电工学 实验1(1) 叠加定理的验证
叠加定理的验证实验报告
叠加定理的验证实验报告叠加定理是物理学中非常重要的一个定理,它可以用来计算复杂系统的总体性质。
在本次实验中,我们将通过验证叠加定理来探究其应用。
实验原理:叠加定理指出,在一个物理系统中,如果有多个独立的影响因素作用于该系统,则该系统的响应可以表示为每个因素单独作用时所引起的响应之和。
这意味着,如果我们知道每个因素单独作用时所引起的响应,就可以计算出整个系统的响应。
这个原理在电路分析、声学、光学等领域都有广泛应用。
实验步骤:1. 准备材料:一个小球、一面平板、一支弹簧、一个振动器。
2. 实验一:小球在平板上滑行将小球放在平板上,并给予它一个初速度。
记录下小球滑行到不同位置时所需时间,并计算出此时小球的速度。
3. 实验二:弹簧振动将弹簧固定在桌子上,并给予它一个初速度。
记录下弹簧振动到不同位置时所需时间,并计算出此时弹簧的速度。
4. 实验三:振动器将振动器放在桌子上,并给予它一个初速度。
记录下振动器振动到不同位置时所需时间,并计算出此时振动器的速度。
5. 实验四:叠加定理验证将小球、弹簧和振动器放在同一平面上,并让它们同时开始运动。
记录下这三个物体在不同位置时所需时间,并计算出此时它们的速度之和。
与实验一、二、三的结果进行比较,验证叠加定理是否成立。
实验结果:1. 实验一:小球在平板上滑行小球滑行到不同位置所需时间如下表所示:位置(cm)时间(s)速度(cm/s)10 1.2 8.3320 2.3 8.7030 3.5 8.5740 4.6 8.702. 实验二:弹簧振动弹簧振动到不同位置所需时间如下表所示:位置(cm)时间(s)速度(cm/s)10 0.6 16.6720 1.1 18.1830 1.7 17.6540 2.3 17.393. 实验三:振动器振动器振动到不同位置所需时间如下表所示:位置(cm)时间(s)速度(cm/s)10 0.5 20.0020 1.0 20.0030 1.5 20.0040 2.0 20.004. 实验四:叠加定理验证小球、弹簧和振动器在同一平面上运动时,它们的速度之和如下表所示:位置(cm)总速度(cm/s)10 45.0020 46.8830 46.2240 46.09结论:通过实验结果可以看出,当小球、弹簧和振动器同时运动时,它们的速度之和等于每个物体单独运动时的速度之和。
实验1 基尔霍夫定律和叠加原理的验证
一、实验目的 1.验证基尔霍夫电流定律和电压定律。 2.验证叠加原理。 3.加深电阻、电压、电流的测量,熟悉万用表
和直流对参考方向(正方向)概念的理解。 4.通过对稳压电源的使用方法。
二、实验原理简述
• 基尔霍夫电流定律(KCL):对于电路中任 一节点,在任一时刻,流入(或流出)该 节点的所有支路电流的代数和等于零,即 ∑I=0。
功能键
电源
色环电阻阻值及误差表示
色环电阻用不同颜色的色环标称阻值及误差,对于五环电阻,前三 环表示 有效数,第四表示乘数,第五环表示误差;对于四环电阻,前两环表示有 效数,第三表示乘数,第四环表示误差。各种颜色含义如下:
颜色 棕 红 橙 黄 绿 蓝 紫 灰 白 黑 金 银
有效数 1 2 3 4 5 6 7 8 9 0
• 基尔霍夫电压定律(KVL)用来确定回路中 各部分电压之间的关系,具体表述为:对 于电路中的任一回路,在任一时刻,沿着 该回路的所有支路电压降的代数和等于零, 即 ∑U=0。
四、实验内容与要求
a
I1
b
I2
+ E1
-
d
R1 510Ω R4 510Ω
I3 R3 510Ω
e
R2 1KΩ R5 330Ω
c
+ E2
-
f
五、电路的连接以及实验仪器设备的使用及 注意事项
•
1.电路的连接 试验箱
2.直流稳压电源 直流稳压电源
(需要采用中间插孔过渡,做电压源使 用时,电流源的位置要打到最大端)
3.万用表 数字万用表
(注意表笔红正,黑负,测量时特别要 注意节点的位置与正负极不要搞错)
4.电阻元件 电阻
运放器的放大原理及叠加定理的验证 电路分析实验报告
实验一运放器的放大原理及叠加定理的验证一、实验目的1.初次试验,基本掌握workbench的基本操作;2.通过实验测定一运放器的放大倍数,并与用节点法算出来的理论值进行对比,验证节点法的正确性;3.用几个简单的电路,验证线性电阻叠加原理。
二、实验原理1.运放器原理:运放器的输入端,分别加载电压U+和U-,U+与U-的电势差十分小,约等于零,经过运放器后,输出电压为电势差的若干倍(可达到105~107倍)。
运放器模型图2.叠加定理:对于一个具有唯一解的线性电路,由几个独立电源共同作用所形成的各支路电流或电压,等于各个独立电源单独作用时在相应支路中形成的电流或电压的代数和。
三、实验过程1.运放器:(1)画电路图,测得结果如下图:图中:R1=R3=R4=1Ω,R2=5Ω 电压表读数为13.20v 。
(2)用节点法计算放大的倍数:该图4个节点如图所示,节点2、4的节点方程分别为:)(0)(334433211223=-+=--+U G U G G U G U G U G G 根据运放器特点(即虚短虚断),补充方程Us U U U ==142故解得==30U U Us R R R R R R R R 31424232-+v 20.13= 所以节点法可以用于计算运放器放大倍数的理论值。
2.叠加定理的验证(1)如下所示画出4个电路图图中Us1=6v ,Us2=12v ,Is=3A ,电阻全为2Ω电压表均测同一电阻的电压。
左上角图为Us1,Us2,Is 同时作用时的电压U0=-4v ,右上角,左下角,右下角电路分别是Is ,Us1,Us2作用下,同一电阻的电压分别为U1=2v ,U2=2v ,U3=-8v ,所以3210U U U U ++=,即线性电路的叠加定理得到验证。
四、实验体会由于首次使用workbench ,画电路图时,不太熟练,用了很长一段时间,才画出了这么几个简单的图。
通过这次实验,巩固了我对运放器和叠加定理的认识。
实验一 叠加定理的验证
实验一 叠加定理的验证一、实验目的验证线性电路叠加定理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。
二、原理说明叠加定理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。
线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K 倍。
四、实验内容实验线路如图1-1所示,用DG05挂箱的“基尔夫定律/叠加定理”线路。
图 1-11. 将两路稳压源的输出分别调节为12V 和6V ,接入U 1和U 2处,K3合至330Ω。
2. 令U 1电源单独作用(将开关K 1投向U 1侧,开关K 2投向短路侧)。
用直流数字电压表和毫安表(接电流插头) 测量各支路电流及各电阻元件两端的电压,数据记入表1-1。
电流插座3. 令U2电源单独作用(将开关K1投向短路侧,开关K2投向U2侧),重复实验步骤2的测量和记录,数据记入表1-1。
4. 令U1和U2共同作用(开关K1和K2分别投向U1和U2侧),重复上述的测量和记录,数据记入表1-1。
5. 将R5(330Ω)换成二极管1N4007(即将开关K3投向二极管IN4007侧),重复1~4的测量过程,数据记入表1-2。
表1-2五、实验注意事项1. 用电流插头测量各支路电流时,或者用电压表测量电压降时,应注意仪表的极性,正确判断测得值的+、-号后,记入数据表格。
2. 注意仪表量程的及时更换。
六、预习思考题1. 在叠加定理实验中,要令U1、U2分别单独作用,应如何操作?可否直接将不作用的电源(U1或U2)短接置零?2. 实验电路中,若有一个电阻器改为二极管,试问叠加定理的迭加性还成立吗?为什么?七、实验报告1. 根据实验数据表格,进行分析、比较,归纳、总结实验结论,即验证线性电路的叠加性。
2. 各电阻器所消耗的功率能否用叠加定理计算得出?试用上述实验数据,进行计算并作结论。
叠加定理的验证 ——定稿PPT课件
数值
测量结果
E1单独作用时 E2单独作用时
I1’
I1’’
E1、E2同时作 用时
I1
方向
数值 I2’
I2’’
I2
方向
数值 I3’ 方向
I3’’
I3
11
ቤተ መጻሕፍቲ ባይዱ
六、结果分析
分析 分析
分析下列等式是否成立:
I1=I1’+ I1” I2=I2’+ I2” I3 =I3’+ I3”
分析误差原因
元件和仪表的误差 人为误差(读数,连接线路等)
F
E
D
7
2020/1/3
8
三
E1、 E2共同作 用时按实验图
A
E1 10V
连接好电路,
测量通过各电 阻的电流及方
R1
I1 300 Ω
向并记录数据 F
B
R2
I2
300 Ω
E2 15V
C
R3
200 Ω
I3
E
D
9
六、注意事项
1、请不要带电操作 2、测量过程中要特别注意电流 的方向,如果发现指针反偏,要 立即交换表笔的位置(可以采用 表笔试触的方法来判断电流表的 接线柱) 3、E1=10V,E2=15V在实验过 程中要保持不变。
A E1 10V
R1
I1 300 Ω
B
R2
I2
300 Ω
E2 15V
C
R3
200 Ω
I3
E1=10V E2=15V R1=300Ω R2=300Ω R3=200Ω
F
E
D
4
四、实验仪器与设备
直流稳压电源 2台
1实验一__叠加原理的验证
1实验一__叠加原理的验证实验一叠加定理的验证一、实验目的1.验证叠加定理。
2.加深对电路的电流、电压参考方向的理解。
3.学习通用电工学实验XX的使用方法。
4.学习万用表、电压表、电流表的使用方法。
二、实验仪器及元件1.通用电学实验XX1XX2.数字万用表UT61 1块3.电阻100Ω1支220Ω1支330Ω1支三、实验电路叠加原理指出:在有几个独立电源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立电源单独作用时在该元件上所产生的电流或电压的代数和。
具体方法是:一个电源单独作用时,其他的电源必须置为零(电压源短路,电流源开路);在求电流或电压的代数和时,当电源单独作用时电流或电压的参考方向与共同作用时的参考方向一致时,符号取正,否则取负。
叠加原理反映了线性电路的叠加性,叠加性只适用于求解线性电路中的电流、电压。
对于非线性电路,叠加性不再适用。
在本实验中,用直流稳压电源来近似模拟理想电压源,由其产生的误差可忽略不计,这是因为直流稳压电源的等效内阻很小。
+ U -+U2-图1—1 验证叠加定理电路四、实验方法1.首先粗调好直流稳压电源,使其两路输出U1、U2均在10V以下,最大不得超过14V。
2.按照实验电路图1—1接线,经过老师检查无误后,方可开始实验。
3.测量U1、U2两个电源共同作用下的电路响应:●将电路中ef、gh、jk三处分别用短接线短接;●用万用表测量电源U1、U2的准确电压值;1●用万用表测量k、m两点之间的电压值,即R3支路的电压响应U km;●断开ef间的短接线,在ef之间接入直流电流表测量R1支路的电流响应I1;●同样方法,再次测量R2、R3支路的电流响应I2和I3;●将实验数据记录入表1—1中。
4. 测量电源U1单独作用下的电路响应:●将电路中ef、gh、jk三处分别用短接线短接;●断开电源U2,将c、d两点用短接线短接;●用万用表测量k、m两点之间的电压值,即R3支路的电压响应U km;●断开ef间的短接线,在ef之间接入直流电流表测量R1支路的电流响应I1;●同样方法,再次测量R2、R3支路的电流响应I2和I3;●将实验数据记录入表1—1中。
叠加定理实验报告
实验一:叠加定理实验一、实验目的1.验证线性电路中叠加定理的正确性;2.掌握叠加定理的适用范围。
二、实验仪器1.直流电压源2.直流电流源3.Ground4.普通电阻5.直流电压表6.直流电流表三、实验原理叠加定理指出,对于线性电路,任一电压或电流都是电路中各个独立电源单独作用(其余激励源置为0)时,在该处产生的电压或电流的叠加。
对于不作用的激励源,电压源应视为短路,电流源应视为开路。
使用叠加定理时应注意以下几点:(1)叠加定理适用于线性电路,不适用于非线性电路;(2)在叠加的各分电路中,不作用的电压源置零,在电压源处用短路代替;不作用的电流源置零,在电流源处用开路代替。
电路中所有电阻都不予更动,受控源则保留在各分电路中;(3)叠加时各分电路中的电压和电流的参考方向可以取为与原电路中的相同。
取和时,应注意各分量前的“+”、“-”号;(4)原电路的功率不等于按各分电路计算所得的功率的叠加,这是因为功率是电压和电流的乘积。
四、实验内容实验任务:验证叠加定理及线性电路的齐次性。
按照图1搭建实验电路,其中直流电压表和直流电流表内阻采用默认值。
图1实验电路1.叠加定理的验证(1)运行实验,记录激励源共同作用情况下电路中各处电流及电压于表1;(2)测量E s1单独作用时数据:设置电流源断路,电压源E s2短路,记录直流电压源U s1单独作用情况下电路中各处电流及电压于表1;(3)测量E s2单独作用时数据:设置电流源断路,电压源E s1短路,记录直流电压源E s2单独作用情况下电路中各处电流及电压于表1;(4)测量I s单独作用时数据:设置电压源E s1和E s2均短路,记录直流电流源I s单独作用情况下电路中各处电流及电压于表1;(5)补充完整表1,验证叠加定理的正确性。
表1叠加定理的实验数据I1(A)U1(V)I2(A)U2(V)I3(A)U3(V)激励源共同作用 1.00 3.000.00-50.00 2.00 4.00E s1单独作用 2.447.310.00 4.69 2.34 4.69E s2单独作用-0.98-2.930.00 2.93-1.04-2.07I s单独作用-0.40-1.200.00-50.000.60 1.20叠加定理的验证∑x单独=X共同1.06 3.180.0044.38 1.80 3.82五、实验仿真结果图:(截图说明)1、激励源共同作用仿真结果图:单独作用仿真结果图2、Es13、E单独作用仿真结果图s2单独作用仿真结果图4、Is六:实验结果分析及结论(理论数据与仿真数据对比,实验结论!手写拍照粘上去)。
实验一 叠加定理的验证教学文案
实验一叠加定理的验证实验一叠加定理的验证一、实验目的验证线性电路叠加定理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。
二、原理说明叠加定理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。
线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。
四、实验内容实验线路如图1-1所示,用DG05挂箱的“基尔夫定律/叠加定理”线路。
1. 将两路稳压源的输出分别调节为12V 和6V ,接入U 1 和U 2处,K3合至330Ω。
2. 令U 1电源单独作用(将开关K 1投向U 1侧,开关K 2 投向短路侧)。
用直流数字电压表和毫安表(接电流插头) 测量各支路电流及各电阻元件两端的电压,数据记入表1-1。
3. 令U 2电源单独作用(将开关K 1投向短路侧,开关K 2投向U 2侧),重复实验步骤2的测量和记录,数据记入表1-1。
4. 令U 1和U 2共同作用(开关K 1和K 2分别投向U 1和U 2侧), 重复上述的测量和记录,数据记入表1-1。
5. 将R 5(330Ω)换成二极管 1N4007(即将开关K 3投向二极管IN4007侧),重复1~4的测量过程,数据记入表1-2。
五、实验注意事项1. 用电流插头测量各支路电流时,或者用电压表测量电压降时,应注意仪表的极性,正确判断测得值的+、-号后,记入数据表格。
2. 注意仪表量程的及时更换。
六、预习思考题1. 在叠加定理实验中,要令U 1、U 2分别单独作用,应如何操作?可否直接将不作用的电源(U 1或U 2)短接置零?2. 实验电路中,若有一个电阻器改为二极管, 试问叠加定理的迭加性还成立吗?为什么?七、实验报告1. 根据实验数据表格,进行分析、比较,归纳、总结实验结论,即验证线性电路的叠加性。
叠加定理的验证实验报告
叠加定理的验证实验报告叠加定理的验证实验报告引言:叠加定理是物理学中一个重要的定理,它在解决复杂问题时起到了重要的作用。
本实验旨在验证叠加定理的有效性,并通过实验数据来加深对该定理的理解。
实验目的:验证叠加定理在电路中的应用,了解其原理和实际效果。
实验材料:1. 电源:直流电源、交流电源2. 电阻:不同阻值的电阻器3. 电流表、电压表、万用表4. 连接线、开关等实验器材实验步骤:1. 搭建直流电路:将直流电源与电阻器相连,通过电流表测量电流大小,并记录数据。
2. 搭建交流电路:将交流电源与电阻器相连,通过电流表测量电流大小,并记录数据。
3. 切换电源:将直流电源与交流电源同时连接到电阻器上,通过电流表测量电流大小,并记录数据。
4. 分析数据:根据实验数据,比较直流电路和交流电路的电流大小,以及叠加电路的电流大小,验证叠加定理的有效性。
实验结果:通过实验记录的数据,我们可以得到以下结论:1. 在直流电路中,电流大小与电源电压和电阻大小成正比。
即I=U/R,其中I为电流,U为电压,R为电阻。
2. 在交流电路中,电流的大小与电源电压和电阻大小成正比,但还受到频率和电感、电容等因素的影响。
3. 在叠加电路中,当直流电源和交流电源同时连接到电阻器上时,电流的大小等于直流电路和交流电路电流的代数和。
即I_total = I_direct + I_alternating,其中I_total为总电流,I_direct为直流电路电流,I_alternating为交流电路电流。
讨论与分析:通过实验结果的分析,我们可以得到以下结论:1. 叠加定理在电路中是成立的,无论是直流电路还是交流电路,都可以通过叠加定理来计算电流大小。
2. 叠加定理的有效性源于电流的线性特性,即电流满足叠加原理。
3. 在实际应用中,叠加定理可以简化复杂电路的分析和计算,提高解决问题的效率。
结论:通过本实验的验证,我们可以得出结论:叠加定理在电路中是有效的,可以用来计算电流大小。
叠加原理的验证实验(电工学实验).doc
叠加原理的验证实验(电工学实验).doc
叠加原理是电工学中非常重要的基本原理,它指出在一个线性的、稳态的电路中,每个电源单独作用时,电路中的电流、电势及功率等物理量可以按照其单独作用时的结果来计算。
换句话说,如果一个电路中有多个电源作用,那么每个电源都可以看做是单独作用的,而整个电路中电流、电势及功率等物理量的总和就是所有单独作用结果的代数和。
为了验证叠加原理的正确性,我们可以进行如下的实验:
【实验材料】:
1.电源:直流电源和交流电源各一台;
2.电阻:10欧姆、20欧姆、30欧姆、40欧姆、50欧姆、60欧姆、70欧姆、80欧姆、90欧姆、100欧姆共10个,分别编号为R1-R10;
3.万用表:VC8145A型数字台式万用表一台。
1.将直流电源连接至一个电阻上,用万用表测量该电阻上的电流和电势(电压),记录下来。
3.将两次测量所得的电流和电势相加,得到该电路中的总电流和总电势(电压)。
4.将上述实验步骤中使用的电阻换成另一个电阻,并重复步骤1-3,直至所有的电阻都被测量完毕。
1.在连接电路时要注意正确连接,以免损坏电源和电阻等器件。
2.测量电阻、电流和电势(电压)时要仔细操作,防止出现测量误差。
3.在交流电路中,要注意相位的影响,以免对测量结果产生影响。
叠加定理实验报告
叠加定理实验报告实验目的,通过实验验证叠加定理在电学中的应用。
实验仪器,直流电源、电阻、导线、毫安表、伏特表。
实验原理,叠加定理是指在线性电路中,若有多个电源作用于电路中,某一支路的电流或电压等于各个电源单独作用时该支路的电流或电压之和。
即叠加定理适用于线性电路,不适用于非线性电路。
实验步骤:1. 将直流电源、电阻、导线按照电路图连接好。
2. 分别用毫安表和伏特表测量电路中的电流和电压。
3. 记录下各个电源单独作用时电路中的电流和电压数值。
4. 同时接通两个电源,测量电路中的电流和电压数值。
5. 比较实验结果,验证叠加定理。
实验结果:1. 电源1单独作用时,电路中的电流为I1,电压为U1。
2. 电源2单独作用时,电路中的电流为I2,电压为U2。
3. 两个电源同时作用时,电路中的电流为I,电压为U。
实验结论,根据实验结果,可以得出结论,电路中的电流和电压等于各个电源单独作用时该支路的电流或电压之和,验证了叠加定理在电学中的应用。
实验中遇到的问题及解决方法:1. 实验中发现电路连接不良导致测量数值不准确,及时重新连接电路,确保连接良好。
2. 实验中毫安表和伏特表的使用不熟练,导致测量过程中出现误差,经过反复练习,熟练掌握仪器的使用方法。
实验中的收获:通过本次实验,我深刻理解了叠加定理在电学中的应用,掌握了实验操作的方法和技巧,提高了自己的动手能力和实验数据处理能力。
实验的意义:叠加定理是电学中的基本原理之一,它在电路分析和设计中有着重要的应用价值。
通过本次实验,不仅验证了叠加定理的正确性,也加深了对电学知识的理解和掌握,为今后的学习和科研打下了坚实的基础。
总结:本次实验通过实际操作验证了叠加定理在电学中的应用,实验结果符合叠加定理的要求,验证了叠加定理的正确性。
同时,实验中也积累了丰富的实验操作经验,提高了自己的动手能力和实验数据处理能力。
这次实验对于深入理解电学知识,提高实验技能有着重要的意义。
电工学第七版上册实验
实验一叠加定理及戴维南定理的验证一、实验目的1.验证线性电路叠加原理的正确性,加深对其使用范围的理解;2.通过实验加深对线性电路的叠加性和齐次性的认识和理解;3.验证戴维南定理的正确性;二、实验原理叠加定理指出:在有几个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。
如果网络是非线性的,叠加原理将不适用。
任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源单口网络)。
戴维南定理指出:任何一个线性有源网络,总可以用一个等效电压源来代替,此电压源的电动势E S等于这个有源二端网络的开路电压U OC,其等效内阻R O等于该网络中所有独立源均置于零(理想电压源视为短路,理想电流源视为开路)时的等效电阻。
U O C和R O称为有源二端网络的等效参数。
三、实验组件多功能实验网络;直流电压表;直流电流表;可调直流稳压源;可调直流电流源;可调电阻。
四、实验步骤1、验证线性电路的叠加原理:○1按图1电路图连接好电路后,请教师检查电路;○2开路I s,合上E后测各支路的电压、电流;○3短接E,测量I s单独作用时,各支路的电压、电流;○4测量E、I s同时作用时各支路电压、电流;○5根据记录的数据,验证电流、电压叠加原理。
2、验证非线性电路不适用叠加原理:将图1中DC支路的线性电阻用稳压二极管代替,重复步骤1,重复测量各支路电流和电压。
3、戴维南定理验证:(1)测量含源单口网络:○1按图2电路图连接好电路后,请教师检查电路;○2设定I s=15mA、E s=10V;图1S○3调节精密可调电阻,测定AB 支路从开路状态(R=∞,此时测出的U AB 为A 、B 开路电压U K )变化到短路状态(R=0,此时测出的电流即为A 、B 端短路时的短路电流I d )的U AB 、I AB 。
实验1 基尔霍夫定律及叠加定理实验报告
实验1 基尔霍夫定律及叠加定理实验报告1、实验目的本实验的目的是通过实验测量和计算,验证基尔霍夫定律和叠加定理在电路中的有效性,并实际应用这些定律去解决实际工程中的电路问题。
2、实验原理基尔霍夫定律是德国物理学家罗尔夫·基尔·霍夫(Gustav Kirchhoff)在1845年提出的,它说明在电路中,其中一个点的流入电流之和等于其中另一个点的流出电流之和:即电流经过支路时守恒,这就是熟知的第一定律(支路定律)。
对应地,基尔霍夫又提出了“点定律”,即:电势差绕任意一电路回路理论上其未知部分的总和为零。
叠加定理是1929年由英国物理学家K.波普特提出的,它规定:对于电路中任意两点之间的电路电势,它们相等的那段路线上的电势差等于这线路的所有分支的电势差的累加和。
3、实验过程(1)首先按照实验要求,准备好电路和元件,连接成实验电路。
实验电路中的电阻可以通过额定的值调节,从而在不同的实验中可以调整出不同的抗性。
(2)用万用表测量电阻R1和R2之间的电压和电流,以计算两个抗性之间的电阻。
(3)计算在实验电路上电位差V1和V2之间的电压和电流,以验证基尔霍夫和叠加定理的有效性。
(4)在实验室实验中,将R1的电阻值逐步增加,结合实验数据,计算出随着R1变化时,V1和V2之间的关系。
(5)将实验数据绘制到V-R图上,比较实验数据与基尔霍夫定律和叠加定理的理论图是否一致,看看它们是否有准确性。
4、实验结果在V-R图上可以看出,实验数据与基尔霍夫定律和叠加定理的理论图近似一致,并且他们之间的误差很小,说明基尔霍夫定律和叠加定理在实验中是有效的。
实验一 叠加定理的验证
实验一叠加定理的验证
一、实验目的
1. 熟悉使用示波器的基本操作方法;
2. 掌握叠加原理的概念及其实际应用。
二、实验原理
1. 叠加原理
叠加原理是在线性电路理论中,指当多个电源同时作用于同一个电路中时,每个电源所产生的效果与其单独作用于电路时产生的效果相同。
2. 信号的叠加
在电路中,当两个不同的信号作用于同一电阻时,其总电流等于这两个信号产生的电流的代数和。
同理,当两个不同的电压作用于同一电容时,其总电压等于这两个信号产生的电压的代数和。
3. 简单谐波信号
简单谐波信号是指在一个完整的周期内,电流或电压的大小随时间而变化呈正弦曲线。
三、实验步骤
1. 使用示波器观察基波信号
将正弦波发生器的输出接入通道1,在示波器上观察到基波的正弦波形。
调节幅度、频率和时基等参数,使波形清晰可见。
2. 观察一阶谐波
将正弦波发生器的输出接入通道1,再将经过一阻值为R的电阻后输出的波形接入通道2,调节通道1和通道2的增益,使两个波形在示波器屏幕上清晰可见。
4. 将两个信号分别输入到两个不同的电阻上观察结果。
四、实验结果
在示波器上观察到基波信号的正弦波形。
(见图1)
观察到经过一阻值为R的电阻后的波形是一个一阶谐波。
(见图2)
将两个信号叠加起来,可以观察到叠加波形,其频率等于两个信号频率的代数和。
(见图3)
将两个信号分别输入到两个不同的电阻上,再将两个波形的输出接入示波器的通道1和通道2,观察到两个波形的叠加结果,其频率等于两个信号频率的代数和。
(见图4)。
叠加定理验证实验报告
叠加定理验证实验报告叠加定理验证实验报告引言:在物理学中,叠加定理是一项重要的原理,它指出在线性系统中,多个输入信号的响应可以通过分别计算每个输入信号的响应,然后将它们叠加得到。
本实验旨在通过验证叠加定理,加深对该原理的理解,并探究其在实际应用中的意义。
实验设计:本实验采用了简单的电路模型,包括一个电压源和两个电阻。
首先,我们将电压源的电压设置为一个特定值,然后通过测量电路中的电流和电压来验证叠加定理。
实验步骤:1. 搭建电路:将电压源与两个电阻连接起来,形成一个串联电路。
2. 测量电流:使用电流表测量电路中的电流,记录下数值。
3. 测量电压:使用电压表分别测量两个电阻上的电压,记录下数值。
4. 更改电压源:将电压源的电压调整到另一个特定值。
5. 重复步骤2和3,记录下新的电流和电压数值。
6. 分析数据:比较两组数据,并验证叠加定理是否成立。
实验结果与讨论:通过实验,我们得到了两组不同电压下的电流和电压数值。
根据叠加定理,我们可以预期,当电压源的电压发生变化时,电流和电压的变化应该是相应的,即它们之间应该存在线性关系。
通过对实验数据的分析,我们发现在两组数据中,电流和电压的变化确实呈现出线性关系。
这一结果验证了叠加定理在该电路模型中的适用性。
换句话说,我们可以通过分别计算每个电压下的电流和电压,然后将它们叠加得到整个电路的响应。
进一步地,我们可以将叠加定理应用到更复杂的电路中。
例如,在一个包含多个电阻、电容和电感的电路中,我们可以通过叠加定理来计算每个元件的响应,然后将它们叠加得到整个电路的响应。
这为我们分析和设计复杂电路提供了一种有效的方法。
结论:通过本实验,我们验证了叠加定理在简单电路模型中的适用性。
叠加定理为我们理解和分析线性系统提供了一种有效的工具,并且可以应用于更复杂的电路中。
在实际应用中,叠加定理可以帮助我们预测和优化电路的性能,从而提高电路的稳定性和效率。
总结:本实验通过验证叠加定理,加深了我们对该原理的理解。
电子技术实验基础实验报告 叠加定理的验证
电子技术实验基础实验报告叠加定理的验证电子技术基础实验报告
实验名称:叠加定理的验证
学生姓名:
学号:
一、实验目的
1.进一步掌握直流稳压电源和万用表的使用方法。
2.掌握直流电压和直流电源的测试方法。
3.进一步加深对叠加定理的理解。
二、实验原理
叠加定理指出,全部电源在线性电路中产生的任一电压或电流,等于每一个电源单独作用产
生的相应电压或电流的代数和。
如图所示电路,电路中的各支路电流、电压等于(b)中Us1单独作用产生的电压、电流和
(a)中Us2单独作用产生的电压、电流的代数和。
(a) (b) (c)
三、实验内容
1、根据上述电路图搭建电路,测量并记录有关数据
2、仿真电路
? 共同作用下
?仅Us1作用
?仅Us2作用
四、实验数据
I I I U U U 参数 R1R2R3R1R2R3 1A 500mA 500mA 6V 6V 6V U单独作用 s1 250mA 375mA 125mA 1.5V 4.5V 1.5V U单独作用 s2 750.001mA -125mA 625mA 4.5V -1.5V 7.5V 共同作用时的测量值结论:在实验允许的误差范围内,叠加定理成立。
五、实验小结
在测量电压、电流时,保持仪表的极性与其参考方向一致才可得到准确数据。
叠加定理的验证_戴维南定理的验证实验报告电子技术
叠加定理的验证_戴维南定理的验证明验报告 - 电子技术1. 戴维宁定理的验证(1)有源二端电路N的伏安特性测试电路如图所示,A、B端左侧的电路是一给定的有源二端电路N,其伏安特性的测量同试验一(通过转变负载测得)。
数据填入表1中。
留意:接线应当‘先串后并’,且接线或换接电路时均不能带电操作。
在表1中,当时,电压表所测数据就是有源二端电路N的开路电压,记为,当时,电流表所测数据就是有源二端电路N的短路电流,记为,依据这两个数据可计算出()。
表1 计算:()500400300200100(V)(mA)(2)戴维宁等效电路的伏安特性测试电路如图2-3所示,A、B端左侧的电路是图2-2电路N的戴维宁等效电路,依据戴维宁定理,,所以将图2-3中的调整成表1中所测的的大小,将调整成的大小,测量出等效电路的伏安特性,数据填入表2中。
表2()500 400 300 200 100 0 (V)(mA)比较上面测得的图2-2和图2-3两个二端电路的伏安特性,依据它们是否在误差范围内相同,从而得出戴维宁定理是否成立的结论。
2. 叠加定理的验证电压源和电流源共同作用的电路如图2-4所示。
测出电压表和电流表的读数记录在表2-3中。
然后将电流源拆除,断开原连接处,测量单独作用时,电压表和电流表的读数,记录在表2-3中。
最终将电压源拆除,短接原连接处,重新接上电流源,测量单独作用时,电压表和电流表的读数,记录在表2-3中。
表2-3(mA)(V)1、与共同作用时2、单独作用时3、单独作用时计算代数和若时间允许,同学们也可以自己设计电路测试戴维宁定理,叠加定理的正确性。
留意:由于要测二端电路N的开路电压和短路电流,所以,所设计的二端电路N必需能允许开路、短路的状况发生。
且要求先理论计算,再实际测量。
叠加定理验证实验报告
叠加定理验证实验报告叠加定理验证实验报告引言:叠加定理是电磁学中的基本原理之一,它描述了在线性系统中,多个电磁场的叠加效应。
通过实验验证叠加定理的准确性,可以深入理解电磁学中的重要概念,并为进一步研究和应用提供基础。
实验目的:本实验旨在验证叠加定理在电磁学中的应用。
通过将不同频率和振幅的电磁场叠加在一起,观察和测量叠加后的电磁场的特性,以验证叠加定理的准确性。
实验装置与方法:1. 实验装置:本实验使用了一个信号发生器、一个示波器、一根导线和一块带有刻度的纸。
2. 实验方法:步骤一:将信号发生器的输出连接到示波器的输入端,确保电路连接正确。
步骤二:调整信号发生器的频率和振幅,产生不同的电磁场。
步骤三:将产生的电磁场导入示波器,观察并记录示波器上的波形。
步骤四:将不同频率和振幅的电磁场叠加在一起,再次观察并记录示波器上的波形。
步骤五:对比叠加前后的波形差异,验证叠加定理在电磁学中的应用。
实验结果与分析:通过实验观察和记录,我们得到了如下结果:1. 单独产生的电磁场波形:当我们调整信号发生器的频率和振幅,产生不同的电磁场时,示波器上显示出相应的波形。
我们观察到频率越高,波形的周期越短;振幅越大,波形的幅度越高。
这与电磁学中的基本原理相符合。
2. 叠加后的电磁场波形:将不同频率和振幅的电磁场叠加在一起后,示波器上显示出了叠加后的波形。
我们观察到,叠加后的波形是由各个电磁场波形的叠加构成的。
通过调整不同电磁场的频率和振幅,我们可以得到不同形状和特性的叠加波形。
3. 实验结果验证叠加定理:通过对比叠加前后的波形差异,我们可以验证叠加定理在电磁学中的应用。
实验结果表明,叠加定理在电磁学中是成立的,即多个电磁场可以叠加在一起,形成新的电磁场。
结论:本实验通过观察和测量不同频率和振幅的电磁场叠加后的波形,验证了叠加定理在电磁学中的应用。
实验结果表明,叠加定理是电磁学中的基本原理之一,可以用于描述和分析复杂的电磁场问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、实验原理
1.线性电路的叠加性:在有几个独立源共同作用下的线性电路中,任何一条支路的电流或电压,都可以看成是由每一个独立源单独作用时在该支路所产生的电流或电压的代数和。
2.线性电路的齐次性:当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即电路中各支路的电流和电压值)也将增加或减小K 倍。
某独立源单独作用是指:在电路中将该独立源之外的其他独立源“去掉”,即电压源用短路线取代,电流源用开路取代,受控源保持不变。
对含非线性元件(如二极管)的电路,叠加原理不适用;叠加原理一般也不适用于“功率的叠加”,P =(Σ I )·(ΣU )≠Σ IU
五、实验预习要求,在实验报告本上完成以下内容
1.写出本实验用到的仪器、设备及型号; 2.画出实验电路接线图及数据表格;
3.根据图3.1中各元件参数计算表格3.1中各项理论值
4.回答思考问题:叠加原理中E 1、E 2分别单独作用,在实验中应如何操作?可否直接将不作用的电源(E 1或E 2)置零(短接)?
六、实验内容与步骤
实验线路如图3.1所示,中虚线的地方用导线连接起来。
510Ω
510Ω
1kΩ
6 V
12 V
A
B
C
D
I1
I2
I3
E1
E2
S1S2
图3.1 实验电路。