数列 倒序相加 并项求和

合集下载

数列求和常见的7种方法

数列求和常见的7种方法

数列求和的根本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法〔合并法求和〕 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个根本方法。

数列是高中代数的重要容,又是学习高等数学的根底. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要容之一,除了等差数列和等比数列有求和公式外,大局部数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的根本方法和技巧. 一、利用常用求和公式求和利用以下常用求和公式求和是数列求和的最根本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n[例1]3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 〔利用常用公式〕=x x x n --1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n 〔利用常用公式〕 ∴1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=……………………….②〔设制错位〕 ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- 〔错位相减〕再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………②〔设制错位〕 ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS 〔错位相减〕∴1224-+-=n n n S三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列〔反序〕,再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-〔反序〕又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..……..②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-〔反序相加〕 ∴nn n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S ………….①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②〔反序〕又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 〔反序相加〕)89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 函数〔1〕证明:;〔2〕求的值.解:〔1〕先利用指数的相关性质对函数化简,后证明左边=右边 〔2〕利用第〔1〕小题已经证明的结论可知, 两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,假设将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n 〔分组〕 当a =1时,2)13(n n n S n -+==2)13(nn + 〔分组求和〕当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132〔分组〕=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n 〔分组求和〕 =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项〔通项〕分解,然后重新组合,使之能消去一些项,最终到达求和的目的. 通项分解〔裂项〕如:〔1〕)()1(n f n f a n -+= 〔2〕n n n n tan )1tan()1cos(cos 1sin -+=+〔3〕111)1(1+-=+=n n n n a n 〔4〕)121121(211)12)(12()2(2+--+=+-=n n n n n a n 〔5〕])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 〔7〕)11(1))((1CAn B An B C C An B An a n +-+-=++=〔8〕n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111〔裂项〕则 11321211+++⋅⋅⋅++++=n n S n 〔裂项求和〕=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵211211nn n n n a n =++⋅⋅⋅++++=∴)111(82122+-=+⋅=n n n n b n 〔裂项〕∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n 〔裂项求和〕=)111(8+-n = 18+n n [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S∵n n n n tan )1tan()1cos(cos 1sin -+=+〔裂项〕 ∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S 〔裂项求和〕 =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立答案:六、分段求和法〔合并法求和〕针对一些特殊的数列,将*些项合并在一起就具有*种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179° ∵)180cos(cosn n --= 〔找特殊性质项〕∴S n = 〔cos1°+ cos179°〕+〔 cos2°+ cos178°〕+〔cos3°+ cos177°〕+···+〔cos89°+ cos91°〕+ cos90° 〔合并求和〕= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得 ……∵0665646362616=+++++++++++k k k k k k a a a a a a 〔找特殊性质项〕 ∴ S 2002=2002321a a a a +⋅⋅⋅+++〔合并求和〕=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,假设103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+〔找特殊性质项〕 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=〔合并求和〕=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的构造及特征进展分析,找出数列的通项及其特征,然后再利用数列的通项提醒的规律来求数列的前n 项和,是一个重要的方法.[例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个〔找通项及特征〕 ∴ 11111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n 〔分组求和〕 =)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+ [例16] 数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值. 解:∵])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n 〔找通项及特征〕=])4)(3(1)4)(2(1[8+++++⋅n n n n 〔设制分组〕=)4131(8)4121(4+-+++-+⋅n n n n 〔裂项〕∴∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n 〔分组、裂项求和〕 =418)4131(4⋅++⋅ =313 提高练习:1.数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==,⑴设数列),2,1(21 =-=+n a a b n n n ,求证:数列{}n b 是等比数列; ⑵设数列),2,1(,2 ==n a c n nn ,求证:数列{}n c 是等差数列; 2.设二次方程n a *2-n a +1*+1=0(n ∈N)有两根α和β,且满足6α-2αβ+6β=3.(1)试用n a 表示a 1n +;3.数列{}n a 中,2,841==a a 且满足n n n a a a -=++122*N n ∈⑴求数列{}n a 的通项公式;⑵设||||||21n n a a a S +++= ,求n S ;。

高中数学数列问题的解题技巧

高中数学数列问题的解题技巧

高中数学数列问题的解题技巧范国栋(江苏省滨海中学㊀224000)摘㊀要:适当运用一定的解题技巧ꎬ能够有效提高解题效率ꎬ增强解题的正确率.在高中数学数列问题的探索过程中ꎬ错位相减法㊁倒序相加求和法㊁并项求和法㊁分组求和法是同学们使用频率较高的一种解题方法.本文对此进行了分析研究.关键词:高中ꎻ数学ꎻ数列ꎻ问题ꎻ解题ꎻ技巧中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2020)28-0039-02收稿日期:2020-07-05作者简介:范国栋(1980.5-)ꎬ男ꎬ江苏省滨海人ꎬ本科ꎬ中学高级教师ꎬ从事高中数学教学研究.㊀㊀数列知识一直以来都是数学考核中的重点内容ꎬ也是每年高考的必考环节ꎬ若能够掌握其中规律ꎬ适当运用一定的解题技巧ꎬ则能够有效提高解题效率ꎬ增强解题的正确率.下文结合高中数学中常见的数列问题类型ꎬ逐一提出了相应的解题技巧ꎬ以便于同学们能够进一步领会数列知识点ꎬ掌握解题思路ꎬ克服在数列问题解题中遇到的困难.㊀㊀一㊁错位相减法在高中数学数列问题的探索过程中ꎬ可以发现ꎬ 错位相减法 是同学们使用频率较高的一种解题方法.在解题过程中ꎬ若遇到等比数列求和问题㊁等差数列与等比数列相乘的求和问题ꎬ就可以选择错位相减法.一般情况下ꎬ建议在遇到数列问题时首先运用错位相减法ꎬ先在等式的两边同时乘以等比数列的公比ꎬ之后再将两个等式相减ꎬ最后利用等比数列的前n项的总和公式求和ꎬ以此完成解题.在这一过程中ꎬ一定要先掌握数列的相关规律ꎬ才能够更灵活的运用解题方法.举例分析ꎬ题目为:已知Sn=1+3x+5x2+7x3+ +(2n-1)xn-1ꎬ其中xʂ0且xʂ1ꎬ求和Sn.分析:结合题目可知这一题目的通项为等差数列的通项{2n-1}与等比数列的通项{xn-1}之积ꎬ是{(2n-1)xn-1}.该等式两边同乘以等比数列的公比xꎬ得xSn=1x+3x2+5x3+7x4+ +(2n-1)xn.之后ꎬ再将原式与该式两边相减ꎬ可得到:(1-x)Sn=1+2x+2x2+2x3+2x4+ +2xn-1-(2n-1)xn.之后ꎬ再利用等比数列的求和公式ꎬ可以得到:(1-x)Sn=1+2x 1-xn-11-x-(2n-1)xnꎬʑSn=(2n-1)xn+1-(2n+1)xn+(1+x)(1-x)2.一般来说ꎬ若需要推导等比数列的前n项之和公式时ꎬ就可以使用此种解题方法.㊀㊀二㊁倒序相加求和法倒序相加求和法可以简单理解为:与数列首末项等距的两项之和与首末两项之和相等ꎬ则可以将 正 ㊁ 反 序两个和式相加ꎬ得到常数列的和ꎬ则是可以将这种方法称为 倒序相加求和法 .这种方法可以运用于 求等差数列 的数列问题中.举例分析ꎬ题目为:求1+2+3+4+ +n的值.解题:可以记93S=1+2+3+4+ +(n-1)+nꎬS=n+(n-1)+ +4+3+2+1ꎬ则可得到:2S=(n+1)+(n+1)+ +(n+1)+(n+1)=n(n+1)ꎬʑS=n(n+1)2.结合上述题目与解题过程ꎬ可以发现ꎬ在求1+2+3+ +n的过程中ꎬ反序相加求和是其基本的解题思想ꎬ综合考量这一题目的对称项ꎬ可以发现对称项之和为n+1.因此ꎬ就不难以想到利用这种方法求解ꎬ这样做能够有效避免很多复杂繁琐的解题步骤ꎬ只要同学们能够对各个小项合理配对ꎬ就能够有效求出公式之和.㊀㊀三㊁并项求和法在数列问题的探索过程中ꎬ很多时候我们并不能够幸运地遇到能够运用错位相减法求解的题目ꎬ此时可以结合题目的实际情况ꎬ比如:已知条件㊁求解方向㊁题目公式中的内部规律等ꎬ把握题目的类型ꎬ若发现这些项与特殊项之间存在联系ꎬ有时可以选择并项求和法进行解题.并项求和法就是结合具体的数列ꎬ将题目中的某些具有关联的项合并在一起ꎬ促使其具备某种特殊的性质.因此ꎬ使用合并求和法解题ꎬ则可以将题目中的项放到一起先求和ꎬ之后再解决 Sn 的问题.㊀举例分析ꎬ题目为:cos1ʎ+cos2ʎ+cos3ʎ+cos4ʎ+ +cos178ʎ+cos179ʎꎬ求Sn.结合题目可知其内在联系为各项同名: cos ꎬ各角成等差数列ꎬ对称两项的角度的和为180ʎꎬ则可以先寻找特殊项ꎬ之后利用合并求和法ꎬ先求各项之和ꎬ之后再求Sn.具体过程为:ȵcosnʎ=-cos(180ʎ-nʎ)ꎬʑSn=(cos1ʎ+cos179ʎ)+(cos2ʎ+cos178ʎ)+(cos3ʎ+cos177ʎ)+(cos4ʎ+cos176ʎ)+ +(cos88ʎ+cos92ʎ)+cos90ʎ=0.㊀㊀四㊁分组求和法分组求和法可以运用到一些特殊的数列问题解题过程中ꎬ比如:若某种数列无法从表面上发现其内在规律以此判定是等差数列还是等比数列ꎬ则可以将数列根据一定方法进行拆解ꎬ以便于掌握其中的内在联系ꎬ最终求解ꎬ这种数列问题就可以使用分组求合法.举例分析ꎬ题目为:214ꎬ418ꎬ6116ꎬ ꎬ求这个数列的前n项的和.解题过程与分析:在题目中可以发现ꎬ这个数列的通项公式为an=2n+12n+1ꎬ但是其中的数列{2n}则是一个等差数列ꎻ数列{12n+1}为等比数列ꎬ因此ꎬ可以选择分组求和法解题.Sn=(2+4+6+ +2n)+122+123+124 +12n+1öø÷æèç=n(2+2n)2+4(1-12n)1-12=n(n+1)+12-12n+1结合数列问题ꎬ同学们一定要认真观察数列的通项公式ꎬ若公式能够满足 拆分成若干项的和ꎬ且这些项的和能够构成等比数列或者等差数列 ꎬ就可以使用分组求求和法.总而言之ꎬ数列问题是高中数学问题体系中的重点内容ꎬ也是不少人解题过程中的 痛点 .因此ꎬ同学们要结合具体的数列问题题目情况ꎬ根据已知条件与求解方向ꎬ灵活选择使用上述的错位相减法㊁反序相加法求和法㊁合并求和法㊁分组求和法ꎬ从而克服解题过程中的困难ꎬ顺利解题ꎬ在考试中取得良好的成绩.㊀㊀参考文献:[1]鲍道斌.高中数学数列题的解题技巧探究[J].数学学习与研究ꎬ2019(08):26.[2]于素静.高中数学数列问题的解题技巧探究[J].教育现代化ꎬ2018(37):128.[3]滕亦成ꎬ王守磊.高中数学数列题解题技巧分析[J].数学学习与研究ꎬ2018(19):47.[4]陈春明.高中数学数列的学习方法及解题技巧[J].中学数学ꎬ2018(13):32-33.[5]陈爱兰.摭谈高中数学数列问题的解题技巧[J].中学数学ꎬ2018(01):49-50.[责任编辑:李㊀璟]04。

高中数学同步教学课件 习题课 分组求和、倒序相加求和、并项求和

高中数学同步教学课件 习题课 分组求和、倒序相加求和、并项求和

跟踪训练1 数列{an}满足a1=1,an是-1与an+1的等差中项. (1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;
由已知可得an+1-1=2an,即an+1=2an+1,可化为an+1+1=2(an+ 1),故数列{an+1}是以a1+1=2为首项,2为公比的等比数列. 即有an+1=(a1+1)·2n-1=2n, 所以an=2n-1.
D.Sn=1+2n-1,n∈N+
∵an=1+2n-1, 1-2n
∴Sn=n+ 1-2 =n+2n-1,n∈N+.
1234
2.在数列{an}中,已知Sn=1-5+9-13+17-21+…+(-1)n-1(4n-3),
则S15+S22-S31的值为
√ A.13 B.-76 C.46
D.76
∵S15=(-4)×7+(-1)14(4×15-3)=29, S22=(-4)×11=-44, S31=(-4)×15+(-1)30(4×31-3)=61. ∴S15+S22-S31=29-44-61=-76.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
6.已知数列{an}的通项公式为an=n-2(n∈N+),设f(x)=x+log228+-xx ,则 数列{f(an)}的各项之和为
√ A.36 B.33 C.30 D.27
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1234
3.已知an=(-1)n,数列{an}的前n项和为Sn,则S9与S10的值分别是_-__1_,_0_. S10=(a1+a2)+(a3+a4)+…+(a9+a10)=0,S9=S10-a10=-1.
1234
4.若
F(x)=4x4+x 2,则

数列之分组并项倒序求和

数列之分组并项倒序求和
2n
2(1-2

2n
3+…+(-1) ×2n]=
+n=22n+1+n-2.
1-2
8 已知数列 {
} 的前 项和 =
2 +
,
2
∈ ∗ .
(1)求数列 { } 的通项公式;
(2)设 = 2 + (−1) ,求数列 { } 的前 2 项和.
(3) 求数列 { } 的前 项和 .
A.2n+n2-1
B.2n+1+n2-1
C.2n+1+n2-2
D.2n+n-2
2(1-2 ) (1+2 -1) n+1
解析 Sn= 1-2 + 2 =2 -2+n2.
1
2n-2n
1
1
1
2 数列 1,,2,,4,,…的前 2n 项和 S2n=________.
2
4
8
解析
1 1 1
1
1 n 1
-1
n
n
S2n=(1+2+4+…+2 )+( + + +…+ n)=2 -1+1- n=2 - n.
3+6066
2
2×2
2(+2021)
2021) =
+
+ ⋯.+
, ( + 2021) + ⋯ . +(3) +
3+6066
3+6066
3+6066
2(+2021)
2×2
2
(2) + (1) =
+ ⋯.+
+
, ∴ (1) + (2) + ⋯ + (

数列的求和

数列的求和
2 3 n
解 : a a a a
2 3
n
a(1 a n ) (a 1) 1 a na(a 1)
方法2:错位相减法(借因子法)
若数列的通项公式为 cn an bn ,其中 an bn 中有一个是等差数列,另一个是等比数列,求和 时一般在已知和式的两边都乘以组成这个数列的 等比数列的公比;然后再将得到的新和式和原和 式相减,转化为同倍数的等比数列求和,这种方 法就是错位相减法。
4.裂项相消法:把数列的通项拆成两项之差,即数列的每一 项都可按此法拆成两项之差,在求和时一些正负项相互抵消, 于是前n项的和变成首尾若干少数项之和,这一求和方法称 为 裂项相消法.
方法1:公式法
(若问题可以转化为等差、等比数列,则可以直接 利用求和公式即可)
例 求和 : a a a a (a 0) 1.
Thank you!
S f (5) f (4) ... f (0) f (1) ... f (5) f (6) S f (6) f (5) ... f (1) f (0) ... f (4) f (5) 两式相加得 : (即倒序相加得 :)
2S [ f (5) f (6)] [ f (4) f (5)] ... [ f (0) f (1)] [ f (1) f (0)] ... [ f (5) f (4)] [ f (6) f (5)] 2 12 2
等差数列的求和公式:
n(a1 an ) 1 sn na1 n(n 1)d 2 2
等比数列的求和公式:
q 1 q 1
求数列的前n项和Sn,重点应掌握以下几种方法:

高考数学解答题(新高考)数列求和(倒序相加法、分组求和法)(典型例题+题型归类练)(解析版)

高考数学解答题(新高考)数列求和(倒序相加法、分组求和法)(典型例题+题型归类练)(解析版)

专题05 数列求和(倒序相加法、分组求和法)(典型例题+题型归类练)一、必备秘籍1、倒序相加法,即如果一个数列的前n 项中,距首末两项“等距离”的两项之和都相等,则可使用倒序相加法求数列的前n 项和.2、分组求和法2.1如果一个数列可写成n n n c a b =±的形式,而数列{}n a ,{}n b 是等差数列或等比数列或可转化为能够求和的数列,那么可用分组求和法.2.2如果一个数列可写成n n na n cb n ⎧⎪=⎨⎪⎩为奇数为偶数的形式,在求和时可以使用分组求和法.二、典型例题类型1:倒序相加法例题1.(2022·全国·高三专题练习)已知函数()y f x =满足()(1)1f x f x +-=,若数列{}n a 满足121(0)(1)n n a f f f f f n n n -⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则数列{}n a 的前20项和为( )A .100B .105C .110D .115思路点拨:根据题意:,对应关系作用下的量“”和“”始终满足: ;再结合求解目标:,可使用倒序相加法解答过程:;倒序重写一次: ;两式相加因为函数()y f x =满足()(1)1f x f x +-=, 121(0)(1)n n a f f f f f n n n -⎛⎫⎛⎫⎛⎫=+++⋯⋯++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭①,121(1)(0)n n n a f f f f f n n n --⎛⎫⎛⎫⎛⎫∴=+++⋯⋯++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭②, 由①+②可得21n a n =+,12n n a +∴=, 所以数列{}n a 是首项为1,公差为12的等差数列,其前20项和为20120121152+⎛⎫+ ⎪⎝⎭=. 故选:D.例题2.(2022·全国·高三专题练习)设函数()221x f x =+,求得()()()()()54045f f f f f -+-+⋅⋅⋅++⋅⋅⋅++的值为( ) A .9 B .11C .92D .112思路点拨:通过观察求解目标:求,注意到对应关系作用下的量头尾复合关系“”,故先验证的值.解答过程:设 倒序重写一次: 则 两式相加()221x f x =+,()()()22222212121221x x x x x x f x f x --⋅∴+-=+=+++++()2122222211221x x x x x +⋅=+==+++,设()()()()()54045S f f f f f =-+-+⋅⋅⋅++⋅⋅⋅++, 则()()()()()54045S f f f f f =+++++-+-,两式相加得()()2115511222S f f ⎡⎤=⨯+-=⨯=⎣⎦,因此,11S =. 故选:B.类型2:分组求和角度1:通项为n n n c a b =±型求和例题3.(2022·河南郑州·三模(文))已知数列{}n a 满足111,1n n a a S +==+,其中n S 为{}n a 的前n 项和,n *∈N . (1)求数列{}n a 的通项公式;(2)设数列{}n n b a -是首项为1,公差为2的等差数列,求数列{}n b 的前n 项和. 【答案】(1)12n na (2)221n n -+(1)11a =,11n n a S +=+, 当1n =时,可得2112a a =+=.当2n ≥时,11n n a S -=+,则1n n n a a a +-=,即12n n a a +=,且212a a =. 故{}n a 是以1为首项,2为公比的等比数列 所以12n n a第(2)问解题思路点拨:由(1)知:,并且知是首项为1,公差为2的等差数列,可先求出的通项,再求出的通项.解答过程:设的前项和为由是首项为1,公差为2的等差数列,,由(1)知注意到表达式为等差+等比;可用分组求和(2)由题意12(1)21n n b a n n -=+-=-,所以1221n n b n -=+-, 设{}n b 的前n 项和为n T()()()01121212112222132121.122n n n n n n n T b b b n n -+--=+++=+++++++-=+=-+- 角度2:通项为nn na n c bn ⎧⎪=⎨⎪⎩为奇数为偶数型求和例题4.(2022·湖北·荆门市龙泉中学二模)已知数列{}n a 的前n 项和为112n n S a +=-,且214a = (1)求数列{}n a 的通项公式;(2)()0.5*log ,,n n n a n b n N a n ⎧=∈⎨⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T ; 【答案】(1)12nn a ⎛⎫= ⎪⎝⎭(2)211334nn +-⨯ (1)在数列{}n a 中, 由112n n S a +=-可知1212n n S a ++=-,两式作差可得()()1211212n n n n S a S a +++---=-,即2112n n a a ++=,当1n =时,1212S a =-,,即112a =,211412a a ==,所以数列{}n a 是以12为首项,12为公比的等比数列,即1111222n nn a -⎛⎫⎛⎫=⋅= ⎪⎪⎝⎭⎝⎭;第(2)问解题思路点拨:由(1)知:,可代入到第(2)问中,求出的通项公式:,注意到奇偶项通项不同,直接考虑分组求和.奇偶项通项不同,采用分组求和可作为一个解题技巧(注意到本例求解的为偶数项和,最后一项一定是代入偶数的通项公式,否则,若是求,最后一项是代入奇数项通项,还是代入偶数项通项,则需要讨论)分组求和(2)由(1)知()*,1,2nn n n b n N n ⎧⎪=∈⎨⎛⎫⎪ ⎪⎝⎭⎩为奇数为偶数,所以()()21321242n n n T b b b b b b -=+++++++()211113214162n n ⎛⎫=+++-++++ ⎪⎝⎭()111441211214nn n ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+-⎢⎥⎣⎦=+-211334nn =+-⨯. 例题5.(2022·江西·新余四中模拟预测(理))在数列{}n a 中,21,,2,n nn n a n -⎧=⎨⎩为奇数为偶数 (1)求1a ,2a ,3a ; (2)求数列{}n a 的前n 项和n S .第(2)问解题思路点拨:由题意知,注意到奇偶项通项不同,直接考虑分组求和.奇偶项通项不同,采用分组求和可作为一个解题技巧当为偶数时,数列{的前项中有个奇数项,有个偶数项. (注意到本例求解的,最后一项是代入奇数项通项,还是代入偶数项通项,需要讨论)(讨论时优先讨论为偶数)为奇数为偶数当为奇数时,为偶数,注意到为偶数,所以可使用偶数项和的结论,代入左侧求和结果:,则:,整理:综上:21n b -++1n a -+,注意到最后一项n 为偶数,再利用1n n a -+,其中奇数项,偶数项各为【答案】(1)11a =,24a =,35a =(2)212224,,2324,.23n n n n n n S n n n ++⎧+-+⎪⎪=⎨--⎪+⎪⎩为奇数为偶数 (1)因为21,,2,,n n n n a n -⎧=⎨⎩为奇数为偶数所以12111a =⨯-=,2224a ==,32315a =⨯-=,(2)因为21,,2,,n n n n a n -⎧=⎨⎩为奇数为偶数 所以1a ,3a ,5a ,是以1为首项,4为公差的等差数列,2a ,4a ,6a ,是以4为首项,4为公比的等比数列.当n 为奇数时,数列的前n 项中有12n +个奇数项,有12n -个偶数项.所以()()1231322431n n n n n n S a a a a a a a a a a a a ---=+++⋅⋅⋅+=++⋅⋅⋅+++++⋅⋅⋅++12211141411242214221423n n n n n n n -+⎛⎫++⎛⎫-- ⎪ ⎪++-⎝⎭⎝⎭=⨯+⨯+=+-; 当n 为偶数时,数列{{}n a 的前n 项中有2n 个奇数项,有2n个偶数项.所以()()1231331242n n n n n n S a a a a a a a a a a a a ---=+++⋅⋅⋅+=++⋅⋅⋅+++++⋅⋅⋅++2224141242214221423nn n n n n n +⎛⎫⎛⎫-- ⎪ ⎪--⎝⎭⎝⎭=⨯+⨯+=+-. 所以212224,,2324,.23n n n n n n S n n n ++⎧+-+⎪⎪=⎨--⎪+⎪⎩为奇数为偶数 三、题型归类练1.(2022·全国·高三专题练习)已知1()12F x f x ⎛⎫=+- ⎪⎝⎭是R 上的奇函数,*121(0)(1)()n n a f f f f f n n n n -⎛⎫⎛⎫⎛⎫=+++++∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭N ,则数列{}n a 的通项公式为( )A .n a n =B .2n a n =C .1n a n =+D .223n a n n =-+【答案】C由题已知()112F x f x ⎛⎫=+- ⎪⎝⎭是R 上的奇函数,故()()F x F x -=-, 代入得:()11222f x f x x R ⎛⎫⎛⎫-++=∈ ⎪ ⎪⎝⎭⎝⎭, ∴函数()f x 关于点112⎛⎫⎪⎝⎭,对称, 令12t x =-, 则112x t +=-, 得到()()12f t f t +-=, ∵()()1101n n a f f f f n n -⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭,()()1110n n a f f f f n n -⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭,倒序相加可得()221n a n =+, 即1n a n =+, 故选:C .2.(2022·全国·高三专题练习)已知函数()113sin 22f x x x ⎛⎫=+-+ ⎪⎝⎭,则122018201920192019f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( )A .2018B .2019C .4036D .4038【答案】A()11113sin 22f x x x ⎛⎫-=-+-+ ⎪⎝⎭,()()12f x f x ∴+-=,令122018201920192019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 则201712019201922018019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,两式相加得:222018S =⨯,2018S ∴=. 故选:A .3.(2022·黑龙江·鹤岗一中高二阶段练习)已知函数()1e e xx f x =+,数列{}n a 为等比数列,0n a >,1831a =,则()()()()123365ln ln ln ln f a f a f a f a ++++=______.【答案】3652∵()e e 1xx f x =+,∴()()e e e e 1)e (e 1)2e e 1e 1e 1(e 1)(e (e 1)2e x x x x x x x xxx x x x xf x f x -------++++++-=+===++++++. ∵数列{}n a 是等比数列,∴2136523641831a a a a a ====,∴2136523643651183ln ln ln ln ln ln ln 0a a a a a a a +=+==+==.设()()()36512365ln ln ln S f a f a f a =+++,①则()()()3653653641ln ln ln S f a f a f a =+++,②①+②,得()()()()()()()()()3651365236436512ln ln ln ln ln ln S f a f a f a f a f a f a =++++++365=,∴3653652S =. 故答案为:36524.(2022·全国·高三专题练习)已知函数()331xx f x =+,()x R ∈,正项等比数列{}n a 满足501a =,则()()()1299f lna f lna f lna ++⋯+等于______. 【答案】992因为3()31x x f x =+,所以33()()13131x xx x f x f x --+-=+=++.因为数列{}n a 是等比数列,所以21992984951501a a a a a a a =====,即1992984951ln ln ln ln ln ln 0a a a a a a +=+==+=.设9912399(ln )(ln )(ln )(ln )S f a f a f a f a =++++ ①,又99999897(ln )(ln )(ln )=++S f a f a f a +…+1(ln )f a ②,①+②,得99299=S ,所以99992=S . 5.(2022·黑龙江双鸭山·高二期末)设4()42xx f x =+,若122014()()()201520152015S f f f =++⋯⋯+,则S =________. 【答案】1007解:∵函数f (x )442xx =+,∴f (x )+f (1﹣x )11114444442424242(42)44242x x x x x x xx x x x x x ----⋅=+=+=+=++++⋅++ 1 故可得S =f (12015)+f (22015)…+f (20142015)=1007×1=1007, 故答案为:10076.(2022·全国·高二课时练习)已知()442xx f x =+,求122010201120112011f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 【答案】1005.因为()442x x f x =+,所以()1144214242442x x xx f x ---===++⨯+, 所以()()11f x f x +-=.令12200920102011201120112011S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 倒写得20102009212011201120112011S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 两式相加得22010S =,故1005S =.7.(2022·黑龙江·哈师大附中三模(理))已知数列{}n a 的前n 项和为n S ,且1n n a S +=. (1)求数列{}n a 的通项公式;(2)设2log n n n b a a =+,求数列{}n b 的前n 项和n T . 【答案】(1)12nn a ⎛⎫= ⎪⎝⎭(2)22122++⎛⎫- ⎪⎝⎭nn n(1)∵1n n a S +=,① 当1n =时,111a a +=,即112a =, 当2n ≥时,111n n a S --+=.②由①-②得120n n a a --=,即112n n a a -=, ∴数列{}n a 是以12为首项,12为公比的等比数列, ∴12nn a ⎛⎫= ⎪⎝⎭.(2)由(1)知22lo 111log 222g ⎛⎫⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-nnnn n n n b a a ,∴()121211112222⎛⎫⎛⎫⎛⎫=+++=+++-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭nn n n T b b b∴()()21112211121112222212⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭++++⎢⎥⎛⎫⎛⎫⎣⎦=+=-+=- ⎪ ⎪⎝⎭⎝⎭-nn n n n n n n n .8.(2022·广东·二模)已知递增等比数列{}n a 的前n 项和为n S ,且满足2134a a a =,314S =. (1)求数列{}n a 的通项公式.(2)若数列{}n b 满足()()*,3,313k n a n k b k N k k n k=⎧=∈⎨-<<⎩,求数列{}n b 的前15项和. 【答案】(1)2n n a =(2)92(1)设{}n a 的公比为q ,则由2134a a a =,得21114a q a a q =⋅.整理得14a q =.又314S =,得()21114a q q ++=.联立得()1214114a q a q q =⎧⎪⎨++=⎪⎩,消去1a ,得22520q q -+=. 解得2q 或12q =. 又因为{}n a 为递增等比数列, 所以2q,12a =.所以112n nn a a q -==.(2)(方法一)当1k =时,()1*,31,03n a n b n N n =⎧=∈⎨<<⎩,则121b b ==,312b a ==,同理,列举得452b b ==,2622b a ==,783b b ==,3932b a ==,10114b b ==,41242b a ==,13145b b ==,51552b a ==.记{}n b 的前n 项和为n T ,则 151215123451122334455T b b b a a a a a =+++=++++++++++++++()()1234521234522222=⨯+++++++++()()5212155292212⨯-+⨯=⨯+=-. 所以数列{}n b 的前15项和为92.(方法二)由()()*,3,313k n a n k b k N k k n k=⎧=∈⎨-<<⎩, 得()*,32,31,3n k k n k b k n k k N a n k =-⎧⎪==-∈⎨⎪=⎩,记{}n b 的前n 项和为n T ,则151215123451122334455T b b b a a a a a =+++=++++++++++++++ ()()1234521234522222=⨯+++++++++()()5212155292212⨯-+⨯=⨯+=-. 所以数列{}n b 的前15项和为92.9.(2022·甘肃兰州·一模(理))在①5913S S =,②2a 是1a 和4a 的等比中项,这两个条件中任选一个,补充在下面问题中,并解答.问题:已知公差d 不为0的等差数列{}n a 的前n 项和为n S ,36a =.(1)______,求数列{}n a 的通项公式;(2)若数列2n a n b =,n n n c a b =+,求数列{}n c 的前n 项和n T . 【答案】(1)答案见详解;(2)()24413n n T n n =++- (1)选①:由于()1553552a a S a +==,()1995992a a S a +== 所以53955193S a S a ==,又36a =,所以510a =,故()53122d a a =-= 所以()332n a a n d n =+-=;选②:2a 是1a 和4a 的等比中项,则2214a a a =,所以()()()23332d d a d a a -=-+,又36a =,解得2d =,0d =(舍去)所以()332n a a n d n =+-=;(2)24==n a n n b ,24n n n n c a b n =+=+,则()()()22422424n n T n =++⨯++++ ()()2212444n n =+++++++ ()()22414441143n n n n n n -=++=++-- 10.(2022·重庆·二模)设n S 为数列{}n a 的前n 项和,已知0n a >,()2243n n n a a S n *+=+∈N .若数列{}n b 满足12b =,24b =,212n n n b b b ++=()n N *∈. (1)求数列{}n a 和{}n b 的通项公式;(2)设()()1,21,,2,n n n n k k NS c b n k k N **⎧=-∈⎪=⎨⎪=∈⎩,求数列{}n c 的前2n 项的和2n T . 【答案】(1)21n a n =+,2n n b =(2)1244213n n n T n +-=++ (1)由0n a >,2243n n n a a S +=+①,得:当1n =时,211230a a --=,解得13a =或11a =-(负值舍去),当2n ≥时,2111243n n n a a S ---+=+②,-①②得:()()()1112n n n n n n a a a a a a ---+-=+, 所以12n n a a --=,所以数列{}n a 是以3为首项,2为公差的等差数列.所以()*21n a n n N =+∈.因为数列{}n b 满足12b =,24b =,212n n n b b b ++=.所以数列{}n b 是等比数列,首项为2,公比为2.所以2n n b =.(2)因为()*21N n a n n =+∈,所以()()2321222n n n S n n n n ++==+=+, 所以()()242211112221335572121n n T n n =+++⋅⋅⋅++++⋅⋅⋅+⨯⨯⨯-+ ()414111111111233557212114n n n -⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋅⋅⋅+-+ ⎪ ⎪ ⎪ ⎪⎢⎥-+-⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()41411122114n n -⎛⎫=-+ ⎪+-⎝⎭ 144213n n n +-=++. 11.(2022·陕西咸阳·二模(理))已知函数()()*21f n n n N =-∈,数列{}n b 满足()()*2f n n b n N =∈.数列{}n a为等差数列,满足11a b =,322a b =-.(1)求数列{}n a 、{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和n S .【答案】(1)2n a n =;212n n b -=;(2)21212233n n S n n +=⋅++-. (1)由题意得:212n n b -=,112a b ==,3226a b =-=,∴等差数列{}n a 的公差3122a a d -==, ()2212n a n n ∴=+-=;(2)由(1)得:2122n n n a b n -+=+;()()()()1352121421232222114n n n S n n n --∴=+++⋅⋅⋅+++++⋅⋅⋅+=++-()()2122121412333n n n n n n +=++-=⋅++-。

2020年高考数学(理)总复习:数列的求和及综合应用(解析版)

2020年高考数学(理)总复习:数列的求和及综合应用(解析版)

2020年高考数学(理)总复习:数列的求和及综合应用题型一 数列求和 【题型要点】(1)分组求和法:分组求和法是解决通项公式可以写成c n =a n +b n 形式的数列求和问题的方法,其中{a n }与{b n }是等差(比)数列或一些可以直接求和的数列.(2)裂项相消法:将数列的通项分成两个代数式子的差,即a n =f (n +1)-f (n )的形式,然后通过累加抵消中间若干项的求和方法.形如1+n n a a c(其中{a n }是各项均不为0的等差数列,c 为常数)的数列等.(3)错位相减法:形如{a n ·b n }(其中{a n }为等差数列,{b n }为等比数列)的数列求和,一般分三步:①巧拆分;②构差式;③求和.(4)倒序求和法:距首尾两端等距离的两项和相等,可以用此法,一般步骤:①求通项公式;②定和值;③倒序相加;④求和;⑤回顾反思.(5)并项求和法:先将某些项放在一起求和,然后再求S n .(6)归纳猜想法:通过对S 1,S 2,S 3,…的计算进行归纳分析,寻求规律,猜想出S n ,然后用数学归纳法给出证明.【例1】已知各项为正数的等比数列{a n }的前n 项和为S n ,数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),若S 3=b 5+1,b 4是a 2和a 4的等比中项. (1)求数列{a n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .【解析】 (1)∵数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),∴b 5=6,b 4=4,设各项为正数的等比数列{a n }的公比为q ,q >0, ∵S 3=b 5+1=7,∴a 1+a 1q +a 1q 2=7,① ∵b 4是a 2和a 4的等比中项,∴a 2·a 4=a 23=16,解得a 3=a 1q 2=4,②由①②得3q 2-4q -4=0,解得q =2,或q =-23(舍),∴a 1=1,a n =2n -1.(2)当n 为偶数时,T n =(1+1)·20+2·2+(3+1)·22+4·23+(5+1)·24+…+[[(n -1)+1]·2n-2+n ·2n -1=(20+2·2+3·22+4·23+…+n ·2n -1)+(20+22+…+2n -2),设H n =20+2·2+3·22+4·23+…+n ·2n -1,①2H n =2+2·22+3·23+4·24+…+n ·2n ,② ①-②,得-H n =20+2+22+23+…+2n -1-n ·2n=1-2n 1-2-n ·2n =(1-n )·2n -1,∴H n =(n -1)·2n +1,∴T n =(n -1)·2n+1+1-4·2n 1-4=⎪⎭⎫ ⎝⎛-32n ·2n +23.当n 为奇数,且n ≥3时,T n =T n -1+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-35n ·2n -1+23+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-322n ·2n -1+23,经检验,T 1=2符合上式, ∴T n =⎪⎪⎩⎪⎪⎨⎧+⋅⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛--为偶数为奇数n n n n n n ,32232,3223221【反思总结】(1)错位相减法适用于求数列{a n ·b n }的前n 项和,其中{a n }为等差数列,{b n }为等比数列. (2)所谓“错位”,就是要找“同类项”相减.要注意的是相减后所得部分,求等比数列的和,此时一定要查清其项数.(3)为保证结果正确,可对得到的和取n =1,2进行验证.题组训练一 数列求和已知等比数列{a n }的前n 项和为S n ,且6S n =3n +1+a (a ∈N *).(1)求a 的值及数列{a n }的通项公式;(2)设b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2,求{b n }的前n 项和T n .【解析】 (1)∵等比数列{a n }满足6S n =3n +1+a (a ∈N *),n =1时,6a 1=9+a ;n ≥2时,6a n =6(S n -S n -1)=3n +1+a -(3n +a )=2×3n .∴a n =3n -1,n =1时也成立,∴1×6=9+a ,解得a =-3,∴a n =3n -1.(2)b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2=(-1)n -1(2n 2+2n +1)n 2(n +1)2=(-1)n -1()⎥⎦⎤⎢⎣⎡++22111n n当n 为奇数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1+1(n +1)2; 当n 为偶数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1-1(n +1)2. 综上,T n =1+(-1)n-11(n +1)2. 题型二 数列与函数的综合问题 【题型要点】数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题; (2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.【例2】已知数列{a n }的前n 项和为S n ,且S n =2n 2+2n . (1)求数列{a n }的通项公式;(2)若点(b n ,a n )在函数y =log 2x 的图象上,求数列{b n }的前n 项和T n . 【解】 (1)当n ≥2时,a n =S n -S n -1=2n 2+2n -[2(n -1)2+2(n -1)]=4n , 当n =1时,a 1=S 1=4=4×1, ∴数列{a n }的通项公式为a n =4n .(2)由点{b n ,a n }在函数y =log 2x 的图象上得a n =log 2b n ,且a n =4n ,∴b n =2an =24n =16n ,故数列{b n }是以16为首项,公比为16的等比数列.T n =16(1-16n )1-16=16n +1-1615.题组训练二 数列与函数的综合问题已知二次函数f (x )=ax 2+bx 的图象过点(-4n,0),且f ′(0)=2n (n ∈N *). (1)求f (x )的解析式;(2)若数列{a n }满足1a n +1=f ′⎪⎪⎭⎫ ⎝⎛na 1,且a 1=4,求数列{a n }的通项公式. 【解】 (1)由f ′(x )=2ax +b ,f ′(0)=2n ,得b =2n ,又f (x )的图象过点(-4n,0),所以16n 2a -4nb =0,解得a =12.所以f (x )=12x 2+2nx (n ∈N *).(2)由(1)知f ′(x )=x +2n (n ∈N *), 所以1a n +1=1a n +2n ,即1a n +1-1a n=2n .所以1a n -1a n -1=2(n -1), 1a n -1-1a n -2=2(n -2),…1a 2-1a 1=2,以上各式相加得1a n -14=n 2-n ,所以a n =1n 2-n +14,即a n =4(2n -1)2(n ∈N *). 题型三 数列与不等式的综合问题 【题型要点】(1)以数列为背景的不等式恒成立问题,多与数列求和相联系,最后利用数列或数列对应函数的单调性求解.(2)以数列为背景的不等式证明问题,多与数列求和有关,常利用放缩法或单调性法证明.(3)当已知数列关系时,需要知道其范围时,可借助数列的单调性,即比较相邻两项的大小即可.【例3】设f n (x )=x +x 2+…+x n -1,x ≥0,n ∈N ,n ≥2. (1)求f n ′(2);(2)证明:f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点(记为a n ),且0<a n -12<13n⎪⎭⎫ ⎝⎛32.(1)【解】 方法一 由题设f n ′(x )=1+2x +…+nx n -1,所以f n ′(2)=1+2×2+…+(n -1)2n -2+n ·2n -1,①则2f n ′(2)=2+2×22+…+(n -1)2n -1+n ·2n ,②由①-②得,-f n ′(2)=1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n =(1-n )2n -1, 所以f n ′(2)=(n -1)2n +1.方法二 当x ≠1时,f n (x )=x -x n +11-x-1,则f n ′(x )=[1-(n +1)x n ](1-x )+(x -x n +1)(1-x )2,可得f n ′(2)=-[1-(n +1)2n ]+2-2n +1(1-2)2=(n -1)2n +1.(2)[证明] 因为f n (0)=-1<0,f n ⎪⎭⎫ ⎝⎛32=32132132-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n-1=1-2×n ⎪⎭⎫ ⎝⎛32≥1-2×232⎪⎭⎫ ⎝⎛>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内至少存在一个零点,又f ′n (x )=1+2x +…+nx n -1>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内单调递增,因此f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点a n ,由于f n (x )=x -x n +11-x -1,所以0=f n (a n )=a n -a n +1n1-a n-1,由此可得a n =12+12a n +1n >12,故12<a n <23,所以0<a n -12=12a n +1n <12×132+⎪⎭⎫ ⎝⎛n =13n⎪⎭⎫ ⎝⎛32. 题组训练三 数列与不等式的综合问题1.已知等比数列{a n }满足a n +1+a n =10·4n -1(n ∈N *),数列{b n }的前n 项和为S n ,且b n =log 2a n .(1)求b n ,S n ;(2)设c n =b n +12,证明:c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *).【解】 (1)解 由题意知a 2+a 1=10,a 2+a 3=40,设{a n }的公比为q ,则a 2+a 3a 1+a 2=q (a 1+a 2)a 1+a 2=4,∴q =4.则a 1+a 2=a 1+4a 1=10,解得a 1=2,∴a n =2·4n -1=22n -1.∴b n =log 222n -1=2n -1.∴S n =n (b 1+b n )2=n (1+2n -1)2=n 2.(2)证明 法一∵c n =b n +12=2n -1+12=n ,∴S n +1=(n +1)2.要证明c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1,即证1×2+2×3+…+n ×(n +1)<12(n +1)2,①当n =1时,1×2<12×(1+1)2=2成立.②假设当n =k (k ∈N *)时不等式成立, 即1×2+2×3+…+k ×(k +1)<12(k +1)2,则当n =k +1(k ∈N *)时,要证1×2+2×3+…+k ×(k +1)+(k +1)(k +2)<12(k +2)2,即证(k +1)(k +2)<12(k +2)2-12(k +1)2,即(k +1)(k +2)<k +32,两边平方得k 2+3k +2<k 2+3k +94显然成立,∴当n =k +1(k ∈N *)时,不等式成立. 综上,不等式成立.法二 ∵c n =b n +12=2n -1+12=n ,S n +1=(n +1)2,由基本不等式可知n (n +1)≤n +n +12=n +12,故1×2<1+12,2×3<2+12,…,n (n +1)≤n +12,∴1×2+2×3+3×4+…+n (n +1)<(1+2+3+…+n )+n 2=n 2+2n 2<n 2+2n +12=(n +1)22,即不等式c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *)成立.2.已知数列{a n }满足a 1=1,a n +1=a n 1+a 2n,n ∈N *,记S n ,T n 分别是数列{a n },{a 2n }的前n 项和.证明:当n ∈N *时,(1)a n +1<a n ; (2)T n =1a 2n +1-2n -1;(3)2n -1<S n <2n .【证明】 (1)由a 1=1及a n +1=a n1+a 2n 知,a n >0,故a n +1-a n =a n 1+a 2n -a n =-a 3n1+a 2n <0, ∴a n +1<a n ,n ∈N *. (2)由1a n +1=1a n +a n ,得1a 2n +1=1a 2n +a 2n +2,从而1a 2n +1=1a 2n +a 2n +2=1a 2n -1+a 2n -1+a 2n +2×2=…=1a 21+a 21+a 22+…+a 2n +2n ,又∵a 1=1,∴T n =1a 2n +1-2n -1,n ∈N *. (3)由(2)知,a n +1=1T n +2n +1,由T n ≥a 21=1,得a n +1≤12n +2,∴当n ≥2时,a n ≤12n =22n <2n +n -1=2(n -n -1),由此S n <a 1+2[(2-1)+(3-2)+…+(n -n -1)]=1+2(n -1)<2n ,n ≥2,又∵a 1=1,∴S n <2n .另一方面,由a n =1a n +1-1a n ,得S n =1a n +1-1a 1≥2n +2-1>2n -1.综上,2n -1<S n <2n .【专题训练】1.已知数列{a n }的前n 项和为S n ,且a 2=8, S n =a n +12-n -1.(1)求数列{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫2×3na n a n +1的前n 项和T n .【解】 (1)因为S n =a n +12-n -1,故当n =1时,a 1=a 22-1-1=2;当n ≥2时,2S n =a n +1-2n -2,2S n -1=a n -2(n -1)-2,两式相减可得a n +1=3a n +2; 经检验,当n =1时也满足a n +1=3a n +2,故a n +1+1=3(a n +1),故数列{a n +1}是以3为首项,3为公比的等比数列,故a n +1=3n ,即a n =3n -1.(2)由(1)可知,2×3n a n a n +1=2×3n(3n -1)(3n +1-1) =13n-1-13n +1-1, 故T n =131-1-132-1+132-1-133-1+…+13n -1-13n +1-1=12-13n +1-1.2.已知数列{a n }的前n 项和为S n ,a 1=2,a n +1=S n +2. (1)求数列{a n }的通项公式;(2)已知b n =log 2a n ,求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .【解析】 (1)∵a n +1=S n +2,∴当n ≥2时,a n =S n -1+2,两式相减得,a n +1-a n =S n -S n -1=a n ,则a n +1=2a n ,所以a n +1a n =2(n ≥2),∵a 1=2,∴a 2=S 1+2=4,满足a 2a 1=2,∴数列{a n }是以2为公比、首项为2的等比数列,则a n =2·2n -1=2n ;(2)由(1)得,b n =log 2a n =log 22n =n , ∴1b n b n +1=1n (n +1)=1n -1n +1, ∴T n =⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =1-1n +1=n n +1. 3.已知正项数列{a n }的前n 项和为S n ,且a 1=2,4S n =a n ·a n +1,n ∈N *. (1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a 2n 的前n 项和为T n ,求证:n 4n +4<T n <12.【解析】 (1)∵4S n =a n ·a n +1,n ∈N *, ∴4a 1=a 1·a 2,又a 1=2,∴a 2=4.当n ≥2时,4S n -1=a n -1·a n ,得4a n =a n ·a n +1-a n -1·a n .由题意知a n ≠0,∴a n +1-a n -1=4. ①当n =2k +1,k ∈N *时,a 2k +2-a 2k =4,即a 2,a 4,…,a 2k 是首项为4,公差为4的等差数列, ∴a 2k =4+(k -1)×4=4k =2×2k ; ②当n =2k ,k ∈N *时,a 2k +1-a 2k -1=4,即a 1,a 3,…,a 2k -1是首项为2,公差为4的等差数列, ∴a 2k -1=2+(k -1)×4=4k -2=2(2k -1). 综上可知,a n =2n ,n ∈N *.(2)证明:∵1a 2n =14n 2>14n (n +1)=14⎪⎭⎫ ⎝⎛+-111n n ,∴T n =1a 21+1a 22+…+1a 2n>14⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =141-1n +1=n 4n +4. 又∵1a 2n =14n 2<14n 2-1=1(2n -1)(2n +1)=12⎪⎭⎫ ⎝⎛+--121121n n ,∴T n =1a 21+1a 22+…+1a 2n <12⎪⎭⎫ ⎝⎛+--+-+-+-12112171515131311n n =12⎪⎭⎫ ⎝⎛+-1211n <12. 即得n 4n +4<T n <12.4.已知数列{a n }与{b n }的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =2(b n +1-b n )恒成立.(1)若A n =n 2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1<13成立,求正实数b 1的取值范围;(3)若a 1=2,b n =2n ,是否存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由. 【解】 (1)因为A n =n 2,所以a n =⎩⎪⎨⎪⎧1,n =1,n 2-(n -1)2,n ≥2, 即a n =2n -1,故b n +1-b n =12(a n +1-a n )=1,所以数列{b n }是以2为首项,1为公差的等差数列,所以B n =n ·2+12·n ·(n -1)·1=12n 2+32n . (2)依题意B n +1-B n =2(b n +1-b n ),即b n +1=2(b n +1-b n ),即b n +1b n=2, 所以数列{b n }是以b 1为首项,2为公比的等比数列,所以a n =B n =1-2n1-2×b 1=b 1(2n -1), 所以b n +1a n a n +1=2nb 1(2n -1)·(2n +1-1), 因为b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+1211211n n 所以b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+12112111n ,所以1b 1⎪⎭⎫ ⎝⎛---+12112111n <13恒成立,即b 1>3⎪⎭⎫ ⎝⎛--+12111n ,所以b 1≥3.(3)由a n +1-a n =2(b n +1-b n )得:a n +1-a n =2n +1,所以当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n +2n -1+…+23+22+2=2n +1-2, 当n =1时,上式也成立,所以A n =2n +2-4-2n , 又B n =2n +1-2,所以A n B n =2n +2-4-2n 2n +1-2=2-n 2n -1, 假设存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t 成等差数列,等价于121-1,s 2s -1,t 2t -1成等差数列, 即2s 2s-1=121-1+t 2t -1,即2s 2s -1=1+t 2t -1,因为1+t 2t -1>1,所以2s 2s -1>1,即2s <2s +1,令h (s )=2s -2s -1(s ≥2,s ∈N *),则h (s +1)-h (s )=2s -2>0所以h (s )递增, 若s ≥3,则h (s )≥h (3)=1>0,不满足2s <2s +1,所以s =2,代入2s 2s -1=121-1+t 2t -1得2t -3t -1=0(t ≥3),当t =3时,显然不符合要求; 当t ≥4时,令φ(t )=2t -3t -1(t ≥4,t ∈N *),则同理可证φ(t )递增,所以φ(t )≥φ(4)=3>0,所以不符合要求.所以,不存在正整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列.。

数列求和常见的7种方法

数列求和常见的7种方法

数列求和常见的7种方法数列求和的基本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。

数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、 等差数列求和公式:d n n na a a n S n n2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q qa a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x xx 32的前n 项和.解:由212log log 3log 1log3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32(利用常用公式)=xx x n--1)1(=211)211(21--n =1-n21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nSn Sn f 的最大值.解:由等差数列求和公式得)1(21+=n n S n ,)2)(1(21++=n n S n (利用常用公式)∴1)32()(++=n nS n S n f =64342++n nn=nn 64341++=50)8(12+-nn 501≤∴ 当88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ②(设制错位)①-②得nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--(错位相减)再利用等比数列的求和公式得:nn n x n xx x S x )12(1121)1(1----⋅+=--∴21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{nn22}的通项是等差数列{2n}的通项与等比数列{n21}的通项之积设n n n S 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位)①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS(错位相减)1122212+---=n n n∴1224-+-=n n n S三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1na a +.[例5] 求证:nn nnnnn C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nnn n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-(反序)又由m n nmnC C -=可得nnn n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得nnn n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-(反序相加)∴nn n S 2)1(⋅+=[例6] 求89sin 88sin 3sin 2sin1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ① 将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序)又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5 题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边(2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aaa n ,…解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a Sn n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n(分组)当a =1时,2)13(nn n S n -+==2)13(nn +(分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11nn a a a n -+---[例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设kk k k k k a k++=++=2332)12)(1(∴∑=++=nk n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n=kk k nk nk nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n(分组求和)=2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n-+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n(5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6)nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则(7))11(1))((1CAn B An B C C An B An a n+-+-=++=(8)11na n nn n ==+++[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设nn n n a n -+=++=111(裂项)则11321211+++⋅⋅⋅++++=n n S n(裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n n n n an,又12+⋅=n n na a b,求数列{b n }的前n 项的和.解: ∵211211n n n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n(裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n(裂项求和)=)111(8+-n = 18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S∵n n n n tan )1tan()1cos(cos 1sin -+=+(裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S(裂项求和)=]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+-=)0tan 89(tan 1sin 1-=1cot 1sin 1⋅=1sin 1cos 2∴ 原等式成立 答案:六、分段求和法(合并法求和)针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵)180cos(cos n n --=(找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90°(合并求和)= 0 [例13] 数列{a n }:nn n a a a a a a-====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a+⋅⋅⋅+++ 由nn n a a a a a a-====++12321,2,3,1可得,2,3,1654-=-=-=a a a,2,3,1,2,3,1121110987-=-=-====a a a a a a……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a∵ 0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项)∴S 2002=2002321a a a a +⋅⋅⋅+++(合并求和)=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a+++ =46362616+++++++k k k k a a a a=5[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a Sn+⋅⋅⋅++=由等比数列的性质qp n m a a a a q p n m =⇒+=+(找特殊性质项)和对数的运算性质NM N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=(合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++=10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅kk k 个个(找通项及特征)∴11111111111个n ⋅⋅⋅+⋅⋅⋅+++=)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n(分组求和)=)1111(91)10101010(911321个n n +⋅⋅⋅+++-+⋅⋅⋅+++=9110)110(1091n n ---⋅ =)91010(8111n n --+[例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值.解:∵])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n(找通项及特征)=])4)(3(1)4)(2(1[8+++++⋅n n n n (设制分组)=)4131(8)4121(4+-+++-+⋅n n n n (裂项)∴∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n (分组、裂项求和)=418)4131(4⋅++⋅ =313提高练习:1.已知数列{}n a 中,nS 是其前n项和,并且1142(1,2,),1n n S a n a +=+==,⑴设数列),2,1(21 =-=+n a a b n n n,求证:数列{}nb 是等比数列;⑵设数列),2,1(,2 ==n a cnn n,求证:数列{}nc 是等差数列;2.设二次方程na x 2-na +1x +1=0(n ∈N)有两根α和β,且满足6α-2αβ+6β=3. (1)试用na 表示a 1n +;3.数列{}na 中,2,841==a a 且满足nn n a a a-=++122*N n ∈⑴求数列{}na 的通项公式; ⑵设||||||21n n a a a S +++= ,求nS ;。

专题08 数列求和-倒序相加、绝对值、奇偶性求和(解析版)

专题08 数列求和-倒序相加、绝对值、奇偶性求和(解析版)

专题08数列求和-倒序相加、绝对值、奇偶性求和◆倒序相加法求和等差数列的求和公式()12n n n a a S +=,其过程正是利用倒序相加的原理.这类题之所以能够利用倒序相加来求和,是因为其自身具备明显的特征,那就是首项与末项相加为定值.一般题中出现12x x k +=(k 为常数),()()12f x f x m +=(m 为常数)时,可以采用倒序相加的方法进行求和.【经典例题1】已知函数()f x 对任意的x ∈R ,都有()()11f x f x +-=,数列{}n a 满足()120n a f f f n n ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭…()11n f f n -⎛⎫+ ⎪⎝⎭.求数列{}n a 的通项公式.【答案】12n n a +=【解析】因为()()11f x f x +-=,∴111n f f n n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭.故()120n a f f f n n ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭…()11n f f n -⎛⎫++ ⎪⎝⎭.①∴()121n n n a f f f n n --⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭…()01f n f ⎛⎫++ ⎪⎝⎭.②∴①+②,得21n a n =+,∴12n n a +=.所以数列{}n a 的通项公式为12n n a +=.【练习1】已知正数数列{}n a 是公比不等于1的等比数列,且120191a a =,试用推导等差数列前项和的方法探求:若24()1f x x=+,则()()()122019f a f a f a +++= ()A .2018B .4036C .2019D .4038【答案】D 【解析】120191a a ⋅=,∵函数24()1f x x =+∴222214444()41111+⎛⎫+=+== ⎪++⎝⎭+x f x f x x x x,令122019()()()T f a f a f a =++⋅⋅⋅+,则201920181()()()T f a f a f a =++⋅⋅⋅+,∴()()()()()()120192201820191242019T f a f a f a f a f a f a =++++⋅⋅⋅++=⨯,∴4038T =.故选:D.【练习2】已知函数1()1f x x =+,数列{}n a 是正项等比数列,且101a =,则()()()()()1231819f a f a f a f a f a +++⋅⋅⋅++=__________.【答案】192【解析】函数1()1f x x =+,当0x >时,1111()()111111xf x f x x x x x+=+=+=++++,因数列{}n a 是正项等比数列,且101a =,则2119218317101a a a a a a a ===== ,119111()()()()1f a f a f a f a +=+=,同理2183171010()()()()()()1f a f a f a f a f a f a +=+==+= ,令()()()()()1231819S f a f a f a f a f a =+++++ ,又()()()()()19181721S f a f a f a f a f a =+++++ ,则有219S =,192S =,所以()()()()()1231819192f a f a f a f a f a +++⋅⋅⋅++=.故答案为:192【练习3】已知()442xx f x =+,求122010201120112011f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【答案】1005.【解析】因为()442xx f x =+,所以()1144214242442x x x xf x ---===++⨯+,所以()()11f x f x +-=.令12200920102011201120112011S f f f f⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,倒写得20102009212011201120112011S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.两式相加得22010S =,故1005S =.【练习4】函数()f x 对任意x ∈R ,都有1()(1)2f x f x +-=.(I)求12f ⎛⎫⎪⎝⎭的值;(II)若数列{}n a 满足11(0)(1)n n a f f f f n n -⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭,数列{}n a 是等差数列吗?【解析】(I)令12x =,得1124f ⎛⎫= ⎪⎝⎭.(II)已知函数()f x 对任意x ∈R ,都有1()(1)2f x f x +-=,可得11(0)(1)11(1)(0)nn n a f f f f n n n a f f f f n n ⎧-⎛⎫⎛⎫=++++ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨-⎛⎫⎛⎫⎪=++++ ⎪ ⎪⎪⎝⎭⎝⎭⎩由两式相加可得11(1)112(2)244n n n n n a a a n -++==⇒-=故数列{}n a 是等差数列.◆数列绝对值求和(1)对于首项小于0而公差大于0的等差数列{}n a 加绝对值后得到的数列{}n a 求和,设{}n a 的前n 项和为{},n n S a 的前n 项和为n T ,数列{}n a 的第k 项小于0而从第1k +项开始大于或等于0,于是有,;2,n n nk S n k T S S n k -⎧=⎨->⎩(2)对于首项大于0而公差小于0的等差数列{}n a 加绝对值后得到的数列{}n a 求和,设{}n a 的前n 项和为{},n n S a 的前n 项和为n T ,数列{}n a 的第k 项大于0而从第1k +项开始小于或等于0,于是有,2,nn kn S n k T S S n k ⎧=⎨->⎩ 。

《数列》知识点、题型、解法全方位解析

《数列》知识点、题型、解法全方位解析

《数列》知识点、题型、解法全方位解析 内蒙古赤锋阿旗天山一中:尹国玉数列的基础知识与一般性结论:(一)数列的概念:项,项数。

一般式:}{n a 或 ,,,,,4321n a a a a a注:①数列与函数的关系:数列可以看作是一个定义域为正自然数集N 或它的有限子集{1,2,3,……,n}的函数.当自变量从小到大依次取值时对应的一列函数值,通项公式a n =f(n)就是该函数的解析表达式,数列的图象是一个点列.因此在学习数列时还应学会用函数的观点、方法研究数列.②数列分有穷数列与无穷数列。

(二)数列的有关公式:(注:并不是所有的数列都有各种公式,)1.递推公式:如)(1n n a f a =+或),(12n n n a a f a ++=等,即由数列的前若干项表示后一项的关系式,2.通项公式:a n =f(n)即由项数来表示项的关系式,即第n 项,3.前n 项和公式:①有穷数列和:即用n 表示前n 项和的式子,(有时也用售含有项和项数的混合式子表示,如2)(1n n a a n S +=)注:掌握数列的通项n a 与前n 项和n S (前项积n G )之间的关系式n a =⎩⎨⎧≥-=-)2()1(11n S S n S n n .n a =11(1)(2)n n G n G n G -=⎧⎪⎨≥⎪⎩②*无究数列和(前n 项和的极限): n n S lin S →+∞=(三)定义数列的方式方法:1.用递推公式定义:①简单一阶线性递归数列:等差等比数列等. ②简单一阶分式递归数列(倒数成等差数列) ③简单的周期数列; ④其它形式:2.用通项公式定义:3.用和或和与项的关系定义. (四)数列的图象(五)数列的单调性及最值 (六)数列的分类1.从项的个数上分:有穷数列,无穷数列.2.从”函数”类型及项与项的关系分:①简单数列:等差数列;等比数列;调和数列;幂级数.②复杂数列(数列的组合):复合数列;组合数列;分段数列;子数列. 3.从数列的性质分:单调数列;摆动数列;周期数列;不规则数列。

数列求和的常用方法有哪些数列求和的七种方法

数列求和的常用方法有哪些数列求和的七种方法

一、数列求和的常用方法有哪些
1.裂项相加法:数列中的项形如的形式,可以把表示为
,累加时抵消中间的许多项,从而求得数列的和;
2、错位相减法:源于等比数列前n项和公式的推导,对于形如
的数列,其中为等差数列,为等比数列,均可用此法;
3、倒序相加法:此方法源于等差数列前n项和公式的推导,目的在于利用与首末两项等距离的两项相加有公因式可提取,以便化简后求和。

4、分组转化法:把数列的每一项分成两项,或把数列的项“集”在一块重新组合,或把整个数列分成两个部分,使其转化为等差或等比数列,这一求和方法称为分组转化法。

5、公式法求和:所给数列的通项是关于n的多项式,此时求和可采用公式求和,常用的公式有:
数列求和的方法多种多样,要视具体情形选用合适方法。

1、裂项相加法:数列中的项形如的形式,可以把表示为,累加时抵消中间的许多项,从而求得数列的和;
2、错位相减法:源于等比数列前n项和公式的推导,对于形如
的数列,其中为等差数列,为等比数列,均可用此法;
3、倒序相加法:此方法源于等差数列前n项和公式的推导,目的在于利用与首末两项等距离的两项相加有公因式可提取,以便化简后求和。

数列求和的方法多种多样,要视具体情形选用合适方法。

数列求和特别提醒:
(1)对通项公式含有的一类数列,在求时,要注意讨论n的奇偶性;
(2)在用等比数列前n项和公式时,一定要分q=1和q≠1两种情况来讨论。

数列求和(讲)9种方法分类将

数列求和(讲)9种方法分类将
(1)求a1,a2的值;
(2)求数列{an}的通项公式an;
1 式(S3n)>设1数列loga(1a-naan)+对2任的意前的n正项整和数为nS恒n,成不立等, 求实数a3的取值范围.
五. 分组求和法
项的特征
cn=an+bn
({an}、{bn}为等差或等比数列。)
例5.求下面数列的前n项和
21,41,6 1 , 4 8 16
来加以分析,根据数列的通项的结构特点去选择适 当的方法.
2.等价转换思想是解决数列问题的基本思想方 法,它可将复杂的数列转化为等差、等比数列问题 来解决.
3.数列求和是数列的一个重要内容,其实质是 将多项式化简,等差、等比数列及可以转化为等差、 等比数列的求和问题应掌握,还应掌握一些特殊数 列的求和.
S21=-1+3+(-5)+7+(-9)+……+39+(-41)
=-21
七.奇偶法
通过分组,对n分奇偶讨论求和
例7.数列an 中, an
2n
3n
3(n为奇数) 1(n为偶数) ,
求an的前n项和Sn。
练习:求和
(1).Sn 1 2 3 4 (1)n1 n (2).S 1 32 52 72 ..... (1)n1(2n 1)2
=121+12-n+1 1-n+1 2=34-2(n+2n1+)(n3+2).
1.特别是对于 anacn+1,其中{an}
是各项均不为0的等差数列,通常用裂项
相消法,即利用 anacn+1=dca1n-an1+1
(其中d=an+1-an).
常见的拆项公式有:
1. 1 1 1 n(n 1) n n 1
变式探究2

数列求和常见的7种方法

数列求和常见的7种方法

.
1、 等差数列求和公式: Sn
n (a1 an)
n(n 1)
na1
d
2
2
2、等比数列求和公式: Sn
na1 a1 (1 qn )
1q
( q 1)
a1 an q 1q
(q 1)
3、 Sn
n
k
k1
1n(n 1) 2
4、 Sn
n
k2
k1
1n(n 1)(2n 1) 6
5、 Sn
n
k3
1 [ n( n
1)] 2
数列求和常见的 7 种方法
数列求和的基本方法和技巧
一、总论:数列求和 7 种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和
二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减 法,
三、逆序相加法、错位相减法是数列求和的二个基本方法。
[ 例 12] 求 cos1° + cos2° + cos3° +··· + cos178° + cos179°的值 . 解:设 Sn= cos1° + cos2° + cos3° +···+ cos178° + cos179°
∵ cos n cos(180 n )
(找特殊性质项)
∴ Sn= ( cos1° + cos179°) +( cos2°+ cos178°) + ( cos3°+ cos177°) +···
4
数列求和常见的 7 种方法
( 2)利用第( 1 )小题已经证明的结论可知,

数列求和的8种方法

数列求和的8种方法

精心整理数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和1、23、)1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n[例1]已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得n n x x x x S +⋅⋅⋅+++=32(利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21 [例2]设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得)1(21+=n n S n ,)2)(1(21++=n n S n (利用常用公式) ∴)32()(+=n S n S n f =64342++n n n等比数列-1,则=.=答案:[解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=……………………….②(设制错位) ①-②得n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--(错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=--∴21)1()1()12()12(x x x n x n S n n n -+++--=+[例4]求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设nn nS 2226242232+⋅⋅⋅+++=…………………………………① 已知答案:2的前答案:[例把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-(反序)又由m n n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..……..②①+②得n nn n n nn n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-(反序相加)∴n n n S 2)1(⋅+=[例6]求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S ………….①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②(反序)又因为1cos sin ),90cos(sin 22 题1已知函数(1)证明:(2)求的值(2所以.练习、求值:练习。

数列求和7种方法(方法全-例子多)

数列求和7种方法(方法全-例子多)

数列求和的基本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。

一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c =.解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=--∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加)∴ nn n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n-+---[例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n(5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n = 18+n n [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2∴ 原等式成立练习题1.答案:.练习题2。

专题2数列的求和课件——高三数学一轮复习

专题2数列的求和课件——高三数学一轮复习
n( n k ) k n n k
1
1
1 1
1
3. 2

(

)
4n 1 (2n 1)(2n 1) 2 2n 1 2n 1
题型四 裂项相消法
4.
1
n 1 n
n n 1
1
1
5.
( n k n)
n nk k
1
6. log a (1 ) log a (n 1) log a n(a 0且a 1)
a14=b4.
(1)求{an}的通项公式; an=2n-1
bn=3n-1
(2)设cn=an+bn,求数列{cn}的前n项和Sn.

由题意知cn=an+bn=(2n-1)+3n-1,
则数列{cn}的前n项和为Sn=[1+3+…+(2n-1)]+(1+3+9+…+3n-1)
n1+2n-1 1-3n 2 3n-1
1
1
1
1
(

)] =
.
2n 1 2 n 3
6 4n 6
题型四 裂项相消法
练2
[2021·惠州市高三调研考试试题]记Sn为等差数列{an}的前n项和,
若a4+a5=20,S6=48.
(1)求数列{an}的通项公式;
1
1
(2)设bn=
,Tn为数列{bn}的前n项和,证明Tn< .
+1
3S n 1 (2)1 (2) 2 (2) n 1 n (2) n
n
1
(3
n

1)(

2)
1 (2) n
=
n (2) n . 所以 S n

数列求和各种方法总结归纳

数列求和各种方法总结归纳

1 1 1 = 2n-1-2n+1, 2
1 1 1 1 1 1 + - +…+ ∴Sn= 1-3 2n-1-2n+1 2 3 5
1 1 n = 1-2n+1= . 2 2n+1
[理](2012· 西南大学附中月考)已知函数f(x)=2x+1,g(x)=x,x∈ R,数列{an},{bn}满足条件:a1=1,an=f(bn)=g(bn+1),n∈N*. (1)求证:数列{bn+1}为等比数列; 2n 2 011 (2)令Cn= ,Tn是数列{Cn}的前n项和,求使Tn>2 012成立的 an·n+1 a 最小的n值.
解:(1)证明:由题意得2bn+1=bn+1, ∴bn+1+1=2bn+2=2(bn+1). 又∵a1=2b1+1=1, ∴b1=0,b1+1=1≠0.
故数列{bn+1}是以1为首项,2为公比的等比数列.
(2)由(1)可知,bn+1=2n-1,∴an=2bn+1=2n-1. 2n 2n 1 1 故Cn= = n = n - n+1 . an·n+1 2 -12n+1-1 2 -1 2 -1 a ∴Tn=C1+C2+…+Cn 1 1 1 1 1 =(1-3)+(3-7)+…+( n - ) 2 -1 2n+1-1 1 2 011 =1- n+1 .由Tn>2 012,得2n+1>2 013,解得n≥10. 2 -1 ∴满足条件的n的最小值为10.
②不能转化为等差或等比数列的数列,往往通过裂项
相消法、错位相减法、倒序相加法等来求和.
[例1] (2011· 山东高考)等比数列{an}中,a1,a2,a3分别是下表 第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不 在下表的同一列. 第一行 第二行 第一列 第二列 第三列 3 6 9 2 4 8 10 14 18
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档