高考数学一轮复习专题:9.7 抛物线

合集下载

2021版新高考数学一轮复习第九章9.7抛物线课件新人教B版

2021版新高考数学一轮复习第九章9.7抛物线课件新人教B版

第七节ꢀ抛ꢀ物ꢀ线内容索引【教材·知识梳理】1.抛物线的定义抛物线平面内到一个定点F和一条定直线l(F∉l)的距离相等的点的轨迹叫做_______,焦点准线定点F叫做抛物线的_____,定直线l叫做抛物线的_____.2.抛物线的标准方程与几何性质【常用结论】1.焦半径、通径:抛物线y2=2px(p>0)上一点P(x0,y)到焦点F的距离|PF|=x+,也称为抛物线的焦半径.过焦点垂直于对称轴的弦称为通径,通径长等于2p,是过焦点最短的弦.2.四倍关系:y2=ax的焦点坐标为,准线方程为x=-.3.抛物线中的常用结论:直线AB过抛物线y2=2px(p>0)的焦点,交抛物线于A(x,y),B(x,y)两点,如图.1122①y y=-p2,x x=1212②|AB|=x+x+p,x+x≥2=p,即当x=x时,121212弦长最短为2p.③为定值.④弦长AB=(α为AB的倾斜角).⑤以AB为直径的圆与准线相切.【知识点辨析】ꢀ(正确的打“√”,错误的打“×”)(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛物线.(ꢀꢀ)(2)方程y=ax2(a≠0)表示的曲线是焦点在x轴上的抛物线,且其焦点坐标是,准线方程是x=-.(ꢀꢀ)(3)抛物线既是中心对称图形,又是轴对称图形.(ꢀꢀ)(4)若直线与抛物线只有一个交点,则直线与抛物线一定相切.(ꢀꢀ)(5)AB为抛物线y2=2px(p>0)的过焦点F,yy=-p2,弦长|AB|=x+x+p.的弦,若A(x,y),B(x,y),则xx=112212 (ꢀꢀ)1212(6)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x2=-2ay(a>0)的通径长为2a.(ꢀꢀ)提示:(1)×.当定点在定直线上时,轨迹为过定点与定直线垂直的一条直线,不是抛物线.(2)×.方程y=ax2(a≠0)可化为x2=y是焦点在y轴上的抛物线,且其焦点坐标是,准线方程是y=-.(3)×.抛物线是只有一条对称轴的轴对称图形.(4)×.例如,直线y=1与抛物线y2=4x只有一个交点,但它们相交.(5)√.由焦半径的性质可知正确.(6)√.由通径定义及抛物线性质知正确.【易错点索引】序号易错警示典题索引1 2 3不会利用定义转化考点一、T1,2联想不到利用焦点弦的有关结论求解考点二、T3运算不过关导致出错考点三、角度1【教材·基础自测】1.(选修2-1P70练习AT2改编)过抛物线y2=4x的焦点的直线l交抛物线于P(x,y),11Q(x,y)两点,如果x+x=6,则|PQ|等于(ꢀꢀ)2212A.9ꢀB.8ꢀC.7ꢀD.6【解析】选B.抛物线y2=4x的焦点为F(1,0),准线方程为x=-1,根据题意可得|PQ|=|PF|+|QF|=x+1+x+1=x+x+2=8.12122.(选修2-1P63例3改编)已知抛物线y2=2px(p>0)的焦点为F,P为抛物线上任意一点,则以PF为直径的圆C与y轴(ꢀꢀ)A.相交C.相离B.相切D.以上都不对【解析】选B.由抛物线方程得F,设P(x,y),则由抛物线定义可得|PF|=x+.000由已知点C为PF的中点则C的坐标为,半径r=,故C点到y轴的距离d=,所以d=r,故圆C与y轴相切,故选B.3.(选修2-1P61练习BT3改编)顶点在坐标原点,焦点为F(0,1)的抛物线上有一动点A,圆(x+1)2+(y-4)2=1上有一动点M,则当|AM|+|AF|取得最小值时=(ꢀꢀ) A.3 B. C.2 D.【解析】选B.由题知,抛物线方程为x2=4y,其准线为y=-1,设d=|AF|为A到准线的距离,则|AM|+|AF|的最小值等于圆心(-1,4)到准线的距离减去半径,此时A,则ꢀ考点一ꢀ抛物线的定义及标准方程ꢀ【题组练透】1.已知抛物线y2=4x的焦点为F,定点P(4,-2),在抛物线上找一点M,使得|PM|+|MF|最小,则点M的坐标为(ꢀꢀ)A.(2,-2)ꢀB.(1,2)ꢀC.(1,-2)ꢀD.(-1,2)2.已知直线l:4x-3y+6=0和l:x=-1,抛物线y2=4x上一动点P到直线l和直线l的1212距离之和的最小值是(ꢀꢀ)A. B.2ꢀ3.(2020·保定模拟)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5.若以MF为直径的圆过点A(0,2),则C的方程为(ꢀꢀ)C.ꢀD.3A.y2=4x或y2=8xꢀC.y2=4x或y2=16xꢀB.y2=2x或y2=8x D.y2=2x或y2=16x4.设P是抛物线y2=4x上的一个动点,F为焦点,若B(3,2),则|PB|+|PF|的最小值为________.世纪金榜导学号ꢀ5.已知抛物线C的顶点为坐标原点,对称轴为坐标轴,直线l过抛物线C的焦点F,且与抛物线的对称轴垂直,l与C交于A,B两点,且|AB|=8,M为抛物线C准线上一点,则△ABM的面积为________.世纪金榜导学号ꢀ【解析】1.选C.过P作PM垂直于抛物线的准线,交抛物线于点M,交准线于点N,则|PM|+|MF|=|PM|+|MN|=|PN|,此时|PM|+|MF|最小,点M纵坐标为-2,故横坐标为1,所以点M的坐标为(1,-2).:x=-1是抛物线y2=4x的准线,设抛物线的焦点(1,0)为F,则动2.选B.由题可知l2点P到l的距离等于|PF|,则动点P到直线l和直线l的距离之和的最小值,即焦212点F到直线l:4x-3y+6=0的距离,所以最小值是13.选C.由已知得抛物线的焦点设点M(x0,y),则由已知得,=0,即-8y+16=0,因而y=4,由|MF|=5,得又p>0,解得p=2或p=8.故C的方程为y2=4x或y2=16x.4.如图,过点B作BQ垂直准线于点Q,交抛物线于点P,则|P Q|=|P F|,111则有|PB|+|PF|≥|P B|+|P Q|=|BQ|=4,11即|PB|+|PF|的最小值为4.答案:45.不妨设抛物线方程为y2=2px(p>0),则焦点将代入抛物线方程,可得2p×=42,得p=4,则准线方程为x=-2,设M(-2,t),则S=|AB|×p=4×4=16.△ABM答案:16【规律方法】1.抛物线定义的应用利用抛物线的定义解决问题时,应灵活地进行抛物线上的点到焦点距离与其到准线距离间的等价转化.“看到准线应该想到焦点,看到焦点应该想到准线”,这是解决有关抛物线距离问题的有效途径.2.求抛物线的标准方程的方法(1)定义法根据抛物线的定义,确定p的值(系数p是指焦点到准线的距离),再结合焦点位置,求出抛物线方程.标准方程有四种形式,要注意选择.(2)待定系数法①根据抛物线焦点是在x轴上还是在y轴上,设出相应形式的标准方程,然后根据条件确定关于p的方程,解出p,从而写出抛物线的标准方程.②当焦点位置不确定时,有两种方法解决:分情况讨论,注意要对四种形式的标准方程进行讨论,对于焦点在x轴方法一上的抛物线,为避免开口方向不确定可分为y2=2px(p>0)和y2=-2px(p>0)两种情况求解设成y2=mx(m≠0),若m>0,开口向右;若m<0,开口向左;若m有两个解,则抛物线的标准方程有两个.同理,焦点在y轴上的抛物线可以设成方法二x2=my(m≠0).如果不确定焦点所在的坐标轴,应考虑上述两种情况设方程考点二ꢀ直线与抛物线的综合问题ꢀ【典例】1.已知抛物线y2=2px(p>0)的焦点为F,过F的直线l交抛物线于A,B两点(点A在第一象限),若直线l的倾斜角为则=(ꢀꢀ)2.(2020·濮阳模拟)已知抛物线C:y2=4x的焦点为F,过F的直线l交抛物线C于A、B两点,弦AB的中点M到抛物线C的准线的距离为5,则直线l的斜率k为(ꢀꢀ)3.(2019·全国卷Ⅰ)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.世纪金榜导学号(1)若|AF|+|BF|=4,求l的方程.(2)若求|AB|.【解题导思】序号联想解题一看到抛物线上的点到焦点或到准线的距离问题,即联想到利用抛物线的定义进行转化12 3当条件中出现弦的中点(即中点弦问题)时,应立即考虑到设而不求(点差)法当条件中出现过抛物线焦点的直线时,应立即考虑到抛物线焦点弦的有关结论【解析】1.选A.过A、B分别作准线的垂线,垂足分别为M,N,作AE⊥BN,垂足为E,设|AF|=m,|BF|=n,则由抛物线的定义得|AM|=|AF|=m,|BN|=|BF|=n,|AB|=m+n, |BE|=n-m,因为∠ABN=60°,于是解得n=3m,则2.选C.抛物线C:y2=4x的焦点F(1,0),设A(x,y),B(x,y),线段AB的中点M(x,y),则由弦AB 112200的中点M到抛物线C的准线的距离为5,即x+=5,则x=4,00由两式相减得(y+y)(y-y)1212=4(x-x),则即k=则12即y=±,所以直线l的斜率k=3.设直线l:y=x+t,A(x,y),B(x,y).1122 (1)由题设得故|AF|+|BF|=x1+x2+,由题设可得x1+x2=.由可得9x2+12(t-1)x+4t2=0,则x+x=12从而得t=所以l的方程为y=(2)由由可得y=-3y.12可得y2-2y+2t=0.所以y+y=2.从而-3y+y=2,故y=-1,y=3.122221代入C的方程得x=3,x=.12故|AB|=【规律方法】1.直线与抛物线交点问题的解题思路(1)求交点问题,通常解直线方程与抛物线方程组成的方程组.(2)与交点相关的问题通常借助根与系数的关系或用向量法解决.2.解决抛物线的弦及弦中点问题的常用方法(1)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用焦点弦公式,若不过焦点,则必须用一般弦长公式.(2)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时,一般用“点差法”求解.【变式训练】1.已知F为抛物线C:y2=4x的焦点,E为其准线与x轴的交点,过F的直线交抛物线C于A,B两点,M为线段AB的中点,且|ME|=,则|AB|=()A.6B.3C.8D.9【解析】选A.由y2=4x得焦点F(1,0),E(-1,0),设直线AB的方程为x=ty+1并代入抛物线y2=4x得:y2-4ty-4=0.设A(x,y),B(x,y),则y+y=4t,y y=-4,11221212所以x+x=t(y+y)+2=4t2+2,所以M(2t2+1,2t),1212|ME|2=(2t2+2)2+(2t)2=11,即4t4+12t2-7=0,解得t2=或t2=-(舍),所以|AB|=x1+x2+p=4t2+2+2=4×+2+2=6.2.已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,若|AF|+|BF|=5,则线段AB的中点到y轴的距离为________.【解析】设A(x,y),B(x,y),则由抛物线定义得|AF|+|BF|=5,即x++x+ 112212=5,则x1+x2=,所以线段AB的中点到y轴的距离为答案:考点三抛物线的性质及应用考什么:(1)考查抛物线的定义、顶点及直线与抛物线中的最值范围问题.(2)考查数学运算、逻辑推理、直观想象的核心素养及数形结合、转化与化归等思想方法.怎么考:借助距离考查抛物线的定义;结合函数单调性或基本不等式考查最值问题.新趋势:抛物线离心率的求解仍是考查的重点.命题精解读学1.定义的应用霸当题目中出现到焦点的距离或到准线(或到与对称轴垂直直线)的距离时,好应立即考虑到利用定义转化.方2.交汇问题法与函数、不等式结合考查范围最值,要注意定义域问题.【命题角度1】与抛物线有关的最值问题【典例】(2020·沈阳模拟)已知抛物线C:x2=2py(p>0),其焦点到准线的距离为2,直线l与抛物线C交于A,B两点,过A,B分别作抛物线C的切线l,l,且l与l交1212于点M.(1)求p的值.(2)若l⊥l,求△MAB面积的最小值.12【解析】(1)由题意知,抛物线焦点为焦点到准线的距离为2,即p=2.准线方程为y=(2)抛物线的方程为x2=4y,即y=x2,所以y′=x,设A(x,y),B(x,y),1122l 1:y-(x-x),l:y-(x-x2),12由于l⊥l,所以=-1,即x1x2=-4.12设直线l方程为y=kx+m,与抛物线方程联立,得所以x2-4kx-4m=0,Δ=16k2+16m>0,x+x=4k,x x=-4m=-4,1212所以m=1,即l:y=kx+1.联立方程得:即M(2k,-1).M点到直线l的距离d=|AB|=所以S=×4(1+k2)×当k=0时,△MAB的面积取得最小值4.【命题角度2】抛物线与向量的综合问题【典例】已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x,y),B(x,y)(x<x)两点,且|AB|=9.世纪金榜导学号112212(1)求该抛物线的方程.(2)O为坐标原点,C为抛物线上一点,若求λ的值.【解析】(1)直线AB 的方程是y=与y 2=2px 联立,得4x 2-5px+p 2由抛物线定义知|AB|=x +x =0,由已知,方程必有两个不等实根,所以x 1+x 2=+p=+p=9,解得p=4,所以抛物线方程为y 2=8x.12(2)由(1)知,x2-5x+4=0,所以x=1,x=4,y=-2,y=4,1212所以A(1,-2),B(4,4).设C(x,y),则=(x,y)=(1,-2)+λ(4,4)=(4λ+1,4λ-2), 3333又=8x,即[2(2λ-1)]2=8(4λ+1),整理得(2λ-1)2=4λ+1,解得λ=0或3λ=2.【题组通关】【变式巩固·练】1.(2019·九江模拟)《九章算术》是我国古代内容极为丰富的数学名著,第九章“勾股”,讲述了“勾股定理”及一些应用,还提出了一元二次方程的解法问题直角三角形的三条边长分别称“勾”“股”“弦”.设点F是抛物线y2=2px (p>0)的焦点,l是该抛物线的准线,过抛物线上一点A作准线的垂线AB,垂足为B,射线AF交准线l于点C,若Rt△ABC的“勾”=3、“股”则抛物线方程为A.y2=2x ()B.y2=3xC.y2=4xD.y2=6x【解析】选B.由题意可知,抛物线的图象如图:|AB|=3,|BC|=3,可得|AC|=所以∠CAB=60°,△ABF是正三角形,并且F是AC的中点,又|AB|=3,则p=,所以抛物线方程为y2=3x.2.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是________.。

抛物线课件-2025届高三数学一轮复习

抛物线课件-2025届高三数学一轮复习

A. 2
B. 3
[解析]

2
C. 4
2
D. 8

由题意,知抛物线的焦点坐标为( ,0),椭圆的焦点坐标为(±
2
所以 = 2 ,解得 p =8,故选D.
D )
2 ,0),
5. 已知抛物线 y 2=2 px ( p >0)的焦点为 F ,点 M (2,2 2 )为抛物线上一点,则
|MF|=(
A. 2
2
即 p =2,所以A选项正确.
= − 3( − 1),
对于B,不妨设 M ( x 1, y 1), N ( x 2, y 2), x 1< x 2,联立方程得 2
= 4,
1
消去 y 并整理得3 x 2-10 x +3=0,解得 x 1= , x 2=3.由抛物线的定义得,| MN|=
x 1+ x 2+ p =
B )
B. 3
C. 4
D. 5
[解析] 因为点 M (2,2 2 )为抛物线上一点,所以将点 M 的坐标代入抛物线的方程
y 2=2 px ( p >0),可得 p =2,所以抛物线的方程为 y 2=4 x ,可得其准线方程为 x =
-1.根据抛物线的定义,得| MF |=2-(-1)=3.故选B.
三、知识点例题讲解及方法技巧总结
1

S △ AOB = ×| AB |× ×
2
2
由(2)的推导过程可得,
sin
1
||


2

= 2 ,
1−cos
1+cos
si
1
2

α= × 2 × ×
2
si
2

高考数学第一轮复习:《抛物线》

高考数学第一轮复习:《抛物线》

高考数学第一轮复习:《抛物线》最新考纲1.掌握抛物线的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).2.理解数形结合思想.3.了解抛物线的简单应用.【教材导读】1.若抛物线定义中定点F 在定直线l 上时,动点的轨迹是什么图形?提示:当定点F 在定直线l 上时,动点的轨迹是过点F 且与直线l 垂直的直线. 2.抛物线的标准方程中p 的几何意义是什么? 提示:p 的几何意义是焦点到准线的距离.1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.2.抛物线的标准方程及其简单几何性质标准 方程 y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)图形顶点 (0,0)对称轴 x 轴y 轴焦点 F ⎝ ⎛⎭⎪⎫p 2,0 F ⎝ ⎛⎭⎪⎫-p 2,0 F ⎝ ⎛⎭⎪⎫0,p 2 F ⎝ ⎛⎭⎪⎫0,-p 2 离心率 e =1准线方程x =-p 2x =p 2y =-p2y =p 2【重要结论】抛物线焦点弦的几个常用结论设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则 (1)x 1x 2=p 24,y 1y 2=-p 2.(2)弦长|AB |=x 1+x 2+p =2psin 2 α(α为弦AB 的倾斜角). (3)以弦AB 为直径的圆与准线相切.(4)通径:过焦点垂直于对称轴的弦,长等于2p .1.已知抛物线y 2=2px (p >0)的准线经过点(-1,1),则该抛物线焦点坐标为( ) (A)(-1,0) (B)(1,0) (C)(0,-1)(D)(0,1)B 解析:由准线过已知点可求出p 的值,进而可求出抛物线的焦点坐标.抛物线y 2=2px (p >0)的准线为x =-p 2且过点(-1,1),故-p2=-1,解得p =2.所以抛物线的焦点坐标为(1,0).2.若点P 为抛物线y =2x 2上的动点,F 为抛物线的焦点,则|PF |的最小值为( ) (A)2 (B)12 (C)14(D)18D 解析:本题考查抛物线的定义.抛物线y =2x 2上的点到焦点的距离等于该点到准线的距离,所以最小距离是p 2,又2p =12,则p 2=18,即|PF |的最小值为18,故选D.3.已知AB 是抛物线y 2=2x 的一条焦点弦,|AB |=4,则AB 中点C 的横坐标是( ) (A)2 (B)12 (C)32(D)52C 解析:设A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p =4, 又p =1,所以x 1+x 2=3, 所以点C 的横坐标是x 1+x 22=32.4.设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2),若线段F A 的中点B 在抛物线上,则B 到该抛物线准线的距离为________.解析:依题意知F 坐标为p2,0, 所以B 的坐标为p4,1代入抛物线方程得 p 22=1,解得p =2,所以抛物线准线方程为x =-22,所以点B 到抛物线准线的距离为24+22=34 2. 答案:34 25.直线l 过抛物线x 2=2py (p >0)的焦点,且与抛物线交于A ,B 两点,若线段AB 的长是6,AB 的中点到x 轴的距离是1,则此抛物线方程是________.解析:设A (x 1,y 1),B (x 2,y 2),则|AB |=y 1+y 2+p =2+p =6,∴p =4.即抛物线方程为x 2=8y .答案:x 2=8y考点一 抛物线的定义及其应用(1)长为2的线段AB 的两个端点在抛物线y 2=x 上滑动,则线段AB 的中点M到y 轴距离的最小值是________.(2)已知点P 是抛物线y 2=4x 上的动点,点P 在y 轴上的射影是M ,点A 的坐标是(4,a ),则当|a |>4时,|P A |+|PM |的最小值是________.(3)已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作y 轴的垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.解析:(1)如图,AB=2,要使AB的中点M到y轴的距离最小,则|BG|+|AE|的值最小,即|AF|+|BF|的值最小.在△ABF中,|AF|+|BF|≥|AB|,当A,B,F三点共线时取等号,即当线段AB过焦点F时,AB的中点M到y轴的距离最小,最小值为|AE|+|BG|2-14=1-14=34.(2)将x=4代入抛物线的方程y2=4x,得y=±4.又|a|>4,所以点A在抛物线的外部.由题意知F(1,0),设抛物线上点P到准线l:x=-1的距离为|PN|,由定义知,|P A|+|PM|=|P A|+|PN|-1=|P A|+|PF|-1.画出简图(图略),易知当A,P,F三点共线时,|P A|+|PF|取得最小值,此时|P A|+|PM|也最小,最小值为|AF|-1=9+a2-1.(3)由题意知F(1,0),|AC|+|BD|=|AF|+|FB|-2=|AB|-2.依据抛物线的定义知,当|AB为通径,即|AB|=2p=4时,|AB|的值最小,所以|AC|+|BD|的最小值为2.答案:(1)34(2)9+a2-1(3)2【反思归纳】利用抛物线的定义可解决的常见问题(1)轨迹问题:用抛物线的定义可以确定动点与定点、定直线距离有关的轨迹是否为抛物线.(2)距离问题:涉及抛物线上的点到焦点的距离和到准线的距离问题时,注意在解题中利用两者之间的相互转化.【即时训练】(1)已知抛物线方程为y2=4x,直线l的方程为x-y+4=0,在抛物线上有一动点P到y轴的距离为d1,P到直线l的距离为d2,则d1+d2的最小值是()(A)522+2 (B)522+1 (C)522-2(D)522-1(2)若点A 的坐标为(3,2),F 是抛物线y 2=2x 的焦点,点M 在抛物线上移动时,使|MF |+|MA |取得最小值的M 的坐标为( )(A)(0,0) (B)⎝ ⎛⎭⎪⎫12,1 (C)(1,2)(D)(2,2)解析:(1)如图,点P 到准线的距离等于点P 到焦点F 的距离,从而P 到y 轴的距离等于点P 到焦点F 的距离减1,过焦点F 作直线x -y +4=0的垂线,此时d 1+d 2=|PF |+d 2-1最小.因为F (0,1),则|PF |+d 2=|1-0+4|1+1=522,则d 1+d 2的最小值为522-1.(2)过M 点作左准线的垂线,垂足是N ,则|MF |+|MA |=|MN |+|MA |,当A ,M ,N 三点共线时,|MF |+|MA |取得最小值,此时M (2,2).故选D.答案:(1)D (2)D考点二 抛物线的标准方程及性质(1)已知抛物线y 2=2px (p >0)上一点M 到焦点F 的距离等于2p ,则直线MF 的斜率为( )(A)±3 (B)±1 (C)±34(D)±33(2)过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若A ,B 两点的横坐标之和为103,则|AB |=( )(A)133 (B)143 (C)5(D)163(3)过抛物线C :x 2=2y 的焦点F 的直线l 交抛物线C 于A 、B 两点,若抛物线C 在点B 处的切线斜率为1,则|AF |=( )(A)1 (B)2 (C)3(D)4解析:(1)设M (x 0,y 0),易知焦点为F ⎝ ⎛⎭⎪⎫p 2,0,由抛物线的定义得|MF |=x 0+p 2=2p ,所以x 0=32p ,故y 20=2p ×32p =3p 2,解得y 0=±3p ,故直线MF 的斜率k =±3p 32p -p 2=±3,选A. (2)∵p =2,∴|AB |=2+103=163.故选D. (3)∵x 2=2y ,∴y =x 22,∴y ′=x ,∵抛物线C 在点B 处的切线斜率为1, ∴B ⎝ ⎛⎭⎪⎫1,12 ∵抛物线x 2=2y 的焦点F 的坐标为⎝ ⎛⎭⎪⎫0,12,∴直线l 的方程为y =12, ∴|AF |=|BF |=1.故选A. 答案:(1)A (2)D (3)A【反思归纳】 (1)抛物线几何性质的确定由抛物线的方程可以确定抛物线的开口方向、焦点位置、焦点到准线的距离;从而进一步确定抛物线的焦点坐标及准线方程.(2)求抛物线的标准方程的方法①因为抛物线方程有四种上标准形式,因此求抛物线方程时,需先定位,再定量.②因为未知数只有p,所以只需利用待定系数法确定p值即可.提醒:求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y2=mx 或x2=my(m≠0).【即时训练】(1)如图,过抛物线y2=2px(p>0)的焦点F的直线依次交抛物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则抛物线的方程为()(A)y2=3 2x(B)y2=3x(C)y2=9 2x(D)y2=9x(2)若双曲线C:2x2-y2=m(m>0)与抛物线y2=16x的准线交于A,B两点,且|AB|=43,则m的值是________.答案:(1)B(2)20考点三直线与抛物线的位置关系考查角度1:直线与抛物线的交点问题.如图,已知抛物线C:y2=2px(p>0),焦点为F,过点G(p,0)作直线l交抛物线C 于A ,M 两点,设A (x 1,y 1),M (x 2,y 2).(1)若y 1y 2=-8,求抛物线C 的方程;(2)若直线AF 与x 轴不垂直,直线AF 交抛物线C 于另一点B ,直线BG 交抛物线C 于另一点N .求证:直线AB 与直线MN 斜率之比为定值.解:(1)设直线AM 的方程为x =my +p ,代入y 2=2px 得y 2-2mpy -2p 2=0, 则y 1y 2=-2p 2=-8,得p =2. ∴抛物线C 的方程为y 2=4x . (2)证明:设B (x 3,y 3),N (x 4,y 4). 由(1)可知y 3y 4=-2p 2,y 1y 3=-p 2. 又直线AB 的斜率k AB =y 3-y 1x 3-x 1=2p y 1+y 3,直线MN 的斜率k MN =y 4-y 2x 4-x 2=2py 2+y 4,∴k AB k MN =y 2+y 4y 1+y 3=-2p 2y 1+-2p 2y 3y 1+y 3=-2p 2y 1y 3(y 1+y 3)y 1+y 3=2.故直线AB 与直线MN 斜率之比为定值. 【反思归纳】 直线与抛物线位置关系的判断直线y =kx +m (m ≠0)或x =my +n 与抛物线y 2=2px (p >0)联立方程组,消去y ,得到k 2x 2+2(mk -p )x +m 2=0的形式.当k =0时,直线和抛物线相交,且与抛物线的对称轴平行,此时与抛物线只有一个交点;当k ≠0时,设其判别式为Δ,(1)相交:Δ>0⇔直线与抛物线有两个交点; (2)相切:Δ=0⇔直线与抛物线有一个交点; (3)相离:Δ<0⇔直线与抛物线没有交点.提醒:过抛物线外一点总有三条直线和抛物线有且只有一个公共点;两条切线和一条平行于对称轴的直线.考查角度2:直线与抛物线的相交弦问题设抛物线C :y 2=2px (p >0)的焦点为F ,准线为l .已知点A 在抛物线C 上,点B 在l 上,△ABF 是边长为4的等边三角形.(1)求p 的值;(2)在x 轴上是否存在一点N ,当过点N 的直线与抛物线C 交于Q 、R 两点时,1|NQ |2+1|NR |2为定值?若存在,求出点N 的坐标,若不存在,请说明理由.解析:(1)由题知,|AF |=|AB |,则AB ⊥l .设准线与x 轴交于点D ,则AB ∥DF .又△ABF 是边长为4的等边三角形,∠ABF =60°,所以∠BFD =60°,|DF |=|BF |·cos ∠BFD =4×12=2,即p=2.(2)设点N (t,0),由题意知直线的斜率不为零, 设直线的方程为x =my +t ,点Q (x 1,y 1),R (x 2,y 2),由⎩⎪⎨⎪⎧x =my +t y 2=4x 得,y 2-4my -4t =0,则Δ=16m 2+16t >0,y 1+y 2=4m ,y 1·y 2=-4t .又|NQ |2=(x 1-t )2+y 21=(my 1+t -t )2+y 21=(1+m 2)y 21,同理可得|NR |2=(1+m 2)y 22,则有1|NQ |2+1|NR |2=1(1+m 2)y 21+1(1+m 2)y 22=y 21+y 22(1+m 2)y 21y 22=(y 1+y 2)2-2y 1y 2(1+m 2)y 21y 22=16m 2+8t 16(1+m 2)t 2=2m 2+t (2m 2+2)t2. 若1|NQ |2+1|NR |2为定值,则t =2,此时点N (2,0)为定点. 又当t =2,m ∈R 时,Δ>0,所以,存在点N (2,0),当过点N 的直线与抛物线C 交于Q 、R 两点时,1|NQ |2+1|NR |2为定值14.【反思归纳】 直线与抛物线相交问题处理规律(1)凡涉及抛物线的弦长、弦的中点、弦的斜率问题时都要注意利用根与系数的关系,避免求交点坐标的复杂运算.解决焦点弦问题时,抛物线的定义有广泛的应用,而且还应注意焦点弦的几何性质.(2)对于直线与抛物线相交、相切、中点弦、焦点弦问题,以及定值、存在性问题的处理,最好是作出草图,由图象结合几何性质做出解答.并注意“设而不求”“整体代入”“点差法”的灵活应用.抛物线的综合问题已知点M (-1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________.审题点拨关键点 所获信息 抛物线y 2=4x 可求焦点坐标 ∠AMB =90°k MA ·k MB =-1解题突破:把∠AMB =90°转化为斜率之积为-1.解析:由题意知,抛物线的焦点坐标为F (1,0),设直线方程为y =k (x -1),直线方程与y 2=4x 联立,消去y ,得k 2x 2-(2k 2+4)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1x 2=1,x 1+x 2=2k 2+4k 2. 由M (-1,1),得AM→=(-1-x 1,1-y 1),BM →=(-1-x 2,1-y 2).由∠AMB =90°,得AM →·BM →=0,∴ (x 1+1)(x 2+1)+(y 1-1)(y 2-1)=0, ∴ x 1x 2+(x 1+x 2)+1+y 1y 2-(y 1+y 2)+1=0. 又y 1y 2=k (x 1-1)·k (x 2-1)=k 2[x 1x 2-(x 1+x 2)+1], y 1+y 2=k (x 1+x 2-2),∴ 1+2k 2+4k 2+1+k 2⎝ ⎛⎭⎪⎫1-2k 2+4k 2+1-k ⎝ ⎛⎭⎪⎫2k 2+4k 2-2+1=0,整理得4k 2-4k +1=0,解得k =2.答案:2命题意图:本题重点考查直线与抛物线的应用,考查考生的运算能力.课时作业基础对点练(时间:30分钟)1.若抛物线y 2=4x 上一点P 到其焦点F 的距离为2,O 为坐标原点,则△OFP 的面积为( )(A)12 (B)1 (C)32(D)2B 解析:设P (x p ,y p ),由题可得抛物线焦点为F (1,0),准线方程为x =-1,又点P 到焦点F 的距离为2,∴由定义知点P 到准线的距离为2,∴x P +1=2,∴x P =1,代入抛物线方程得|y P |=2,∴△OFP 的面积为S =12·|OF |·|y P |=12×1×2=1.故选B.2.若抛物线y =ax 2的焦点坐标是(0,1),则a =( ) (A)1 (B)14 (C)2(D)12B 解析:因为抛物线方程为x 2=1a y ,所以其焦点坐标为⎝ ⎛⎭⎪⎫0,14a ,则有14a =1,a =14,故选B.3.已知P 为抛物线y 2=-6x 上一个动点,Q 为圆x 2+(y -6)2=14上一个动点,那么点P 到点Q 的距离与点P 到y 轴距离之和的最小值是( )(A)317-72(B)317-42 (C)317-12(D)317+12B 解析:结合抛物线的定义知,P 到y 轴的距离为P 到焦点的距离减去32,则所求最小值为抛物线的焦点到圆心的距离减去半径及32,即62+⎝ ⎛⎭⎪⎫322-12-32=317-42,故选B.4.若点A,B在抛物线y2=2px(p>0)上,O是坐标原点,若正三角形OAB的面积为43,则该抛物线方程是()(A)y2=233x(B)y2=3x(C)y2=23x(D)y2=3 3xA解析:根据对称性,AB⊥x轴,由于正三角形的面积是43,故34AB2=43,故AB=4,正三角形的高为23,故可以设点A的坐标为(23,2),代入抛物线方程得4=43p,解得p=33,故所求的抛物线方程为y2=233x.故选A.5.已知直线l1:4x-3y+7=0和直线l2:x=-2,抛物线y2=8x上一动点P到直线l1和l2的距离之和的最小值是()(A) 5 (B)2 5(C)3 (D)3 5C解析:如图所示,过点P作PH1⊥l1,PH2⊥l2,连接PF,H1F,过F作FM⊥l1,交l1于M,由抛物线方程为y2=8x,得l2为其准线,焦点为F(2,0),由抛物线的定义可知|PH1|+|PH2|=|PH1|+|PF|≥|FH1|≥|FM|=|4×2-0+7|42+32=3,故选C.6.已知抛物线C的顶点是原点O,焦点F在x轴的正半轴上,经过F的直线与抛物线C交于A ,B 两点,如果OA →·OB→=-12,那么抛物线C 的方程为( )(A)x 2=8y (B)x 2=4y (C)y 2=8x(D)y 2=4xC 解析:由题意,设抛物线方程为y 2=2px (p >0), 直线方程为x =my +p2,联立⎩⎨⎧y 2=2px ,x =my +p2,消去x 得y 2-2pmy -p 2=0, 设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=2pm ,y 1y 2=-p 2,得OA →·OB →=x 1x 2+y 1y 2=my 1+p 2my 2+p 2+y 1y 2=m 2y 1y 2+pm 2(y 1+y 2)+p 24+y 1y 2=-34p 2=-12⇒p =4,即抛物线C 的方程为y 2=8x .7.过抛物线y =14x 2的焦点F 作一条倾斜角为30°的直线交抛物线于A ,B 两点,则|AB |=________.解析:依题意,设点A (x 1,y 1),B (x 2,y 2),题中的抛物线x 2=4y 的焦点坐标是F (0,1),直线AB 的方程为y =33x +1,即x =3(y -1).由⎩⎪⎨⎪⎧x 2=4y ,x =3(y -1),消去x 得3(y -1)2=4y ,即3y 2-10y +3=0,y 1+y 2=103,|AB |=|AF |+|BF |=(y 1+1)+(y 2+1)=y 1+y 2+2=163.答案:1638.抛物线y 2=2px (p >0)的焦点为F ,AB 为抛物线上的两点,以AB 为直径的圆过点F ,过AB 的中点M 作抛物线的准线的垂线MN ,垂足为N ,则|MN ||AB |的最大值为__________.解析:由抛物线定义得|MN ||AB |=|AF |+|BF |2|AF |2+|BF |2≤|AF |2+|BF |22|AF |2+|BF |2=22,即|MN ||AB |的最大值为22.答案: 229.过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,若|AF |=5,则|BF |=________. 解析:由题意,设A (x 1,y 1),B (x 2,y 2), 则|AF |=x 1+1=5⇒x 1=4,y 21=4x 1=16, 根据对称性,不妨取y 1=4, 所以直线AB :y =43x -43,代入抛物线方程可得,4x 2-17x +4=0, 所以x 2=14, 所以|BF |=x 2+1=54. 答案:5410.在平面直角坐标系中,动点M (x ,y )(x ≥0)到点F (1,0)的距离与到y 轴的距离之差为1.(1)求点M 的轨迹C 的方程;(2)若Q (-4,2),过点N (4,0)作任意一条直线交曲线C 于A ,B 两点,试证明k QA +k QB 是一个定值.解析:(1)M 到定点F (1,0)的距离与到定直线x =-1的距离相等, ∴M 的轨迹C 是一个开口向右的抛物线,且p =2, ∴M 的轨迹方程为y 2=4x .(2)设过N (4,0)的直线的方程为x =my +4,联立方程组⎩⎪⎨⎪⎧y 2=4x ,x =my +4整理得y 2-4my -16=0,设直线l 与抛物线的交点为A (x 1,y 1),B (x 2,y 2), 则有y 1+y 2=4m ,y 1y 2=-16, 又k QA +k QB =y 1-2x 1+4+y 2-2x 2+4=y 1-2my 1+8+y 2-2my 2+8=-8m 2-3216m 2+64=-12, 因此k QA +k QB 是一个定值为-12.能力提升练(时间:15分钟)11.已知直线l 1:x =2,l 2:3x +5y -30=0,点P 为抛物线y 2=-8x 上的任一点,则P 到直线l 1,l 2的距离之和的最小值为( )(A)2 (B)234 (C)181734(D)161534C 解析:抛物线y 2=-8x 的焦点为F (-2,0),准线为l 1:x =2. ∴P 到l 1的距离等于|PF |,∴P 到直线l 1,l 2的距离之和的最小值为F (-2,0)到直线l 2的距离d =|-6+0-30|9+25=181734.故选C.12.已知点A (0,2),抛物线C :y 2=2px (p >0)的焦点为F ,射线F A 与抛物线C 相交于点M ,与其准线相交于点N ,若|FM ||MN |=55,则p 的值等于( )(A)18 (B)14 (C)2(D)4C 解析:设M (x M ,y M ),N ⎝ ⎛⎭⎪⎫-p 2,y N ,由|FM ||MN |=55,知|FM ||FN |=15+1,所以y N =(5+1)y M ;由k F A =k FN 知,y N -p =2-p 2,所以y N =4,所以y M =45+1;又|FM ||FN |=15+1,所以p 2-x M =15+1⎝ ⎛⎭⎪⎫p 2+p 2=p 5+1,所以x M =()5-1p 2(5+1),将(x M ,y M )代入y 2=2px ,得⎝ ⎛⎭⎪⎫45+12=2p ×(5-1)p 2(5+1),解得p =2.故选C.13.已知抛物线C :x 2=2py (p >0)的焦点为F ,O 为坐标原点,点M ⎝ ⎛⎭⎪⎫-4,p 2,N ⎝ ⎛⎭⎪⎫1,p 2,射线MO ,NO 分别交抛物线C 于异于点O 的点A ,B ,若A ,B ,F 三点共线,则p 的值为________.解析:直线OM 的方程为y =-p8x ,将其代入x 2=2py , 解方程可得⎩⎪⎨⎪⎧x =-p 24y =p 332,故A ⎝ ⎛⎭⎪⎫-p 24,p 332.直线ON 的方程为y =p2x ,将其代入x 2=2py ,解方程可得⎩⎨⎧x =p 2y =p 32,故B ⎝ ⎛⎭⎪⎫p 2,p 32.又F ⎝ ⎛⎭⎪⎫0,p 2,所以k AB =3p 8,k BF =p 2-12p ,因为A ,B ,F 三点共线,所以k AB =k BF ,即3p 8=p 2-12p ,解得p =2.答案:214.顶点在原点,经过圆C :x 2+y 2-2x +22y =0的圆心且准线与x 轴垂直的抛物线方程为________.解析:将圆C 的一般方程化为标准方程为(x -1)2+(y +2)2=3,圆心为(1,-2).由题意,知抛物线的顶点在原点,焦点在x 轴上,且经过点(1,-2).设抛物线的标准方程为y 2=2px ,因为点(1,-2)在抛物线上,所以(-2)2=2p ,解得p =1,所以所求抛物线的方程为y 2=2x .答案:y 2=2x15.已知AB 是抛物线x 2=4y 的一条焦点弦,若该弦的中点纵坐标是3,则弦AB 所在的直线方程是________.解析:设A (x 1,y 1),B (x 2,y 2), 直线AB 的方程为x =m (y -1),由抛物线的定义及题设可得,y 1+y 2=6, 直线与抛物线方程联立消去x 可得 m 2y 2-(2m 2+4)y +m 2=0, 则y 1+y 2=2m 2+4m 2,即6=2m 2+4m 2, 可得m =1或m =-1.故直线方程为x -y +1=0或x +y -1=0. 答案:x -y +1=0或x +y -1=016.已知抛物线C :y =mx 2(m >0),焦点为F ,直线2x -y +2=0交抛物线C 于A ,B 两点,P 是线段AB 的中点,过P 作x 轴的垂线交抛物线C 于点Q ,①求抛物线C 的焦点坐标.②若抛物线C 上有一点R (x R,2)到焦点F 的距离为3,求此时m 的值.③是否存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形?若存在,求出m 的值;若不存在,请说明理由.解析:①因为抛物线C :x 2=1m y ,所以它的焦点F (0,14m ). ②因为|RF |=y R +14m ,所以2+14m =3,得m =14.③存在,联立方程⎩⎪⎨⎪⎧y =mx 2,2x -y +2=0,消去y 得mx 2-2x -2=0,依题意,有Δ=(-2)2-4×m ×(-2)>0恒成立.解得m >-12.设A (x 1,mx 21),B (x 2,mx 22),则⎩⎪⎨⎪⎧x 1+x 2=2m,x 1·x 2=-2m .(*)因为P 是线段AB 的中点,所以P ⎝ ⎛⎭⎪⎫x 1+x 22,mx 21+mx 222, 即P ⎝ ⎛⎭⎪⎫1m ,y P ,所以Q ⎝ ⎛⎭⎪⎫1m ,1m .得QA →=⎝ ⎛⎭⎪⎫x 1-1m ,mx 21-1m , QB →=⎝⎛⎭⎪⎫x 2-1m ,mx 22-1m , 若存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形, 则QA →·QB→=0,即⎝ ⎛⎭⎪⎫x 1-1m ·⎝ ⎛⎭⎪⎫x 2-1m +⎝ ⎛⎭⎪⎫mx 21-1m ⎝ ⎛⎭⎪⎫mx 22-1m =0, 结合(*)化简得-4m 2-6m +4=0,即2m 2-3m -2=0, 所以m =2或m =-12.而2∈(-12,+∞),-12∉(-12,+∞).。

高考(理)一轮复习:9.7抛物线

高考(理)一轮复习:9.7抛物线
������
开口方向 向右
焦半径(其 ������ ������ |PF|=x0+2 |PF|=-x0+2 中 P(x0,y0))
-5知识梳理 双基自测
1
2
3
3.常用结论 设AB是过抛物线y2=2px(p>0)焦点F的弦,若A(x1,y1),B(x2,y2),如图 所示,则
-6知识梳理 双基自测
△������������������ 22 |������������ |-1 = |������������ | -1 则 = A. ������△������������������ ������������ B. ������1 2= |������������|-1,故选 A.
������
3
4
5
2
2.抛物线 y =4x 的焦点到双曲线 x ( ) A.
1 2
������2 - 3 =1
的渐近线的距离是
B.
√3
2
C.1
D.√3
关闭
由题意可得,抛物线的焦点为(1,0),双曲线的渐近线方程为 y=±√3x,即±√3x-y=0,由点到直线的距离公式可得抛物线的焦 点到双曲线的渐近线的距离 d= B
x2=2py (p>0)
x2=-2py (p>0)
பைடு நூலகம்
p 的几何意义:焦点 F 到准线 l 的距离
图形
顶点 对称轴 焦点
O(0,0) y=0 F
p
x=0 F - 2 ,0
p
,0 2
F 0, 2
p
F 0,- 2
p
-4知识梳理 双基自测
1
2
3
标准 方程 离心率 准线方程 范围

高考数学统考一轮复习第九章9.7抛物线课件文新人教版ppt

高考数学统考一轮复习第九章9.7抛物线课件文新人教版ppt
y2=±4 2x,故选D.
2
5.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物
[-1,1]
线有公共点,则直线l的斜率的取值范围是________.
解析:Q(-2,0),当直线l的斜率不存在时,不满足题意,故设
直线l的方程为y=k(x+2),代入抛物线方程,消去y整理得k2x2 +(4k2
(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定
是抛物线.( × )
(2)抛物线y2=4x的焦点到准线的距离是4.( × )
(3)抛物线既是中心对称图形,又是轴对称图形.( × )
(4)方程y=ax2(a≠0)表示的曲线是焦点在x轴上的抛物线,且其焦
a
a
点坐标是 ,0 ,准线方程是x=- .( × )
引抛物线准线的垂线,设P(x0,y0),则由抛物线的定义知|PM|=y0+1,所以y0=4,
1
1
所以|x0|=4,所以S△MPF= ×|PM|×|x0|= ×5×4=10.
2
2
悟·技法
应用抛物线定义的2个关键点
(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转
(
)
A.经过点O
B.经过点P
C.平行于直线OP D.垂直于直线OP
2.[2021·湖北鄂州调研]过抛物线y2 =2px(p>0)的焦点F作斜率为
3的直线,与抛物线在第一象限内交于点A,若|AF|=4,则p=(
)
A.2
B.1
C. 3
D.4
π
解析:过点A作AB垂直x轴于点B,则在Rt△ABF中,∠AFB= ,
二、必明2个易误点
1.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定

高考数学一轮复习第九章解析几何9.7抛物线课件理新人

高考数学一轮复习第九章解析几何9.7抛物线课件理新人

解析:解法一:依题意,过抛物线焦点且倾斜角为 45°的直 线方程为 y=x-2,
将 y=x-2 代入 y2=8x,得 x2-12x+4=0, 设 A(x1,y1),B(x2,y2), 则 x1+x2=12,x1x2=4, 所以|AB|= 1+12· x1+x22-4x1x2 = 2× 122-16=16.
[解析] 依题意,由点 M 向抛物线 x2=4y 的准线 l:y=-1 引垂线,垂足为 M1,则有|MA|+|MF|=|MA|+|MM1|,则|MA|+ |MM1|的最小值等于圆心 C(-1,5)到 y=-1 的距离再减去圆 C 的 半径,即等于 6-1=5,因此|MA|+|MF|的最小值是 5.
(3)顶点在坐标原点,焦点在 y 轴正半轴上的抛物线的标准方 程为:__x_2= __2_p_y_(_p_>_0_) __;
(4)顶点在坐标原点,焦点在 y 轴负半轴上的抛物线的标准方 程为:_x_2= __- __2_p_y_(_p_>_0_) _.
2.抛物线的几何性质
y=0
O(0,0)
x=0
解法二:过抛物线焦点且倾斜角为 45°的直线方程为 y=x- 2,将 y=x-2 代入 y2=8x,得 x2-12x+4=0,
设 A(x1,y1),B(x2,y2),则 x1+x2=12. 由抛物线定义知,|AB|=x1+x2+4=16.
[考情聚焦] 与抛物线定义相关的最值问题常涉及距离最 短、距离和最小等等.
角度三
到定直线的距离最小问题
[典题 3] 已知直线 l1:4x-3y+6=0 和直线 l2:x=-1, 抛物线 y2=4x 上一动点 P 到直线 l1 和直线 l2 的距离之和的最 小值是( B )
35 A. 5

高考数学一轮复习第九章解析几何第七节抛物线课件理

高考数学一轮复习第九章解析几何第七节抛物线课件理
的左焦点坐标为(-2,0),由题意知-m1 =-2,所以实数 m=12. 答案:12
[典题 3] 已知过抛物线 y2=2px(p>0)的焦点,斜率为 2 2
的直线交抛物线于 A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=
9.
(1)求该抛物线的方程;
(2)O 为坐标原点,C 为抛物线上一点,若
(2)由(1)得 4x2-5px+p2=0,即 x2-5x+4=0,则 x1=1, x2=4,于是 y1=-2 2,y2=4 2,从而 A(1,-2 2),B(4,4 2).设 C(x3,y3),则 =(x3,y3)=(1,-2 2)+λ(4,4 2)=(4λ+1,4 2λ -2 2).
又 y23=8x3,所以[2 2(2λ-1)]2=8(4λ+1),整理得(2λ-1)2 =4λ+1,解得 λ=0 或 λ=2.
A.(-1,0)
B.(1,0)
C.(0,-1)
D.(0,1)
(2)设抛物线 C:y2=2px(p>0)的焦点为 F,点 M 在 C 上,
|MF|=5.若以 MF 为直径的圆过点(0,2),则 C 的方程为( )
A.y2=4x 或 y2=8x
B.y2=2x 或 y2=8x
C.y2=4x 或 y2=16x
2.抛物线的标准方程 (1)顶点在坐标原点,焦点在 x 轴正半轴上的抛物线的标准方程 为: y2=2px(p>0) ; (2)顶点在坐标原点,焦点在 x 轴负半轴上的抛物线的标准方程 为: y2=-2px(p>0) ; (3)顶点在坐标原点,焦点在 y 轴正半轴上的抛物线的标准方程 为: x2=2py(p>0) ; (4)顶点在坐标原点,焦点在 y 轴负半轴上的抛物线的标准方程 为: x2=-2py(p>0) .

抛物线【九大题型】(举一反三)(新高考专用)(解析版)—2025年高考数学一轮复习

抛物线【九大题型】(举一反三)(新高考专用)(解析版)—2025年高考数学一轮复习

抛物线【九大题型】专练【题型1 抛物线的定义及其应用】........................................................................................................................3【题型2 抛物线的标准方程】................................................................................................................................5【题型3 抛物线的焦点坐标及准线方程】............................................................................................................6【题型4 抛物线的轨迹方程】................................................................................................................................7【题型5 抛物线上的点到定点的距离及最值】....................................................................................................9【题型6 抛物线上的点到定点和焦点距离的和、差最值】..............................................................................11【题型7 抛物线的焦半径公式】..........................................................................................................................14【题型8 抛物线的几何性质】..............................................................................................................................16【题型9 抛物线中的三角形(四边形)面积问题】 (18)1、抛物线【知识点1 抛物线及其性质】1.抛物线的定义(1)定义:平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫作抛物线.点F叫作抛物线的焦点,直线l叫作抛物线的准线.(2)集合语言表示设点M(x,y)是抛物线上任意一点,点M到直线l的距离为d,则抛物线就是点的集合P={M||MF|=d}.2.抛物线的标准方程与几何性质(0,0)(0,0)3.抛物线与椭圆、双曲线几何性质的差异抛物线与椭圆、双曲线几何性质的差异:①它们都是轴对称图形,但椭圆和双曲线又是中心对称图形;②顶点个数不同,椭圆有4个顶点,双曲线有2个顶点,抛物线只有1个顶点;③焦点个数不同,椭圆和双曲线各有2个焦点,抛物线只有1个焦点;④离心率取值范围不同,椭圆的离心率范围是0<e<1,双曲线的离心率范围是e>1,抛物线的离心率是e=1;⑤椭圆和双曲线都有两条准线,而抛物线只有一条准线;⑥椭圆是封闭式曲线,双曲线和抛物线都是非封闭式曲线.【知识点2 抛物线标准方程的求解方法】1.抛物线标准方程的求解待定系数法:求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.【知识点3 抛物线的焦半径公式】1.焦半径公式设抛物线上一点P的坐标为,焦点为F.(1)抛物线:;(2)抛物线:(3)抛物线:;(4)抛物线:.注:在使用焦半径公式时,首先要明确抛物线的标准方程的形式,不同的标准方程对应于不同的焦半径公式.【知识点4 与抛物线有关的最值问题的解题策略】1.与抛物线有关的最值问题的两个转化策略(1)转化策略一:将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”“三角形两边之和大于第三边”,使问题得以解决.(2)转化策略二:将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.【方法技巧与总结】1.通径:过焦点与对称轴垂直的弦长等于2p.2.抛物线P,也称为抛物线的焦半径.【题型1 抛物线的定义及其应用】【例1】(2024·贵州贵阳·二模)抛物线y2=4x上一点M与焦点间的距离是10,则M到x轴的距离是()A.4B.6C.7D.9【解题思路】借助抛物线定义计算即可得.【解答过程】抛物线y2=4x的准线为x=―1,由抛物线定义可得x M+1=10,故x M=10―1=9,则|y M|===6,即M到x轴的距离为6.故选:B.【变式1-1】(2024·河北·模拟预测)已知点P为平面内一动点,设甲:P的运动轨迹为抛物线,乙:P到平面内一定点的距离与到平面内一定直线的距离相等,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【解题思路】根据已知条件,结合充分条件、必要条件的定义,即可求解.【解答过程】解:当直线经过定点时,点的轨迹是过定点且垂直于该直线的另一条直线,当直线不经过该定点时,点的轨迹为抛物线,故甲是乙的充分条件但不是必要条件.故选:A.【变式1-2】(2024·北京大兴·三模)已知抛物线y2=4x的焦点为F,过F且斜率为―1的直线与直线x=―1交于点A,点M在抛物线上,且满足|MA|=|MF|,则|MF|=()A.1B C.2D.【解题思路】由题意先求出过F且斜率为―1的直线方程,进而可求出点A,接着结合点M在抛物线上且|MA|=|MF|可求出x M,从而根据焦半径公式|MF|=x M+1即可得解.【解答过程】由题意可得F(1,0),故过F且斜率为―1的直线方程为y=―(x―1)=―x+1,令x=―1⇒y=2,则由题A(―1,2),因为|MA|=|MF|,所以MA垂直于直线x=―1,故y M=2,又M 在抛物线上,所以由22=4x M ⇒x M =1,所以|MF |=x M +1=2.故选:C.【变式1-3】(2024·福建莆田·模拟预测)若抛物线C 的焦点到准线的距离为3,且C 的开口朝左,则C 的标准方程为( )A .y 2=―6xB .y 2=6xC .y 2=―3xD .y 2=3x【解题思路】根据开口设抛物线标准方程,利用p 的几何意义即可求出.【解答过程】依题意可设C 的标准方程为y 2=―2px(p >0),因为C 的焦点到准线的距离为3,所以p =3,所以C 的标准方程为y 2=―6x .故选:A.【题型2 抛物线的标准方程】【例2】(2024·山东菏泽·模拟预测)已知点A (a,2)为抛物线x 2=2py (p >0)上一点,且点A 到抛物线的焦点F 的距离为3,则p =( )A .12B .1C .2D .4【解题思路】由题意,根据抛物线的性质,抛物线x 2=2py (p >0),则抛物线焦点为F 0,M (x 1,y 1)为 抛物线上一点,有|MF |=y 1+p 2,可得|AF |=2+p2=3,解得p =2.【解答过程】因为抛物线为x 2=2py (p >0),则其焦点在y 轴正半轴 上,焦点坐标为由于点A (a,2)为抛物线x 2=2py ,(p >0)为上一点,且点A 到抛物线的焦点F 的距离为3, 所以点A 到抛物线的焦点F 的距离为|AF |=2+p2=3,解得p =2,故选:C.【变式2-1】(2024·陕西安康·模拟预测)过点(2,―3),且焦点在y 轴上的抛物线的标准方程是( )A .x 2=―3yB .x 2=―43yC .x 2=―23yD .x 2=―4y【解题思路】利用待定系数法,设出抛物线方程,把点代入求解即可.【解答过程】设抛物线的标准方程为x 2=ay (a ≠0),将点点(2,―3)代入,得22=―3a,解得a=―43,所以抛物线的标准方程是x2=―43y.故选:B.【变式2-2】(2024·新疆·三模)已知抛物线y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大1,则抛物线的标准方程为()A.y2=x B.y2=2x C.y2=4x D.y2=8x【解题思路】根据抛物线的定义求解.【解答过程】由题意抛物线y2=2px(p>0)上任意一点到焦点F的距离与它到直线x=―1的距离相,因此―p2=―1,p=2,抛物线方程为y2=4x.故选:C.【变式2-3】(2024·宁夏石嘴山·三模)如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于两点A、B,交其准线于C,AE与准线垂直且垂足为E,若|BC|=2|BF|,|AE|=3,则此抛物线的方程为()A.y2=3x2B.y2=9xC.y2=9x2D.y2=3x【解题思路】过点A,B作准线的垂线,设|BF|=a,得到|AC|=3+3a,结合抛物线的定义,求得a=1,再由BD//FG,列出方程求得p的值,即可求解.【解答过程】如图所示,分别过点B作准线的垂线,垂足为D,设|BF|=a,则|BC|=2|BF|=2a,由抛物线的定义得|BD|=|BF|=a,在直角△BCD中,可得sin∠BCD=|BD||BC|=12,所以∠BCD=30∘,在直角△ACE中,因为|AE|=3,可得|AC|=3+3a,由|AC |=2|AE |,所以3+3a =6,解得a =1,因为BD //FG ,所以1p =2a3a ,解得p =32,所以抛物线方程为y 2=3x .故选:C.【题型3 抛物线的焦点坐标及准线方程】【例3】(2024·内蒙古赤峰·二模)已知抛物线C 的方程为 x =―116y 2, 则此抛物线的焦点坐标为( )A .(-4,0)B .―14,C .(-2,0)D .―12,【解题思路】由抛物线的几何性质求解.【解答过程】依题意得:y 2=―16x ,则此抛物线的焦点坐标为:―4,0,故选:A.【变式3-1】(2024·黑龙江大庆·模拟预测)已知抛物线C:y =6x 2,则C 的准线方程为( )A .y =―32B .y =32C .y =―124D .y =124【解题思路】根据抛物线的准线方程直接得出结果.【解答过程】抛物线C :y =6x 2的标准方程为x 2=16y ,所以其准线方程为y =―124.故选:C.【变式3-2】(2024·河南·三模)抛物线y 2=―28x 的焦点坐标为( )A .(0,―14)B .(0,―7)C .(―14,0)D .(―7,0)【解题思路】根据抛物线的标准方程直接得出结果.【解答过程】∵2p =28,∴p =14,∴抛物线y 2=―28x 的焦点坐标为(―7,0).故选:D.【变式3-3】(2024·福建厦门·模拟预测)若抛物线y 2=mx 的准线经过双曲线x 2―y 2=2的右焦点,则m的值为()A.―4B.4C.―8D.8【解题思路】根据题意,分别求得双曲线的右焦点以及抛物线的准线方程,代入计算,即可得到结果.【解答过程】因为双曲线x2―y2=2的右焦点为(2,0),又抛物线y2=mx的准线方程为x=―m4,则―m4=2,即m=―8.故选:C.【题型4 抛物线的轨迹方程】【例4】(2024·湖南衡阳·三模)已知点F(2,0),动圆P过点F,且与x=―2相切,记动圆圆心P点的轨迹为曲线Γ,则曲线Γ的方程为()A.y2=2x B.y2=4x C.y2=8x D.y2=12x【解题思路】分析题意,利用抛物线的定义判断曲线是抛物线,再求解轨迹方程即可.【解答过程】由题意知,点P到点F的距离和它到直线x=―2的距离相等,所以点P的轨迹是以(2,0)为焦点的抛物线,所以Γ的方程为y2=8x,故C正确.故选:C.【变式4-1】(23-24高二上·北京延庆·期末)到定点F(1,0)的距离比到y轴的距离大1的动点且动点不在x轴的负半轴的轨迹方程是()A.y2=8x B.y2=C.y2=2x D.y2=x【解题思路】根据抛物线的定义即可得解.【解答过程】因为动点到定点F(1,0)的距离比到y轴的距离大1,所以动点到定点F(1,0)的距离等于到x=―1的距离,所以动点的轨迹是以F(1,0)为焦点,x=―1为准线的抛物线,所以动点的轨迹方程是y2=4x.故选:B.【变式4-2】(23-24高二上·重庆·期末)已知点P(x,y)=|x+1|,则点P的轨迹为()A.椭圆B.双曲线C.抛物线D.圆【解题思路】根据已知条件及抛物线的定义即可求解.P(x,y)到点(1,0)的距离;|x+1|表示点P(x,y)到直线x=―1的距离.=|x+1|,所以点P(x,y)到点(1,0)的距离等于点P(x,y)到直线x=―1的距离,所以P的轨迹为抛物线.故选:C.【变式4-3】(23-24高二上·宁夏石嘴山·阶段练习)一个动圆与定圆F:(x+2)2+y2=1相内切,且与定直线l:x=3相切,则此动圆的圆心M的轨迹方程是( )A.y2=8x B.y2=4x C.y2=―4x D.y2=―8x【解题思路】先利用圆与圆的位置关系,直线与圆的位置关系找到动点M的几何条件,再根据抛物线的定义确定动点M的轨迹,最后利用抛物线的标准方程写出轨迹方程.【解答过程】设动圆M的半径为r,依题意:|MF|=r―1,点M到定直线x=2的距离为d=r―1,所以动点M到定点F(―2,0)的距离等于到定直线x=2的距离,即M的轨迹为以F为焦点,x=2所以此动圆的圆心M的轨迹方程是y2=―8x.故选:D.【题型5 抛物线上的点到定点的距离及最值】【例5】(2024·全国·模拟预测)已知A是抛物线C:y2=4x上的点,N(4,0),则|AN|的最小值为()A.2B.C.4D.【解题思路】由抛物线的方程,利用二次函数的性质求最值【解答过程】设,t,则|AN|===≥当且仅当t=±故选:D.【变式5-1】(2024高三·全国·专题练习)已知P是抛物线y2=2x上的点,Q是圆(x―5)2+y2=1上的点,则|PQ |的最小值是( )A .2B .C .D .3【解题思路】将问题转化为求|PC|的最小值,根据两点之间的距离公式,求得|PC|的最小值再减去半径即可.【解答过程】如图,抛物线上点P (x,y )到圆心C (5,0)的距离为|PC |,|CP |≤|CQ |+|PQ |,因此|PQ |≥|CP |―1,当|CP |最小时,|PQ |=|CP |―1最小,而|CP |2=(x ―5)2+y 2=―52+y 2=2―82+9,当y =±|CP |min =3,因此|PQ |的最小值是2.故选:A.【变式5-2】(2024·湖南益阳·三模)已知M 是抛物线y²=4x 上一点,圆C 1:(x ―1)2+(y ―2)2=1关于直线y =x ―1对称的圆为C 2,N 是圆C 2上的一点,则|MN |的最小值为( )A .1B ―1C―1D .37【解题思路】根据对称性求出圆C 2的方程,设y 0,求出|MC 2|的最小值,即可求出|MN |的最小值.【解答过程】圆C 1:(x ―1)2+(y ―2)2=1圆心为C 1(1,2),半径r =1,设C 2(a,b ),=―1―1=0,解得a =3b =0,则C 2(3,0),所以圆C2 :(x ―3)2+y 2=1,设y 0,则|MC 2|==所以当y 20=4,即y 0=±2时,|MC 2|min=所以|MN |的最小值是―1.故选:A.【变式5-3】(2024·黑龙江齐齐哈尔·二模)已知抛物线C:y2=8x的焦点为F,M为C上的动点,N为圆A:x2+ y2+2x+8y+16=0上的动点,设点M到y轴的距离为d,则|MN|+d的最小值为()A.1B C D.2【解题思路】作出图形,过点M作ME垂直于抛物线的准线,垂足为点E,利用抛物线的定义可知d=|MF|―2,分析可知,当且仅当N、M为线段AF分别与圆A、抛物线C的交点时,|MN|+d取最小值,即可得解.【解答过程】根据已知得到F(2,0),圆A:(x+1)2+(y+4)2=1,所以A(―1,―4),圆A的半径为1,抛物线C的准线为l:x=―2,过点M作ME⊥l,垂足为点E,则|ME|=d+2,由抛物线的定义可得d+2=|ME|=|MF|,所以,|MN|+d=|MN|+|MF|―2≥|AM|+|MF|―1―2≥|AF|―1―2=1―2=2.当且仅当N、M为线段AF分别与圆A、抛物线C的交点时,两个等号成立,因此,|MN|+d的最小值为3.故选:D.【题型6 抛物线上的点到定点和焦点距离的和、差最值】【例6】(2024·四川成都·模拟预测)设点A(2,3),动点P在抛物线C:y2=4x上,记P到直线x=―2的距离为d,则|AP|+d的最小值为()A.1B.3C1D【解题思路】根据抛物线的定义,P到焦点F的距离等于P到准线的距离,可得d=|PF|+1,从而转化为求|AP|+|PF|+1的值,当A,P,F三点共线时,d=|PF|+1取得最小值,即可求解.【解答过程】由题意可得,抛物线C的焦点F(1,0),准线方程为x=―1,由抛物线的定义可得d=|PF|+1,所以|AP|+d=|AP|+|PF|+1,因为|AP|+|PF|≥|AF|==所以|AP|+d=|AP|+|PF|+1≥+1.当且仅当A,P,F三点共线时取等号,所以|AP|+d+1.故选:D.【变式6-1】(2024·湖南常德·一模)已知抛物线方程为:y2=16x,焦点为F.圆的方程为(x―5)2+(y―1)2 =1,设P为抛物线上的点,Q|PF|+|PQ|的最小值为()A.6B.7C.8D.9【解题思路】根据抛物线定义将点到焦点的距离转化为点到直线的距离,即|PF|=|PN|,从而得到|PF|+ |PQ|=|PN|+|PQ|,P、Q、N三点共线时和最小;再由Q在圆上,|QN|min=|MN|―r得到最小值.【解答过程】由抛物线方程为y2=16x,得到焦点F(4,0),准线方程为x=―4,过点P做准线的垂线,垂足为N,因为点P在抛物线上,所以|PF|=|PN|,所以|PF|+|PQ|=|PN|+|PQ|,当Q点固定不动时,P、Q、N三点共线,即QN垂直于准线时和最小,又因为Q在圆上运动,由圆的方程为(x―5)2+(y―1)2=1得圆心M(5,1),半径r=1,所以|QN|min=|MN|―r=8,故选:C.【变式6-2】(2024·全国·模拟预测)在直角坐标系xOy中,已知点F(1,0),E(―2,0),M(2,2),动点P满足线段PE的中点在曲线y2=2x+2上,则|PM|+|PF|的最小值为()A.2B.3C.4D.5【解题思路】设P(x,y),由题意求出P的轨迹方程,继而结合抛物线定义将|PM|+|PF|的最小值转化为M 到直线l的距离,即可求得答案.【解答过程】设P(x,y),则PE y2=2x+2,可得y2=4x,故动点P的轨迹是以F为焦点,直线l:x=―1为准线的抛物线,由于22<4×2,故M(2,2)在抛物线y2=4x内部,过点P作PQ⊥l,垂足为Q,则|PM|+|PF|=|PM|+|PQ|,(抛物线的定义),故当且仅当M,P,Q三点共线时,|PM|+|PQ|最小,即|PM|+|PF|最小,最小值为点M到直线l的距离,所以(|PM|+|PF|)min=2―(―1)=3,故选:B.【变式6-3】(2024·陕西西安·一模)设P为抛物线C:y2=4x上的动点,A(2,6)关于P的对称点为B,记P到直线x=―1、x=―4的距离分别d1、d2,则d1+d2+|AB|的最小值为()A B.C+3D.+3【解题思路】根据题意得到d1+d2+|AB|=2d1+3+2|PA|=2(d1+|PA|)+3,再利用抛物线的定义结合三角不等式求解.【解答过程】抛物线C:y2=4x的焦点为F(1,0),准线方程为x=―1,如图,因为d 2=d 1+3,且A (2,6)关于P 的对称点为B ,所以|PA |=|PB |,所以d 1+d 2+|AB |=2d 1+3+2|PA |=2(d 1+|PA |)+3 =2(|PF |+|PA |)+3≥2|AF |+3 ==.当P 在线段AF 与抛物线的交点时,d 1+d 1+|AB |取得最小值,且最小值为.故选:D.【题型7 抛物线的焦半径公式】【例7】(2024·青海西宁·一模)已知F 是抛物线C:x 2=4y 的焦点,点M 在C 上,且M 的纵坐标为3,则|MF |=( )A .B .C .4D .6【解题思路】利用抛物线的标准方程和抛物线的焦半径公式即可求解.【解答过程】由x 2=4y ,得2p =4,解得p =2.所以抛物线C:x 2=4y 的焦点坐标为F (0,1),准线方程为y =―1,又因为M 的纵坐标为3,点M 在C 上,所以|MF |=y M +p2=3+22=4.故选:C.【变式7-1】(2024·河南·模拟预测)已知抛物线C:y 2=2px (p >0)上的点(m,2)到原点的距离为为F ,准线l 与x 轴的交点为M ,过C 上一点P 作PQ ⊥l 于Q ,若∠FPQ =2π3,则|PF |=( )A .13B .12C D .23【解题思路】根据点(m,2)到原点的距离为再设点P 坐标,利用抛物线的定义和等腰三角形的性质列出方程即可求解.【解答过程】因为点(m,2)到原点的距离为所以m 2+22=8,解得m =2,(负值舍),将点(2,2)代入抛物线方程y 2=2px (p >0),得4=4p ,所以p =1,所以C:y 2=2x,F(12,0),l:x =―12.由于抛物线关于x 轴对称,不妨设,因为|PQ|=|PF|=x +12,∠FPQ =2π3,所以△PQF 为等腰三角形,∠PQF =π6,所以|QF|=+12),所以|QF|==+12),解得x =16或x =―12(舍),所以|PF |=16+12=23.故选:D.【变式7-2】(2024·新疆·三模)已知抛物线C :y 2=x 的焦点为F ,在抛物线C 上存在四个点P ,M ,Q ,N ,若弦PQ 与弦MN 的交点恰好为F ,且PQ ⊥MN ,则1|PQ |+1|MN |=( )A B .1C D .2【解题思路】由抛物线的方程可得焦点F 的坐标,应用抛物线焦点弦性质|PF |=p1―cos θ,|QF |=p1+cos θ,|MF |=p1+sin θ,|NF |=p1―sin θ,结合三角的恒等变换的化简可得1|PQ |+1|MN |=12p ,即可求解.【解答过程】由抛物线C:y 2=x 得2p =1,则p =12,F(14,0),不妨设PQ 的倾斜角为θ0<θ<则由|PF |cos θ+p =|PF |,p ―|QF |cos θ=|QF |,得|PF |=p 1―cos θ,|QF |=p1+cos θ,所以|MF |==p1+sin θ,|NF |==p1―sin θ,得|PQ |=|PF |+|QF |=p1―cos θ+p1+cos θ=2psin 2θ,|MN |==2pcos 2θ,所以1|PQ |+1|MN |=12p =1.故选:B.【变式7-3】(2024·北京西城·三模)点F 抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若FA +FB +FC =0,则|FA |+|FB |+|FC |=( )A .2B .C .3D .【解题思路】设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),根据抛物线方程求出焦点坐标和准线方程,再由FA +FB +FC =0可得F 为△ABC 的重心,从而可求出x 1+x 2+x 3,再根据抛物线的定义可求得结果.【解答过程】设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),由y 2=2x ,得p =1,所以F(12,0),准线方程为x =―12,因为FA +FB +FC =0,所以F 为△ABC 的重心,所以x 1+x 2+x 33=12,所以x 1+x 2+x 3=32,所以|FA |+|FB |+|FC |=x 1+12+x 2+12+x 3+12=x 1+x 2+x 3+32=32+32=3,故选:C.【题型8 抛物线的几何性质】【例8】(2024·重庆·模拟预测)A,B 是抛物线y 2=2px(p >0)上的不同两点,点F 是抛物线的焦点,且△OAB 的重心恰为F ,若|AF|=5,则p =( )A .1B .2C .3D .4【解题思路】根据重心可得x 1+x 2=3p 2y 1=―y 2,结合对称性可得x 1=3p4,再根据抛物线的定义运算求解.【解答过程】设A (x 1,y 1),B (x 2,y 2),因为△OAB 的重心恰为F=p2=0,解得x 1+x 2=3p2y 1=―y 2,由y 1=―y 2可知A,B 关于x 轴对称,即x 1=x 2,则x 1+x 2=2x 1=3p2,即x 1=3p 4,又因为|AF |=x 1+p2=5p 4=5,解得p =4.故选:D.【变式8-1】(23-24高二下·福建厦门·期末)等边三角形的一个顶点位于原点,另外两个顶点在抛物线y 2=2x 上,则这个等边三角形的边长为( )A .2B .C .4D.【解题思路】正三角形的另外两个顶点关于x 轴对称,设另外两个顶点坐标分别是A ),B―a),把顶点代入抛物线方程化简即可求解.【解答过程】设正三角形得边长为2a ,由图可知正三角形的另外两个顶点关于x 轴对称,可设另外两个顶点坐标分别是A),B―a ),把顶点代入抛物线方程得a 2=解得a =所以正三角形的边长为故选:D.【变式8-2】(23-24高三下·北京·阶段练习)设抛物线C 的焦点为F ,点E 是C 的准线与C 的对称轴的交点,点P 在C 上,若∠PEF =30°,则sin ∠PFE =( )A B C D 【解题思路】先设P(x 0,y 0),根据图形分别表示出tan ∠ P EF 和sin ∠ P FE 即可得解.【解答过程】由于抛物线的对称性,不妨设抛物线为C:y 2=2px(p >0),则其焦点为F(p2,0),点E 是C 的准线与C 的对称轴的交点,其坐标为E(―p2,0),点P 在C 上,设为P(x 0,y 0),若∠ P EF =30∘,则tan ∠ P EF =|y 0|x 0+p 2=且|PF|=x 0+p 2,则sin ∠ P FE =sin (π―∠ P FE )=|y 0||PF|=故选:B.【变式8-3】(23-24高二下·重庆·阶段练习)已知x 轴上一定点A (a,0)(a >0),和抛物线y 2=2px (p >0)上的一动点M ,若|AM |≥a 恒成立,则实数a 的取值范围为( )A .B .(0,p ]C .D .(0,2p ]【解题思路】设M (x 0,y 0) (x 0≥0),表示出|AM |,依题意可得x 20―(2a ―2p )x 0≥0恒成立,分x 0=0和x 0>0两种情况讨论,当x0>0时x0≥2a―2p恒成立,即可得到2a―2p≤0,从而求出a的取值范围.【解答过程】设M(x0,y0)(x0≥0),则y20=2px0,所以|AM|====因为|AM|≥a恒成立,所以x20―(2a―2p)x0+a2≥a2恒成立,所以x20―(2a―2p)x0≥0恒成立,当x0=0时显然恒成立,当x0>0时x0≥2a―2p恒成立,所以2a―2p≤0,则a≤p,又a>0,所以0<a≤p,即实数a的取值范围为(0,p].故选:B.【题型9 抛物线中的三角形(四边形)面积问题】【例9】(2024·江西新余·二模)已知点Q(2,―2)在抛物线C:y2=2px上,F为抛物线的焦点,则△OQF (O为坐标原点)的面积是()A.12B.1C.2D.4【解题思路】将点Q代入抛物线C的方程,即可求解p,再结合抛物线的公式,即可求解【解答过程】∵点Q(2,―2)在抛物线C:y2=2px上,F为抛物线C的焦点,∴4=4p,解得p=1,故抛物线C的方程为y2=2x,F(12,0),则△OQF的面积S△OQF=12×12×2=12.故选:A.【变式9-1】(23-24高二上·广东广州·期末)已知抛物线C:y2=2px(p>0)的焦点为F,直线l与C相交于A、B两点,与y轴相交于点E.已知|AF|=5,|BF|=3,若△AEF的面积是△BEF面积的2倍,则抛物线C的方程为()A .y 2=2xB .y 2=4xC .y 2=6xD .y 2=8x【解题思路】过A,B 分别作C 的准线的垂线交y 轴于点M,N ,根据抛物线定义可得|AM |=5―p2,|BN |=3―p 2,再由S △AEF S △BEF=|AE ||BE |=|AM ||BN |即可求参数p ,进而可得抛物线方程.【解答过程】如图,过A,B 分别作C 的准线的垂线交y 轴于点M,N ,则AM //BN ,故|AE ||BE |=|AM ||BN |,因为C 的准线为x =―p2,所以|AM |=|AF |―p2=5―p2,|BN |=|BF |―p2=3―p2,所以S △AEFS △BEF=12|EF ||AE |sin ∠AEF 12|EF ||BE |sin ∠BEF =|AE ||BE |=|AM ||BN |=5―p 23―p 2=2,解得p =2,故抛物线C 的方程为y 2=4x .故选:B.【变式9-2】(23-24高二上·广东广州·期末)设F 为抛物线y 2=4x 的焦点,A,B,C 为该抛物线上不同的三点,且FA +FB +FC =0,O 为坐标原点,若△OFA 、△OFB 、△OFC 的面积分别为S 1、S 2、S 3,则S 21+S 22+S 23=( )A .3B .4C .5D .6【解题思路】设点A,B,C 的坐标,再表示出△OFA,△OFB,△OFC 的面积,借助向量等式即可求得答案.【解答过程】设点A,B,C 的坐标分别为(x 1,y 1),(x 2,y 2),(x 3,y 3),而抛物线的焦点F(1,0),|OF|=1,FA =(x 1―1,y 1),FB =(x 2―1,y 2),FC =(x 3―1,y 3),由FA +FB +FC =0,得x 1+x 2+x 3=3,于是S 1=12|y 1|,S 2=12|y 2|,S 3=12|y 3|,所以S 21+S 22+S 23=14(y 21+y 22+y 23)=x 1+x 2+x 3=3.故选:A.【变式9-3】(23-24高二·全国·课后作业)已知抛物线C:y2=8x,点P为抛物线上任意一点,过点P向圆D:x2+y2―4x+3=0作切线,切点分别为A,B,则四边形PADB的面积的最小值为()A.1B.2C D【解题思路】由题意圆的圆心与抛物线的焦点重合,可得连接PD,则S四边形PADB=2S Rt△PAD=|PA|,而|PA|=|PD|最小时,四边形PADB的面积最小,再抛物线的定义转化为点P到抛物线的准线的距离的最小值,结合抛物线的性质可求得结果【解答过程】如图,连接PD,圆D:(x―2)2+y2=1,该圆的圆心与抛物线的焦点重合,半径为1,则S四边形PADB=2S Rt△PAD=|PA|.又|PA|=PADB的面积最小时,|PD|最小.过点P向抛物线的准线x=―2作垂线,垂足为E,则|PD|=|PE|,当点P与坐标原点重合时,|PE|最小,此时|PE|=2.==故S四边形PADBmin故选:C.一、单选题1.(2024·江西·模拟预测)若抛物线x 2=8y 上一点(x 0,y 0)到焦点的距离是该点到x 轴距离的2倍.则y 0=( )A .12B .1C .32D .2【解题思路】根据抛物线的方程,结合抛物线的标准方程,得到抛物线的焦点和准线,利用抛物线的定义,得到抛物线上的点(x 0,y 0)到焦点的距离,根据题意得到关于y 0的方程,求解即可.【解答过程】已知拋物线的方程为x 2=8y ,可得p =4.所以焦点为F (0,2),准线为l :y =―2.抛物线上一点A (x 0,y 0)到焦点F 的距离等于到准线l 的距离,即|AF |=y 0+2,又∵A 到x 轴的距离为y 0,由已知得y 0+2=2y 0,解得y 0=2.故选:D .2.(2024·四川·模拟预测)已知抛物线C:x 2=8y 的焦点为F,P 是抛物线C 上的一点,O 为坐标原点,|OP |=4|PF |=( )A .4B .6C .8D .10【解题思路】求出抛物线焦点和准线方程,设P (m,n )(m ≥0),结合|OP |=n =4,由焦半径公式得到答案.【解答过程】抛物线C:x 2=8y 的焦点为F (0,2),准线方程为y =―2,设P (m,n )(m ≥0)=,解得n =4或n =―12(舍去),则|PF |=n +2=6.故选:B .3.(23-24高二下·甘肃白银·期中)若圆C 与x 轴相切且与圆x 2+y 2=4外切,则圆C 的圆心的轨迹方程为( )A .x 2=4y +4B .x 2=―4y +4C .x 2=4|y |+4D .x 2=4y ―4【解题思路】设圆心坐标为(x,y )=2+|y |,化简整理即可得解.【解答过程】设圆心坐标为(x,y)=2+|y|,化简得x2=4|y|+4,即圆C的圆心的轨迹方程为x2=4|y|+4.故选:C.4.(2024·北京海淀·三模)已知抛物线y2=4x的焦点为F、点M在抛物线上,MN垂直y轴于点N,若|MF|=6,则△MNF的面积为()A.8B.C.D.【解题思路】确定抛物线的焦点和准线,根据|MF|=6得到M.【解答过程】因为抛物线y2=4x的焦点为F(1,0),准线方程为x=―1,所以|MF|=x M+1=6,故x M=5,不妨设M在第一象限,故M×(5―0)×=所以S△MNF=12故选:C.5.(2024·西藏林芝·模拟预测)已知抛物线y2=8x上一点P到准线的距离为d1,到直线l:4x―3y+12=0的距离为d2,则d1+d2的最小值为()A.1B.2C.3D.4【解题思路】点P到直线l:4x―3y+12=0的距离为|PA|,到准线l1:x=―2的距离为|PB|,利用抛物线的定义得|PF|=|PB|,当A,P和F共线时,点P到直线l:4x―3y+12=0和准线l1:x=―2的距离之和的最小,由点到直线的距离公式求得答案.【解答过程】由抛物线y2=8x知,焦点F(2,0),准线方程为l:x=―2,根据题意作图如下;点P到直线l:4x―3y+12=0的距离为|PA|,到准线l1:x=―2的距离为|PB|,由抛物线的定义知:|PB|=|PF|,所以点P到直线l:4x―3y+12=0和准线l1:x=―2的距离之和为|PF|+|PA|,=4,且点F(2,0)到直线l:4x―3y+12=0的距离为d=|8―0+12|5所以d1+d2的最小值为4.故选:D.6.(2024·四川雅安·三模)已知过圆锥曲线的焦点且与焦点所在的对称轴垂直的弦被称为该圆锥曲线的通径,清代数学家明安图在《割圆密率捷法》中,也称圆的直径为通径.已知圆(x―2)2+(y+1)2=4的一条直径与拋物线x2=2py(p>0)的通径恰好构成一个正方形的一组邻边,则p=()B.1C.2D.4A.12【解题思路】根据圆的通径的上端点就是抛物线通径的上右端点,可得抛物线x2=2py(p>0)经过点(2,1),从而可得答案.【解答过程】因为圆(x―2)2+(y+1)2=4的一条直径与抛物线x2=2py(p>0)的通径恰好构成一个正方形的一组邻边,而抛物线x2=2py(p>0)的通径与y轴垂直,所以圆(x―2)2+(y+1)2=4的这条直径与x轴垂直,且圆的直径的上端点就是抛物线通径的右端点,因为圆(x―2)2+(y+1)2=4的圆心为(2,―1),半径为2,所以该圆与x轴垂直的直径的上端点为(2,1),即抛物线x2=2py(p>0)经过点(2,1),则4=2p,即p=2.故选:C.7.(2024·山西运城·三模)已知抛物线C:y 2=4x 的焦点为F ,动点M 在C 上,点B 与点A (1,―2)关于直线l:y =x ―1对称,则|MF ||MB |的最小值为( )AB .12CD .13【解题思路】根据对称性可得B(―1,0),即点B 为C 的准线与x 轴的交点,作MM ′垂直于C 的准线于点M ′,结合抛物线的定义可知|MF ||MB |=|MM ′||MB |= cos θ(∠MBF =θ),结合图象可得当直线MB 与C 相切时,cos θ最小,求出切线的斜率即可得答案.【解答过程】依题意,F(1,0),A(1,―2),设B(m,n)=―1m+12―1,解得m =―1n =0,即B(―1,0),点B 为C 的准线与x 轴的交点,由抛物线的对称性,不妨设点M 位于第一象限,作MM ′垂直于C 的准线于点M ′,设∠MBF =θ,θ∈ (0,π2),由抛物线的定义得|MM ′|=|MF |,于是|MF ||MB |=|MM ′||MB |= cos θ,当直线MB 与C 相切时,θ最大,cos θ最小,|MF||MB|取得最小值,此时直线BM 的斜率为正,设切线MB 的方程为x =my ―1(m >0),由x =my ―1y 2=4x消去x 得y 2―4my +4=0,则Δ=16m 2―16=0,得m =1,直线MB 的斜率为1,倾斜角为π4,于是θmax =π4,(cos θ)min =,所以|MF||MB|的最小值为故选:A.8.(2024·江西九江·二模)已知抛物线C:y 2=2px 过点A (1,2),F 为C 的焦点,点P 为C 上一点,O 为坐标原点,则( )A .C 的准线方程为x =―2B .△AFO 的面积为1C .不存在点P ,使得点P 到C 的焦点的距离为2D .存在点P ,使得△POF 为等边三角形【解题思路】求解抛物线方程,得到准线方程,判断A ;求解三角形的面积判断B ;利用|PF|=2.判断C ;判断P 的位置,推出三角形的形状,判断D .【解答过程】由题意抛物线C:y 2=2px 过点A(1,2),可得p =2,所以抛物线方程为C:y 2=4x ,所以准线方程为x =―1,A 错误;可以计算S △AFO =12×1×2=1,B 正确;当P(1,2)时,点P 到C 的焦点的距离为2,C 错误;△POF 为等边三角形,可知P 的横坐标为:12,当x =12时,纵坐标为:则12×=≠则△POF 为等腰三角形,不是等边三角形,故等边三角形的点P 不存在,所以D 错误.故选:B .二、多选题9.(2024·湖南长沙·二模)已知抛物线C 与抛物线y 2=4x 关于y 轴对称,则下列说法正确的是( )A .抛物线C 的焦点坐标是(―1,0)B .抛物线C 关于y 轴对称C .抛物线C 的准线方程为x =1D .抛物线C 的焦点到准线的距离为4【解题思路】依题意可得抛物线C 的方程为y 2=―4x ,即可得到其焦点坐标与准线方程,再根据抛物线的性。

抛物线课件 高三数学一轮复习

抛物线课件 高三数学一轮复习
解析:抛物线x2=4y的焦点F(0,1),准线方程为y=-1, 延长PM交准线于N,连PF,显然PN垂直于抛物线的准线,由抛物线定义知: |PA|+|PM|=|PA|+|PN|-1=|PA|+|PF|-1≥|AF|-1,当且仅当点P是线段AF与 抛物线的交点时取等号, 而|AF|= 5,所以|PA|+|PM|的最小值为 5-1.
解析:由题意知F(1,0),设A,B,C的横坐标 分别为x1,x2,x3,
由AF=13 (AB + AC),得1-x1=13(x2-x1+x3-x1), 所以x1+x2+x3=3,
由抛物线的定义得|AF|+|BF|+|CF|=x1+1+x2+ 1+x3+1=x1+x2+x3+3=6.
(2)[2024·广东广州模拟]设动点P在抛物线y=14x2上,点P在x轴上的射 影为点M,点A的坐标是(2,0),则|PA|+|PM|的最小值是___5_-__1__.
题后师说
求抛物线标准方程的常用方法
巩固训练2
(1)已知抛物线y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距
离大1,则抛物线的标准方程为( )
A.y2=x
B.y2=2x
C.y2=4x
D.y2=8x
答案: C 解析:由题意抛物线y2=2px(p>0)上任意一点到焦点F的距离与它到直线x=-1 的距离相同,因此-p2=-1,p=2,抛物线方程为y2=4x.故选C.
题后师说
抛物线定义的应用策略
巩固训练1
(1)[2024·辽 宁 辽 阳 模 拟 ] 已 知 抛 物 线 C : x2 = 2py(p>0) 的 焦 点 为 F ,
M(m,2)在抛物线C上,且|MF|=4,则p=( )
A.2

2024年高考数学一轮复习(新高考版)《抛物线》课件ppt

2024年高考数学一轮复习(新高考版)《抛物线》课件ppt

(2)过点(3,-4);
∵点(3,-4)在第四象限,∴抛物线开口向右或向下, 设抛物线的标准方程为y2=2px(p>0)或x2=-2p1y(p1>0). 把 点 (3 , - 4) 的 坐 标 分 别 代 入 y2 = 2px 和 x2 = - 2p1y 中 , 得 ( - 4)2 = 2p·3,32=-2p1·(-4), 则 2p=136,2p1=94. ∴所求抛物线的标准方程为 y2=136x 或 x2=-94y.
准线交于点 D.若|AF|=8,则以下结论正确的是
√A.p=4 √C.|BD|=2|BF|
√B.D→F=F→A
D.|BF|=4
如图所示,分别过点 A,B 作抛物线 C 的准线的垂线,垂足分别为点 E, M,连接 EF.设抛物线 C 的准线交 x 轴于点 P,则|PF|=p.因为直线 l 的 斜率为 3,所以其倾斜角为 60°. 因为AE∥x轴,所以∠EAF=60°, 由抛物线的定义可知,|AE|=|AF|, 则△AEF为等边三角形, 所以∠EFP=∠AEF=60°,则∠PEF=30°, 所以|AF|=|EF|=2|PF|=2p=8,得p=4, 故A正确;
__-__p2_,__0_
__0_,__p2__
_0_,__-__p2__
__x_=__-__p2__
__x_=__p2__
__x轴___
___y_=__-__p2__
__y_=__p2__
__y_轴__
__(0_,_0_)_
e=_1__
常用结论
1.通径:过焦点与对称轴垂直的弦长等于2p. 2.抛物线 y2=2px(p>0)上一点 P(x0,y0)到焦点 Fp2,0的距离|PF|=x0+p2, 也称为抛物线的焦半径.

抛物线课件高三数学一轮复习

抛物线课件高三数学一轮复习
2
=0,解得 p =-42(舍去)或 p =6.故选C.
法二

根据抛物线的定义及题意得,点 A 到 C 的准线 x =- 的距离为
2

12,因为点 A 到 y 轴的距离为9,所以 =12-9,解得 p =6.故选C.
2
目录
高中总复习·数学(提升版)
2. (2024·全国乙卷13题)已知点 A (1, 5 )在抛物线 C : y 2=2 px
1|≥3,故点 M 到 x 轴的距离 d ≥2,故最短距离为2.
目录
高中总复习·数学(提升版)
抛物线的标准方程与几何性质
【例3】 (1)已知 F 为抛物线 C : y 2=2 px ( p >0)的焦点,过 F
作垂直于 x 轴的直线交抛物线于 M , N 两点,以 MN 为直径的圆交 y 轴
于 C , D 两点,且| CD |=3,则抛物线方程为(
上,则 A 到 C 的准线的距离为
9
4
.

解析:∵点 A (1, 5 )在抛物线 y 2=2 px 上,∴5=2 p ,得 p =
5

5
9
,∴点 A 到准线的距离为 xA + =1+ = .
2
2
4
4
目录
高中总复习·数学(提升版)
直线与抛物线的位置关系
【例4】 (多选)(2024·新高考Ⅱ卷10题)设 O 为坐标原点,直线 y
2. 抛物线性质的应用技巧
(1)利用抛物线方程确定其焦点、准线时,关键是将抛物线方程
化成标准方程;
(2)要结合图形分析,灵活运用平面图形的性Байду номын сангаас简化运算.
目录
高中总复习·数学(提升版)

高三高考数学复习课件9-7抛物线

高三高考数学复习课件9-7抛物线

方法二 将 y=2 2(x-1)代入 y2=4x, 得 2x2-5x+2=0,
∴x1+x2=25,∴|PQ|=x1+x2+p=92,
O 到 PQ 的距离 d=2 3 2,
∴S△OPQ=12×|PQ|×d
=21×92×2 3 2=23 2.
【答案】 (1)B
3 (2)2 2
题型三 直线与抛物线的综合问题
设抛物线上点 P 到准线 l:x=-21的距离为 d, 由定义知|PA|+|PF|=|PA|+d, 当 PA⊥l 时,|PA|+d 最小,最小值为27, 此时 P 点纵坐标为 2,代入 y2=2x,得 x=2, ∴点 P 的坐标为(2,2). 【答案】 (1)9 (2)(2,2)
【思维升华】 与抛物线有关的最值问题,一般情况下 都与抛物线的定义有关.由于抛物线的定义在运用上有较 大的灵活性,因此此类问题也有一定的难度.“看到准线 想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关 问题的重要途径.
跟踪训练 2 (1)(2016·全国乙卷)以抛物线 C 的顶点为圆心的圆
交 C 于 A,B 两点,交 C 的准线于 D,E 两点.已知|AB|=4 2,
|DE|=2 5,则 C 的焦点到准线的距离为( )
A.2
B.4
C.6
D.8
(2)若抛物线y2=4x上一点P到其焦点F的距离为3,延长 PF交抛物线于Q,若O为坐标原点,则S△OPQ=________.
【思维升华】 (1)直线与抛物线的位置关系和直线与椭圆、 双曲线的位置关系类似,一般要用到根与系数的关系.
(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物 线的焦点.若过抛物线的焦点,可直接使用公式|AB|=x1+x2 +p,若不过焦点,则必须用一般弦长公式.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.7 抛物线
内容索引
基础知识 自主学习 题型分类 深度剖析 课时作业
基础知识 自主学习
知识梳理
1.抛物线的概念 平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫 做抛物线.点F叫做抛物线的 焦点,直线l叫做抛物线的准线 . 2.抛物线的标准方程与几何性质
标准 y2=2px(p>0) y2=-2px(p>0) x2=2py(p>0) x2=-2py(p>0)
方程
p的几何意义:焦点F到准线l的距离
图形
顶点 对称轴
焦点
离心率
F p2,0
y=0 F -p2,0
O(0,0)
F 0,p2 e=1
x=0 F 0,-p2
准线方程
p x=-2
x=
p 2
y=-p2
p y= 2
范围 x≥0,y∈R x≤0,y∈R y≥0,x∈R y≤0,x∈R
开口方向
向右
向左
向上
向下
跟踪训练1 设P是抛物线y2=4x上的一个动点,则点P到点A(-1,1)的距 离与点P到直线x=-1的距离之和的最小值为____5__. 答案 解析
几何画板展示
如图,易知抛物线的焦点为F(1,0),准线是x=-1, 由抛物线的定义知:点P到直线x=-1的距离等于点P 到F的距离.于是,问题转化为在抛物线上求一点P, 使点P到点A(-1,1)的距离与点P到F(1,0)的距离之和最小, 显然,连接AF与抛物线相交的点即为满足题意的点, 此时最小值为 [1--1]2+0-12= 5 .
如图,过点B作BQ垂直准线于点Q, 交抛物线于点P1, 则|P1Q|=|P1F|.则有|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=4. 即|PB|+|PF|的最小值为4.
引申探究 1.若将本例中的B点坐标改为(3,4),试求|PB|+|PF|的最小值. 解答
几何画板展示
由题意可知点(3,4)在抛物线的外部. ∵|PB|+|PF|的最小值即为B,F两点间的距离, ∴|PB|+|PF|≥|BF|= AB的倾斜角).
(3)以弦AB为直径的圆与准线相切.
(4)通径:过焦点垂直于对称轴的弦,长等于2p,通径是过焦点最短的弦.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛
物线.( × ) (2)方程y=ax2(a≠0)表示的曲线是焦点在x轴上的抛物线,且其焦点坐 标是( a4,0),准线方程是x=-a4 .( × ) (3)抛物线既是中心对称图形,又是轴对称图形.( × ) (y42)),AB则为x抛1x2物=线p42y,2=y12y2p=x(p->p02),的弦过长焦|点ABF|=( p2x1+,x02)+的p弦.(,√若)A(x1,y1),B(x2,
圆x2+y2-6x-7=0,即(x-3)2+y2=16,
则圆心为(3,0),半径为4.
又因为抛物线y2=2px(p>0)的准线与圆x2+y2-6x-7=0相切,
所以3+
p 2
=4,
解得p=2.
题型分类 深度剖析
题型一 抛物线的定义及应用 例1 设P是抛物线y2=4x上的一个动点,若B(3,2),则|PB|+|PF|的最小 值为____4____. 答案 解析 几何画板展示
= 16+4=2 5, 即|PB|+|PF|的最小值为 2 5.
2.若将本例中的条件改为:已知抛物线方程为y2=4x,直线l的方程为
x-y+5=0,在抛物线上有一动点P到y轴的距离为d1,到直线l的距 离为d2,求d1+d2的最小值. 解答 几何画板展示
由题意知,抛物线的焦点为F(1,0).
点P到y轴的距离d1=|PF|-1, 所以d1+d2=d2+|PF|-1. 易知d2+|PF|的最小值为点F到直线l的距离,
A. -12,12 C.[-1,1]
B.[-2,2] D.[-4,4]
Q(-2,0),设直线l的方程为y=k(x+2),代入抛物线方程,消去y整理 得k2x2+(4k2-8)x+4k2=0, 由Δ=(4k2-8)2-4k2·4k2=64(1-k2)≥0, 解得-1≤k≤1.
4.(教材改编)已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点 P(-2,-4),则该抛物线的标准方程为_y_2_=__-__8_x或__x_2_=__-__y_.
答案 解析
设抛物线方程为y2=2px(p≠0)或x2=2py(p≠0).将P(-2,-4)代入, 分别得方程为y2=-8x或x2=-y.
5.(2017·合肥调研)已知抛物线y2=2px(p>0)的准线与圆x2+y2-6x-7=0
相切,则p的值为____2____. 答案 解析
抛物线y2=2px(p>0)的准线为x=-p, 2
知识拓展
1.抛物线y2=2px (p>0)上一点P(x0,y0)到焦点F p2,0 的距离|PF|=x0+ p2,
也称为抛物线的焦半径.
2.y2=ax的焦点坐标为
a4,0,准线方程为x=-
a 4
.
3.设AB是过抛物线y2=2px(p>0)焦点F的弦,
若A(x1,y1),B(x2,y2),则
(1)x1x2=p42 ,y1y2=-p2. (2)弦长|AB|=x1+x2+p=
A.9
B.8
C.7
D.6
抛物线y2=4x的焦点为F(1,0),准线方程为x=-1. 根据题意可得,|PQ|=|PF|+|QF|=x1+1+x2+1=x1+x2+2=8.
3.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有 公共点,则直线l的斜率的取值范围是 答案 解析 几何画板展示
考点自测
1.(2016·四川)抛物线y2=4x的焦点坐标是 答案 解析
A.(0,2) C.(2,0)
B.(0,1) D.(1,0)
∵对于抛物线y2=ax,其焦点坐标为 a4,0, ∴对于y2=4x,焦点坐标为(1,0).
2.(2016·甘肃张掖一诊)过抛物线y2=4x的焦点的直线l交抛物线于P(x1, y1),Q(x2,y2)两点,如果x1+x2=6,则|PQ|等于 答案 解析
|1+5| 故 d2+|PF|的最小值为 12+-12=3 2, 所以d1+d2的最小值为3 2 -1.
思维升华
与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.由于抛 物线的定义在运用上有较大的灵活性,因此此类问题也有一定的难 度.“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有 关问题的重要途径.
相关文档
最新文档