. 考虑环境条件在选择伺服电机时,需要考虑环境条件,包括温度、湿度、振动、腐蚀等因素。

根据实际环境条件选择耐高温、防尘防水等特性的伺服电机,可以延长设备的使用寿命。

4. 综合考虑成本和性能在选择伺服电机时,需要综合考虑成本和性能。

较低成本的伺服电机可能性能较差,无法满足应用需求;而较高成本的伺服电机可能性能过剩,增加了不必要的成本。

需要根据实际应用需求综合考虑成本和性能,选出性价比较高的伺服电机。

5. 考虑系统集成性在选择伺服电机时,需要考虑其与其他系统组件的集成性。

需要考虑伺服电机与控制器、编码器、减速器等其他设备的兼容性,以及其在系统中的整体性能表现。

二、注意事项1. 确定额定转矩与运行转矩在选择伺服电机时,需要明确其额定转矩和运行转矩。

额定转矩是指电机在额定转速下的输出转矩,而运行转矩是指电机在实际运行中所需的实际输出转矩。

根据运行转矩确定伺服电机的选择,可以确保其在实际应用中的性能。

2. 确定响应速度与控制精度在选择伺服电机时,需要考虑其响应速度和控制精度。

响应速度是指电机对控制信号的响应速度,控制精度是指电机对位置、速度、加速度等参数的控制精度。

伺服电机如何进行选型

伺服电机如何进行选型

伺服电机如何进行选型伺服电机是一种能够提供高精度运动控制的电动机。

在各种自动化应用中,它广泛应用于工业、医疗、航空航天和机器人等领域。

选取适当的伺服电机对于实现准确和稳定的运动控制至关重要。

本文将详细介绍伺服电机的选型过程,并列举一些选型的重要考虑因素和技术参数。

1.确定应用要求:在选型前,首先需要明确应用的要求。

例如,需要伺服电机提供的最大扭矩和最大转速是多少?需要的控制精度和响应时间是多少?是否需要额外的防护等级或特殊工作环境?2.确定负载参数:负载是伺服电机选型的关键因素之一,不同的负载类型和参数将直接影响伺服电机的选择。

需要考虑的负载参数包括负载惯量、负载转矩、负载惯量-负载转矩曲线等。

3.选择适当的控制器:伺服电机通常需要与控制器配合使用。

选择适当的控制器是确保伺服电机正常工作的重要步骤。

在选择控制器时需要考虑控制方式(位置、速度、力矩等)、控制精度、控制算法、通讯接口等因素。

4.选择合适的驱动器:驱动器是伺服电机运行的关键组件,它负责将控制器发出的指令转换为电机可以理解的驱动信号。

在选择驱动器时需要考虑额定电压、额定电流、最大扭矩输出、保护功能等因素。

5.考虑动态响应和稳态性能:伺服电机的动态响应特性包括起动时间、加减速能力、准确性和稳定性等。

在选型时需要综合考虑这些因素,并确保符合实际应用的要求。

6.选择合适的尺寸和安装方式:伺服电机的尺寸和安装方式也需要根据实际应用来选择。

尺寸要适配于所需空间,安装方式要符合机械结构要求,同时还要考虑维护和保养的方便性。

7.考虑额外的功能:除了基本的运动控制,有些应用可能需要额外的功能,如电机制动、过载保护、编码器反馈、网络通信等。

在选型时需要综合考虑这些额外功能,并确保符合应用的要求。

在进行伺服电机选型时,可以通过以下几种途径获取所需的技术参数和产品信息:3.参考行业标准和规范:行业标准和规范也提供了一些关于伺服电机选型的基本要求和指导,可以作为选型参考的依据。

5招教你如何挑选合适的伺服电机

5招教你如何挑选合适的伺服电机

5招教你如何挑选合适的伺服电机伺服电机是控制系统中的重要组成部分,广泛应用于机器人、自动化设备、CNC机床等领域。

挑选合适的伺服电机可以有效提高设备的性能和稳定性。

下面将介绍五招教你如何挑选合适的伺服电机。

一、了解负载和要求首先要了解设备所承载的负载类型、重量和力矩需求。

根据负载特性选择合适的伺服电机类型,如有轮机构的设备适合选择直流无刷电机,而需要快速的加速和减速的设备适合选择中空转子伺服电机。

此外,还要考虑负载的重量和力矩需求,以确定电机的额定转矩和功率。

二、确定运动轨迹和速度要求根据设备的工作要求确定运动轨迹和速度需求,以选择合适的伺服电机。

不同的运动轨迹对电机的响应速度和精度要求不同,因此需要选择电机具备较高的响应速度和精度。

同时,要注意伺服电机的额定转速要满足设备的速度需求,并保证有足够的加速度和减速度。

三、考虑环境因素在选择伺服电机时,还要考虑设备工作的环境因素。

如工作温度、湿度、腐蚀性气体等对电机的影响。

如果设备工作环境较为恶劣,需要选择具有较高防护等级的伺服电机。

四、了解控制系统要求了解控制系统的要求可以帮助我们选择合适的伺服电机。

根据控制系统的类型,如闭环控制、开环控制,选择相应的伺服电机类型。

此外,还要考虑控制系统的接口类型,如模拟接口或数字接口,选择与系统兼容的电机。

五、考虑长期可靠性和维护成本除了电机的性能和适应性,还要考虑电机的长期可靠性和维护成本。

选择具有良好品牌声誉和售后服务的厂家,减少设备故障和维修次数。

此外,要注意电机的维护成本,如更换零部件的费用和维修周期。

总之,选择合适的伺服电机需要综合考虑负载特性、运动轨迹和速度要求、环境因素、控制系统要求以及长期可靠性和维护成本等因素。

通过对这些方面的全面了解和综合评估,可以选择出性能稳定、适应性强、长期可靠的伺服电机,提高设备的性能和稳定性。

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项伺服电机是一种广泛应用于自动化控制领域的电机,具有高速、高精度、高灵敏度等特点。

在选择伺服电机时,需要考虑很多因素,包括性能、功率、尺寸、成本等。

下面将介绍一些选型原则和注意事项,帮助大家更好地选择适合自己应用场景的伺服电机。

一、选型原则1. 根据应用需求:在选型伺服电机时,首先需要明确应用需求,包括所需的工作负载、速度、精度等。

不同的应用场景需要不同的性能参数,比如一些需要高力矩输出的应用可能需要选择扭矩型伺服电机,而一些需要高速运动的应用可能需要选择高速型伺服电机。

2. 考虑稳定性和可靠性:伺服电机的稳定性和可靠性对于自动化设备的安全和正常运行至关重要。

在选型时,需要选择具有稳定性和可靠性的产品,可以考虑选择知名品牌的产品,或者通过参考其他用户的实际使用情况来进行选择。

3. 考虑成本和性能:在选择伺服电机时,需要兼顾成本和性能。

一方面,需要确保所选产品的性能能够满足实际需求,还需要考虑产品的价格是否在预算范围内。

可以通过对比各个品牌的产品性能和价格来进行选择,以达到性价比最优的目的。

4. 考虑后续维护和服务:在选择伺服电机时,还需要考虑后续维护和售后服务的情况。

一些知名品牌的产品通常有完善的售后服务体系,可以提供及时的技术支持和配件保障,可以考虑选择这些品牌的产品。

二、注意事项1. 熟悉技术参数:在选型前,需要对伺服电机的一些重要技术参数进行了解,包括额定扭矩、额定转速、分辨率、电压等。

这些参数对于伺服电机的性能与应用有着重要的影响,需要根据实际需求进行合理选择。

2. 选择合适的控制器:伺服电机通常需要配合控制器才能实现闭环控制,因此在选择伺服电机时,还需要考虑选择合适的控制器。

一般来说,厂家都会推荐适配的控制器型号,可以按照厂家的建议来进行选择。

3. 注意安装尺寸:在选择伺服电机时,需要注意其安装尺寸是否与现有设备的安装接口相匹配,如果尺寸不匹配,可能需要进行一些机械改动,增加成本和时间。

伺服电机的选型和转动惯量的计算

伺服电机的选型和转动惯量的计算

伺服电机的选型和转动惯量的计算引言:伺服电机是一种能够实现精确定位和速度控制的电动机。

在自动化控制系统中,伺服电机广泛应用于机械装置的定位与运动控制,如机床、工业机械手臂、机器人等。

为了确保控制系统的性能和稳定性,正确选型和计算转动惯量是非常重要的。

一、伺服电机选型1.负载特性分析:首先需要对负载特性进行分析,包括负载的质量、摩擦系数、惯性矩等。

这些参数影响到伺服电机的选择,如电机的额定转矩等。

在分析负载特性时需要考虑静态特性和动态特性。

2.运行速度要求:根据系统的运行速度要求,选择电机的额定转速。

如果要求快速响应,需要选择具有较高转速的电机;如果要求大转矩输出,需要选择具有较大额定转矩的电机。

3.控制方式:根据系统的控制方式,选择合适的伺服电机。

常见的控制方式有位置控制、速度控制和力控制。

不同的控制方式对电机的性能要求也不同。

4.转矩和转速曲线:了解电机的转矩和转速曲线,可以帮助选择合适的伺服电机。

转矩曲线决定了电机能够产生的最大转矩,转速曲线决定了电机能够输出的最大转速。

5.电机功率:根据负载特性和运行速度要求,计算出所需的电机功率。

一般情况下,应选择稍大于所需功率的电机,以保证系统的可靠性和安全性。

6.品牌和价格:最后根据伺服电机的品牌和价格进行选择。

国际知名品牌的产品质量较高,但价格也较高。

可以根据实际需求和预算进行选择。

转动惯量是描述物体抗拒改变转动状态的特性。

在伺服电机的选型和控制系统设计中,转动惯量是一个重要的参数。

计算转动惯量的一般公式为:J=m*r^2其中,J是转动惯量,m是物体的质量,r是物体相对转轴的距离。

如果物体是一个均匀的圆盘或圆柱体,根据其几何形状可以通过以下公式计算转动惯量:J=1/2*m*r^2其中,m是物体的质量,r是物体的半径。

如果物体是由多个部分组成,可以通过将各部分的转动惯量相加得到整体的转动惯量。

在实际应用中,还需要考虑其他因素对转动惯量的影响,如内部零件的分布、负载的摩擦系数等。

伺服电机如何进行选型

伺服电机如何进行选型

伺服电机选型技术指南1、机电领域中伺服电机的选择原则现代机电行业中经常会碰到一些复杂的运动,这对电机的动力荷载有很大影响。

伺服驱 动装置是许多机电系统的核心,因此,伺服电机的选择就变得尤为重要。

首先要选出满足给 定负载要求的电动机,然后再从中按价格、重量、体积等技术经济指标选择最适合的电机。

述度自廿比 ioa% 各种电机的T-3曲线 (1)传统的选择方法这里只考虑电机的动力问题,对于直线运动用速度v(t),加速度a(t)和所需外力F(t)表 示,对于旋转运动用角速度3 (t),角加速度a (t)和所需扭矩T(t)表示,它们均可以表示为时 间的函数,与其他因素无关。

很显然。

电机的最大功被电机最大应大于工作负载所需的峰值 功率P 峰值,但仅仅如此是不够的,物理意义上的功率包含扭矩和速度两部分,但在实际的 传动机构中它们是受限制的。

用3峰值,T 峰值表示最大值或者峰值。

电机的最大速度决定了 减速器减速比的上限,n 上限二3峰值最大/3峰值,同样,电机的最大扭矩决定了减速比的下限, n 下P 「T 峰值/T 电机,最大,如果n 下限大于n 上限,选择的电机是不合适的。

反之,则可以通过对每 种电机的广泛类比来确定上下限之间可行的传动比范围。

只用峰值功率作为选择电机的原则 是不充分的,而且传动比的准确计算非常繁琐。

(2)新的选择方法一种新的选择原则是将电机特性与负载特性分离开,并用图解的形式表示,这种表示方 法使得驱动装置的可行性检查和不同系统间的比较更方便,另外,还提供了传动比的一个可 能范围。

这种方法的优点:适用于各种负载情况;将负载和电机的特性分离开;有关动力的 各个参数均可用图解的形式表示并且适用于各种电机。

因此,不再需要用大量的类比来检查 电机是否能够驱动某个特定的负载。

在电机和负载之间的传动比会改变电机提供的动力荷载参数。

比如,一个大的传动比会 减小外部扭矩对电机运转的影响,而且,为输出同样的运动,电机就得以较高的速度旋转, 产生较大的加速度,因此电机需要较大的惯量扭矩。

伺服电机选型介绍

伺服电机选型介绍

伺服电机选型介绍伺服电机是一种能够感知外部载荷并进行精确控制的电机。

它通过内部的传感器监测电机位置和速度,并根据预定的控制算法,实时调整电机的输出力矩和转速,以实现高精度、高性能的运动控制。

伺服电机的选型涉及多个方面的考虑因素,如电机类型、性能要求、系统环境等。

下面将从这些方面逐一介绍。

一、电机类型:常见的伺服电机类型有直流伺服电机(DC Servo Motor)、交流伺服电机(AC Servo Motor)和步进伺服电机(Stepper Servo Motor)。

1.直流伺服电机:直流伺服电机具有响应速度快、转矩大、功率密度高等优点,适用于高速、高精度的运动控制需求。

常见的直流伺服电机有刷式直流伺服电机和无刷直流伺服电机,其中无刷直流伺服电机更适合要求高效、低噪音和长寿命的应用。

2.交流伺服电机:交流伺服电机适用于需要大转矩、高速度和平滑运动的应用。

交流伺服电机的控制方式通常采用矢量控制技术,可以实现更高的精度和动态性能。

它的主要缺点是价格较高。

3.步进伺服电机:步进伺服电机是一种具有精确位置控制和高扭矩输出的电机,适用于低速、高精度的运动控制。

它采用离散步进运动,可保证固定的位置控制,但在高速运动和加速度要求上存在限制。

二、性能要求:在选型时,需要根据具体应用的性能要求考虑以下几个方面:1.转速和转矩:根据应用需求确定电机的额定转速和最大转矩。

通常情况下,转速越高、转矩越大的电机成本越高。

2.精度:根据应用的精度要求选择合适的电机。

一般来说,对于高精度的应用,需要选择具有较小转矩波动和位置误差的电机。

3.响应速度:响应速度是指电机从接收到控制信号到达稳定工作状态所需的时间。

根据应用的动态性能要求选择相应的响应速度。

4.可调速范围:根据应用的速度调节要求选择电机。

一些应用需要很宽的速度范围,而另一些应用可能只需要固定转速。

5.控制方式:根据系统的控制方法选择电机,常见的控制方式有位置控制、速度控制和力矩控制等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

伺服电机选型技术指南1、机电领域中伺服电机的选择原则现代机电行业中经常会碰到一些复杂的运动,这对电机的动力荷载有很大影响。

伺服驱动装置是许多机电系统的核心,因此,伺服电机的选择就变得尤为重要。

首先要选出满足给定负载要求的电动机,然后再从中按价格、重量、体积等技术经济指标选择最适合的电机。

各种电机的T- 曲线(1)传统的选择方法这里只考虑电机的动力问题,对于直线运动用速度v(t) ,加速度 a(t)和所需外力F(t) 表示,对于旋转运动用角速度(t) ,角加速度(t)和所需扭矩 T(t) 表示,它们均可以表示为时间的函数,与其他因素无关。

很显然。

电机的最大功率P 电机,最大应大于工作负载所需的峰值功率 P 峰值,但仅仅如此是不够的,物理意义上的功率包含扭矩和速度两部分,但在实际的传动机构中它们是受限制的。

用峰值, T 峰值表示最大值或者峰值。

电机的最大速度决定了减速器减速比的上限, n 上限 = 峰值,最大 /峰值,同样,电机的最大扭矩决定了减速比的下限,n 下限 =T 峰值 /T 电机,最大,如果 n 下限大于 n 上限,选择的电机是不合适的。

反之,则可以通过对每种电机的广泛类比来确定上下限之间可行的传动比范围。

只用峰值功率作为选择电机的原则是不充分的,而且传动比的准确计算非常繁琐。

(2)新的选择方法一种新的选择原则是将电机特性与负载特性分离开,并用图解的形式表示,这种表示方法使得驱动装置的可行性检查和不同系统间的比较更方便,另外,还提供了传动比的一个可能范围。

这种方法的优点:适用于各种负载情况;将负载和电机的特性分离开;有关动力的各个参数均可用图解的形式表示并且适用于各种电机。

因此,不再需要用大量的类比来检查电机是否能够驱动某个特定的负载。

在电机和负载之间的传动比会改变电机提供的动力荷载参数。

比如,一个大的传动比会减小外部扭矩对电机运转的影响,而且,为输出同样的运动,电机就得以较高的速度旋转,产生较大的加速度,因此电机需要较大的惯量扭矩。

选择一个合适的传动比就能平衡这相反的两个方面。

通常,应用有如下两种方法可以找到这个传动比n,它会把电机与工作任务很好地协调起来。

一是,从电机得到的最大速度小于电机自身的最大速度电机,最大;二是,电机任意时刻的标准扭矩小于电机额定扭M 额矩定。

2、一般伺服电机选择考虑的问题 (1)电机的最高转速电机选择首先依据机床快速行程速度。

快速行程的电机转速应严格控制在电机的额定转速之内。

nVmax u 103 nnomP h 式中, n nom 为电机的额定转速( rpm ); n 为快速行程时电机的转速( rpm ); V xma 为直线运 行速度( m/min ); u 为系统传动比, u=n 电机 /n 丝杠; P h 丝杠导程( mm )。

(2)惯量匹配问题及计算负载惯量为了保证足够的角加速度使系统反应灵敏和满足系统的稳定性要求 , 负载惯量JL 应限制在 2.5 倍电机惯量 J M 之内,即J L 2.5J M 。

M 2N2m j ( V j) J LJ j ( j) j 1j 1式中, J j 为各转动件的转动惯量,kg.m 2; j为各转动件角速度, rad/min ; m j 为各移动件的质量, kg ; V j 为各移动件的速度,m/min ; 为伺服电机的角速度, rad/min 。

(3)空载加速转矩空载加速转矩发生在执行部件从静止以阶跃指令加速到快速时。

一般应限定在变频驱动系统最大输出转矩的 80% 以内。

Tmax2 n( JL J M )TFTA max 80%60t ac式中, T A max 为与电机匹配的变频驱动系统的最大输出转矩 ( N.m ); T xma 为空载时加速转矩( N.m ); T F 为快速行程时转换到电机轴上的载荷转矩( N.m ); t ac 为快速行程时加减 速时间常数( ms )。

(4)切削负载转矩在正常工作状态下,切削负载转矩 T ms 不超过电机额定转矩 T MS 的 80%。

1TmsT c D 2TMS80%式中, T c 为最大切削转矩(N.m ); D 为最大负载比。

(5)连续过载时间连续过载时间 t lon应限制在电机规定过载时间t Mon之内。

3、根据负载转矩选择伺服电机根据伺服电机的工作曲线,负载转矩应满足:当机床作空载运行时,在整个速度范围内,加在伺服电机轴上的负载转矩应在电机的连续额定转矩范围内,即在工作曲线的连续工作区;最大负载转矩,加载周期及过载时间应在特性曲线的允许范围内。

加在电机轴上的负载转矩可以折算出加到电机轴上的负载转矩。

T L F LT C 2式中, T L为折算到电机轴上的负载转矩(N.m );F 为轴向移动工作台时所需的力(N );L 为电机每转的机械位移量(m); T C为滚珠丝杠轴承等摩擦转矩折算到电机轴上的负载转矩( N.m );为驱动系统的效率。

F F c(W f g F cf )式中, F c为切削反作用力(N ); f g为齿轮作用力(N ); W 为工作台工件等滑动部分总重量( N ); F cf为由于切削力使工作台压向导轨的正压力(N );为摩擦系数。

无切削时,( fg ) 。

FW计算转矩时下列几点应特别注意。

( a)由于镶条产生的摩擦转矩必须充分地考虑。

通常,仅仅从滑块的重量和摩擦系数来计算的转矩很小的。

请特别注意由于镶条加紧以及滑块表面的精度误差所产生的力矩。

(b)由于轴承,螺母的预加载,以及丝杠的预紧力滚珠接触面的摩擦等所产生的转矩均不能忽略。

尤其是小型轻重量的设备。

这样的转矩回应影响整个转矩。

所以要特别注意。

(c)切削力的反作用力会使工作台的摩擦增加,以此承受切削反作用力的点与承受驱动力的点通常是分离的。

如图所示,在承受大的切削反作用力的瞬间,滑块表面的负载也增加。

当计算切削期间的转矩时,由于这一载荷而引起的摩擦转矩的增加应给予考虑。

(d)摩擦转矩受进给速率的影响很大,必须研究测量因速度工作台支撑物 (滑块,滚珠,压力 ),滑块表面材料及润滑条件的改变而引起的摩擦的变化。

已得出正确的数值。

(e)通常,即使在同一台的机械上,随调整条件,周围温度,或润滑条件等因素而变化。

当计算负载转矩时,请尽量借助测量同种机械上而积累的参数,来得到正确的数据。

4、根据负载惯量选择伺服电机为了保证轮廓切削形状精度和低的表面加工粗糙度,要求数控机床具有良好的快速响应特性。

随着控制信号的变化,电机应在较短的时间内完成必须的动作。

负载惯量与电机的响应和快速移动 ACC/DEC 时间息息相关。

带大惯量负载时,当速度指令变化时,电机需较长的时间才能到达这一速度,当二轴同步插补进行圆弧高速切削时大惯量的负载产生的误差会比小惯量的大一些。

因此,加在电机轴上的负载惯量的大小,将直接影响电机的灵敏度以及整个伺服系统的精度。

当负载惯量5 倍以上时,会使转子的灵敏度受影响,电机惯量JM 和负载惯量J L 必须满足:1 J L5 J M由电机驱动的所有运动部件,无论旋转运动的部件,还是直线运动的部件,都成为电机的负载惯量。

电机轴上的负载总惯量可以通过计算各个被驱动的部件的惯量,并按一定的规律将其相加得到。

(a)圆柱体惯量如滚珠丝杠,齿轮等围绕其中心轴旋转时的惯量可按下面公式计算:J D 4 L ( kg cm 2)32式中,γ为材料的密度3(kg/cm) ;D 为圆柱体的直经 (cm) ; L 为圆柱体的长度(cm)。

( b)轴向移动物体的惯量工件,工作台等轴向移动物体的惯量,可由下面公式得出:J W ( L ) 2( kg cm 2)2式中, W 为直线移动物体的重量 (kg) ; L 为电机每转在直线方向移动的距离(cm)。

( c)圆柱体围绕中心运动时的惯量如图所示:圆柱体围绕中心运动时的惯量属于这种情况的例子:如大直经的齿轮,为了减少惯量,往往在圆盘上挖出分布均匀的孔这时的惯量可以这样计算:J J0 WR2( kgcm2)式中, J0为圆柱体围绕其中心线旋转时的惯量(kgcm2) ; W 为圆柱体的重量 (kg) ;R 为旋转半径 (cm)。

( d)相对电机轴机械变速的惯量计算将上图所示的负载惯量 Jo 折算到电机轴上的计算方法如下:J N1 J 0( kg cm 2)N 2式中, N1、 N2为齿轮的齿数。

5、电机加减速时的转矩(1)按线性加减速时加速转矩电机加速或减速时的转矩按线性加减速时加速转矩计算如下:T a2 n m 1( J MJ L )(1eKsta) ( N.m)60 104 ta式中, n m为电机的稳定速度;t a为加速时间; J M 为电机转子惯量( kg.cm2); J L 为折算到电机轴上的负载惯量(kg.cm2); K s为位置伺服开环增益。

加速转矩开始减小时的转速如下:n r n m [11(1 e Ksta )]t a K s(2)按指数曲线加速电机按指数曲线加速时的加速转矩曲线此时,速度为零的转矩 To 可由下面公式给出:2 n m 1J L ) ( N.m )T O104( J M60 t e式中, t e为指数曲线加速时间常数。

(3)输入阶段性速度指令这时的加速转矩Ta 相当于 To,可由下面公式求得(ts=Ks)。

2 n m 1J L )(N.m)T a104( J M60 t s6、根据电机转矩均方根值选择电机工作机械频繁启动,制动时所需转矩,当工作机械作频繁启动,制动时,必须检查电机是否过热,为此需计算在一个周期内电机转矩的均方根值,并且应使此均方根值小于电机的连续转矩。

电机的均方根值由下式给出:(T a T f ) 2 t1 T f2t 2(T a T f ) 2 t1 T o2 t3T rmsT周式中, T a为加速转矩( Nm ); T f为摩擦转矩(Nm );T o在停止期间的转矩( Nm );t1,t 2, t3, T周如下图所示。

t1, t 2, t 3, T周的转矩曲线负载周期性变化的转矩计算,也需要计算出一个周期中的转矩均方根值,且该值小于额定转矩。

这样电机才不会过热,正常工作。

负载周期性变化的转矩计算图设计时进给伺服电机的选择原则是:首先根据转矩-速度特性曲线检查负载转矩,加减速转矩是否满足要求,然后对负载惯量进行校合,对要求频繁起动、制动的电机还应对其转矩均方根进行校合,这样选择出来的电机才能既满足要求,又可避免由于电机选择偏大而引起的问题。

8、伺服电机选择的步骤、方法以及公式(1)决定运行方式根据机械系统的控制内容,决定电机运行方式,启动时间 ta、减速时间 td 由实际情况合机械刚度决定。

典型运行方式(2)计算负载换算到电机轴上的转动惯量GD2为了计算启动转矩 T P,要先求出负载的转动惯量:GD l28LD 4104 (kg.m2 )式中, L 为圆柱体的长 cm;D 为圆柱体的直径cm。

相关文档
最新文档