高考数学“三个二次”的转

合集下载

高考数学中的二次函数问题解析

高考数学中的二次函数问题解析

高考数学中的二次函数问题解析高考数学是很多学生最为担心的科目之一,其中涉及到的二次函数问题更是令学生头疼不已。

二次函数在高中数学中的重要性不言而喻,其解题方法多种多样,需要学生有一定的数学基础和逻辑思维能力。

在本文中,将着重解析高考数学中的二次函数问题,让学生能够更好地应对考试。

一、二次函数的基本形式二次函数是高中数学的一个重要概念,也是高考的重点内容之一。

二次函数的一般式为:y = ax² + bx + c其中,a、b、c 分别为实数,二次函数的图像为开口朝上或开口朝下的抛物线。

a 的取值决定了二次函数的开口方向和大小,当a > 0 时,抛物线开口朝上,当 a < 0 时,抛物线开口朝下;而 b 和c 的取值则分别影响抛物线的位置和与坐标轴的交点。

二、二次函数的求根公式在解决二次函数的问题时,一个常见的问题是求解方程ax² + bx + c = 0其中,a、b、c 分别为实数。

由于一般的二次方程不易直接求解,因此需要使用二次函数的求根公式:x1,2 = (-b ± √(b² - 4ac)) / 2a其中,+/- 代表正负号取两种情况,√ 表示开方,a、b、c 分别代表一般式中的系数。

需要注意的是,在运用此公式求解时,首先应该对给定方程进行分类讨论,判断它的解的数量与情况。

三、二次函数的最值问题另一个常见的二次函数问题是求取最值。

通过对一般式 y = ax²+ bx + c 的求导,我们可以得到其导函数为:y' = 2ax + b当 y' = 0 时,可以求得此时的 x 值,即为二次函数的极值点。

根据抛物线的开口方向,可以推断出该点是函数的最大值或最小值。

此外,需要注意的是,当 a > 0 时,抛物线开口朝上,其最小值为 y = c - b² / 4a;而当 a < 0 时,抛物线开口朝下,其最大值为y = c - b² / 4a。

高考数学中的二次函数顶点式与标准式转化法则

高考数学中的二次函数顶点式与标准式转化法则

高考数学中的二次函数顶点式与标准式转化法则二次函数是高中数学中非常重要的内容之一,同时也是高考数学中的热门考点。

在高考数学中,我们经常需要根据题目所给的信息来求出二次函数的解析式,并且要求能够熟练掌握二次函数的各种表示形式。

其中,二次函数的顶点式和标准式是非常常用的两种表达方式,本文将针对二次函数的顶点式与标准式之间的转化法则进行探讨。

一、二次函数的顶点式二次函数的顶点式一般形式为:f(x) = a(x-h)² + k其中,a表示抛物线的开口方向和大小,h和k分别为抛物线的顶点坐标(h,k)。

从顶点式的形式可以看出,对于同一二次函数,其顶点坐标(h,k)是不变的,而a则可以通过其他信息得出。

因此,在解答题目时,我们可以根据顶点式的形式来得出顶点坐标,进而得出抛物线的形态和特征。

例如,假设题目中给出了二次函数的顶点坐标为(2,-3),开口向上,则可以得出该二次函数的顶点式为:f(x) = a(x-2)² -3再根据题目中其他信息,如经过点(1,-1)和点(3,1),就可以得出二次函数的解析式了。

二、二次函数的标准式二次函数的标准式一般形式为:f(x) = ax² + bx + c其中,a不等于0,表示抛物线的开口方向和大小,b和c为常数。

相比于顶点式,标准式的形式更加简洁明了,而且也是解决二次函数问题的首选形式。

因此,将顶点式转化为标准式就显得非常重要。

三、从顶点式转化为标准式为了将二次函数的顶点式转化为标准式,我们可以采用“配方法”的思路。

具体来说,就是将二次项进行展开,并通过一定的化简和配凑,使其与标准式的形式相同。

以二次函数的顶点式为f(x) = a(x-h)² + k为例,将其进行展开,得到:f(x) = a(x² - 2hx + h²) + k再进行化简,得到:f(x) = ax² - 2ahx + ah² + k通过比较,我们不难发现,这个式子与标准式f(x) = ax² + bx + c之间存在着对应关系。

第1章 第3节 不等关系与一元二次不等式2023届高三一轮复习数学精品备课(新高考人教A版2019)

第1章 第3节 不等关系与一元二次不等式2023届高三一轮复习数学精品备课(新高考人教A版2019)

命题点3 给定参数范围的恒成立问题 [例3-3] 已知a∈[-1,1],不等式x2+(a-4)x+4 -2a>0恒成立,则x的取值范围是(_-__∞__,__1_).∪(3,+∞)
►规律方法
形如f(x)≥0(f(x)≤0)恒成立问题的求解策略 (1)对x∈R的不等式确定参数的范围时,结合二次函 数的图象,利用判别式来求解. (2)对x∈[a,b]的不等式确定参数的范围时,①根据 函数的单调性,求其最值,让最值大于等于或小于等于
A.ac<bc
B.abc<bac
C.alogbc<blogac
D.logac<logbc
C
(2)解关于x的不等式ax2-2≥2x-ax(a∈ R).
B
(2)求不等式12x2-ax>a2(a∈ R)的解集.
►考向三 一元二次不等式恒成立问题[多维探究]
命题点1 在R上的恒成立问题
第三节 不等关系与一元二次不等式
基础知识·自主回顾
知识梳理
a<b
a<b
b<a
> a+c>b+d
>
<
>
>
>
{x|x<x1或x>x2}
{x|x≠x1}
{x|x1<x<x2}

教材拓展
基础自测

× √
×
C
A
◇考题再现
4.已知集合A={x|x2-2x-15<0},B={x|x≥e},则
A∪B=( C ) A.[e,5)
1.比较法是不等式性质证
明的理论依据,是不等式 1.“三个二次”的
证明的主要方法之一,比 关系是解一元二

高考数学难点之三个“二次”及关系

高考数学难点之三个“二次”及关系

高考数学难点之三个“二次”及关系三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具.高考试题中近一半的试题与这三个“二次”问题有关.本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法.●难点磁场已知对于x 的所有实数值,二次函数f (x )=x 2-4ax +2a +12(a ∈R )的值都是非负的,求关于x 的方程2+a x=|a -1|+2的根的取值X 围. ●案例探究[例1]已知二次函数f (x )=ax 2+bx +c 和一次函数g (x )=-bx ,其中a 、b 、c 满足a >b >c ,a +b +c =0,(a ,b ,c ∈R ).(1)求证:两函数的图象交于不同的两点A 、B ; (2)求线段AB 在x 轴上的射影A 1B 1的长的取值X 围.命题意图:本题主要考查考生对函数中函数与方程思想的运用能力.属于★★★★★题目. 知识依托:解答本题的闪光点是熟练应用方程的知识来解决问题及数与形的完美结合. 错解分析:由于此题表面上重在“形”,因而本题难点就是一些考生可能走入误区,老是想在“形”上找解问题的突破口,而忽略了“数”.技巧与方法:利用方程思想巧妙转化.(1)证明:由⎩⎨⎧-=++=bxy cbx ax y 2消去y 得ax 2+2bx +c =0Δ=4b 2-4ac =4(-a -c )2-4ac =4(a 2+ac +c 2)=4[(a +43)22+c c 2]∵a +b +c =0,a >b >c ,∴a >0,c <0 ∴43c 2>0,∴Δ>0,即两函数的图象交于不同的两点. (2)解:设方程ax 2+bx +c =0的两根为x 1和x 2,则x 1+x 2=-ab 2,x 1x 2=ac .|A 1B 1|2=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2]43)21[(4]1)[(44)(4444)2(2222222++=++=---=-=--=a c a c a c a acc a a ac b a c a b∵a >b >c ,a +b +c =0,a >0,c <0∴a >-a -c >c ,解得a c ∈(-2,-21) ∵]1)[(4)(2++=a c ac a cf 的对称轴方程是21-=a c . a c ∈(-2,-21)时,为减函数 ∴|A 1B 1|2∈(3,12),故|A 1B 1|∈(32,3).[例2]已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的X 围. (2)若方程两根均在区间(0,1)内,求m 的X 围.命题意图:本题重点考查方程的根的分布问题,属★★★★级题目.知识依托:解答本题的闪光点是熟知方程的根对于二次函数性质所具有的意义. 错解分析:用二次函数的性质对方程的根进行限制时,条件不严谨是解答本题的难点.技巧与方法:设出二次方程对应的函数,可画出相应的示意图,然后用函数性质加以限制.解:(1)条件说明抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧->-<∈-<⇒⎪⎪⎩⎪⎪⎨⎧>+=<+=>=-<+=65,21,21056)2(,024)1(,02)1(,012)0(m m R m m m f m f f m f ∴2165-<<-m . (2)据抛物线与x 轴交点落在区间(0,1)内,列不等式组⎪⎪⎩⎪⎪⎨⎧<-<≥∆>>10,0,0)1(,0)0(m f f⎪⎪⎪⎩⎪⎪⎪⎨⎧<<--≤+≥->->⇒.01,2121,21,21m m m m m 或(这里0<-m <1是因为对称轴x =-m 应在区间(0,1)内通过) ●锦囊妙计1.二次函数的基本性质 (1)二次函数的三种表示法:y =ax 2+bx +c ;y =a (x -x 1)(x -x 2);y =a (x -x 0)2+n .(2)当a >0,f (x )在区间[p ,q ]上的最大值M ,最小值m ,令x 0=21(p +q ). 若-ab2<p ,则f (p )=m ,f (q )=M ; 若p ≤-a b 2<x 0,则f (-a b 2)=m ,f (q )=M ; 若x 0≤-a b 2<q ,则f (p )=M ,f (-ab2)=m ; 若-ab2≥q ,则f (p )=M ,f (q )=m . 2.二次方程f (x )=ax 2+bx +c =0的实根分布及条件.(1)方程f (x )=0的两根中一根比r 大,另一根比r 小⇔a ·f (r )<0; (2)二次方程f (x )=0的两根都大于r ⇔⎪⎪⎩⎪⎪⎨⎧>⋅>->-=∆0)(,2,042r f a r a bac b (3)二次方程f (x )=0在区间(p ,q )内有两根⎪⎪⎪⎩⎪⎪⎪⎨⎧>⋅>⋅<-<>-=∆⇔;0)(,0)(,2,042p f a q f a q ab p ac b (4)二次方程f (x )=0在区间(p ,q )内只有一根⇔f (p )·f (q )<0,或f (p )=0(检验)或f (q )=0(检验)检验另一根若在(p ,q )内成立.(5)方程f (x )=0两根的一根大于p ,另一根小于q (p <q )⇔⎩⎨⎧>⋅<⋅0)(0)(q f a p f a .3.二次不等式转化策略(1)二次不等式f (x )=ax 2+bx +c ≤0的解集是:(-∞,α])∪[β,+∞)⇔a <0且f (α)=f (β)=0; (2)当a >0时,f (α)<f (β)⇔ |α+a b 2|<|β+a b 2|,当a <0时,f (α)<f (β)⇔|α+ab2|> |β+ab2|; (3)当a >0时,二次不等式f (x )>0在[p ,q ]恒成立⎪⎩⎪⎨⎧><-⇔,0)(,2p f p a b或⎪⎩⎪⎨⎧≥≥-⎪⎪⎩⎪⎪⎨⎧>-<-≤;0)(;2,0)2(,2q f p a b a b f q a b p 或 (4)f (x )>0恒成立⎩⎨⎧<==⎩⎨⎧<∆<⇔<⎩⎨⎧>==⎩⎨⎧<∆>⇔.00,0,00)(;0,0,0,0c b a a x f c b a a 或恒成立或 ●歼灭难点训练 一、选择题1.(★★★★)若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则a 的取值X 围是( )A.(-∞,2]B.[-2,2]C.(-2,2]D.(-∞,-2)2.(★★★★)设二次函数f (x )=x 2-x +a (a >0),若f (m )<0,则f (m -1)的值为( ) A.正数B.负数C.非负数D.正数、负数和零都有可能 二、填空题3.(★★★★★)已知二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,若在区间[-1,1]内至少存在一个实数c ,使f (c )>0,则实数p 的取值X 围是_________.4.(★★★★★)二次函数f (x )的二次项系数为正,且对任意实数x 恒有f (2+x )=f (2-x ),若f (1-2x 2)<f (1+2x -x 2),则x 的取值X 围是_________.三、解答题5.(★★★★★)已知实数t 满足关系式33log log aya t a a= (a >0且a ≠1) (1)令t=a x ,求y =f (x )的表达式;(2)若x ∈(0,2]时,y 有最小值8,求a 和x 的值.6.(★★★★)如果二次函数y =mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点的右侧,试求m 的取值X 围.7.(★★★★★)二次函数f (x )=px 2+qx +r 中实数p 、q 、r 满足mrm q m p ++++12=0,其中m >0,求证:(1)pf (1+m m)<0; (2)方程f (x )=0在(0,1)内恒有解.8.(★★★★)一个小服装厂生产某种风衣,月销售量x (件)与售价P (元/件)之间的关系为P =160-2x ,生产x 件的成本R =500+30x 元.(1)该厂的月产量多大时,月获得的利润不少于1300元?(2)当月产量为多少时,可获得最大利润?最大利润是多少元?参考答案难点磁场解:由条件知Δ≤0,即(-4a )2-4(2a +12)≤0,∴-23≤a ≤2 (1)当-23≤a <1时,原方程化为:x =-a 2+a +6,∵-a 2+a +6=-(a -21)2+425. ∴a =-23时,x mi n =49,a =21时,x max =425. ∴49≤x ≤425. (2)当1≤a ≤2时,x =a 2+3a +2=(a +23)2-41∴当a =1时,x mi n =6,当a =2时,x max =12,∴6≤x ≤12.综上所述,49≤x ≤12. 歼灭难点训练一、1.解析:当a -2=0即a =2时,不等式为-4<0,恒成立.∴a =2,当a -2≠0时,则a 满足⎩⎨⎧<∆<-002a ,解得-2<a <2,所以a 的X 围是-2<a ≤2. 答案:C2.解析:∵f (x )=x 2-x +a 的对称轴为x =21,且f (1)>0,则f (0)>0,而f (m )<0,∴m ∈(0,1), ∴m -1<0,∴f (m -1)>0.答案:A二、3.解析:只需f (1)=-2p 2-3p +9>0或f (-1)=-2p 2+p +1>0即-3<p <23或-21<p <1.∴p ∈(-3,23). 答案:(-3,23) 4.解析:由f (2+x )=f (2-x )知x =2为对称轴,由于距对称轴较近的点的纵坐标较小, ∴|1-2x 2-2|<|1+2x -x 2-2|,∴-2<x <0. 答案:-2<x <0三、5.解:(1)由log a 33log aya t t =得log a t -3=log t y -3log t a 由t =a x 知x =log a t ,代入上式得x -3=xx y a 3log -,∴log a y =x 2-3x +3,即y =a 332+-x x (x ≠0).(2)令u =x 2-3x +3=(x -23)2+43(x ≠0),则y =a u ①若0<a <1,要使y =a u 有最小值8,则u =(x -23)2+43在(0,2]上应有最大值,但u 在(0,2]上不存在最大值. ②若a >1,要使y =a u 有最小值8,则u =(x -23)2+43,x ∈(0,2]应有最小值 ∴当x =23时,u mi n =43,y mi n =43a由43a=8得a =16.∴所求a =16,x =23. 6.解:∵f (0)=1>0(1)当m <0时,二次函数图象与x 轴有两个交点且分别在y 轴两侧,符合题意.(2)当m >0时,则⎪⎩⎪⎨⎧>-≥∆030mm 解得0<m ≤1综上所述,m 的取值X 围是{m |m ≤1且m ≠0}. 7.证明:(1)])1()1([)1(2r m m q m m p p m m pf ++++=+])2()1()1()2([]2)1([]1)1([22222+++-+=+-+=++++=m m m m m m p m pm pm pm m r m q m pm pm)2()1(122++-=m m pm ,由于f (x )是二次函数,故p ≠0,又m >0,所以,pf (1+m m)<0. (2)由题意,得f (0)=r ,f (1)=p +q +r ①当p <0时,由(1)知f (1+m m)<0 若r >0,则f (0)>0,又f (1+m m )<0,所以f (x )=0在(0,1+m m)内有解; 若r ≤0,则f (1)=p +q +r =p +(m +1)=(-m r m p -+2)+r =mrm p -+2>0, 又f (1+m m )<0,所以f (x )=0在(1+m m,1)内有解. ②当p <0时同理可证.8.解:(1)设该厂的月获利为y ,依题意得 y =(160-2x )x -(500+30x )=-2x 2+130x -500 由y ≥1300知-2x 2+130x -500≥1300∴x 2-65x +900≤0,∴(x -20)(x -45)≤0,解得20≤x ≤45 ∴当月产量在20~45件之间时,月获利不少于1300元.(2)由(1)知y =-2x 2+130x -500=-2(x -265)2+1612.5 ∵x 为正整数,∴x =32或33时,y 取得最大值为1612元, ∴当月产量为32件或33件时,可获得最大利润1612元.。

高考数学中的二次函数与相关题型分析

高考数学中的二次函数与相关题型分析

高考数学中的二次函数与相关题型分析高考数学是考生们最为担心的科目之一,而其中涉及到的二次函数和相关题型更是让人头疼。

二次函数是高中数学的重点和难点,因此在备战高考时务必要重视和复习。

本文将着重分析高考数学中的二次函数和相关题型,并介绍备考中的一些技巧和方法。

一、二次函数的基本概念二次函数是形如 y = ax^2 + bx + c 的一类函数,其中 a、b、c都是实数,且a ≠ 0。

二次函数的图像为一个开口向上或向下的抛物线。

二次函数的一些基本概念包括:1. 零点:指函数图象与 x 轴的交点,也就是方程 ax^2 + bx + c= 0 的解。

2. 判别式:指二次方程 ax^2 + bx + c = 0 的 b^2-4ac 部分,用于判断此方程的解的数量和类型。

3. 对称轴:指函数图象中抛物线的对称轴,其方程为x = -b/2a。

4. 单调性和极值:指函数图象的凹凸性和最值点。

二、高考中的二次函数题型在高考数学中,二次函数的考察主要分为以下几个方面:1. 二次函数的图像及性质该题型主要考查二次函数的开口方向、顶点坐标、对称轴等性质,需要通过化式子、配方法、求导等方法计算。

例如:已知二次函数 f(x) = 2x^2 - 4x + 1,求出它的零点、对称轴和顶点坐标。

2. 二次函数的解析式以及单调性和极值该题型主要考查对二次函数解析式的把握和对单调性和极值的理解,需要通过求导、解方程等方法计算。

例如:已知二次函数 f(x) = x^2 - 2x + 3,求出它的解析式和单调性和极值。

3. 二次函数与其他函数的关系该题型主要考查二次函数与指数函数、对数函数、三角函数等其他函数的关系,需要掌握函数的基本性质和变换。

例如:已知二次函数 y = x^2 + 2x + 1 和指数函数 y = e^x,求出它们的交点坐标。

4. 实际问题中的二次函数该题型主要考查将二次函数应用于实际问题中的能力,需要理解问题背景和建立模型。

高考数学中的二次函数基本概念及相关性质

高考数学中的二次函数基本概念及相关性质

高考数学中的二次函数基本概念及相关性质高考数学中,二次函数是一个非常基础、重要的概念。

本文将从基本概念和相关性质两个方面,详细介绍二次函数的相关知识点。

一、基本概念二次函数,也叫做二次多项式函数,是指一个以x为自变量,x的二次多项式为函数值的函数,通常可以表示为y=ax²+bx+c。

其中,a、b、c分别是常数,a≠0。

1. 函数图像:二次函数的图像通常是一条开口朝上或开口朝下的抛物线。

如果a>0,则抛物线开口朝上;如果a<0,则抛物线开口朝下。

图像中的对称轴为x=-b/2a,抛物线的顶点坐标为(-b/2a, c-b²/4a)。

2. 零点:二次函数的零点是指函数图像与x轴的交点。

求二次函数的零点有两种方法:一种是利用求根公式,即x=[-b±√(b²-4ac)]/2a;另一种是将二次函数化为标准的完全平方公式,即y=a(x-h)²+k,其中(h, k)为抛物线的顶点坐标,直接利用完全平方公式求零点。

3. 对称性:二次函数具有轴对称性,即对于任意一点(x, y),点(-x, y)也在函数图像上。

二、相关性质除了基本概念外,二次函数还有一些重要的性质,这些性质通常在高考中频繁出现,需要认真掌握:1. 二次函数的最值:由于二次函数的函数图像是一条抛物线,因此其最值一定发生在抛物线的顶点处。

当a>0时,二次函数的最小值等于c-b²/4a,发生在点(-b/2a, c-b²/4a);当a<0时,二次函数的最大值等于c-b²/4a,发生在点(-b/2a, c-b²/4a)。

2. 二次函数的单调性:当a>0时,二次函数在其零点左右是单调递减和单调递增的;当a<0时,二次函数在其零点左右是单调递增和单调递减的。

3. 二次函数的导数:二次函数的导数f'(x)=2ax+b,是一个一次函数。

高考数学 一元二次不等式及其解法大全(含练习和答案)

高考数学 一元二次不等式及其解法大全(含练习和答案)

一元二次不等式及其解法1.一元二次不等式(20(0)ax bx c a ++>>)与相应的二次函数(2(0)y ax bx c a =++>)及一元二次方程(20(0)ax bx c a ++=>)的关系(简称三个二次之间的关系)判别式Δ=b 2-4acΔ>0 Δ=0 Δ<0 二次函数y =ax 2+bx +c (a >0)的图象一元二次方程 ax 2+bx +c =0 (a >0)的根有两相异实根1212,()x x x x < 有两相等实根 122b x x a==-没有实数根 ax 2+bx +c >0 (a >0)的解集R ax 2+bx +c <0 (a >0)的解集∅ 注:(1)若0a <时,可以先将二次项系数化为正数,若对应方程有两实根,则可根据“大于取两边,小于取中间”求解集。

2.简单的分式不等式(1)()0()f x g x >⇔______________; (2)()0()f xg x <⇔____________ (3)()0()f x g x ≥⇔ ___________ (4)()0()f x g x ≤⇔_____________ 3.二次不等式恒成立的条件(1)ax 2+bx +c >0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________ (2)ax 2+bx +c <0 (a ≠0)对一切x ∈R 恒成立的充要条件是___________1.(人教A 版教材习题改编)不等式2x 2-x -1>0的解集是( )A .(-12,1) B .(1,+∞)C .(-∞,1)∪(2,+∞)D .(-∞,-12)∪(1,+∞)2.不等式x -12x +1≤0的解集为( )A .(-12,1]B .{x |x ≥1或x <-12}C .[-12,1]D .{x |x ≥1或x ≤-12} 3.(2012·福建高考)已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是________.4.一元二次不等式ax 2+bx +2>0的解集是(-12,13),则a +b 的值是________.(一)考向1 一元二次不等式的解法例1 求下列不等式的解集(1)22730x x ++> (2)3+2x -x 2≥0;(3)2830x x -+-> (4)213502x x -+-> (5)22320x x -+-< (6)2xx -1≤1解一元二次不等式的步骤: (1)把二次项系数化为正数;(2)先考虑因式分解法,再考虑求根公式法或配方法或判别式法; (3)写出不等式的解集. 变式训练1 解下列不等式:(1)2310x x -+≤ (2)23520x x +-> (3)22530x x --+> (4)29610x x -+-<(5)3012x x+≤- (6)-1≤x 2+2x -1≤2;(二)考向2 三个二次的关系例2 已知关于x 的不等式x 2+ax +b <0的解集(-1,2),试求关于x 的不等式ax 2+x +b <0的解集. 【思路点拨】 不等式解集的端点值是相应方程的根.(1)给出一元二次不等式的解集,则可知二次项系数的符号和相应一元二次方程的两根.(2)三个二次的关系体现了数形结合,以及函数与方程的思想方法.变式训练2 若关于x的不等式axx-1<1的解集是{x|x<1或x>2},求实数a的取值范围.(三)考向3含参数的一元二次不等式的解法例3求不等式12x2-ax>a2(a∈R)的解集.【思路点拨】先求方程12x2-ax=a2的根,讨论根的大小,确定不等式的解集.解含参数的一元二次不等式的步骤(1)二次项若含有参数应讨论参数是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程实根的个数,讨论判别式Δ与0的关系.(3)确定方程无实根时可直接写出解集,确定方程有两个相异实根时,要讨论两实根的大小关系,从而确定解集形式.变式训练3 解关于x的不等式x2-(a+1)x+a<0.(四)考向4 不等式恒成立问题例4 若不等式mx 2-mx -1<0对一切实数x 恒成立,求实数m 的取值范围.【思路点拨】分m =0与m ≠0两种情况讨论,当m ≠0时,用判别式法求解.1.不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c >0;当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ<0;不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c <0;当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ<0.2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.变式训练4 对任意a ∈[-1,1]不等式x 2+(a -4)x +4-2a >0恒成立,则实数x 的取值范围是________.一个过程解一元二次不等式的一般过程是:一看(看二次项系数的符号),二算(计算判别式,判断方程根的情况),三写(写出不等式的解集).两点联想不等式ax 2+bx +c >0(或ax 2+bx +c <0)(a ≠0)的求解,善于联想:(1)二次函数y =ax 2+bx +c 的图象与x 轴的交点,(2)方程ax 2+bx +c =0(a ≠0)的根,运用好“三个二次”间的关系.三个防范1.二次项系数中含有参数时,参数的符号影响不等式的解集;不要忘了二次项系数是否为零的情况.2.解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.3.不同参数范围的解集切莫取并集,应分类表述.课时训练1.设集合M={}2230x x x --<,N=12log 0,x x M N ⎧⎫<⋂⎨⎬⎩⎭则等于 ( )A .-(1,1) B.(1,3) C.(0,1) D.(-1,0)2.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则 ( )A 、11a -<<B 、02a <<C 、1322a -<<D 、3122a -<<3.“|x -1|<2成立”是“x (x -3)<0成立”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.定义02x x <>或运算a b ad bc c d ⎛⎫=- ⎪⎝⎭,则不等式1011x x ⎛⎫<< ⎪⎝⎭的解集为() A .(1,1)- B. (1,0)(0,1)-⋃C. (1)(1-⋃D.5.设A ={x ∈Z ||x -2|≤5},则A 中最小元素为( )A .2B .-3C .7D .06、不等式20x ax b --<的解集为{}223,10x x bx ax <<-->则的解集为( )A 、{}23x x <<B 、1132x x ⎧⎫<<⎨⎬⎩⎭C 、1123x x ⎧⎫-<<-⎨⎬⎩⎭D 、{}32x x -<<-7.设x ∈R ,则“x >12”是“2x 2+x -1>0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.不等式102xx-≥+的解集为 ( ) A.[]2,1- B. (]2,1- C. ()(),21,-∞-⋃+∞ D. (](),21,-∞-⋃+∞ 9. “关于x 的不等式x 2-2ax +a >0的解集为R ”是“0≤a ≤1”( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 10.不等式22530x x --≥成立的一个必要不充分条件是 ( )A .0x ≥ B. 02x x <>或 C. 12x <- D. 132x x ≤-≥或 11.不等式22253x x a a -+≥-对任意实数x 恒成立,则实数a 的取值范围为 ( )A .[]1,4- B. [)(,2)5,-∞-⋃+∞ C. (][),14,-∞-⋃+∞ D. []2,5-12、若函数222,0(),0x x x f x x ax x ⎧-≥=⎨-+<⎩是奇函数,则满足()f x a x >的的取值范围是________13.若不等式2(1)0x a x a --+≤的解集是[-4,3]的子集,则a 的取值范围是________14.已知不等式|x -2|>1的解集与不等式x 2+ax +b >0的解集相等,则a +b 的值为________.15. 设命题p :2x 2-3x +1≤0; 命题q :x 2-(2a +1)x +a (a +1)≤0, 若命题p 是命题q 的必要不充分条件,则实数a 的取值范围是________. 16.不等式ax 2+4x +a >1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是________.一元二次不等式及其解法答案1、D 【解析】 ∵2x 2-x -1=(x -1)(2x +1)>0, ∴x >1或x <-12.故原不等式的解集为(-∞,-12)∪(1,+∞).2、A 【解析】 原不等式等价于(1)(21)0210x x x -+≤⎧⎨+≠⎩.∴原不等式的解集为(-12,1].3、(0,8) 【解析】 ∵x 2-ax +2a >0在R 上恒成立, ∴Δ=a 2-4×2a <0,∴0<a <8.4、-14 【解析】 由已知得方程ax 2+bx +2=0的两根为-12,13.则⎩⎨⎧-b a =-12+132a =(-12)×13解得⎩⎪⎨⎪⎧a =-12,b =-2, ∴a +b =-14.典例分析:例1:(1)原不等式可化为(3)(21)0x x ++> 故原不等式的解集为132x x x ⎧⎫<->-⎨⎬⎩⎭或(2)原不等式化为x 2-2x -3≤0, 即(x -3)(x +1)≤0, 故原不等式的解集为{x |-1≤x ≤3}. (3)原不等式可化为2830x x -+<284(1)(3)520∆=-⨯-⨯-=>212830413413x x x x ∴-+-===方程有两个实根,故原不等式的解集为{}413413x x << (4)原不等式可化为26100x x -+≤ 26411040∆=-⨯⨯=-<∴原不等式的解集为∅(5)原不等式可化为22620x x -+> 2(6)42270∆=--⨯⨯=-<∴故原不等式的解集为R(6) ∵2x x -1≤1⇔2xx -1-1≤0 ⇔x +1x -1≤0 ⇔(1)(1)01110x x x x ≤⎧⇔-≤<⎨-≠⎩-+∴原不等式的解集为[-1,1).变式训练1 (1)9450∆=-=> 12353522x x ∴==对应的方程有两实数根 ∴原不等式的解集为35352x ⎧-+⎪≤≤⎨⎪⎪⎩⎭(2)原不等式可化为(31)(2)0x x -+> ∴原不等式的解集为123x x x ⎧⎫<->⎨⎬⎩⎭或(3)∵-2x 2-5x +3>0, ∴2x 2+5x -3<0,∴(2x -1)(x +3)<0, ∴原不等式的解集为{x |-3<x <12}.(4)原不等式可化为2(31)0x -> ∴原不等式的解集为13x x ⎧⎫≠⎨⎬⎩⎭(5)原不等式可化为(3)(12)0120x x x +-≤⎧⎨-≠⎩ (3)(21)0120x x x +-≥⎧⎨-≠⎩则 13212x x x ⎧≤-≥⎪⎪∴⎨⎪≠⎪⎩或∴原不等式的解集为132x x x ⎧⎫≤->⎨⎬⎩⎭或(6)这是一个双向不等式,可转化为不等式组⎩⎪⎨⎪⎧x 2+2x -1≥-1,x 2+2x -1≤2,即⎩⎪⎨⎪⎧x 2+2x ≥0, ①x 2+2x -3≤0. ② 由①得x ≥0或x ≤-2; 由②得-3≤x ≤1. 故得所求不等式的解集为{x |-3≤x ≤-2或0≤x ≤1}.例2 由于x 2+ax +b <0的解集是(-1,2),所以⎩⎪⎨⎪⎧1-a +b =0,4+2a +b =0,解得⎩⎪⎨⎪⎧a =-1,b =-2.故不等式即为-x 2+x -2<0, ∵⎩⎪⎨⎪⎧-1<0,Δ=1-8=-7<0∴不等式ax 2+x +b <0的解集为R .,变式训练2 解: axx -1<1⇔(a -1)x +1x -1<0⇔[(a -1)x +1](x -1)<0,由原不等式的解集是{x |x <1或x >2}, 知⎩⎪⎨⎪⎧a -1<0,-1a -1=2⇒a =12. ∴实数a 的取值范围是{12}. 例3 ∵12x 2-ax >a 2, ∴12x 2-ax -a 2>0,即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 得:x 1=-a 4,x 2=a3.①a >0时,-a 4<a 3,解集为{x |x <-a 4或x >a3};②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};③a <0时,-a 4>a 3,解集为{x |x <a 3或x >-a4}.综上所述:当a >0时,不等式的解集为{x |x <-a 4或x >a3};当a =0时,不等式的解集为{x |x ∈R 且x ≠0};当a <0时,不等式的解集为{x |x <a3或x >-变式训练3 【解】 原不等式可化为(x -a )(x -1)<0.当a >1时,原不等式的解集为(1,a ); 当a =1时,原不等式的解集为空集; 当a <1时,原不等式的解集为(a ,例4 要使mx 2-mx -1<0对一切实数x 恒成立,若m =0,显然-1<0;若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,解得-4<m <0, 故实数m 的取值范围是(-4,0].,变式训练4 【解析】 设f (a )=(x -2)a +x 2-4x +4,则原问题可转化为一次函数(或常数函数)f (a )在区间[-1,1]上恒正时x 应满足的条件,故应有⎩⎪⎨⎪⎧f (-1)>0,f (1)>0. 即⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0, 化为⎩⎪⎨⎪⎧(x -2)(x -3)>0,(x -1)(x -2)>0. 解之,得x <1或x >3.课时训练1、B 解:由2230x x --<, 得13x -<<由12log 0x <,得1x > 所以{}13M N x x ⋂=<<2、C 解:()()1x a x a -⊗+<对任意实数x 成立, 即()(1)1x a x a ---<对任意实数x 成立2210x x a a ∴--++>恒成立 214(1)0a a ∴∆=--++< 1322a ∴-<< 3. B 【解析】 ∵|x -1|<2⇔-1<x <3,又x (x -3)<0⇔0<x <3.则(0,3)(-1,3). 4、C 解:由题意可知原不等式即为2011x <-< ,212x ∴<<1221x x ∴<<<-或5. B 【解析】 由|x -2|≤5,得-3≤x ≤7, 又x ∈Z ,∴A 中的最小元素为-36、C 解:由题意知2,3是方程20x ax b --=的解235,236a ab b +==⎧⎧∴∴⎨⎨⨯=-=-⎩⎩ 22106510bx ax x x ∴-->--->不等式为2116+5+1023x x x x ⎧⎫<∴-<<-⎨⎬⎩⎭即, 7、 A 【解析】 2x 2+x -1>0的解集为{x |x >12或x <-1}, 故由x >12⇒2x 2+x -1>0,但2x 2+x -1>0D ⇒/x >12. 则“x >12”是“2x 2+x -1>0”的充分不必要条件. 8、B 解:由102x x -≥+,得(1)(2)020x x x -+≥⎧⎨+≠⎩ 则(1)(2)020x x x -+≤⎧⎨+≠⎩解得21x -<≤ (]2,1∴-原不等式的解集为9、A 【解析】 关于x 的不等式x 2-2ax +a >0的解集为R ,则Δ=4a 2-4a <0,解得0<a <1,由集合的包含关系可知选A.10、B 解:原不等式可化为(21)(3)0x x +-≥,解得132x x ≤-≥或 所以原不等式成立的一个必要不充分条件是02x x <>或11、A 解:由题意知,2225(1)4x x x -+=-+的最小值为4,所以22253x x a a -+≥- 对任意实数x 恒成立,只需234a a -≤,解得14a -≤≤12、(13,)-+∞ 解:()(1)(1)f x f f ∴-=-是奇函数, 即1(12)a --=--2()2a f x ∴=->-,则不等式等价于22002222x x x x x x ≥<⎧⎧⎨⎨->--->-⎩⎩,或,解得030x x ≥<<,或-1- 即(13,)x ∈--+∞13、43a -≤≤ 解:原不等式可化为()(1)0x a x --≤,当1a <时,不等式的解集为[],1a , 此时只要4a ≥-即可,即41a -≤<,当1a =时,不等式的解集为1x =,此时符合要求; 当1a >时,不等式的解集为[]1,a ,此时只要3a ≤即可,即13a <≤,综上可得43a -≤≤14. -1 【解析】 由|x -2|>1得x -2<-1或x -2>1,即x <1或x >3.依题意得知,不等式x 2+ax +b >0的解集是(-∞,1)∪(3,+∞)于是有⎩⎪⎨⎪⎧1×3=b ,1+3=-a ,即a =-4,b =3,a +b =-1. 15、[0,12], 解:由2x 2-3x +1≤0,得12≤x ≤1, 由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1,由命题p 是命题q 的必要不充分条件知,p 是q 的充分不必要条件,即{x |12≤x ≤1}{x |a ≤x ≤a +1}, ∴⎩⎪⎨⎪⎧a ≤12,a +1≥1,∴0≤a ≤12. 16、 (2,+∞) 【解析】 由题意知,不等式(a +2)x 2+4x +a -1>0对一切x ∈R 恒成立,则有⎩⎪⎨⎪⎧a +2>0,Δ=16-4(a +2)(a -1)<0,解得a >2.。

高考数学总复习 第七章 不等式 第1节 不等式的性质与一元二次不等式教案 文(含解析)

高考数学总复习 第七章 不等式 第1节 不等式的性质与一元二次不等式教案 文(含解析)

第1节不等式的性质与一元二次不等式最新考纲 1.了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景;2.会从实际问题的情境中抽象出一二次不等式模型;3.通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系;4.会解一元二次不等式,对给定的一元二次不等式,会设计求解的算法框图.知识梳理1.实数的大小顺序与运算性质的关系(1)a>b⇔a-b>0;(2)a=b⇔a-b=0;(3)a<b⇔a-b<0.2.不等式的性质(1)对称性:a>b⇔b<a;(2)传递性:a>b,b>c⇒a>c;(3)可加性:a>b⇔a+c>b+c;a>b,c>d⇒a+c>b+d;(4)可乘性:a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc;a>b>0,c >d>0⇒ac>bd;(5)可乘方:a>b>0⇒a n>b n(n∈N,n≥1);(6)可开方:a>b>0⇒n∈N,n≥2).3.三个“二次”间的关系二次函数y =ax 2+bx +c (a >0)的图像一元二次方程ax 2+bx +c =0 (a >0)的根有两相异实根x 1,x 2(x 1<x 2)有两相等实根x 1=x 2=-b2a没有实数根ax 2+bx +c >0(a >0)的解集{x |x >x 2或x <x 1}⎩⎨⎧⎭⎬⎫x |x ≠-b 2aRax 2+bx +c <0(a >0)的解集{x |x 1<x <x 2}∅∅[微点提醒]1.有关分数的性质(1)若a >b >0,m >0,则b a <b +m a +m ;b a >b -ma -m(b -m >0).(2)若ab >0,且a >b ⇔1a <1b.2.对于不等式ax 2+bx +c >0,求解时不要忘记a =0时的情形. 3.当Δ<0时,不等式ax 2+bx +c >0(a ≠0)的解集为R 还是∅,要注意区别.基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”) (1)a >b ⇔ac 2>bc 2.( )(2)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( ) (3)若方程ax 2+bx +c =0(a <0)没有实数根,则不等式ax 2+bx +c >0(a <0)的解集为R .( )(4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( )解析 (1)由不等式的性质,ac 2>bc 2⇒a >b ;反之,c =0时,a >b ac 2>bc 2.(3)若方程ax 2+bx +c =0(a <0)没有实根,则不等式ax 2+bx +c >0(a <0)的解集为∅.(4)当a =b =0,c ≤0时,不等式ax 2+bx +c ≤0也在R 上恒成立. 答案 (1)× (2)√ (3)× (4)×2.(必修5P72思考交流改编)若a >b >0,c <d <0,则一定有( )A.a d >b cB.a d <b cC.a c >b dD.a c <b d 解析 因为c <d <0,所以0>1c >1d,两边同乘-1,得-1d>-1c>0,又a >b >0,故由不等式的性质可知-a d >-bc >0.两边同乘-1,得a d <bc. 答案 B 3.(必修5P113A1改编)已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12x -1≤0,B ={x |x 2-x -6<0},则A ∩B =( ) A.(-2,3) B.(-2,2) C.(-2,2]D.[-2,2]解析 因为A ={x |x ≤2},B ={x |-2<x <3},所以A ∩B ={x |-2<x ≤2}=(-2,2]. 答案 C4.(2018·抚州联考)若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A.ac 2<bc 2B.1a <1bC.b a >a bD.a 2>ab >b 2解析 c =0时,A 项不成立; 1a -1b =b -a ab>0,选项B 错;b a -a b =b 2-a 2ab =(b +a )(b -a )ab<0,选项C 错. 由a <b <0,∴a 2>ab >b 2.D 正确. 答案 D5.(2019·河北重点八所中学模拟)不等式2x 2-x -3>0的解集为________.解析 由2x 2-x -3>0,得(x +1)(2x -3)>0, 解得x >32或x <-1.∴不等式2x 2-x -3>0的解集为⎩⎨⎧⎭⎬⎫x |x >32或x <-1.答案⎩⎨⎧⎭⎬⎫x |x >32或x <-16.(2018·汉中调研)已知函数f (x )=ax 2+ax -1,若对任意实数x ,恒有f (x )≤0,则实数a 的取值范围是______.解析 若a =0,则f (x )=-1≤0恒成立, 若a ≠0,则由题意,得⎩⎪⎨⎪⎧a <0,Δ=a 2+4a ≤0,解得-4≤a <0, 综上,得a ∈[-4,0]. 答案 [-4,0]考点一 不等式的性质多维探究角度1 比较大小及不等式性质的简单应用【例1-1】 (1)已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是( ) A.c ≥b >a B.a >c ≥b C.c >b >aD.a >c >b(2)(一题多解)若1a <1b <0,给出下列不等式:①1a +b <1ab ;②|a |+b >0;③a -1a >b -1b;④ln a 2>ln b 2.其中正确的不等式是( )A.①④B.②③C.①③D.②④解析 (1)∵c -b =4-4a +a 2=(a -2)2≥0,∴c ≥b . 又b +c =6-4a +3a 2,∴2b =2+2a 2,∴b =a 2+1,∴b -a =a 2-a +1=⎝⎛⎭⎪⎫a -122+34>0, ∴b >a ,∴c ≥b >a .(2)法一 因为1a <1b<0,故可取a =-1,b =-2.显然|a |+b =1-2=-1<0,所以②错误;因为ln a 2=ln(-1)2=0,ln b 2=ln(-2)2=ln 4>0,所以④错误.综上所述,可排除A ,B ,D.法二 由1a <1b<0,可知b <a <0.①中,因为a +b <0,ab >0,所以1a +b <0,1ab >0.故有1a +b <1ab,即①正确; ②中,因为b <a <0,所以-b >-a >0.故-b >|a |,即|a |+b <0,故②错误;③中,因为b <a <0,又1a <1b <0,则-1a >-1b>0,所以a -1a >b -1b,故③正确;④中,因为b <a <0,根据y =x 2在(-∞,0)上为减函数,可得b 2>a 2>0,而y =ln x 在定义域(0,+∞)上为增函数,所以ln b 2>ln a 2,故④错误.由以上分析,知①③正确. 答案 (1)A (2)C角度2 利用不等式变形求范围【例1-2】 (一题多解)设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围是________.解析 法一 设f (-2)=mf (-1)+nf (1)(m ,n 为待定系数),则4a -2b =m (a -b )+n (a +b ), 即4a -2b =(m +n )a +(n -m )b .于是得⎩⎪⎨⎪⎧m +n =4,n -m =-2,解得⎩⎪⎨⎪⎧m =3,n =1.∴f (-2)=3f (-1)+f (1).又∵1≤f (-1)≤2,2≤f (1)≤4. ∴5≤3f (-1)+f (1)≤10, 故5≤f (-2)≤10. 法二由⎩⎪⎨⎪⎧f (-1)=a -b ,f (1)=a +b ,得⎩⎪⎨⎪⎧a =12[f (-1)+f (1)],b =12[f (1)-f (-1)],∴f (-2)=4a -2b =3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10. 法三由⎩⎪⎨⎪⎧1≤a -b ≤2,2≤a +b ≤4确定的平面区域如图阴影部分所示, 当f (-2)=4a -2b 过点A ⎝ ⎛⎭⎪⎫32,12时, 取得最小值4×32-2×12=5,当f (-2)=4a -2b 过点B (3,1)时, 取得最大值4×3-2×1=10, ∴5≤f (-2)≤10. 答案 [5,10]规律方法 1.比较两个数(式)大小的两种方法2.与充要条件相结合问题,用不等式的性质分别判断p ⇒q 和q ⇒p 是否正确,要注意特殊值法的应用.3.与命题真假判断相结合问题.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法.4.在求式子的范围时,如果多次使用不等式的可加性,式子中的等号不能同时取到,会导致范围扩大.【训练1】 (1)(2019·东北三省四市模拟)设a ,b 均为实数,则“a >|b |”是“a 3>b 3”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)(2018·天一测试)已知实数a ∈(1,3),b ∈⎝ ⎛⎭⎪⎫18,14,则ab 的取值范围是________.解析 (1)a >|b |能推出a >b ,进而得a 3>b 3;当a 3>b 3时,有a >b ,但若b <a <0,则a >|b |不成立,所以“a >|b |”是“a 3>b 3”的充分不必要条件.(2)依题意可得4<1b <8,又1<a <3,所以4<ab<24.答案 (1)A (2)(4,24)考点二 一元二次不等式的解法【例2-1】 (1)(2019·河南中原名校联考)已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-2x ,则不等式f (x )>x 的解集用区间表示为________.(2)已知不等式ax 2-bx -1>0的解集是{x |-12<x <-13},则不等式x 2-bx -a ≥0的解集是________.解析 (1)设x <0,则-x >0,因为f (x )是奇函数,所以f (x )=-f (-x )=-(x 2+2x ). 又f (0)=0. 于是不等式f (x )>x等价于⎩⎪⎨⎪⎧x >0,x 2-2x >x 或⎩⎪⎨⎪⎧x <0,-x 2-2x >x ,解得x >3或-3<x <0.故不等式的解集为(-3,0)∪(3,+∞).(2)由题意,知-12,-13是方程ax 2-bx -1=0的两个根,且a <0,所以⎩⎪⎨⎪⎧-12+⎝ ⎛⎭⎪⎫-13=ba,-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得⎩⎪⎨⎪⎧a =-6,b =5.故不等式x 2-bx -a ≥0为x 2-5x +6≥0, 解得x ≥3或x ≤2.答案 (1)(-3,0)∪(3,+∞) (2){x |x ≥3或x ≤2} 【例2-2】 解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1. ②当a >0时,原不等式化为⎝⎛⎭⎪⎫x -2a (x +1)≥0,解得x ≥2a或x ≤-1.③当a <0时,原不等式化为⎝⎛⎭⎪⎫x -2a (x +1)≤0.当2a >-1,即a <-2时,解得-1≤x ≤2a;当2a =-1,即a =-2时,解得x =-1满足题意; 当2a<-1,即-2<a <0时,解得2a≤x ≤-1.综上所述,当a =0时,不等式的解集为{x |x ≤-1}; 当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≥2a 或x ≤-1;当-2<a <0时,不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫2a ≤x ≤-1;当a =-2时,不等式的解集为{-1}; 当a <-2时,不等式的解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2a .规律方法 1.解一元二次不等式的一般方法和步骤 (1)化:把不等式变形为二次项系数大于零的标准形式.(2)判:计算对应方程的判别式,根据判别式判断方程有没有实根(无实根时,不等式解集为R 或∅). (3)求:求出对应的一元二次方程的根.(4)写:利用“大于取两边,小于取中间”写出不等式的解集. 2.含有参数的不等式的求解,首先需要对二次项系数讨论,再比较(相应方程)根的大小,注意分类讨论思想的应用.【训练2】 (1)不等式x +5(x -1)2≥2的解集是( )A.⎣⎢⎡⎦⎥⎤-3,12B.⎣⎢⎡⎦⎥⎤-12,3C.⎣⎢⎡⎭⎪⎫12,1∪(1,3]D.⎣⎢⎡⎭⎪⎫-12,1∪(1,3](2)(2019·铜川一模)关于x 的不等式ax -b <0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( ) A.(-∞,-1)∪(3,+∞) B.(1,3) C.(-1,3)D.(-∞,1)∪(3,+∞)解析 (1)不等式可化为2x 2-5x -3(x -1)2≤0,即(2x +1)(x -3)(x -1)2≤0, 解得-12≤x <1或1<x ≤3.(2)关于x 的不等式ax -b <0即ax <b 的解集是(1,+∞),∴a =b <0, ∴不等式(ax +b )(x -3)>0可化为(x +1)(x -3)<0,解得-1<x <3, ∴所求不等式的解集是(-1,3). 答案 (1)D (2)C考点三 一元二次不等式恒成立问题多维探究角度1 在实数R 上恒成立【例3-1】 (2018·大庆实验中学期中)对于任意实数x ,不等式(a -2)x 2-2(a -2)x -4<0恒成立,则实数a 的取值范围是( ) A.(-∞,2) B.(-∞,2] C.(-2,2)D.(-2,2]解析 当a -2=0,即a =2时,-4<0恒成立;当a -2≠0,即a ≠2时,则有⎩⎪⎨⎪⎧a -2<0,Δ=[-2(a -2)]2-4×(a -2)×(-4)<0,解得-2<a <2.综上,实数a 的取值范围是(-2,2]. 答案 D角度2 在给定区间上恒成立【例3-2】 (一题多解)设函数f (x )=mx 2-mx -1(m ≠0),若对于x ∈[1,3],f (x )<-m +5恒成立,则m 的取值范围是________.解析 要使f (x )<-m +5在[1,3]上恒成立, 故mx 2-mx +m -6<0,则m ⎝⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 法一 令g (x )=m ⎝⎛⎭⎪⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)=7m -6<0. 所以m <67,则0<m <67.当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)=m -6<0. 所以m <6,所以m <0. 综上所述,m的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0.法二因为x 2-x +1=⎝⎛⎭⎪⎫x -122+34>0, 又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.因为m ≠0,所以m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0 . 答案⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0 角度3 给定参数范围的恒成立问题【例3-3】 已知a ∈[-1,1]时不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为( ) A.(-∞,2)∪(3,+∞) B.(-∞,1)∪(2,+∞) C.(-∞,1)∪(3,+∞)D.(1,3)解析 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +x 2-4x +4,则由f (a )>0对于任意的a ∈[-1,1]恒成立, 得f (-1)=x 2-5x +6>0, 且f (1)=x 2-3x +2>0即可,解不等式组⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0,得x <1或x >3.答案 C规律方法 1.对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图像在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图像在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.【训练3】 (1)(2019·河南豫西南五校联考)已知关于x 的不等式kx 2-6kx +k +8≥0对任意x ∈R 恒成立,则k 的取值范围是( )A.[0,1]B.(0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞)(2)(2019·安庆模拟)若不等式x 2+ax +1≥0对一切x ∈⎝⎛⎦⎥⎤0,12恒成立,则a 的最小值是( ) A.0B.-2C.-52D.-3解析 (1)当k =0时,不等式kx 2-6kx +k +8≥0可化为8≥0,其恒成立,当k ≠0时,要满足关于x 的不等式kx 2-6kx +k +8≥0对任意x ∈R 恒成立,只需⎩⎪⎨⎪⎧k >0,Δ=36k 2-4k (k +8)≤0,解得0<k ≤1.综上,k 的取值范围是[0,1]. (2)由于x ∈⎝⎛⎦⎥⎤0,12,若不等式x 2+ax +1≥0恒成立,则a ≥-⎝ ⎛⎭⎪⎫x +1x ,x ∈⎝⎛⎦⎥⎤0,12时恒成立,令g (x )=x +1x ,x ∈⎝⎛⎦⎥⎤0,12,易知g (x )在⎝ ⎛⎦⎥⎤0,12上是减函数,则y =-g (x )在⎝ ⎛⎦⎥⎤0,12上是增函数.∴y =-g (x )的最大值是-⎝ ⎛⎭⎪⎫12+2=-52. 因此a ≥-52,则a 的最小值为-52.答案 (1)A (2)C [思维升华]1.比较法是不等式性质证明的理论依据,是不等式证明的主要方法之一,比较法之一作差法的主要步骤为作差——变形——判断正负.2.判断不等式是否成立,主要有利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简单. [易错防范]1.“三个二次”的关系是解一元二次不等式的理论基础;一般可把a <0的情况转化为a >0时的情形.2.含参数的不等式要注意选好分类标准,避免盲目讨论.基础巩固题组 (建议用时:40分钟)一、选择题1.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x ),g (x )的大小关系是( ) A.f (x )=g (x ) B.f (x )>g (x )C.f (x )<g (x )D.随x 的值变化而变化解析 f (x )-g (x )=x 2-2x +2=(x -1)2+1>0⇒f (x )>g (x ). 答案 B2.(2019·北京东城区综合练习)已知x ,y ∈R ,那么“x >y ”的充要条件是( ) A.2x>2yB.lg x >lg yC.1x >1yD.x 2>y 2解析 因为2x>2y⇔x >y ,所以“2x>2y ”是“x >y ”的充要条件,A 正确;lg x >lg y ⇔x >y >0,则“lg x >lg y ”是“x >y ”的充分不必要条件,B 错误;“1x >1y”和“x 2>y 2”都是“x >y ”的既不充分也不必要条件.答案 A3.不等式|x |(1-2x )>0的解集为( )A.(-∞,0)∪⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-∞,12C.⎝ ⎛⎭⎪⎫12,+∞D.⎝⎛⎭⎪⎫0,12解析 当x ≥0时,原不等式即为x (1-2x )>0,所以0<x <12;当x <0时,原不等式即为-x (1-2x )>0,所以x <0,综上,原不等式的解集为(-∞,0)∪⎝⎛⎭⎪⎫0,12.答案 A4.(2018·延安质检)若实数m ,n 满足m >n >0,则( ) A.-1m<-1nB.m -n <m -nC.⎝ ⎛⎭⎪⎫12m>⎝ ⎛⎭⎪⎫12nD.m 2<mn解析 取m =2,n =1,代入各选择项验证A ,C ,D 不成立.只有B 项成立(事实上2-1<2-1). 答案 B5.已知函数f (x )=⎩⎪⎨⎪⎧x ,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A.(-∞,-1)∪(2,+∞)B.(-∞,-2)∪(1,+∞)C.(-1,2)D.(-2,1)解析 易知f (x )在R 上是增函数,∵f (2-x 2)>f (x ), ∴2-x 2>x ,解得-2<x <1,则实数x 的取值范围是(-2,1). 答案 D 二、填空题6.若0<a <1,则不等式(a -x )⎝⎛⎭⎪⎫x -1a >0的解集是________.解析 原不等式可化为(x -a )⎝ ⎛⎭⎪⎫x -1a <0,由0<a <1得a <1a ,∴a <x <1a.答案⎝⎛⎭⎪⎫a ,1a7.规定记号“⊙”表示一种运算,定义a ⊙b =ab +a +b (a ,b 为正实数),若1⊙k 2<3,则k 的取值范围是________. 解析 由题意知k 2+1+k 2<3,化为(|k |+2)(|k |-1)<0,所以|k |<1, 所以-1<k <1. 答案 (-1,1)8.(2019·宜春质检)设a <0,若不等式-cos 2x +(a -1)cos x +a 2≥0对于任意的x ∈R 恒成立,则a 的取值范围是________.解析 令t =cos x ,t ∈[-1,1],则不等式f (t )=t 2-(a -1)t -a 2≤0对t ∈[-1,1]恒成立,因此⎩⎪⎨⎪⎧f (-1)≤0,f (1)≤0⇒⎩⎪⎨⎪⎧a -a 2≤0,2-a -a 2≤0,∵a <0,∴a ≤-2. 答案 (-∞,-2] 三、解答题9.已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值. 解 (1)由题意知f (1)=-3+a (6-a )+6=-a 2+6a +3>0,即a 2-6a -3<0,解得3-23<a <3+2 3.所以不等式的解集为{a |3-23<a <3+23}. (2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3,∴⎩⎪⎨⎪⎧(-1)+3=a (6-a )3,(-1)×3=-6-b 3,解得⎩⎪⎨⎪⎧a =3±3,b =-3.故a 的值为3±3,b 的值为-3.10.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域;(2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围. 解(1)由题意得,y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝⎛⎭⎪⎫1+850x .因为售价不能低于成本价,所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0,解得0≤x ≤2.所以y =f (x )=40(10-x )(25+4x ), 定义域为{x |0≤x ≤2}.(2)由题意得40(10-x )(25+4x )≥10 260, 化简得8x 2-30x +13≤0,解得12≤x ≤134.所以x的取值范围是⎣⎢⎡⎦⎥⎤12,2.能力提升题组 (建议用时:20分钟)11.已知0<a <b ,且a +b =1,则下列不等式中正确的是( )A.log 2a >0B.2a -b<12C.log 2a +log 2b <-2D.2a b +b a <12解析 由题意知0<a <1,此时log 2a <0,A 错误;由已知得0<a <1,0<b <1,所以-1<-b <0,又a <b ,所以-1<a -b <0,所以12<2a -b<1,B 错误;因为0<a <b ,所以a b +ba >2a b ·b a =2,所以2a b +b a>22=4,D 错误;由a +b =1>2ab ,得ab <14,因此log 2a +log 2b =log 2(ab )<log 214=-2,C 正确.答案 C12.(2019·保定调研)已知定义在R 上的奇函数f (x )满足:当x ≥0时,f (x )=x 3,若不等式f (-4t )>f (2m +mt 2)对任意实数t 恒成立,则实数m 的取值范围是( ) A.(-∞,-2)B.(-2,0)C.(-∞,0)∪(2,+∞)D.(-∞,-2)∪(2,+∞) 解析 因为f (x )在R 上为奇函数,且在[0,+∞)上为增函数,所以f (x )在R 上是增函数,结合题意得-4t >2m +mt 2对任意实数t 恒成立⇒mt 2+4t +2m <0对任意实数t 恒成立⇒⎩⎪⎨⎪⎧m <0,Δ=16-8m 2<0⇒m ∈(-∞,-2). 答案 A13.已知-1<x +y <4,2<x -y <3,则3x +2y 的取值范围是________.解析 设3x +2y =m (x +y )+n (x -y ),则⎩⎪⎨⎪⎧m +n =3,m -n =2,∴⎩⎪⎨⎪⎧m =52,n =12.即3x +2y =52(x +y )+12(x -y ), 又∵-1<x +y <4,2<x -y <3,∴-52<52(x +y )<10,1<12(x -y )<32, ∴-32<52(x +y )+12(x -y )<232, 即-32<3x +2y <232, ∴3x +2y 的取值范围为⎝ ⎛⎭⎪⎫-32,232. 答案 ⎝ ⎛⎭⎪⎫-32,232 14.(2019·济南质检)已知f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=e x.若对任意x ∈[a ,a +1],恒有f (x +a )≥f (2x )成立,求实数a 的取值范围.解 因为函数f (x )是偶函数,故函数图像关于y 轴对称,且在(-∞,0]上单调递减,在[0,+∞)上单调递增.所以由f (x +a )≥f (2x )可得|x +a |≥2|x |在[a ,a +1]上恒成立, 从而(x +a )2≥4x 2在[a ,a +1]上恒成立,化简得3x 2-2ax -a 2≤0在[a ,a +1]上恒成立, 设h (x )=3x 2-2ax -a 2,则有⎩⎪⎨⎪⎧h (a )=0≤0,h (a +1)=4a +3≤0,解得a ≤-34. 故实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,-34.。

高考数学复习知识点讲解教案第5讲 一元二次方程、不等式

高考数学复习知识点讲解教案第5讲 一元二次方程、不等式

[解析] 由 + 1 2 − ≥ 0,得 + 1)( − 2 ≤ 0,
故原不等式的解集为{| − 1 ≤ ≤ 2}.
2
若关于的不等式
6.
−∞, 1
+ 2 + 1 < 0有实数解,则的取值范围是___________.
[解析] 当 = 0时,不等式为2 + 1 < 0,有实数解,满足题意;
≤ 0,即 3 − 2 − 3 ≤ 0,且 − 3 ≠ 0,
2
3
≤<3 .
(2)
不等式组0 <
2

[−2, −1) ∪ (2,3]
− − 2 ≤ 4的解集为___________________.
[思路点拨](2)解两个一元二次不等式0 <
2

−−
2
2和
− − 2 ≤ 4,
然后求交集.
例4
是(
对任意的 ∈ 1,4
D
A.[1, +∞)
2
,不等式
− 2 + 2 > 0恒成立,则实数的取值范围
)
B.
1
,1
2
[思路点拨] 分离参数得 >
1,4 上的最大值即可.
1
C.[ , +∞)
2
2−2
对任意的
2

∈ 1,4
D.
1
, +∞
2
2−2
恒成立,则求出 2 在区间

[解析] ∵ 对任意的 ∈ 1,4
数进行分类讨论,若不易分解因式,则可依据判别式符号进行分类讨论.
②若二次项系数为参数,则应先考虑二次项系数是否为零,确定不等式是不是二次

2020年高考数学专题复习二次函数与幂函数

2020年高考数学专题复习二次函数与幂函数

二次函数与幂函数1.幂函数(1)定义:形如y =x α(α∈R )的函数称为幂函数,其中底数x 是自变量,α为常数.常见的五类幂函数为y =x ,y =x 2,y =x 3,y =x 12,y =x -1.(2)图象(3)性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 2.二次函数(1)二次函数解析式的三种形式 ①一般式:f (x )=ax 2+bx +c (a ≠0). ②顶点式:f (x )=a (x -m )2+n (a ≠0). ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)二次函数的图象和性质判断正误(正确的打“√”,错误的打“×”)(1)函数y =2x 12是幂函数.( )(2)如果幂函数的图象与坐标轴相交,则交点一定是原点.( ) (3)当n <0时,幂函数y =x n是定义域上的减函数.( )(4)二次函数y =ax 2+bx +c ,x ∈[a ,b ]的最值一定是4ac -b24a.( )(5)二次函数y =ax 2+bx +c ,x ∈R 不可能是偶函数.( )(6)在y =ax 2+bx +c (a ≠0)中,a 决定了图象的开口方向和在同一直角坐标系中的开口大小.( )答案:(1)× (2)√ (3)× (4)× (5)× (6)√(教材习题改编)如图是①y =x a;②y =x b;③y =x c在第一象限的图象,则a ,b ,c的大小关系为( )A .c <b <aB .a <b <cC .b <c <aD .a <c <b解析:选D.根据幂函数的性质,可知选D.已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是( )A .⎝ ⎛⎭⎪⎫0,120 B .⎝⎛⎭⎪⎫-∞,-120 C .⎝ ⎛⎭⎪⎫120,+∞D .⎝ ⎛⎭⎪⎫-120,0解析:选C.由题意知⎩⎪⎨⎪⎧a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,1-20a <0,得a >120.(教材习题改编)已知幂函数y =f (x )的图象过点⎝ ⎛⎭⎪⎫2,22,则此函数的解析式为________;在区间________上递减.答案:y =x -12 (0,+∞)(教材习题改编)函数g (x )=x 2-2x (x ∈[0,3])的值域是________.解析:由g (x )=x 2-2x =(x -1)2-1,x ∈[0,3],得g (x )在[0,1]上是减函数,在[1,3]上是增函数.所以g (x )min =g (1)=-1,而g (0)=0,g (3)=3. 所以g (x )的值域为[-1,3]. 答案:[-1,3]幂函数的图象及性质(1)幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的图象是( )(2)若(a +1)12<(3-2a )12,则实数a 的取值范围是________. 【解析】 (1)设幂函数的解析式为y =x α, 因为幂函数y =f (x )的图象过点(4,2), 所以2=4α,解得α=12.所以y =x ,其定义域为[0,+∞),且是增函数,当0<x <1时,其图象在直线y =x 的上方,对照选项,故选C.(2)易知函数y =x 12的定义域为[0,+∞),在定义域内为增函数,所以⎩⎪⎨⎪⎧a +1≥0,3-2a ≥0,a +1<3-2a ,解得-1≤a <23.【答案】 (1)C (2)⎣⎢⎡⎭⎪⎫-1,23幂函数的性质与图象特征的关系(1)幂函数的形式是y =x α(α∈R ),其中只有一个参数α,因此只需一个条件即可确定其解析式.(2)判断幂函数y =x α(α∈R )的奇偶性时,当α是分数时,一般将其先化为根式,再判断.(3)若幂函数y =x α在(0,+∞)上单调递增,则α>0,若在(0,+∞)上单调递减,则α<0.1.已知幂函数f (x )=x m 2-2m -3 (m ∈Z )的图象关于y 轴对称,并且f (x )在第一象限是单调递减函数,则m =________.解析:因为幂函数f (x )=xm 2-2m -3(m ∈Z )的图象关于y 轴对称,所以函数f (x )是偶函数,所以m 2-2m -3为偶数,所以m 2-2m 为奇数,又m 2-2m <0,故m =1.答案:12.当0<x <1时,f (x )=x 1.1,g (x )=x 0.9,h (x )=x -2的大小关系是________.解析:如图所示为函数f (x ),g (x ),h (x )在(0,1)上的图象,由此可知h (x )>g (x )>f (x ).答案:h (x )>g (x )>f (x )求二次函数的解析式已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.【解】 法一:(利用一般式)设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.所以所求二次函数的解析式为f (x )=-4x 2+4x +7.法二:(利用顶点式)设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1), 所以抛物线的对称轴为x =2+(-1)2=12. 所以m =12.又根据题意函数有最大值8,所以n =8,所以f (x )=a ⎝ ⎛⎭⎪⎫x -122+8.因为f (2)=-1,所以a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4,所以f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.法三:(利用零点式)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1), 即f (x )=ax 2-ax -2a -1.又函数有最大值8,即4a (-2a -1)-a24a =8.解得a =-4或a =0(舍去),所以所求函数的解析式为f (x )=-4x 2+4x +7.求二次函数解析式的方法根据已知条件确定二次函数的解析式,一般用待定系数法,但所给条件不同选取的求解方法也不同,选择规律如下:1.若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________.解析:由f (x )是偶函数知f (x )的图象关于y 轴对称,所以-a =-⎝⎛⎭⎪⎫-2a b ,即b =-2,所以f (x )=-2x 2+2a 2,又f (x )的值域为(-∞,4],所以2a 2=4,故f (x )=-2x 2+4.答案:-2x 2+42.已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),求f (x )的解析式.解:因为f (2+x )=f (2-x )对任意x ∈R 恒成立, 所以f (x )的对称轴为x =2.又因为f (x )的图象被x 轴截得的线段长为2, 所以f (x )=0的两根为1和3. 设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0),又f (x )的图象过点(4,3), 所以3a =3,a =1, 所以所求f (x )的解析式为f (x )=(x -1)(x -3),即f (x )=x 2-4x +3.二次函数的图象与性质(高频考点)高考对二次函数图象与性质进行考查,多与其他知识结合,且常以选择题形式出现,属中高档题.主要命题角度有:(1)二次函数图象的识别问题; (2)二次函数的单调性问题; (3)二次函数的最值问题.角度一 二次函数图象的识别问题已知abc >0,则二次函数f (x )=ax 2+bx +c 的图象可能是( )【解析】 A 项,因为a <0,-b2a <0,所以b <0.又因为abc >0,所以c >0,而f (0)=c <0,故A 错. B 项,因为a <0,-b2a>0,所以b >0.又因为abc >0,所以c <0,而f (0)=c >0,故B 错. C 项,因为a >0,-b2a <0,所以b >0.又因为abc >0,所以c >0,而f (0)=c <0,故C 错.D 项,因为a >0,-b2a >0,所以b <0,因为abc >0,所以c <0,而f (0)=c <0,故选D. 【答案】 D角度二 二次函数的单调性问题函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值范围是________.【解析】 当a =0时,f (x )=-3x +1在[-1,+∞)上递减,满足条件.当a ≠0时,f (x )的对称轴为x =3-a2a,由f (x )在[-1,+∞)上递减知⎩⎪⎨⎪⎧a <03-a 2a≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0]. 【答案】 [-3,0]若函数f (x )=ax 2+(a -3)x +1的单调减区间是[-1,+∞),则a 为何值?解:因为函数f (x )=ax 2+(a -3)x +1的单调减区间为[-1,+∞),所以⎩⎪⎨⎪⎧a <0,a -3-2a=-1,解得a =-3.角度三 二次函数的最值问题已知函数f (x )=x 2-2ax +1,x ∈[-1,2]. (1)若a =1,求f (x )的最大值与最小值;(2)f (x )的最小值记为g (a ),求g (a )的解析式以及g (a )的最大值. 【解】 (1)当a =1时,f (x )=x 2-2x +1=(x -1)2,x ∈[-1,2], 则当x =1时,f (x )的最小值为0,x =-1时,f (x )的最大值为4. (2)f (x )=(x -a )2+1-a 2,x ∈[-1,2], 当a <-1时,f (x )的最小值为f (-1)=2+2a , 当-1≤a ≤2时,f (x )的最小值为f (a )=1-a 2, 当a >2时,f (x )的最小值为f (2)=5-4a , 则g (a )=⎩⎪⎨⎪⎧2+2a ,a <-1,1-a 2,-1≤a ≤2,5-4a ,a >2,可知,g (a )在(-∞,0)上单调递增,在(0,+∞)上单调递减,g (a )的最大值为g (0)=1.(1)确定二次函数图象应关注的三个要点一是看二次项系数的符号,它确定二次函数图象的开口方向; 二是看对称轴和最值,它确定二次函数图象的具体位置;三是看函数图象上的一些特殊点,如函数图象与y 轴的交点、与x 轴的交点,函数图象的最高点或最低点等.从这三个方面入手,能准确地判断出二次函数的图象.反之,也可以从图象中得到如上信息.(2)二次函数最值的求法二次函数的区间最值问题一般有三种情况:①对称轴和区间都是给定的;②对称轴动,区间固定;③对称轴定,区间变动.解决这类问题的思路是抓住“三点一轴”进行数形结合,三点指的是区间两个端点和中点,一轴指的是对称轴.具体方法是利用函数的单调性及分类讨论的思想求解.对于②、③,通常要分对称轴在区间内、区间外两大类情况进行讨论.1.(2017·高考浙江卷)若函数f (x )=x 2+ ax +b 在区间[0, 1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关解析:选B.f (x )=⎝ ⎛⎭⎪⎫x +a 22-a 24+b ,①当0≤-a 2≤1时,f (x )min =m =f ⎝ ⎛⎭⎪⎫-a 2=-a 24+b ,f (x )max =M =max{f (0),f (1)}=max{b ,1+a +b },所以M -m =max ⎩⎨⎧⎭⎬⎫a 24,1+a +a 24与a 有关,与b 无关;②当-a2<0时,f (x )在[0,1]上单调递增,所以M -m =f (1)-f (0)=1+a 与a有关,与b 无关;③当-a2>1时,f (x )在[0,1]上单调递减,所以M -m =f (0)-f (1)=-1-a 与a 有关,与b 无关.综上所述,M -m 与a 有关,但与b 无关,故选B.2.已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,则实数a 的值为________.解析:f (x )=-(x -a )2+a 2-a +1, 当a ≥1时,y max =a ;当0<a <1时,y max =a 2-a +1; 当a ≤0时,y max =1-a .根据已知条件得,⎩⎪⎨⎪⎧a ≥1a =2或⎩⎪⎨⎪⎧0<a <1a 2-a +1=2或⎩⎪⎨⎪⎧a ≤01-a =2, 解得a =2或a =-1. 答案:-1或23.若函数f (x )=ax 2+20x +14(a >0)对任意实数t ,在闭区间[t -1,t +1]上总存在两实数x 1,x 2,使得|f (x 1)-f (x 2)|≥8成立,则实数a 的最小值为________.解析:因为a >0,所以二次函数f (x )=ax 2+20x +14的图象开口向上.在闭区间[t -1,t +1]上总存在两实数x 1,x 2, 使得|f (x 1)-f (x 2)|≥8成立, 只需t =-10a时f (t +1)-f (t )≥8,即a (t +1)2+20(t +1)+14-(at 2+20t +14)≥8, 即2at +a +20≥8,将t =-10a代入得a ≥8.所以a 的最小值为8. 故答案为8. 答案:8三个“二次”间的转化(2019·金华市东阳二中高三调研)已知二次函数f (x )=x 2+ax +b (a ,b ∈R ). (1)当a =-6时,函数f (x )的定义域和值域都是⎣⎢⎡⎦⎥⎤1,b 2,求b 的值;(2)当a =-1时在区间[-1,1]上,y =f (x )的图象恒在y =2x +2b -1的图象上方,试确定实数b 的范围.【解】 (1)当a =-6时,函数f (x )=x 2-6x +b ,函数对称轴为x =3,故函数f (x )在区间[1,3]上单调递减,在区间(3,+∞)上单调递增.①当2<b ≤6时,f (x )在区间⎣⎢⎡⎦⎥⎤1,b 2上单调递减;故有⎩⎪⎨⎪⎧f (1)=b2f ⎝ ⎛⎭⎪⎫b 2=1,无解;②当6<b ≤10时,f (x )在区间[1,3]上单调递减,在区间⎝ ⎛⎦⎥⎤3,b 2上单调递增,且f (1)≥f ⎝ ⎛⎭⎪⎫b 2,故⎩⎪⎨⎪⎧f (1)=b 2f (3)=1,解得b =10; ③当b >10时,f (x )在区间[1,3]上单调递减,在区间⎝ ⎛⎦⎥⎤3,b 2上单调递增,且f (1)<f (b2),故⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫b 2=b 2f (3)=1,无解.所以b 的值为10. (2)当a =-1时,f (x )=x 2-x +b ,由题意可知x 2-x +b >2x +2b -1对x ∈[-1,1]恒成立, 化简得b <x 2-3x +1,令g (x )=x 2-3x +1,x ∈[-1,1],图象开口向上,对称轴为x =32,在区间[-1,1]上单调递减,则g (x )min =-1,故b <-1.(1)二次函数、二次方程与二次不等式统称三个“二次”,它们常结合在一起,而二次函数又是三个“二次”的核心,通过二次函数的图象贯穿为一体.因此,解决此类问题首先采用转化思想,把方程、不等式问题转化为函数问题.借助于函数思想研究方程、不等式(尤其是恒成立)问题是高考命题的热点.(2)由不等式恒成立求参数取值范围的思路及关键①一般有两个解题思路:一是分离参数;二是不分离参数.②两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .[提醒] 当二次项系数a 是否为0不明确时,要分类讨论.1.(2019·宁波市余姚中学期中检测)设a <0,(3x 2+a )(2x +b )≥0在(a ,b )上恒成立,则b -a 的最大值为( )A .13B .12C .33D .22解析:选A.因为(3x 2+a )(2x +b )≥0在(a ,b )上恒成立, 所以3x 2+a ≥0,2x +b ≥0或3x 2+a ≤0,2x +b ≤0,①若2x +b ≥0在(a ,b )上恒成立,则2a +b ≥0,即b ≥-2a >0,此时当x =0时,3x 2+a =a ≥0不成立,②若2x +b ≤0在(a ,b )上恒成立,则2b +b ≤0,即b ≤0,若3x 2+a ≤0在(a ,b )上恒成立,则3a 2+a ≤0,即-13≤a ≤0,故b -a 的最大值为13.2.已知函数f (x )=x 2-x +1,在区间[-1,1]上不等式f (x )>2x +m 恒成立,则实数m 的取值范围是________.解析:f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0, 令g (x )=x 2-3x +1-m ,要使g (x )=x 2-3x +1-m >0在[-1,1]上恒成立,只需使函数g (x )=x 2-3x +1-m 在[-1,1]上的最小值大于0即可. 因为g (x )=x 2-3x +1-m 在[-1,1]上单调递减, 所以g (x )min =g (1)=-m -1. 由-m -1>0,得m <-1 .因此满足条件的实数m 的取值范围是(-∞,-1). 答案:(-∞,-1)幂函数y =x α(α∈R )的图象的特征当α>0时,图象过原点和点(1,1),在第一象限图象从左往右是逐渐上升; 当α<0时,图象过点(1,1),但不过原点,在第一象限图象从左往右是逐渐下降.求解二次函数最值的关键点求二次函数的最值,应抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想即可完成.二次函数中的恒成立问题与二次函数有关的不等式恒成立的条件(1)ax 2+bx +c >0(a ≠0)恒成立的充要条件是⎩⎪⎨⎪⎧a >0,b 2-4ac <0;(2)ax 2+bx +c <0(a ≠0)恒成立的充要条件是⎩⎪⎨⎪⎧a <0,b 2-4ac <0;(3)a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .易错防范(1)对于函数y =ax 2+bx +c ,要认为它是二次函数,就必须满足a ≠0,当题目条件中未说明a ≠0时,就要讨论a =0和a ≠0两种情况.(2)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限内,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.(3)数形结合思想是研究二次函数问题的基本方法.特别是涉及二次方程、二次不等式的时候常常要结合图形寻找思路.(4)含字母系数的二次函数问题经常使用的方法是分类讨论.比如讨论二次函数的对称轴与给定区间的位置关系,讨论二次方程根的大小等.[基础达标]1.已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=( )A .12B .1C .32D .2解析:选C.因为函数f (x )=k ·x α是幂函数,所以k =1,又函数f (x )的图象过点⎝ ⎛⎭⎪⎫12,22,所以⎝ ⎛⎭⎪⎫12α=22,解得α=12,则k +α=32. 2.若幂函数f (x )=x mn (m ,n ∈N *,m ,n 互质)的图象如图所示,则( )A .m ,n 是奇数,且mn<1 B .m 是偶数,n 是奇数,且m n >1 C .m 是偶数,n 是奇数,且m n <1 D .m 是奇数,n 是偶数,且m n>1解析:选C.由图知幂函数f (x )为偶函数,且m n<1,排除B ,D ;当m ,n 是奇数时,幂函数f (x )非偶函数,排除A ;选C.3.若函数f (x )=x 2+bx +c 对任意的x ∈R 都有f (x -1)=f (3-x ),则以下结论中正确的是( )A .f (0)<f (-2)<f (5)B .f (-2)<f (5)<f (0)C .f (-2)<f (0)<f (5)D .f (0)<f (5)<f (-2)解析:选A.若函数f (x )=x 2+bx +c 对任意的x ∈R 都有f (x -1)=f (3-x ),则f (x )=x 2+bx +c 的图象的对称轴为x =1且函数f (x )的图象的开口方向向上,则函数f (x )在(1,+∞)上为增函数,所以f (2)<f (4)<f (5),又f (0)=f (2),f (-2)=f (4),所以f (0)<f (-2)<f (5).4.(2019·瑞安四校联考)定义域为R 的函数f (x )满足f (x +1)=2f (x ),且当x ∈[0,1]时,f (x )=x 2-x ,则当x ∈[-2,-1]时,f (x )的最小值为( )A .-116B .-18C .-14D .0解析:选A.当x ∈[-2,-1]时,x +2∈[0,1],则f (x +2)=(x +2)2-(x +2)=x2+3x +2,又f (x +2)=f [(x +1)+1]=2f (x +1)=4f (x ),所以当x ∈[-2,-1]时,f (x )=14(x 2+3x +2)=14⎝ ⎛⎭⎪⎫x +322-116,所以当x =-32时,f (x )取得最小值,且最小值为-116,故选A.5.若函数f (x )=x 2-2x +1在区间[a ,a +2]上的最小值为4,则a 的取值集合为( ) A .[-3,3] B .[-1,3] C .{-3,3}D .{-1,-3,3}解析:选C.因为函数f (x )=x 2-2x +1=(x -1)2,对称轴x =1,因为在区间[a ,a +2]上的最小值为4,所以当1≤a 时,y min =f (a )=(a -1)2=4,a =-1(舍去)或a =3,当a +2≤1时,即a ≤-1,y min =f (a +2)=(a +1)2=4,a =1(舍去)或a =-3,当a <1<a +2,即-1<a <1时,y min =f (1)=0≠4,故a 的取值集合为{-3,3}.6.(2019·温州高三月考)已知f (x )=ax 2+bx +c (a >0),g (x )=f (f (x )),若g (x )的值域为[2,+∞),f (x )的值域为[k ,+∞),则实数k 的最大值为( )A .0B .1C .2D .4解析:选C.设t =f (x ),由题意可得g (x )=f (t )=at 2+bt +c ,t ≥k ,函数y =at 2+bt +c ,t ≥k 的图象为y =f (x )的图象的部分,即有g (x )的值域为f (x )的值域的子集,即[2,+∞)⊆[k ,+∞), 可得k ≤2,即有k 的最大值为2. 故选C.7.已知幂函数f (x )=x -12,若f (a +1)<f (10-2a ),则实数a 的取值范围是________.解析:因为f (x )=x -12=1x(x >0),易知x ∈(0,+∞)时为减函数,又f (a +1)<f (10-2a ),所以⎩⎪⎨⎪⎧a +1>0,10-2a >0,a +1>10-2a ,解得⎩⎪⎨⎪⎧a >-1,a <5,a >3,所以3<a <5.答案:(3,5)8.已知函数f (x )=x 2-2ax +2a +4的定义域为R ,值域为[1,+∞),则a 的值为________.解析:由于函数f (x )的值域为[1,+∞),所以f (x )min =1.又f (x )=(x -a )2-a 2+2a +4,当x ∈R 时,f (x )min =f (a )=-a 2+2a +4=1,即a 2-2a -3=0,解得a =3或a =-1.答案:-1或39.(2019·杭州四中第一次月考)已知函数f (x )=x 2+ax +1,若存在x 0使|f (x 0)|≤14,|f (x 0+1)|≤14同时成立,则实数a 的取值范围为________.解析:由f (x )=⎝ ⎛⎭⎪⎫x +a 22+4-a 24,考察g (x )=x 2+h ,当h =0时,有⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫-12≤14,⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫-12+1≤14同时成立;当h =-12时,有⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫-12≤14,|g (-12+1)|≤14同时成立.所以-12≤h ≤0,即-12≤4-a24≤0,解得-6≤a ≤-2或2≤a ≤ 6. 答案:[-6,-2]∪[2,6]10.设函数f (x )=x 2-1,对任意x ∈⎣⎢⎡⎭⎪⎫32,+∞,f ⎝ ⎛⎭⎪⎫x m -4m 2f (x )≤f (x -1)+4f (m )恒成立,则实数m 的取值范围是________.解析:依据题意,得x 2m 2-1-4m 2(x 2-1)≤(x -1)2-1+4(m 2-1)在x ∈⎣⎢⎡⎭⎪⎫32,+∞上恒成立,即1m 2-4m 2≤-3x 2-2x +1在x ∈⎣⎢⎡⎭⎪⎫32,+∞上恒成立.当x =32时,函数y =-3x 2-2x +1取得最小值-53,所以1m 2-4m 2≤-53,即(3m 2+1)(4m 2-3)≥0,解得m ≤-32或m ≥32. 答案:⎝⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞ 11.已知幂函数f (x )=(m 2-5m +7)x m -1为偶函数.(1)求f (x )的解析式;(2)若g (x )=f (x )-ax -3在[1,3]上不是单调函数,求实数a 的取值范围. 解:(1)由题意m 2-5m +7=1,解得m =2或m =3, 若m =2,与f (x )是偶函数矛盾,舍去, 所以m =3,所以f (x )=x 2.(2)g (x )=f (x )-ax -3=x 2-ax -3,g (x )的对称轴是x =a2,若g (x )在[1,3]上不是单调函数, 则1<a2<3,解得2<a <6.12.(2019·台州市教学质量调研)已知函数f (x )=x 2+bx +c 的图象过点(-1,3),且关于直线x =1对称.(1)求f (x )的解析式;(2)若m <3,求函数f (x )在区间[m ,3]上的值域.解:(1)因为函数f (x )=x 2+bx +c 的图象过点(-1,3),且关于直线x =1对称,所以⎩⎪⎨⎪⎧f (-1)=1-b +c =3-b 2=1,解得b =-2,c =0,所以f (x )=x 2-2x .(2)当1≤m <3时,f (x )min =f (m )=m 2-2m ,f (x )max =f (3)=9-6=3,所以f (x )的值域为[m 2-2m ,3];当-1≤m <1时,f (x )min =f (1)=1-2=-1,f (x )max =f (-1)=1+2=3,所以f (x )的值域为[-1,3].当m <-1时,f (x )min =f (1)=1-2=-1,f (x )max =f (m )=m 2-2m ,所以f (x )的值域为[-1,m 2-2m ]. [能力提升]1.(2019·台州质检) 如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b .其中正确的结论是( )A .②④B .①④C .②③D .①③解析:选B.因为二次函数的图象与x 轴交于两点,所以b 2-4ac >0,即b 2>4ac ,①正确;对称轴为x =-1,即-b2a =-1,2a -b =0,②错误;结合图象,当x =-1时,y >0,即a-b +c >0,③错误;由对称轴为x =-1知,b =2a ,又函数图象开口向下,所以a <0,所以5a <2a ,即5a <b ,④正确.故选B.2.(2019·温州市十校联考)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2).若任取∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( ) A .⎣⎢⎡⎦⎥⎤-16,16 B .⎣⎢⎡⎦⎥⎤-66,66 C .⎣⎢⎡⎦⎥⎤-13,13 D .⎣⎢⎡⎦⎥⎤-33,33 解析:选B.因为当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2),所以当0≤x ≤a 2时,f (x )=12(a 2-x +2a 2-x -3a 2)=-x ;当a 2<x <2a 2时,f (x )=12(x -a 2+2a 2-x -3a 2)=-a 2;当x ≥2a 2时,f (x )=12(x -a 2+x -2a 2-3a 2)=x -3a 2.综上,函数f (x )=12(|x -a 2|+|x -2a 2|-3a 2)在x ≥0时的解析式等价于f (x )=⎩⎪⎨⎪⎧-x ,0≤x ≤a 2,-a 2,a 2<x <2a 2,x -3a 2,x ≥2a 2.因此,根据奇函数的图象关于原点对称作出函数f (x )在R 上的大致图象如下,观察图象可知,要使∀x ∈R ,f (x -1)≤f (x ),则需满足2a 2-(-4a 2)≤1,解得-66≤a ≤66. 3.已知函数f (x )=|x 2+ax +b |在区间[0,c ]内的最大值为M (a ,b ∈R ,c >0为常数)且存在实数a ,b ,使得M 取最小值2,则a +b +c =________.解析:函数y =x 2+ax +b 是二次函数,所以函数f (x )=|x 2+ax +b |在区间[0,c ]内的最大值M 在端点处或x =-a2处取得.若在x =0处取得,则b =±2, 若在x =-a 2处取得,则|b -a 24|=2,若在x =c 处取得,则|c 2+ac +b |=2. 若b =2,则|b -a 24|≤2,|c 2+ac +b |≤2,解得a =0,c =0,符合要求,若b =-2,则顶点处的函数值的绝对值大于2,不成立. 可得a +b +c =2.故答案为2. 答案:24.(2019·宁波市余姚中学高三期中)已知f (x )=34x 2-3x +4,若f (x )的定义域和值域都是[a ,b ],则a +b =________.解析:因为f (x )=34x 2-3x +4=34(x -2)2+1,所以x =2是函数的对称轴,根据对称轴进行分类讨论:①当b <2时,函数在区间[a ,b ]上递减,又因为值域也是[a ,b ],所以得方程组⎩⎪⎨⎪⎧f (a )=bf (b )=a , 即⎩⎪⎨⎪⎧34a 2-3a +4=b 34b 2-3b +4=a ,两式相减得34(a +b )(a -b )-3(a -b )=b -a ,又因为a ≠b ,所以a +b =83,由34a 2-3a +4=83-a ,得3a 2-8a +163=0,所以a =43,所以b =43,故舍去. ②当a <2≤b 时,得f (2)=1=a ,又因为f (1)=74<2,所以f (b )=b ,得34b 2-3b +4=b ,所以b =43(舍),或b =4,所以a +b =5.③当a ≥2时,函数在区间[a ,b ]上递增,又因为值域是[a ,b ],所以得方程组⎩⎪⎨⎪⎧f (a )=af (b )=b ,即a ,b 是方程34x 2-3x +4=x 的两根,即a ,b 是方程3x 2-16x +16=0的两根,所以⎩⎪⎨⎪⎧a =43b =4,但a ≥2,故应舍去.综上得a +b =5.答案:55.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ). (1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解:(1)由已知c =1,a -b +c =0,且-b2a =-1,解得a =1,b =2,所以f (x )=(x +1)2.所以F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0. 所以F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意知f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立, 即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立.又当x ∈(0,1]时,1x-x 的最小值为0,-1x-x 的最大值为-2.所以-2≤b ≤0.故b的取值范围是[-2,0].6.(2019·宁波市余姚中学期中检测)已知函数f (x )=-x 2+2bx +c ,设函数g (x )=|f (x )|在区间[-1,1]上的最大值为M .(1)若b =2,试求出M ;(2)若M ≥k 对任意的b 、c 恒成立,试求k 的最大值.解:(1)当b =2时,f (x )=-x 2+4x +c 在区间[-1,1]上是增函数, 则M 是g (-1)和g (1)中较大的一个, 又g (-1)=|-5+c |,g (1)=|3+c |,则M =⎩⎪⎨⎪⎧|-5+c |,c ≤1|3+c |,c >1.(2)g (x )=|f (x )|=|-(x -b )2+b 2+c |,(ⅰ)当|b |>1时,y =g (x )在区间[-1,1]上是单调函数, 则M =max{g (-1),g (1)},而g (-1)=|-1-2b +c |,g (1)=|-1+2b +c |,则2M ≥g (-1)+g (1)≥|f (-1)-f (1)|=4|b |>4,可知M >2.(ⅱ)当|b |≤1时,函数y =g (x )的对称轴x =b 位于区间[-1,1]之内, 此时M =max{g (-1),g (1),g (b )}, 又g (b )=|b 2+c |,①当-1≤b ≤0时,有f (1)≤f (-1)≤f (b ),则M =max{g (b ),g (1)}≥12(g (b )+g (1))≥12|f (b )-f (1)|=12(b -1)2≥12;②当0<b ≤1时,有f (-1)≤f (1)≤f (b ).则M =max{g (b ),g (-1)}≥12(g (b )+g (-1))≥12|f (b )-f (-1)|=12(b +1)2>12.综上可知,对任意的b 、c 都有M ≥12.而当b =0,c =12时,g (x )=⎪⎪⎪⎪⎪⎪-x 2+12在区间[-1,1]上的最大值M =12,故M ≥k 对任意的b 、c 恒成立的k 的最大值为12.。

2020年高考数学专题复习一元二次不等式及其解法

2020年高考数学专题复习一元二次不等式及其解法

一元二次不等式及其解法1.一元一次不等式ax >b (a ≠0)的解集(1)当a >0时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x >b a ;(2)当a <0时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <b a .2.一元二次不等式的解集判断正误(正确的打“√”,错误的打“×”)(1)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( )(2)若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2.( )(3)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( ) (4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( ) (5)若二次函数y =ax 2+bx +c 的图象开口向下,则不等式ax 2+bx +c <0的解集一定不是空集.( )答案:(1)√ (2)√ (3)× (4)× (5)√(教材习题改编)不等式2x 2-x -3>0的解集为( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1<x <32B .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >32或x <-1C .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-32<x <1D .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >1或x <-32解析:选B.2x 2-x -3>0⇒(x +1)(2x -3)>0, 解得x >32或x <-1.所以不等式2x 2-x -3>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >32或x <-1.已知不等式ax 2-bx -1≥0的解集是⎣⎢⎡⎦⎥⎤-12,-13,则不等式x 2-bx -a <0的解集是( )A .(2,3)B .(-∞,2)∪(3,+∞)C .⎝ ⎛⎭⎪⎫13,12D .⎝ ⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭⎪⎫12,+∞解析:选A.由题意知-12,-13是方程ax 2-bx -1=0的根,所以由根与系数的关系得-12+⎝ ⎛⎭⎪⎫-13=b a ,-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3).若不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是__________. 解析:因为不等式x 2+ax +4<0的解集不是空集, 所以Δ=a 2-4×4>0,即a 2>16. 所以a >4或a <-4.答案:(-∞,-4)∪(4,+∞)(教材习题改编)若关于x 的一元二次方程x 2-(m +1)x -m =0有两个不相等的实数根,则实数m 的取值范围是________.解析:由题意知:Δ=(m +1)2+4m >0.即m 2+6m +1>0,解得:m >-3+22或m <-3-2 2.答案:(-∞,-3-22)∪(-3+22,+∞)一元二次不等式的解法 (高频考点)一元二次不等式的解法是高考的常考内容,题型多为选择题或填空题,难度为中档题.主要命题角度有:(1)解不含参数的一元二次不等式; (2)解含参数的一元二次不等式; (3)已知一元二次不等式的解集求参数.角度一 解不含参数的一元二次不等式解下列不等式: (1)-x 2-2x +3≥0;(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,解不等式f (x )>3. 【解】 (1)不等式两边同乘以-1,原不等式可化为x 2+2x -3≤0. 方程x 2+2x -3=0的解为x 1=-3,x 2=1.而y =x 2+2x -3的图象开口向上,可得原不等式-x 2-2x +3≥0的解集是{x |-3≤x ≤1}.(2)由题意⎩⎪⎨⎪⎧x ≥0,x 2+2x >3或⎩⎪⎨⎪⎧x <0,-x 2+2x >3,解得x >1. 故原不等式的解集为{x |x >1}.角度二 解含参数的一元二次不等式(分类讨论思想)解关于x 的不等式:12x 2-ax >a 2(a ∈R ). 【解】 因为12x 2-ax >a 2,所以12x 2-ax -a 2>0,即(4x +a )(3x -a )>0. 令(4x +a )(3x -a )=0,解得x 1=-a 4,x 2=a3.①当a >0时,-a 4<a3,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-a 4,或x >a 3;②当a =0时,x 2>0,解集为{x |x ∈R ,且x ≠0}; ③当a <0时,-a 4>a3, 解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a3,或x >-a 4.综上所述:当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-a 4,或x >a 3;当a =0时,不等式的解集为{x |x ∈R ,且x ≠0};当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <a 3,或x >-a 4.角度三 已知一元二次不等式的解集求参数已知不等式ax 2-bx -1>0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <-13,则不等式x 2-bx -a ≥0的解集是________.【解析】 由题意,知-12,-13是方程ax 2-bx -1=0的两个根,且a <0,所以⎩⎪⎨⎪⎧-12+⎝ ⎛⎭⎪⎫-13=ba ,-12×⎝ ⎛⎭⎪⎫-13=-1a,解得⎩⎪⎨⎪⎧a =-6,b =5. 即不等式x 2-bx -a ≥0为x 2-5x +6≥0, 解得x ≥3或x ≤2.【答案】 {x |x ≥3或x ≤2}(1)解一元二次不等式的方法和步骤(2)解含参数的一元二次不等式的步骤①二次项若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.②判断相应方程的根的个数,讨论判别式Δ与0的关系.③确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.1.若集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x x -1≤0,B ={x |x 2<2x },则A ∩B =( )A .{x |0<x <1}B .{x |0≤x <1}C .{x |0<x ≤1}D .{x |0≤x ≤1}解析:选A.因为A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x x -1≤0={x |0≤x <1},B ={x |x 2<2x }={x |0<x <2},所以A ∩B ={x |0<x <1},故选A.2.不等式0<x 2-x -2≤4的解集为________. 解析:原不等式等价于⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -2≤4,即⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0, 即⎩⎪⎨⎪⎧(x -2)(x +1)>0,(x -3)(x +2)≤0,解得⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3. 借助于数轴,如图所示,原不等式的解集为{x |-2≤x <-1或2<x ≤3}. 答案:[-2,-1)∪(2,3]3.已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }. (1)求a ,b ; (2)解不等式x -cax -b>0(c 为常数). 解:(1)由题知1,b 为方程ax 2-3x +2=0的两根, 即⎩⎪⎨⎪⎧b =2a ,1+b =3a .所以a =1,b =2.(2)不等式等价于(x -c )(x -2)>0,当c >2时,解集为{x |x >c 或x <2};当c <2时,解集为{x |x >2或x <c };当c =2时,解集为{x |x ≠2}.一元二次不等式恒成立问题(高频考点)一元二次不等式恒成立问题是每年高考的热点,题型多为选择题和填空题,难度为中档题.主要命题角度有:(1)形如f (x )≥0(f (x )≤0)(x ∈R )确定参数的范围; (2)形如f (x )≥0(f (x )≤0)(x ∈[a ,b ])确定参数的范围; (3)形如f (x )≥0(f (x )≤0)(参数m ∈[a ,b ])确定x 的范围.角度一 形如f (x )≥0(f (x )≤0)(x ∈R )确定参数的范围若关于x 的不等式ax 2+2x +2>0在R 上恒成立,则实数a 的取值范围是________.【解析】 当a =0时,原不等式可化为2x +2>0,其解集不为R ,故a =0不满足题意,舍去;当a ≠0时,要使原不等式的解集为R ,只需⎩⎪⎨⎪⎧a >0,Δ=22-4×2a <0,解得a >12. 综上,所求实数a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞. 【答案】 ⎝ ⎛⎭⎪⎫12,+∞角度二 形如f (x )≥0(f (x )≤0)(x ∈[a ,b ])确定参数的范围若不等式(a -a 2)(x 2+1)+x ≤0对一切x ∈(0,2]恒成立,则a 的取值范围是( )A .⎝⎛⎦⎥⎤-∞,1-32B .⎣⎢⎡⎭⎪⎫1+32,+∞C .⎝ ⎛⎦⎥⎤-∞,1-32∪⎣⎢⎡⎭⎪⎫1+32,+∞D .⎣⎢⎡⎦⎥⎤1-32,1+32【解析】 因为x ∈(0,2], 所以a 2-a ≥xx 2+1=1x +1x .要使a 2-a ≥1x +1x在x ∈(0,2]时恒成立, 则a 2-a ≥⎝ ⎛⎭⎪⎪⎫1x +1x max ,由基本不等式得x +1x≥2,当且仅当x =1时等号成立,即⎝⎛⎭⎪⎪⎫1x +1x max =12. 故a 2-a ≥12,解得a ≤1-32或a ≥1+32.【答案】 C角度三 形如f (x )≥0(f (x )≤0)(参数m ∈[a ,b ])确定x 的范围已知a ∈[-1,1],不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为________.【解析】 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +(x 2-4x +4), 则由f (a )>0对于任意的a ∈[-1,1]恒成立,易知只需f (-1)=x 2-5x +6>0,且f (1)=x 2-3x +2>0即可,联立方程解得x <1或x >3.【答案】 {x |x <1或x >3}(1)不等式恒成立问题的求解方法①一元二次不等式在R 上恒成立确定参数的范围时,结合一元二次方程,利用判别式来求解.②一元二次不等式f (x )≥0在x ∈[a ,b ]上恒成立确定参数范围时,要根据函数的单调性,求其最小值,让最小值大于等于0,从而求参数的范围.③一元二次不等式对于参数m ∈[a ,b ]恒成立确定x 的范围,要注意变换主元,一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.(2)三个“二次”间的转化二次函数、二次方程与二次不等式统称三个“二次”,解决此类问题首先采用转化思想,把方程、不等式问题转化为函数问题.借助于函数思想研究方程、不等式(尤其是恒成立)问题.(2019·温州八校联考)已知函数f (x )=mx 2-mx -1. (1)若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围; (2)若对于x ∈[1,3],f (x )<5-m 恒成立,求实数m 的取值范围. 解:(1)当m =0时,f (x )=-1<0恒成立,当m ≠0时,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,即-4<m <0. 综上,-4<m ≤0,故m 的取值范围是(-4,0].(2)不等式f (x )<5-m ,即(x 2-x +1)m <6, 因为x 2-x +1>0,所以m <6x 2-x +1对于x ∈[1,3]恒成立,只需求6x 2-x +1的最小值,记g (x )=6x 2-x +1,x ∈[1,3],记h (x )=x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34,h (x )在x ∈[1,3]上为增函数,则g (x )在[1,3]上为减函数,所以g (x )min =g (3)=67,所以m <67.所以m 的取值范围是⎝⎛⎭⎪⎫-∞,67.一元二次不等式的应用某汽车厂上年度生产汽车的投入成本为1012销售量为10 000辆.本年度为适应市场需求,计划提高产品质量,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应地提高比例为0.75x ,同时预计年销售量增加的比例为0.6x ,已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内?【解】 (1)由题意得y =[12(1+0.75x )-10(1+x )]×10 000(1+0.6x )(0<x <1), 整理得y =-6 000x 2+2 000x +20 000(0<x <1). (2)要保证本年度的年利润比上年度有所增加,必须有⎩⎪⎨⎪⎧y -(12-10)×10 000>0,0<x <1,即⎩⎪⎨⎪⎧-6 000x 2+2 000x >0,0<x <1, 解得0<x <13,所以投入成本增加的比例应在⎝ ⎛⎭⎪⎫0,13范围内.解不等式应用题的步骤(1)阅读理解,认真审题,把握问题中的关键量,找准不等关系; (2)将文字语言转化为符号语言,用不等式(组)表示不等关系; (3)解不等式(组),得到数学结论,要注意数学模型中元素的实际意义;(4)回归实际问题,将数学结论还原为实际问题的结果.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若要求该商品一天营业额至少为10 260元,求x 的取值范围.解:(1)由题意得y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x .因为售价不能低于成本价, 所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0,得x ≤2.所以y =f (x )=20(10-x )(50+8x ),定义域为[0,2].(2)由题意得20(10-x )(50+8x )≥10 260,化简得8x 2-30x +13≤0. 解得12≤x ≤134.所以x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.解分式不等式的关键是先将给定不等式移项,通分,整理成一边为商式,另一边为0的形式,再通过等价转化化成整式不等式(组)的形式进行求解.对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.易错防范(1)对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形. (2)当Δ<0时,ax 2+bx +c >0(a ≠0)的解集是R 还是∅,要注意区别. (3)不同参数范围的解集切莫取并集,应分类表述. [基础达标]1.设集合A ={x |-3≤2x -1≤3},集合B 为函数y =lg(x -1)的定义域,则A ∩B =( )A .(1,2)B .[1,2]C .[1,2)D .(1,2]解析:选D.A =[-1,2],B =(1,+∞),A ∩B =(1,2].2.若不等式ax 2+bx +2<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-12,或x >13,则a -b a 的值为( )A .56 B .16 C .-16D .-56解析:选A.由题意得ax 2+bx +2=0的两根为-12与13,所以-b a =-12+13=-16,则a -b a=1-b a =1-16=56.3.(2019·浙江省名校协作体高三联考)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,-x +2,x >0,则不等式f (x )≥x 2的解集为( )A .[-1,1]B .[-2,2]C .[-2,1]D .[-1,2]解析:选A.法一:当x ≤0时,x +2≥x 2, 所以-1≤x ≤0;①当x >0时,-x +2≥x 2,所以0<x ≤1.②由①②得原不等式的解集为{x |-1≤x ≤1}.法二:作出函数y =f (x )和函数y =x 2的图象,如图,由图知f (x )≥x 2的解集为[-1,1].4.(2019·宁波效实中学模拟)不等式x 2+2x <a b +16ba对任意a ,b ∈(0,+∞)恒成立,则实数x 的取值范围是( )A .(-2,0)B .(-∞,-2)∪(0,+∞)C .(-4,2)D .(-∞,-4)∪(2,+∞)解析:选C.不等式x 2+2x <a b+16b a对任意a ,b ∈(0,+∞)恒成立,等价于x 2+2x <⎝ ⎛⎭⎪⎫a b +16b a min,由于a b +16b a ≥2a b ·16b a=8(当且仅当a =4b 时等号成立),所以x 2+2x <8,解得-4<x <2.5.关于x 的不等式x 2-(a +1)x +a <0的解集中,恰有3个整数,则实数a 的取值范围是( )A .(4,5)B .(-3,-2)∪(4,5)C .(4,5]D .[-3,-2)∪(4,5]解析:选D.原不等式可化为(x -1)(x -a )<0,当a >1时得1<x <a ,此时解集中的整数为2,3,4,则4<a ≤5,当a <1时得a <x <1,则-3≤a <-2,故a ∈[-3,-2)∪(4,5].6.(2019·台州联考)在R 上定义运算:=ad -bc .若不等式对任意实数x 恒成立,则实数a 的最大值为( )A .-12B .-32C .13D .32解析:选D.原不等式等价于x (x -1)-(a -2)(a +1)≥1,即x 2-x -1≥(a +1)(a -2)对任意x 恒成立,x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54,所以-54≥a 2-a -2,解得-12≤a ≤32,故选D.7.不等式|x (x -2)|>x (x -2)的解集是________.解析:不等式|x (x -2)|>x (x -2)的解集即x (x -2)<0的解集,解得0<x <2. 答案:{x |0<x <2}8.对于实数x ,当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,则关于x 的不等式4[x ]2-36[x ]+45<0的解集为________.解析:由4[x ]2-36[x ]+45<0,得32<[x ]<152,又当且仅当n ≤x <n +1(n ∈N *)时,[x ]=n ,所以[x ]=2,3,4,5,6,7,所以所求不等式的解集为[2,8).答案:[2,8)9.已知函数f (x )=x 2+2x +1,如果使f (x )≤kx 对任意实数x ∈(1,m ]都成立的m 的最大值是5,则实数k =________.解析:设g (x )=f (x )-kx =x 2+(2-k )x +1,由题意知g (x )≤0对任意实数x ∈(1,m ]都成立的m 的最大值是5,所以x =5是方程g (x )=0的一个根,将x =5代入g (x )=0,可以解得k =365(经检验满足题意).答案:36510.已知f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,3x -2,x >0,若|f (x )|≥ax 在x ∈[-1,1]上恒成立,则实数a 的取值范围是____________.解析:当x =0时,|f (x )|≥ax 恒成立,a ∈R ;当0<x ≤1时,|f (x )|≥ax 转化为a ≤|f (x )|x =|3x -2|x =|3-2x |.因为|3-2x|的最小值为0,所以a ≤0;当-1≤x <0时,|f (x )|≥ax 转化为a ≥|f (x )|x =-|x 2-2x |=-|x -2x |.因为-|x -2x|的最大值为-1,所以a ≥-1,综上可得a ∈[-1,0].答案:[-1,0]11.若不等式ax 2+5x -2>0的解集是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫12<x <2.(1)求实数a 的值;(2)求不等式ax 2-5x +a 2-1>0的解集.解:(1)由题意知a <0,且方程ax 2+5x -2=0的两个根为12,2,代入解得a =-2.(2)由(1)知不等式为-2x 2-5x +3>0, 即2x 2+5x -3<0,解得-3<x <12,即不等式ax 2-5x +a 2-1>0的解集为⎝⎛⎭⎪⎫-3,12.12.已知不等式ax 2+bx +c >0的解集为(1,t ),记函数f (x )=ax 2+(a -b )x -c . (1)求证:函数y =f (x )必有两个不同的零点;(2)若函数y =f (x )的两个零点分别为m ,n 求|m -n |的取值范围.解:(1)证明:由题意知a +b +c =0,且-b2a >1.所以a <0且ca>1,所以ac >0. 对于函数f (x )=ax 2+(a -b )x -c 有Δ=(a -b )2+4ac >0.所以函数y =f (x )必有两个不同零点.(2)|m -n |2=(m +n )2-4mn =(b -a )2+4ac a 2=(-2a -c )2+4ac a2=⎝ ⎛⎭⎪⎫c a 2+8⎝ ⎛⎭⎪⎫c a +4. 由不等式ax 2+bx +c >0的解集为(1,t )可知,方程ax 2+bx +c =0的两个解分别为1和t (t >1),由根与系数的关系知c a=t ,所以|m -n |2=t 2+8t +4,t ∈(1,+∞). 所以|m -n |>13,所以|m -n |的取值范围为(13,+∞). [能力提升]1.(2019·金华市东阳二中高三调研)若关于x 的不等式x 2+ax -2>0在区间[1,5]上有解,则实数a 的取值范围为( )A .⎝ ⎛⎭⎪⎫-235,+∞ B .⎣⎢⎡⎦⎥⎤-235,1C .(1,+∞)D .(-∞,-1)解析:选A.由Δ=a 2+8>0,知方程恒有两个不等实根,又知两根之积为负, 所以方程必有一正根、一负根.于是不等式在区间[1,5]上有解的充要条件是f (5)>0,解得a >-235,故a 的取值范围为⎝ ⎛⎭⎪⎫-235,+∞. 2.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是( )A .(-1,0)B .(2,+∞)C .(-∞,-1)∪(2,+∞)D .不能确定解析:选C.由f (1-x )=f (1+x )知f (x )的图象关于直线x =1对称,即a2=1,解得a=2.又因为f (x )开口向下,所以当x ∈[-1,1]时,f (x )为增函数,所以f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2,f (x )>0恒成立,即b 2-b -2>0恒成立,解得b <-1或b >2.3.(2019·杭州模拟)若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是________.解析:原不等式即(x -a )(x -1)≤0,当a <1时,不等式的解集为[a ,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3.综上可得-4≤a ≤3.答案:[-4,3]4.不等式x 2+8y 2≥λy (x +y )对于任意的x ,y ∈R 恒成立,则实数λ的取值范围为________.解析:因为x 2+8y 2≥λy (x +y )对于任意的x ,y ∈R 恒成立,所以x 2+8y 2-λy (x +y )≥0对于任意的x ,y ∈R 恒成立,即x 2-λyx +(8-λ)y 2≥0恒成立,由二次不等式的性质可得,Δ=λ2y 2+4(λ-8)y 2=y 2(λ2+4λ-32)≤0,所以(λ+8)(λ-4)≤0, 解得-8≤λ≤4. 答案:[-8,4]5.(2019·杭州高级中学质检)设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小.解:(1)由题意知,F (x )=f (x )-x =a (x -m )·(x -n ), 当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1,或x >2}; 当a <0时,不等式F (x )>0的解集为{x |-1<x <2}. (2)f (x )-m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1), 因为a >0,且0<x <m <n <1a,所以x -m <0,1-an +ax >0. 所以f (x )-m <0,即f (x )<m .6.(2019·丽水市高考数学模拟)已知函数f (x )=|x +a |x 2+1(a ∈R ).(1)当a =1时,解不等式f (x )>1;(2)对任意的b ∈(0,1),当x ∈(1,2)时,f (x )>bx恒成立,求a 的取值范围.解:(1)f (x )=|x +1|x 2+1>1⇔x 2+1<|x +1|⇔⎩⎪⎨⎪⎧x +1≥0x 2+1<x +1或⎩⎪⎨⎪⎧x +1<0x 2+1<-(x +1)⇔0<x <1.故不等式的解集为{x |0<x <1}.(2)f (x )=|x +a |x 2+1>b x ⇔|x +a |>b (x +1x )⇔x +a >b (x +1x )或x +a <-b (x +1x )⇔a >(b -1)x+b x 或a <-[(b +1)x +b x]对任意x ∈(1,2)恒成立.所以a ≥2b -1或a ≤-(52b +2)对任意b ∈(0,1)恒成立.所以a ≥1或a ≤-92.。

高考数学一轮总复习第一章集合与常用逻辑用语不等式1-4一元二次不等式与几类重要不等式的解法课件

高考数学一轮总复习第一章集合与常用逻辑用语不等式1-4一元二次不等式与几类重要不等式的解法课件
(5)x(x+2)2>0 的解集是(-∞,-2)∪(0,+∞).
() ()
解:(1)×; (2)√; (3)×; (4)×; (5)×.
不等式 2x2-x-3>0 的解集为
()
A. x|-1<x<32 C. x|x<-1或x>32
B. {x|x<-3 或 x>1} D. {x|x<-1 或 x>1}
判断下列命题是否正确,正确的在括号内画“√”,错误的画“×”.
(1)-x2+x>0 的解集为(-∞,0)∪(1,+∞).
()
(2)若二次不等式 ax2+bx+c>0 的解集为(x1,x2),则必有 a<0. (3)不等式 ax2+bx+c>0 恒成立,则 a>0 且 Δ<0.
() ()
(4)ax<b 的解集是ab,+∞.
(2020 年江苏淮阴中学高二期末)不等式
x2-x-4 x-1 >1
的解集为
()
A. {x|x<-1 或 x>3}
B. {x|x<-1 或 1<x<3}
C. {x|-1<x<1 或 x>3}
D. {x|-1<x<1 或 1<x<3}
解:原不等式可化为x2-x-x-1 4-1>0,即x2-x-2x1-3>0,等价于(x+1)(x-1)(x-3)>0.
(3)解关于 x 的不等式 ax2-2≥2x-ax(a∈R).
解:原不等式可化为 ax2+(a-2)x-2≥0(a∈R), 即(ax-2)(x+1)≥0(a∈R). 当 a=0 时,原不等式可化简为 x+1≤0, 原不等式的解集为{x|x≤-1}; 当 a≠0 时,原不等式的解集由2a和-1 的大小决定,当 a>0 时,2a>-1;当-2<a<0 时, 2a<-1;当 a=-2 时,2a=-1;当 a<-2 时,2a>-1.

第二章 一元二次函数 、 方程和不等式(公式、定理、结论图表)--2023年高考数学必背(新教材)

第二章  一元二次函数 、 方程和不等式(公式、定理、结论图表)--2023年高考数学必背(新教材)

第二章一元二次函数、方程和不等式(公式、定理、结论图表)1.不等关系不等关系常用不等式来表示.2.实数a,b的比较大小文字语言数学语言等价条件a-b是正数a-b>0a>ba-b等于零a-b=0a=ba-b是负数a-b<0a<b3.重要不等式一般地,∀a,b∈R,有a2+b2≥2ab,当且仅当a=b时,等号成立.4.等式的性质(1)性质1如果a=b,那么b=a;(2)性质2如果a=b,b=c,那么a=c;(3)性质3如果a=b,那么a±c=b±c;(4)性质4如果a=b,那么ac=bc;(5)性质5如果a=b,c≠0,那么ac=b c .5.不等式的基本性质(1)对称性:a>b⇔b<a.(2)传递性:a>b,b>c⇒a>c.(3)可加性:a>b⇔a+c>b+c.(4)可乘性:a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc.(5)加法法则:a>b,c>d⇒a+c>b+d.(6)乘法法则:a>b>0,c>d>0⇒ac>bd.(7)乘方法则:a>b>0⇒a n>b n>0(n∈N,n≥2).6.基本不等式(1)有关概念:当a,b均为正数时,把a+b2叫做正数a,b的算术平均数,把ab叫做正数a,b的几何平均数.(2)不等式:当a,b是任意正实数时,a,b的几何平均数不大于它们的算术平均数,即ab≤a+b2,当且仅当a=b时,等号成立.7.已知x、y都是正数,(1)若x+y=S(和为定值),则当x=y时,积xy取得最大值S24.(2)若xy=p(积为定值),则当x=y时,和x+y取得最小值2p.上述命题可归纳为口诀:积定和最小,和定积最大.8.一元二次不等式的概念只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.9.一元二次不等式的一般形式(1)ax2+bx+c>0(a≠0).(2)ax2+bx+c≥0(a≠0).(3)ax2+bx+c<0(a≠0).(4)ax2+bx+c≤0(a≠0).思考1:不等式x2-y2>0是一元二次不等式吗?提示:此不等式含有两个变量,根据一元二次不等式的定义,可知不是一元二次不等式.10.一元二次不等式的解与解集使一元二次不等式成立的未知数的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集.思考2:类比“方程x2=1的解集是{1,-1},解集中的每一个元素均可使等式成立”.不等式x2>1的解集及其含义是什么?提示:不等式x2>1的解集为{x|x<-1或x>1},该集合中每一个元素都是不等式的解,即不等式的每一个解均使不等式成立.11.三个“二次”的关系|b提示:结合二次函数图象可知,若一元二次不等式ax2+x-1>0的解集为R,则>0,+4a<0,解得a∈∅,所以不存在a使不等式ax2+x-1>0的解集为R. 12.分式不等式的解法主导思想:化分式不等式为整式不等式类型同解不等式思考1:x -3x +2>0与(x -3)(x +2)>0等价吗?将x -3x +2>0变形为(x -3)(x +2)>0,有什么好处?提示:等价;好处是将不熟悉的分式不等式化归为已经熟悉的一元二次不等式.13.(1)不等式的解集为R (或恒成立)的条件设二次函数y =ax 2+bx +c若ax 2+bx +c ≤k 恒成立⇔y max ≤k 若ax 2+bx +c ≥k 恒成立⇔y min ≥k14.从实际问题中抽象出一元二次不等式模型的步骤(1)阅读理解,认真审题,分析题目中有哪些已知量和未知量,找准不等关系.(2)设出起关键作用的未知量,用不等式表示不等关系(或表示成函数关系).(3)解不等式(或求函数最值).(4)回扣实际问题.思考2:解一元二次不等式应用题的关键是什么?提示:解一元二次不等式应用题的关键在于构造一元二次不等式模型,选择其中起关键作用的未知量为x,用x来表示其他未知量,根据题意,列出不等关系再求解.<解题方法与技巧>1.作差法比较大小的一般步骤第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化成“和”或“积”;第三步:定号,就是确定是大于0,等于0,还是小于0(不确定的要分情况讨论);最后得结论.概括为“三步一结论”,这里的“定号”是目的,“变形”是关键.典例1:已知x≤1,比较3x3与3x2-x+1的大小.[解]3x3-(3x2-x+1)=(3x3-3x2)+(x-1)=3x2(x-1)+(x-1)=(3x2+1)(x-1).∵x≤1得x-1≤0,而3x2+1>0,∴(3x2+1)(x-1)≤0,∴3x3≤3x2-x+1.2.利用不等式的性质证明不等式注意事项(1)利用不等式的性质及其推论可以证明一些不等式.解决此类问题一定要在理解的基础上,(2)应用不等式的性质进行推导时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.典例2:若a>b>0,c<d<0,e<0,求证:e(a-c)2>e(b-d)2.[思路点拨]可结合不等式的基本性质,分析所证不等式的结构,有理有据地导出证明结果.[证明]∵c<d<0,∴-c>-d>0.又∵a>b>0,∴a-c>b-d>0.∴(a-c)2>(b-d)2>0.两边同乘以1(a-c)2(b-d)2,得1(a-c)2<1(b-d)2.又e<0,∴e(a-c)2>e(b-d)2.3.对基本不等式的理解2.对基本不等式的准确掌握要抓住以下两个方面:(1)定理成立的条件是a、b都是正典例3:给出下面四个推导过程:①∵a、b为正实数,∴ba+ab≥2ba·ab=2;②∵a∈R,a≠0,∴4a+a≥24a·a=4;③∵x、y∈R,xy<0,∴xy+yx=-- 2.其中正确的推导为()A.①②B.①③C.②③D.①②③B[解]①∵a、b为正实数,∴ba、ab为正实数,符合基本不等式的条件,故①的推导正确.②∵a∈R,a≠0,不符合基本不等式的条件,∴4a+a≥24a·a=4是错误的.③由xy<0,得xy、yx均为负数,但在推导过程中将整体xy+yx提出负号后,为正数,符合均值不等式的条件,故③正确.]4.利用基本不等式比较大小1.在理解基本不等式时,要从形式到内含中理解,特别要关注条件.等号成立的条件是a=b;a2+b2≥2ab成立的条件是a,b∈R,等号成立的条件是a=b.典例4:(1)已知a,b∈R+,则下列各式中不一定成立的是()A.a+b≥2ab B.ba+a b ≥2C.a2+b2ab ≥2ab D.2aba+b≥ab(2)已知a,b,c是两两不等的实数,则p=a2+b2+c2与q=ab+bc+ca的大小关系是________.(1)D(2)a2+b2+c2>ab+bc+ac[解](1)由a+b2≥ab得a+b=2ab,∴A成立;∵ba+ab≥2ba·ab=2,∴B成立;∵a2+b2ab≥2abab=2ab,∴C成立;∵2aba+b≤2ab2ab=ab,∴D不一定成立.(2)∵a、b、c互不相等,∴a2+b2>2ab,b2+c2>2ac,a2+c2>2ac.∴2(a2+b2+c2)>2(ab+bc+ac).即a2+b2+c2>ab+bc+.]5.利用基本不等式证明不等式1.条件不等式的证明,要将待证不等式与已知条件结合起来考虑,比如本题通过“1”的代换,将不等式的左边化成齐次式,一方面为使用基本不等式创造条件,另一方面可实现约分与不等式的右边建立联系.2.先局部运用基本不等式,再利用不等式的性质(注意限制条件),通过相加(乘)合成为待证的不等式,既是运用基本不等式时的一种重要技能,也是证明不等式时的一种常用方法.典例5:已知a,b,c是互不相等的正数,且a+b+c=1,求证:1a+1b+1c>9.[思路点拨]看到1a+1b+1c>9,想到将“1”换成“a+b+c”,裂项构造基本不等式的形式,用基本不等式证明.[证明]∵a,b,c∈R+,且a+b+c=1,∴1a +1b +1c =a +b +c a +a +b +c b +a +b +c c =3+b a +c a +a b +c b +a c +b c=3≥3+2b a ·a b+2c a ·a c+2c b ·b c=3+2+2+2=9.当且仅当a =b =c 时取等号,∴1a +1b +1c>9.6.利用基本不等式求最值利用基本不等式求最值的关键是获得满足基本不等式成立条件,即“一正、二定、三相等”.解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创设应用基本不等式的条件.具体可归纳为三句话:若不正,用其相反数,改变不等号方向;若不定应凑出定和或定积;典例6:(1)已知x <54,求y =4x -2+14x -5的最大值;(2)已知0<x <12,求y =12(1-2x )的最大值.[思路点拨](1)看到求y =4x -2+14x -5的最值,想到如何才能出现乘积定值;(2)要求y=12x (1-2x )的最值,需要出现和为定值.[解](1)∵x <54,∴5-4x >0,∴y =4x -2+14x -5=--4x 3≤-2+3=1,当且仅当5-4x =15-4x,即x =1时,上式等号成立,故当x =1时,y max =1.(2)∵0<x<12,∴1-2x>0,∴y=14×2x(1-2x)≤14×=14×14=116∴当且仅当2x=1-2xx=14时,y max=116.7.利用基本不等式求条件最值1.本题给出的方法,用到了基本不等式,并且对式子进行了变形,配凑出满足基本不等式的条件,这是经常使用的方法,要学会观察、学会变形.f(x)=ax(b-ax)型.典例7:已知x>0,y>0,且满足8x+1y=1.求x+2y的最小值.[解]∵x>0,y>0,8x+1 y=1,∴x+2yx+2y)=10+xy+16yx≥10+2xy·16yx=18,+1y=1,=16yx,=12,=3时,等号成立,故当x=12,y=3时,(x+2y)min=18.8.利用基本不等式解决实际问题1.在应用基本不等式解决实际问题时,应注意如下思路和方法:(1)先理解题意,设出变量,一般把要求最值的量定为函数;(2)建立相应的函数关系,把实际问题抽象成函数的最大值或最小值问题;(3)在定义域内,求出函数的最大值或最小值;(4)正确写出答案.时,可用函数的单调性求解典例8:如图,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.现有36m 长的钢筋网材料,每间虎笼的长、宽分别设计为多少时,可使每间虎笼面积最大?[解]设每间虎笼长x m ,宽y m ,则由条件知,4x +6y =36,即2x +3y =18.设每间虎笼面积为S ,则S =xy .法一:由于2x +3y ≥22x ·3y =26xy ,所以26xy ≤18,得xy ≤272,即S max =272,当且仅当2x =3y 时,等号成立.x +3y =18,x =3y ,=4.5,=3.故每间虎笼长为4.5m,宽为3m 时,可使每间虎笼面积最大.法二:由2x +3y =18,得x =9-32y .∵x >0,∴0<y <6,S =xy =-32y =32y (6-y ).∵0<y <6,∴6-y >0.∴S ≤32(6-y )+y 22=272.当且仅当6-y =y ,即y =3时,等号成立,此时x =4.5.故每间虎笼长为4.5m ,宽为3m 时,可使每间虎笼面积最大.9.不等式恒成立问题对于恒成立不等式求参数范围问题常见类型及解法有以下两种:(1)变更主元法根据实际情况的需要确定合适的主元,一般知道取值范围的变量要看作主元.(2)转化法求参数范围已知二次函数y=ax2+bx+c的函数值的集合为B={y|m≤y≤n},则(1)y≥k恒成立⇒y min≥k即m≥k;(2)y≤k恒成立⇒y max≤k即n≤k.典例9:已知y=x2+ax+3-a,若-2≤x≤2,x2+ax+3-a≥0恒成立,求a的取值范围.[思路点拨]对于含参数的函数在某一范围上的函数值恒大于等于零的问题,可以利用函数的图象与性质求解.[解]设函数y=x2+ax+3-a在-2≤x≤2时的最小值为关于a的一次函数,设为g(a),则(1)当对称轴x=-a2<-2,即a>4时,g(a)=(-2)2+(-2)a+3-a=7-3a≥0,解得a≤73,与a>4矛盾,不符合题意.(2)当-2≤-a2≤2,即-4≤a≤4时,g(a)=3-a-a24≥0,解得-6≤a≤2,此时-4≤a≤2.(3)当-a2>2,即a<-4时,g(a)=22+2a+3-a=7+a≥0,解得a≥-7,此时-7≤a<-4.综上,a的取值范围为-7≤a≤2.。

2023届高考数学一轮复习讲义:第4讲 一元二次不等式及其解法

2023届高考数学一轮复习讲义:第4讲 一元二次不等式及其解法

第4讲 一元二次不等式及其解法1.一元一次不等式ax >b (a ≠0)的解集 (1)当a >0时,解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x >b a. (2)当a <0时,解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x <b a . 2.三个“二次”间的关系 判别式 Δ=b 2-4ac Δ>0Δ=0Δ<0二次函数 y =ax 2+bx +c (a >0)的 图象一元二次方程ax 2+bx+c =0(a >0)的根有两个相异实根x 1,x 2(x 1<x 2)有两个相等实 根x 1=x 2 =-b2a没有实 数根一元二次不等 式ax 2+bx +c >0(a >0) 的解集 {x |x >x 2 或x <x 1}⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-b 2aRax 2+bx +c <0(a >0) 的解集 {x |x 1<x <x 2} ∅ ∅常用结论1.分式不等式的解法(1)f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0). (2)f (x )g (x )≥0(≤0)⇔⎩⎪⎨⎪⎧f (x )g (x )≥0(≤0),g (x )≠0.2.两个恒成立的充要条件 (1)一元二次不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a >0, b 2-4ac <0. (2)一元二次不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a <0, b 2-4ac <0.➢考点1 一元二次不等式的解法[名师点睛](1)解一元二次不等式的方法和步骤(2)解含参数的一元二次不等式的步骤①二次项若含有参数应讨论参数是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的一元二次不等式;②判断一元二次不等式所对应的方程实根的个数,即讨论判别式Δ与0的关系; ③确定方程无实根或有两个相同实根时,可直接写出解集;确定方程有两个相异实根时,要讨论两实根的大小关系,从而确定解集. [典例]1.(2021·湖南·衡阳市田家炳实验中学高一阶段练习)不等式2210x x --<解集为( ) A .{x |1<x <2}B .{x |-2<x <1 }C .{x |x >2或x <1}D .112x x ⎧⎫-<<⎨⎬⎩⎭2.(2021·四川省叙永第一中学校高三阶段练习)解下列关于x 的不等式: (1)231x ≤-; (2)()22120ax a x +--<(0a <).[举一反三]1.(2022·浙江宁波·二模)已知集合{}2230A x x x =--<,{}15B x x =≤≤,则A B =( )A .(]1,3-B .[)1,3C .(]1,5-D .(]3,52.(2022·全国·模拟预测)设集合402x A xx -⎧⎫=>⎨⎬+⎩⎭,{}27100B x x x =-+≥,则()R A B ⋂=( )A .{}22x x -<<B .{}22x x -≤≤C .{4x x ≤或}5x ≥D .{2x x ≤或}5x ≥3.(2021·福建省长汀县第一中学高三阶段练习)解关于x 的不等式:2(1)(23)20(1)a x a x a +-++<≥-.4.(2021·广东·普宁市大长陇中学高三阶段练习)已知二次函数y =ax 2+bx ﹣a +2. (1)若关于x 的不等式ax 2+bx ﹣a +2>0的解集是{x |﹣1<x <3},求实数a ,b 的值; (2)若b =2,a >0,解关于x 的不等式ax 2+bx ﹣a +2>0.➢考点2 一元二次不等式恒成立问题[名师点睛]1.一元二次不等式在R 上恒成立的条件(1)不等式ax 2+bx +c ≥0对任意实数x 恒成立的条件是: ①当a =0时,b =0,c ≥0;②当a ≠0时,⎩⎪⎨⎪⎧ a >0,Δ≤0.(2)不等式ax 2+bx +c ≤0对任意实数x 恒成立的条件是: ①当a =0时,b =0,c ≤0;②当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ≤0.2.一元二次不等式在给定区间上恒成立的求解方法 设f (x )=ax 2+bx +c (a ≠0).(1)当a <0时,f (x )<0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ -b 2a <α,f α<0或⎩⎪⎨⎪⎧-b 2a >β,f β<0或Δ<0.f (x )>0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ f β>0,f α>0. (2)当a >0时,f (x )<0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧f β<0,fα<0.f (x )>0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ -b 2a <α,f α>0或⎩⎪⎨⎪⎧-b 2a >β,f β>0或Δ<0.3.转换主元法解给定参数范围问题解给定参数范围的不等式恒成立问题,若在分离参数时会遇到讨论的情况,或者即使能容易分离出参数与变量,但函数的最值难以求出,可考虑变换思维角度,即把变量与参数交换位置,构造以参数为变量的函数,再根据原参数的范围列式求解. [典例]1.(2022·全国·高三专题练习)不等式()()21110a x a x +-+-<对一切实数x 恒成立,则a 的取值范围是( ) A .15a << B .51a -<<- C .51a -<≤-D .31a -<≤-2.(2021·河北·石家庄市藁城区第一中学高三开学考试)若关于x 的不等式2210x ax ++在[0,)+∞上恒成立,则实数a 的取值范围为( )A .()0,∞+B .[)1,-+∞C .[]1,1-D .[)0,∞+3.(2022·全国·高三专题练习)已知[1a ∈-,1],不等式2(4)420x a x a +-+->恒成立,则x 的取值范围为( ) A .(-∞,2)(3,)∞+ B .(-∞,1)(2,)∞+C .(-∞,1)(3,)∞+D .(1,3)[举一反三]1.(2022·江苏南通·模拟预测)当x ∈R 时,不等式2210x x a ---≥恒成立,则实数a 的取值范围是( ) A .(],2-∞- B .(),2-∞- C .(],0-∞D .(),0∞-2.(2022·全国·高三专题练习)已知a R ∈,“2210ax ax +-<对x R ∀∈恒成立”的一个充要条件是( ) A .10a -<<B .10a -<≤C .10a -≤<D .10a -≤≤3.(2022·全国·高三专题练习)若不等式224(2)30a x a x -+-+()>的解集为R ,则实数a 的取值范围是( ) A .1124⎛⎫ ⎪⎝⎭,B .1124⎡⎫⎪⎢⎣⎭,C .()1124⎛⎫-∞⋃+∞ ⎪⎝⎭,, D .(]1124⎛⎫-∞⋃+∞ ⎪⎝⎭,, 4.(2022·全国·高三专题练习)不等式225732ax x a x +->-对一切()1,0a ∈-恒成立,则实数x 的取值范围是( ) A .(]1,4,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭B .(][),41,-∞-⋃-+∞C .()4,1--D .14,2⎛⎫- ⎪⎝⎭5.(2022·全国·高三专题练习)若对任意的2[1,0],2420x x x m ∈--+++≥恒成立,则m 的取值范围是( ) A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞6.(2021·江苏常州·高三阶段练习)已知函数2()1f x x ax =--,当[]0,3x ∈时,()5f x ≤恒成立,则实数a 的取值范围为__________.7.(2022·浙江·高三专题练习)若关于x 的不等式3231012xkx x x ->+-对任意的()0,2x ∈恒成立,则实数k 的取值范围为____________.8.(2021·重庆市涪陵高级中学校高三阶段练习)设函数2()1f x mx mx =--. (1)若对于一切实数x ,()0f x <恒成立,求实数m 的取值范围; (2)若对于[]1,3x ∈,()5f x m <-+恒成立,求实数m 的取值范围.➢考点3 一元二次方程根的分布问题[名师点睛]1.设一元二次方程ax 2+bx +c =0(a ≠0)的两实根为x 1,x 2,且x 1≤x 2,k 为常数,则一元二次方程根和k 的分布(即x 1,x 2相对于k 的位置)有以下若干定理.定理1:x 1<k <x 2(即一个根小于k ,一个根大于k )⇔af (k )<0.定理2:k <x 1≤x 2(即两根都大于k )⇔⎩⎪⎨⎪⎧ Δ=b 2-4ac ≥0,af k >0,-b2a >k .定理3:x 1≤x 2<k (即两根都小于k )⇔⎩⎪⎨⎪⎧Δ=b 2-4ac ≥0,af k >0,-b2a <k .2.一元二次不等式在实数范围内有解的求解方法 (1)一元二次不等式ax 2+bx +c >0在实数范围内有解⇒⎩⎪⎨⎪⎧ a >0,b ,c ∈R 或⎩⎪⎨⎪⎧a <0,Δ=b 2-4ac >0.[典例]1.(2022·重庆一中高三阶段练习)若方程240x ax -++=的两实根中一个小于1-,另一个大于2,则 a 的取值范围是( ) A .()0,3B .[]0,3C .()3,0-D .(,1)(3,)-∞+∞2.(2022·全国·高三专题练习)若不等式220x x m --<在1,22x ⎡∈⎤⎢⎥⎣⎦上有解,则实数m 的取值范围是( ) A .[)1,-+∞ B .()1,-+∞ C .34⎛⎫-+∞ ⎪⎝⎭D .()0,∞+3.(2022·上海·高三专题练习)已知,a Z ∈关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( ) A .13 B .18 C .21 D .26[举一反三]1.(2022·黑龙江·哈尔滨市第六中学校高三开学考试(理))关于x 的方程2(2)60x m x m +-+-=的两根都大于2,则m 的取值范围是( )A .(,)-∞-⋃+∞B .(6,--C .(6,2))--⋃+∞D .(,2)-∞-2.(2022·全国·高三专题练习)已知关于x 的不等式2240ax x a -+<在(0,2]上有解,则实数a 的取值范围是( ) A .1,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .(2,)+∞3.(2022·江苏·高三专题练习)已知关于x 的不等式210x ax -+≥在区间[1,2]上有解,则实数a 的取值范围为( )A .2a ≤B .2a ≥C .52a ≥D .52a ≤4.(2022·全国·高三专题练习)若关于x 的不等式2420x x a --->在区间(1,4)内有解,则实数a 的取值范围是( ) A .(,2)-∞-B .(],2-∞-C .(6,)-+∞D .(,6)-∞-5.(2022·全国·高三专题练习)已知关于x 的不等式210x ax -+≥在区间[1,2]上有解,则实数a 的取值范围为_______6.(2022·全国·高三专题练习)若关于x 的不等式2210ax x ++<有实数解,则a 的取值范围是_____.7.(2022·全国·高三专题练习)若一元二次方程2(1)30mx m x -++=的两个实根都大于1-,则m 的取值范围____8.(2022·全国·高三专题练习)设函数()21f x mx mx =--,若对于任意的13{|}x x x ∈≤≤,()4f x m <-+恒成立,则实数m 的取值范围为_____.9.(2021·江苏·仪征市第二中学高三阶段练习)已知函数2()(23)6()f x ax a x a R =-++∈. (1)当1a =时,求函数()y f x =的零点; (2)解关于x 的不等式()0(0)f x a <>;(3)当1a =时,函数()(5)3f x m x m -+++在[2,2]-有解,求实数m 的取值范围第4讲 一元二次不等式及其解法1.一元一次不等式ax >b (a ≠0)的解集 (1)当a >0时,解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x >b a. (2)当a <0时,解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x <b a . 2.三个“二次”间的关系 判别式 Δ=b 2-4ac Δ>0Δ=0Δ<0二次函数 y =ax 2+bx +c (a >0)的 图象一元二次方程ax 2+bx+c =0(a >0)的根 有两个相异实根x 1,x 2(x 1<x 2)有两个相等实 根x 1=x 2 =-b 2a没有实 数根一元二次不等 式ax 2+bx +c >0(a >0){x |x >x 2 或x <x 1}⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-b 2aR的解集 ax 2+bx +c <0(a >0) 的解集 {x |x 1<x <x 2} ∅ ∅常用结论1.分式不等式的解法(1)f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0). (2)f (x )g (x )≥0(≤0)⇔⎩⎪⎨⎪⎧f (x )g (x )≥0(≤0),g (x )≠0.2.两个恒成立的充要条件 (1)一元二次不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a >0,b 2-4ac <0. (2)一元二次不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a <0, b 2-4ac <0.➢考点1 一元二次不等式的解法[名师点睛](1)解一元二次不等式的方法和步骤(2)解含参数的一元二次不等式的步骤[典例]1.(2021·湖南·衡阳市田家炳实验中学高一阶段练习)不等式2210x x --<解集为( ) A .{x |1<x <2} B .{x |-2<x <1 }C .{x |x >2或x <1}D .112x x ⎧⎫-<<⎨⎬⎩⎭【答案】D【解析】∵2210x x --<,∴112x -<<,∴不等式2210x x --<解集为112x x ⎧⎫-<<⎨⎬⎩⎭.故选:D.2.(2021·四川省叙永第一中学校高三阶段练习)解下列关于x 的不等式: (1)231x ≤-; (2)()22120ax a x +--<(0a <).【解】(1)由231x ≤-,得2301x -≤-,即5301x x -≤- 则(53)(1)0x x --≤且1x ≠,解得:5(,1)[,)3-∞+∞(2)当12a =-时,原不等式1(1)(2)02x x ⇔--+<,解的{|2}x x ≠-;当12a <-时,原不等式(1)(2)0ax x ⇔-+<,又12a >-所以解集为1(,2)(,)a -∞-+∞;当102a -<<时,因为12a <-所以解集为1(,)(2,)a-∞-+∞.综上有,12a =-时,解集为{|2}x x ≠-;12a <-时,解集为1(,2)(,)a -∞-+∞;102a -<<时,解集为1(,)(2,)a-∞-+∞. [举一反三]1.(2022·浙江宁波·二模)已知集合{}2230A x x x =--<,{}15B x x =≤≤,则A B =( )A .(]1,3-B .[)1,3C .(]1,5-D .(]3,5【答案】B【解析】由题意,{}2230{|13}A x x x x x =--<=-<<,故{}{|13}15{|13}A B x x x x x x ⋂=-<<⋂≤≤=≤<, 故选:B2.(2022·全国·模拟预测)设集合402x A xx -⎧⎫=>⎨⎬+⎩⎭,{}27100B x x x =-+≥,则()R A B ⋂=( )A .{}22x x -<<B .{}22x x -≤≤C .{4x x ≤或}5x ≥D .{2x x ≤或}5x ≥【答案】B 【解析】由不等式402x x ->+,解得2x <-或4x >,所以{|2A x x =<-或4}x >, 又由不等式27100x x -+≥,解得2x ≤或5x ≥,所以{|2B x x =≤或5}x , 可得R{|24}A x x =-≤≤,所以()R A B ⋂={}22x x -≤≤. 故选:B.3.(2021·福建省长汀县第一中学高三阶段练习)解关于x 的不等式:2(1)(23)20(1)a x a x a +-++<≥-.【解】当a +1=0即 a =-1时,原不等式变为-x +2<0,即x >2. 当a>-1时,原不等式可转化为()1201x x a ⎛⎫--< ⎪+⎝⎭, ∴方程()1201x x a ⎛⎫--= ⎪+⎝⎭的根为1,21a +. 若-1<a<12-,则11a +>2,解得2<x <11a +;若a =12-,则11a +=2,解得x ∈∅;若a >12-,则11a +<2, 解得11a +<x <2.综上,当a >12-时,原不等式的解集为{x |11a +<x <2}; 当a =12-时,原不等式的解集为∅;当-1<a <12-时,原不等式的解集为{x |2<x <11a +}. 当a =-1时,原不等式的解集为{x |x >2}.4.(2021·广东·普宁市大长陇中学高三阶段练习)已知二次函数y =ax 2+bx ﹣a +2. (1)若关于x 的不等式ax 2+bx ﹣a +2>0的解集是{x |﹣1<x <3},求实数a ,b 的值; (2)若b =2,a >0,解关于x 的不等式ax 2+bx ﹣a +2>0. 【解】(1)由题意知,﹣1和3是方程ax 2+bx ﹣a +2=0的两根, 所以132(1)3b aa a ⎧-+=-⎪⎪⎨-+⎪-⨯=⎪⎩,解得a =﹣1,b =2;(2)当b =2时,不等式ax 2+bx ﹣a +2>0为ax 2+2x ﹣a +2>0, 即(ax ﹣a +2)(x +1)>0,所以()210a x x a -⎛⎫-+> ⎪⎝⎭,当21a a-=-即1a =时,解集为{}1x x ≠-; 当21a a -<-即01a <<时,解集为2a x x a -⎧<⎨⎩或}1x >-;当21a a ->-即1a >时,解集为2a x x a -⎧>⎨⎩或}1x <-.➢考点2 一元二次不等式恒成立问题[名师点睛]1.一元二次不等式在R 上恒成立的条件(1)不等式ax 2+bx +c ≥0对任意实数x 恒成立的条件是: ①当a =0时,b =0,c ≥0;②当a ≠0时,⎩⎪⎨⎪⎧ a >0,Δ≤0.(2)不等式ax 2+bx +c ≤0对任意实数x 恒成立的条件是: ①当a =0时,b =0,c ≤0;②当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ≤0.2.一元二次不等式在给定区间上恒成立的求解方法 设f (x )=ax 2+bx +c (a ≠0).(1)当a <0时,f (x )<0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ -b 2a <α,f α<0或⎩⎪⎨⎪⎧-b 2a >β,f β<0或Δ<0.f (x )>0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ fβ>0,f α>0.(2)当a >0时,f (x )<0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧f β<0,f α<0. f (x )>0在x ∈[α,β]上恒成立⇔⎩⎪⎨⎪⎧ -b 2a <α,f α>0或⎩⎪⎨⎪⎧-b 2a >β,f β>0或Δ<0.3.转换主元法解给定参数范围问题解给定参数范围的不等式恒成立问题,若在分离参数时会遇到讨论的情况,或者即使能容易分离出参数与变量,但函数的最值难以求出,可考虑变换思维角度,即把变量与参数交换位置,构造以参数为变量的函数,再根据原参数的范围列式求解. [典例]1.(2022·全国·高三专题练习)不等式()()21110a x a x +-+-<对一切实数x 恒成立,则a 的取值范围是( )A .15a <<B .51a -<<-C .51a -<≤-D .31a -<≤-【答案】C【解析】当10a +=,即1a =-时,()()21110a x a x +-+-<可化为10-<,即不等式10-<恒成立;当10a +≠,即1a ≠-时,因为()()21110a x a x +-+-<对一切实数x 恒成立,所以()()2101410a a a +<⎧⎪⎨+++<⎪⎩,解得51a -<<-; 综上所述,51a -<≤-. 故选:C.2.(2021·河北·石家庄市藁城区第一中学高三开学考试)若关于x 的不等式2210x ax ++在[0,)+∞上恒成立,则实数a 的取值范围为( )A .()0,∞+B .[)1,-+∞C .[]1,1-D .[)0,∞+【答案】B【解析】解:当0x =时,不等式10恒成立; 当0x >时,由题意可得12a x x-+恒成立, 由11()22f x x x x x=+⋅=,当且仅当1x =时,取得等号. 所以22a -,解得1a -.综上可得,a 的取值范围是[)1,-+∞. 故选:B .3.(2022·全国·高三专题练习)已知[1a ∈-,1],不等式2(4)420x a x a +-+->恒成立,则x 的取值范围为( ) A .(-∞,2)(3,)∞+ B .(-∞,1)(2,)∞+C .(-∞,1)(3,)∞+D .(1,3)【答案】C【解析】解:令()2(2)44f a x a x x =-+-+,则不等式2(4)420x a x a +-+->恒成立转化为()0f a >在[1,1]a ∈-上恒成立.∴有(1)0(1)0f f ->⎧⎨>⎩,即22(2)4402440x x x x x x ⎧--+-+>⎨-+-+>⎩, 整理得:22560320x x x x ⎧-+>⎨-+>⎩,解得:1x <或3x >.x ∴的取值范围为()(),13,-∞⋃+∞.故选:C . [举一反三]1.(2022·江苏南通·模拟预测)当x ∈R 时,不等式2210x x a ---≥恒成立,则实数a 的取值范围是( ) A .(],2-∞- B .(),2-∞- C .(],0-∞ D .(),0∞-【答案】A【解析】由题意,当x ∈R 时,不等式2210x x a ---≥恒成立,故2(2)4(1)0a ∆=-++≤ 解得2a ≤-,故实数a 的取值范围是(],2-∞- 故选:A2.(2022·全国·高三专题练习)已知a R ∈,“2210ax ax +-<对x R ∀∈恒成立”的一个充要条件是( ) A .10a -<< B .10a -<≤C .10a -≤<D .10a -≤≤【答案】B【解析】当0a =时,221=10ax ax +--<,对x R ∀∈恒成立; 当0a ≠时,若2210ax ax +-<,对x R ∀∈恒成立,则必须有2(2)4(1)0a a a <⎧⎨-⨯-<⎩,解之得10a -<<, 综上,a 的取值范围为10a -<≤.故“2210ax ax +-<对x R ∀∈恒成立”的一个充要条件是10a -<≤, 故选:B3.(2022·全国·高三专题练习)若不等式224(2)30a x a x -+-+()>的解集为R ,则实数a 的取值范围是( ) A .1124⎛⎫⎪⎝⎭,B .1124⎡⎫⎪⎢⎣⎭,C .()1124⎛⎫-∞⋃+∞ ⎪⎝⎭,, D .(]1124⎛⎫-∞⋃+∞ ⎪⎝⎭,, 【答案】B【解析】∵不等式224(2)30a x a x -+-+()>的解集为R , 当a -2=0,即a =2时,不等式为3>0恒成立,故a =2符合题意; 当a ﹣2≠0,即a ≠2时,不等式224(2)30a x a x -+-+()>的解集为R , 则()()220Δ424230a a a ->⎧⎪⎨⎡⎤=---⨯<⎪⎣⎦⎩,解得1124a <<, 综合①②可得,实数a 的取值范围是1124⎡⎫⎪⎢⎣⎭,.故选:B .4.(2022·全国·高三专题练习)不等式225732ax x a x +->-对一切()1,0a ∈-恒成立,则实数x 的取值范围是( ) A .(]1,4,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭B .(][),41,-∞-⋃-+∞C .()4,1--D .14,2⎛⎫- ⎪⎝⎭【答案】A【解析】令()()227532=-+-+f a a x x x ,对一切()1,0a ∈-均大于0恒成立,所以 ()()22270175320⎧->⎪⎨-=--+-+≥⎪⎩x f x x x ,或()227005320⎧-<⎪⎨=-+≥⎪⎩x f x x , 或22705320⎧-=⎪⎨-+≥⎪⎩x x x , 解得4x ≤-或x >12≤xx =综上,实数x 的取值范围是4x ≤-,或12x ≥. 故选:A.5.(2022·全国·高三专题练习)若对任意的2[1,0],2420x x x m ∈--+++≥恒成立,则m 的取值范围是( ) A .[4,)+∞ B .[2,)+∞ C .(,4]-∞ D .(,2]-∞【答案】A【解析】解:因为对任意的2[1,0],2420x x x m ∈--+++≥恒成立, 所以对任意的2[1,0],242x m x x ≥-∈--恒成立, 因为当[1,0]x ∈-,()[]22142,4y x =--∈-,所以()2max 2424m x x --≥=,[1,0]x ∈-,即m 的取值范围是[4,)+∞ 故选:A6.(2021·江苏常州·高三阶段练习)已知函数2()1f x x ax =--,当[]0,3x ∈时,()5f x ≤恒成立,则实数a 的取值范围为__________. 【答案】[1,4]【解析】2|()|5515f x x ax ⇔-≤--≤, ①当0x =时,a R ∈;②当0x ≠时,2|()|5515f x x ax ⇔-≤--≤64x a x x x⇔-≤≤+, min 44242x x ⎛⎫∴+=+= ⎪⎝⎭,max 6321x x ⎛⎫-=-= ⎪⎝⎭,∴14a ≤≤, 综上所述:14a ≤≤. 故答案为:[]1,4.7.(2022·浙江·高三专题练习)若关于x 的不等式3231012xkx x x->+-对任意的()0,2x ∈恒成立,则实数k 的取值范围为____________. 【答案】[]0,1【解析】由题意知:2302kx x x +->,即22>-k x x 对任意的()0,2x ∈恒成立,0k ∴≥ 当()0,2x ∈,3231012x kx x x->+-得: 233210kx x x x <+--,即200+21x kx <-对任意的()0,2x ∈恒成立,即210210=2x k x x x-<-对任意的()0,2x ∈恒成立, 令()102f x x x=-,()f x 在()0,2x ∈上单减,所以()()21f x f >=,所以1k ≤ 01k ∴≤≤.故答案为:[]0,18.(2021·重庆市涪陵高级中学校高三阶段练习)设函数2()1f x mx mx =--. (1)若对于一切实数x ,()0f x <恒成立,求实数m 的取值范围; (2)若对于[]1,3x ∈,()5f x m <-+恒成立,求实数m 的取值范围. 【解】(1)解:由已知,210mx mx --<对于一切实数x 恒成立, 当0m =时,10-<恒成立,符合题意,当0m ≠时,只需20Δ40m m m <⎧⎨=+<⎩,解得40m -<<, 综上所述,m 的取值范围是(4-,0];(2)解:由已知,215mx mx m --<-+对[1x ∈,3]恒成立, 即2(1)6m x x -+<对[1x ∈,3]恒成立,22131()024x x x -+=-+>,∴261m x x <-+对[1x ∈,3]恒成立,令2()1g x x x =-+,则只需min6()m g x ⎡⎤<⎢⎥⎣⎦即可, 而()g x 在[1x ∈,3]上是单调递增函数,()[1g x ∴∈,7],∴66[,6]()7g x ∈,67m ∴<, 所以m 的取值范围是6(,)7-∞.➢考点3 一元二次方程根的分布问题[名师点睛]1.设一元二次方程ax 2+bx +c =0(a ≠0)的两实根为x 1,x 2,且x 1≤x 2,k 为常数,则一元二次方程根和k 的分布(即x 1,x 2相对于k 的位置)有以下若干定理.定理1:x 1<k <x 2(即一个根小于k ,一个根大于k )⇔af (k )<0.定理2:k <x 1≤x 2(即两根都大于k )⇔⎩⎪⎨⎪⎧ Δ=b 2-4ac ≥0,af k >0,-b2a >k .定理3:x 1≤x 2<k (即两根都小于k )⇔⎩⎪⎨⎪⎧Δ=b 2-4ac ≥0,af k >0,-b2a <k .2.一元二次不等式在实数范围内有解的求解方法 (1)一元二次不等式ax 2+bx +c >0在实数范围内有解⇒⎩⎪⎨⎪⎧ a >0,b ,c ∈R 或⎩⎪⎨⎪⎧a <0,Δ=b 2-4ac >0.(2)一元二次不等式ax 2+bx +c <0在实数范围内有解⇒⎩⎪⎨⎪⎧ a >0,Δ=b 2—4ac >0或⎩⎪⎨⎪⎧a <0,b ,c ∈R .3.在区间内有解,可以参变分离为a >f (x )或a <f (x )的形式,转化为a >f (x )min 或a <f (x )max ;也可以通过对立命题转化为在区间内无解,从而转化为恒成立问题.[典例]1.(2022·重庆一中高三阶段练习)若方程240x ax -++=的两实根中一个小于1-,另一个大于2,则 a 的取值范围是( ) A .()0,3 B .[]0,3 C .()3,0-D .(,1)(3,)-∞+∞【答案】A【解析】因为方程24=0x ax -++有两根,一个大于2,另一个小于1-,所以函数 ()24f x x ax =-++有两零点,一个大于2,另一个小于1-,由二次函数的图像可知,()()2010f f ⎧>⎪⎨->⎪⎩ ,即:()()2222401140a a ⎧-+⋅+>⎪⎨--+⋅-+>⎪⎩ 解得:0<<3a 故选:A.2.(2022·全国·高三专题练习)若不等式220x x m --<在1,22x ⎡∈⎤⎢⎥⎣⎦上有解,则实数m 的取值范围是( ) A .[)1,-+∞ B .()1,-+∞ C .34⎛⎫-+∞ ⎪⎝⎭D .()0,∞+【答案】B【解析】因为不等式220x x m --<在1,22x ⎡∈⎤⎢⎥⎣⎦上有解,所以不等式22m x x >-在1,22x ⎡∈⎤⎢⎥⎣⎦上有解, 令()22211t x x x =-=--,则min 1t =-,所以1m >-,所以实数m 的取值范围是()1,-+∞ 故选:B3.(2022·上海·高三专题练习)已知,a Z ∈关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( ) A .13 B .18C .21D .26【答案】C【解析】设2()6f x x x a =-+,其图象为开口向上,对称轴为3x =的抛物线, 根据题意可得,3640a ∆=->,解得9a <,因为()0f x ≤解集中有且仅有3个整数,结合二次函数的对称性可得(2)0(1)0f f ≤⎧⎨>⎩,即4120160a a -+≤⎧⎨-+>⎩,解得58a <≤,又,a Z ∈ 所以a =6,7,8,所以符合题意的a 的值之和6+7+8=21. 故选: C[举一反三]1.(2022·黑龙江·哈尔滨市第六中学校高三开学考试(理))关于x 的方程2(2)60x m x m +-+-=的两根都大于2,则m 的取值范围是( )A .(,25)(25,)-∞-⋃+∞B .(6,25]--C .(6,2)(25,)--⋃+∞D .(,2)-∞-【答案】B【解析】解:∵关于x 的方程2(2)60x m x m +-+-=的两根都大于2,令2()(2)6f x x m x m =+-+-,可得2(2)4(6)0222(2)42(2)60m m m f m m ⎧∆=---≥⎪-⎪->⎨⎪=+-+->⎪⎩,即252526m m m m ⎧≥≤-⎪<-⎨⎪>-⎩或, 求得625m -<≤- 故选:B.2.(2022·全国·高三专题练习)已知关于x 的不等式2240ax x a -+<在(0,2]上有解,则实数a 的取值范围是( ) A .1,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .(2,)+∞【答案】A【解析】2(]0,x ∈时,不等式可化为22244x a x x x<=++;令2()4f x x x =+,则max 1()2a f x <==,当且仅当2x =时,等号成立,综上所述,实数a 的取值范围是1,2⎛⎫-∞ ⎪⎝⎭.故选:A .3.(2022·江苏·高三专题练习)已知关于x 的不等式210x ax -+≥在区间[1,2]上有解,则实数a 的取值范围为( )A .2a ≤B .2a ≥C .52a ≥D .52a ≤【答案】D【解析】由题意得:关于x 的不等式210x ax -+≥在区间[1,2]上有解,等价于不等式1a x x≤+在区间[1,2]上有解,设()1f x x x =+,则函数()1f x x x=+在[1,2]上单调递增,所以()()(152)2f f f x ≤=≤, 所以实数a 的取值范围为52a ≤, 故选:D.4.(2022·全国·高三专题练习)若关于x 的不等式2420x x a --->在区间(1,4)内有解,则实数a 的取值范围是( ) A .(,2)-∞- B .(],2-∞-C .(6,)-+∞D .(,6)-∞-【答案】A【解析】不等式等价于存在()1,4x ∈,使242a x x <--成立,即()2max42a x x <--设()224226y x x x =--=-- 当()1,4x ∈时,[)6,2y ∈--所以2a <- . 故选:A5.(2022·全国·高三专题练习)已知关于x 的不等式210x ax -+≥在区间[1,2]上有解,则实数a 的取值范围为_______【答案】52⎛⎤-∞ ⎥⎝⎦,【解析】解:由题意得:关于x 的不等式210x ax -+≥在区间[1,2]上有解,等价于不等式1a x x≤+在区间[1,2]上有解, 设1()f x x x =+,则函数1()f x x x=+在[]1,2上单调递增,所以5(1)()(2)2f f x f ≤≤=,所以实数a 的取值范围为52⎛⎤-∞ ⎥⎝⎦,.6.(2022·全国·高三专题练习)若关于x 的不等式2210ax x ++<有实数解,则a 的取值范围是_____. 【答案】(),1-∞【解析】当0a =时,不等式为210x +<有实数解,所以0a =符合题意;当0a <时,不等式对应的二次函数开口向下,所以不等式2210ax x ++<有实数解,符合题意;当0a >时,要使不等式2210ax x ++<有实数解,则需满足440∆=->a ,可得1a <, 所以01a <<,综上所述:a 的取值范围是(),1-∞, 故答案为:(),1-∞.7.(2022·全国·高三专题练习)若一元二次方程2(1)30mx m x -++=的两个实根都大于1-,则m 的取值范围____【答案】2m <-或5m ≥+【解析】由题意得应满足0,11,20,(1)0m m m mf ≠⎧⎪+⎪>-⎪⎨⎪∆≥⎪->⎪⎩解得:2m <-或5m ≥+.故答案为:2m <-或5m ≥+.8.(2022·全国·高三专题练习)设函数()21f x mx mx =--,若对于任意的13{|}x x x ∈≤≤,()4f x m <-+恒成立,则实数m 的取值范围为_____.【答案】57m <【解析】若对于任意的13{|}x x x ∈≤≤,()4f x m <-+恒成立, 即可知:250mx mx m -+-<在13{|}x x x ∈≤≤上恒成立,令()25g x mx mx m =-+-,当0m =时,50-<恒成立, 当0m ≠时,对称轴为12x =. 当0m <时,有()g x 开口向下且在[]1,3上单调递减,∴在[]1,3上()()max 150g x g m ==-<,得5m <,故有0m <. 当0m >时,有()g x 开口向上且在[]1,3上单调递增,∴在[]1,3上()()max 3750g x g m ==-<, ∴507m <<, 综上,实数m 的取值范围为57m <, 故答案为:57m <9.(2021·江苏·仪征市第二中学高三阶段练习)已知函数2()(23)6()f x ax a x a R =-++∈. (1)当1a =时,求函数()y f x =的零点; (2)解关于x 的不等式()0(0)f x a <>;(3)当1a =时,函数()(5)3f x m x m -+++在[2,2]-有解,求实数m 的取值范围. 【解】解:(1)当1a =时,2()56(2)(3)f x x x x x =-+=--, 所以函数()y f x =的零点为2,3.(2)由2()(23)60f x ax a x =-++<可得(3)(2)0ax x --<, 当302a <<时,解得32x a <<;当32a =时,x 不存在,不等式的解集为∅; 当32a >时,解得32x a <<.综上,当302a <<时,不等式的解集3{|2}x x a <<,当32a =时,不等式的解集∅, 当32a >时,不等式的解集3{2}x x a<<. (3)1a =时,()(5)3f x m x m -+++在[2,2]-有解,即230x mx m ++-在[2,2]-有解,因为23y x mx m =++-的开口向上,对称轴2m x =-, ①22m --即4m ,2x =-时,函数取得最小值4230m m -+-即73m, 4m ∴. ②222m -<-<即44m -<<时,当2m x =-取得最小值,此时2304m m -+-,解得24m <. ③当22m-即4m -时,当2x =时取得最小值,此时4230m m ++-, 解得7m -,综上,2m 或7m -。

2022版高考数学一轮复习第2章不等式第3讲一元二次不等式课件

2022版高考数学一轮复习第2章不等式第3讲一元二次不等式课件

1.(教材改编)已知集合A={x|x2-x-6>0},则∁RA等于 ( )
A.{x|-2<x<3}
B.{x|-2≤x≤3}
C.{x|x<-2或x>3}
D.{x|x≤-2或x≥3}
【答案】B
2.(2020 年广州期中考试)若关于 x 的不等式 ax2+bx+2>0 的解集
为x|-12<x<13,则 a-b 的值是 A.-10
第二章
不等式
第3讲 一元二次不等式
栏目导航
01 基础整合 自测纠偏 02 重难突破 能力提升
03 素养微专 直击高考 04
配套训练
1
基础整合 自测纠偏
1.一元二次不等式 只含有一个未知数,并且未知数的最高次数为2的整式不等式叫作 一元二次不等式.
2.三个“二次”间的关系
判别式 Δ=b2-4ac
考向 1 不含参的不等式
(1)不等式-2x2+x+3<0 的解集为________. (2)不等式xx2--29>0 的解集是________. 【答案】(1)(-∞,-1)∪32,+∞ (2)(-3,2)∪(3,+∞)
【解析】(1)化-2x2+x+3<0 为 2x2-x-3>0,解方程 2x2-x-3=0
得 x1=-1,x2=32,所以不等式-2x2+x+3<0 的解集为(-∞,-1)∪
32,+∞.
x2-9>0, x2-9<0,
(2) 原 不 等 式 ⇔ x-2>0
或 x-2<0
⇒ 解 集 为 {x|x>3 或 -
3<x<2}.
考向 2 含参不等式
解关于 x 的不等式:x2-(a+1)x+a<0.

高考数学中的二次函数代数式推导

高考数学中的二次函数代数式推导

高考数学中的二次函数代数式推导高考是人生中一个重要的关卷关头,数学作为高考中不可或缺的学科,对于学生来说极其重要。

其中,二次函数作为为高中数学中的重点知识点,在高考中也是必考的内容。

而本文旨在介绍高考数学中二次函数代数式推导的方法。

一、二次函数的基本定义二次函数,顾名思义,是二次方程所表示的函数。

具体定义为:定义域为实数集R,值域为非负实数或实数集R的一个函数f(x)=ax²+bx+c,其中a≠0。

二、二次函数的标准式一般的二次函数是f(x)=ax²+bx+c,但由于不同的二次函数中的系数a、b、c都可能不同,这导致不同二次函数之间的比较和分析变得棘手。

因此,为了便于分析,我们一般会将二次函数表达式化为标准式。

二次函数的标准式定义为:f(x)=a(x-h)²+k,其中a≠0,(h, k)为顶点坐标。

将一般式f(x)=ax²+bx+c转化为标准式看似容易,其实要进行一些推导运算。

接下来介绍一下基本的推导方法。

三、二次函数的代数式推导方法推导二次函数标准式的方法,通常有两种方法,一种是配方法,另一种是公式法。

1.配方法所谓配方法,就是将f(x)转化为一个可以完全平方的式子,再将其化为标准型的一种方法。

具体步骤如下:(1)将f(x)的一般式展开,即f(x)=ax²+bx+c。

(2)将ax²+bx部分用完成平方的形式表示,即ax²+bx=a(x+-- )²+--,其中“-- ”为需要填的数。

(3)将a(x+-- )²+--展开,即a(x+-- )²+--=ax²+2a(-- )x+a(-- )²+--。

将f(x)展开的式子与a(x+-- )²+--展开的式子进行比较,列出方程,再解方程,即可求得“--”。

(4)将f(x)代入方程,求出“--”,再将“-- ”代入a(x+-- )²+--中,得到的式子即为f(x)的标准式。

高考数学中的重难点——二次函数

高考数学中的重难点——二次函数

高考数学中的重难点——二次函数知识梳理: 1.二次函数的解析式的三种形式: (1)一般式:f(x)=ax 2+bx+c(a ≠0)。

(2)顶点式(配方式):f(x)=a(x-h)2+k 其中(h,k)是抛物线的顶点坐标。

(3)两点式(因式分解):f(x)=a(x-x 1)(x-x 2),其中x 1,x 2是抛物线与x 轴两交点的坐标。

2.二次函数f(x)=ax 2+bx+c(a ≠0)的图象是一条抛物线,对称轴a b x 2-=,顶点坐标)44,2(2ab ac a b --(1)a>0时,抛物线开口向上,函数在]2,(a b --∞上单调递减,在),2[+∞-ab上单调递增,a b x 2-=时,ab ac x f 44)(2min-=;(2)a<0时,抛物线开口向下,函数在]2,(a b --∞上单调递增,在),2[+∞-ab上单调递减,a b x 2-=时,ab ac x f 44)(2max-=。

3.二次函数f(x)=ax 2+bx+c(a ≠0)当042>-=∆ac b 时图象与x 轴有两个交点M 1(x 1,0),M 2(x 2,0)ax x x x x x M M ∆=-+=-=2122121214)(。

4. 根分布问题: 一般地对于含有字母的一元二次方程ax 2+bx+c=0 的实根分布问题,用图象求解,有如下结论:令f(x)=ax 2+bx+c (a>0) ,(1)x 1<α,x 2<α ,则⎪⎩⎪⎨⎧><-≥∆0)()2/(0ααaf a b ; (2)x 1>α,x 2>α,则⎪⎩⎪⎨⎧>>-≥∆0)()2/(0ααaf a b(3)α<x 1<β,α<x 2<β,则⎪⎪⎩⎪⎪⎨⎧<-<>>≥∆βαβα)2/(0)(0)(0a b f f (4)x 1<α,x 2>β (α<β),则⎪⎩⎪⎨⎧<<≥∆0)(0)(0βαf f(5)若f(x)=0在区间(α,β)内只有一个实根,则有0))(<(βαf f5 最值问题:二次函数f(x)=ax 2+bx+c 在区间[α,β]上的最值一般分为三种情况讨论,即:(1)对称轴-b/(2a)在区间左边,函数在此区间上具有单调性;;(2)对称轴-b/(2a)在区间之内;(3)对称轴在区间右边要注意系数a 的符号对抛物线开口的影响6 二次函数、一元二次方程及一元二次不等式之间的关系:①0∆<⇔f(x)=ax 2+bx+c 的图像与x 轴无交点⇔ax 2+bx+c=0无实根⇔ax 2+bx+c>0(<0)的解集为∅或者是R;②0∆=⇔f(x)=ax 2+bx+c 的图像与x 轴相切⇔ax 2+bx+c=0有两个相等的实根⇔ax 2+bx+c>0(<0)的解集为∅或者是R;③0∆>⇔f(x)=ax 2+bx+c 的图像与x 轴有两个不同的交点⇔ax 2+bx+c=0有两个不等的实根⇔ax 2+bx+c>0(<0)的解集为(,)αβ()αβ<或者是(,)(,)αβ-∞+∞疑点一:求二次函数的解析式例1.已知二次函数f(x)满足f(2)= -1,f(-1)= -1且f(x)的最大值是8,试确定此二次函数。

微难点1 三个“二次”关系

微难点1 三个“二次”关系

第11页
栏目导航
高考总复习 一轮复习导学案 ·数学
微难点1 三个“二次”关系
(1) 已知 x2+ax+2=0 的两个根都小于-1,求实数 a 的取值范围; 【思维引导】利用数形结合的方法,即利用一元二次方程和相应二次函数之间的 关系. 【解答】(1) 令 f(x)=x2+ax+2, 因为 x2+ax+2=0 的两个根都小于-1,
第7页
栏目导航
高考总复习 一轮复习导学案 ·数学
微难点1 三个“二次”关系
【解答】方法一:由题知 f(x)=(x-a)2+2-a2, 所以 f(x)图象的对称轴为 x=a. ①当 a∈(-∞,-1)时,f(x)在[-1,+∞)上单调递增, 所以 f(x)min=f(-1)=2a+3. 要使 f(x)≥a 恒成立,只需 f(x)min≥a, 即 2a+3≥a,解得 a≥-3,即-3≤a<-1. ②当 a∈[-1,+∞)时,f(x)min=f(a)=2-a2. 要使 f(x)≥a 恒成立,只需 f(x)min≥a, 即 2-a2≥a,解得-2≤a≤1,即-1≤a≤1.
又 f(x)图象的对称轴为 x=2,且开口向下, 所以当 x=2∈[-1,5]时,f(x)取得最大值-4a,所以-4a=12,解得 a=-3, 所以 f(x)的解析式为 f(x)=-3(x-2)2+12.
第6页
栏目导航
高考总复习 一轮复习导学案 ·数学
微难点1 三个“二次”关系
已知函数 f(x)=x2-2ax+2,当 x∈[-1,+∞)时,f(x)≥a 恒成立,求 a 的取值范围.
综上,实数 a 的取值范围为[-3,1].
第8页
栏目导航
高考总复习 一轮复习导学案 ·数学
微难点1 三个“二次”关系

函数的旋转、两函数的对称问题与不动点问题(解析版)-2024年新高考数学二轮复习专题

函数的旋转、两函数的对称问题与不动点问题(解析版)-2024年新高考数学二轮复习专题

函数的旋转、两函数的对称问题与不动点问题 【方法技巧与总结】1.不动点与稳定点【一阶不动点】对于函数y=f(x),定义域为I,如果存在x0∈I,使得f(x0)=x0,则称x0是函数f(x)的一阶不动点,简称不动点.①不动点是方程x=f(x)的解②不动点是y=x与y=f(x)图像交点的横坐标【二阶周期点】对于函数y=f(x),定义域为I,如果存在x0∈I,使得f(f(x0))=x0且f(x0)≠x0,则称x0为函数f(x)的二阶周期点①二阶周期点是方程组y=f(x)x=f(y)x≠y的解②二阶周期点是y=f(x)图像上关于y=x对称(不在y=x上)的两点的横坐标【二阶不动点】对于函数y=f(x),定义域为I,如果存在x0∈I,使得f(f(x0))=x0则称x0为函数f(x)的二阶不动点,简称稳定点①稳定点是不动点和二阶周期点的并集②稳定点是y=f(x)图像上关于y=x对称的两点的横坐标以及y=f(x)与y=x的交点的横坐标2.两函数的对称问题转化为函数有零点(方程有根)求参数值(取值范围)问题,常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解【典型例题】1(2024·山东青岛·高三统考开学考试)将函数y=13-x2-2(x∈[-3,3])的图象绕点(-3,0)逆时针旋转α(0≤α≤θ),得到曲线C,对于每一个旋转角α,曲线C都是一个函数的图象,则θ最大时的正切值为()A.32B.23C.1D.3【答案】B【解析】由y=13-x2-2(x∈[-3,3]),得y≥0,x2+y+22=13,则函数的图像是以M(0,-2)为圆心的圆的一部分,先画出函数y=13-x2-2(x∈[-3,3])的图象,这是一个圆弧AB,圆心为M(0,-2),如图所示,由图可知当此圆弧绕点(-3,0)逆时针方向旋转角大于∠MAB时,曲线C都不是一个函数的图象,即当圆心M(0,-2)在x轴上时,所以θ最大值即为∠MAB,tan∠MAB=23,所以θ最大时的正切值为2 3.故选:B.2(2024·山东潍坊·高三统考阶段练习)已知函数f x =ln x +1 x ≥0 ,将函数f x 的图象绕原点逆时针旋转αα∈0,θ 角后得到曲线C ,若曲线C 仍是某个函数的图象,则θ的最大值为()A.π6B.π4C.π3D.π2【答案】B【解析】因为f x =ln x +1 x ≥0 ,所以f x =1x +1,则f 0 =1.即函数f x =ln x +1 在原点的切线OM 的斜率k =1,所以∠MOx =π4.由图可知:当函数图象绕坐标原点逆时针方向旋转时,旋转的角θ大于π2-∠MOx 时,旋转所得的图象与y 轴就会存在两个交点,此时曲线C 不是函数的图象,故θ的最大值是π2-∠MOx =π4.故选:B .3(2024·江西·校联考模拟预测)已知函数f (x )=ax -e x 与函数g (x )=x ln x +1的图像上恰有两对关于x 轴对称的点,则实数a 的取值范围为()A.(e -1,+∞)B.e -12,+∞C.e -12,+∞ D.(-∞,e -1)【答案】A【解析】因为函数f x 与g x 的图像上恰有两对关于x 轴对称的点,所以-f x =g (x ),即e x -ax =x ln x+1有两解,则a =e x -x ln x -1x 有两解,令h (x )=e x -x ln x -1x ,则h (x )=e x -1 x -1x2,所以当x ∈0,1 时,h (x )<0;当x ∈1,+∞ 时,h (x )>0;所以函数h (x )在0,1 上单调递减,在1,+∞ 上单调递增;所以h (x )在x =1处取得极小值,所以h (1)=e -1,所以a >e -1,a 的取值范围为e -1,+∞ .故选:A .4(2024·山东菏泽·高二山东省鄄城县第一中学校考期末)已知函数f x =ax -x ln x 与函数g x =e x -1的图像上恰有两对关于x 轴对称的点,则实数a 的取值范围为()A.-∞,1-eB.-∞,1-e 2C.-∞,1-eD.-∞,1-e 2【答案】C【解析】因为函数f x 与g x 的图像上恰有两对关于x 轴对称的点,所以-f x =g x ,即-ax +x ln x =e x -1有两解,所以a =x ln x -e x +1x有两解,令h x =x ln x -e x +1x ,则hx =e x-1 1-x x 2,所以当x ∈0,1 时,h x >0,此时函数h x 在0,1 上单调递增;当x ∈1,+∞ 时,h x <0,函数h x 在1,+∞ 上单调递减,所以h x 在x =1处取得极大值,h 1 =1-e ,且x ∈0,1 时,h x 的值域为-∞,1-e ,x ∈1,+∞ 时,h x 的值域为-∞,1-e ,因此a =x ln x -e x +1x有两解时,实数a 的取值范围为-∞,1-e ,故选:C .5(2024·全国·高三专题练习)对于连续函数f x ,若f x 0 =x 0,则称x 0为f x 的不动点.设f x =x a x +2,若f x 有唯一不动点,且f x 0 =11012,x n =f x n -1 n =1,2,⋯ ,则x 2023=.【答案】12023【解析】由f x 有唯一不动点,即方程xa x +2=x 有唯一解,即ax 2+2a -1 x =0有唯一解,所以Δ=2a -1 2-4a ×0=0,解得a =12,所以f x =2xx +2,又由x n =f x n -1 n =1,2,⋯ ,可得x n =2x n -1x n -1+2,所以1x n =1x n -1+12,从而1x n 是一个公差为12的等差数列,首项为1x 1=1f x 0=1012,所以1x n =1012+n -12,所以1x 2023=1012+2023-12=2023,即x 2023=12023.故答案为:12023.6(2024·北京海淀·清华附中校考模拟预测)对于满足一定条件的连续函数f (x ),存在一个点x 0,使得f x 0 =x 0,那么我们称该函数为“不动点”函数,而称x 0为该函数的一个不动点,现新定义:若x 0满足f x 0 =-x 0,则称x 0为f x 0 的次不动点,有下面四个结论①定义在R 上的偶函数既不存在不动点,也不存在次不动点②定义在R 上的奇函数既存在不动点,也存在次不动点③当1≤a ≤32时,函数f (x )=log 24x -a ⋅2x +1 在[0,1]上仅有一个不动点和一个次不动点.④不存在正整数m ,使得函数f (x )=e x -12x -m 在区间[0,1]上存在不动点,其中,正确结论的序号为.【答案】②③【解析】对于①:取函数f (x )=x 2,f (0)=0,0既是f x 的不动点,又是f x 的次不动点,故①错误;对于②:定义在R 上的奇函数满足f (0)=0,故②正确;对于③:当log24x -a ⋅2x +1 =x 时,∴4x -a ⋅2x +1=2x ,即a =2x +12x-1.令2x =t ,t ∈[1,2],∴a =t +1t -1在区间1,2 上单调递增,a =2x +12x -1在0,1 上单调递增,满足log 24x -a ⋅2x +1 =x 有唯一解;当log 24x -a ⋅2x +1 =-x 时,∴4x -a ⋅2x +1=12x 即a =2x +12x -122x .令2x =t ,t ∈[1,2],∴a =t +1t -1t 2在区间1,2 上单调递增,a =2x +12x -122x 在0,1 上单调递增,满足log 124x -a ⋅2x +1 =x 有唯一解;综上1≤a ≤32时函数f (x )在[0,1]上仅有一个不动点和一个次不动点,故③正确;对于④:假设函数f (x )=e x -12x -a 在区间0,1 上存在不动点,则f (x )=x 在0,1 上有解,即a =e x-12x -x 2在0,1 上有解,令m (x )=e x -12x -x 2,则m (x )=e x -12-2x ,再令n (x )=e x -12-2x ,则n(x )=e x -2,令n(x )=0,解得x =ln2,所以n x 在(0,ln2)上单调递减,在(ln2,1)上单调递增,所以n (x )min =n (ln2)=2-12-2ln2=32-2ln2=ln e 32-ln4=ln e 3-ln 16>0,所以m(x )>0在0,1 上恒成立,所以m x 在0,1 上单调递增,所以m (x )min =m (0)=1,m x max =m 1 =e -32,所以实数a 满足1≤a ≤e -32,存在正整数a =1满足条件,故④错误:故答案为:②③7(2024·广东揭阳·高三校考阶段练习)拓扑空间中满足一定条件的图象连续的函数f (x ),如果存在点x 0,使得f x 0 =x 0,那么我们称函数f (x )为“不动点”函数,而称x 0为该函数的不动点.类比给出新定义:若不动点x 0满足f x 0 =x 0,则称x 0为f (x )的双重不动点.则下列函数中,①f (x )=x 3-x sin x ;②f (x )=e x-1x ;③f (x )=e x +e -x 2-1具有双重不动点的函数为.(将你认为正确的函数的代号填在横线上)【答案】①③【解析】对于①,f (x )=x 3-x sin x ,x ∈R ,所以f x =3x 2-sin x -x cos x ,又f (0)=03-0sin0=0,f 0 =3×0-sin0-0×cos0=0,则x =0是f (x )=e x -1x的双重不动点;对于②,f (x )=e x -1x ,x ∈-∞,0 ∪0,+∞ ,f (x )=e x +1x 2,令φ(x )=e x +1x2-x ,当x >0时,由基本初等函数图象易知e x >x ,所以e x +1x 2-x >0,当x <0时,e x +1x 2-x >0显然成立,所以不存在x 0,使得f x 0 =x 0,故函数f (x )=e x -1x不是具有双重不动点的函数;对于③,f (x )=e x +e -x 2-1,x ∈R ,则f (x )=e x -e -x 2,又f (0)=e 0+e -02-1=0,f(0)=e 0-e -02=0,所以x =0是函数f (x )=e x +e -x2-1的双重不动点;综上,具有双重不动点的函数是①③.故答案为:①③.【过关测试】一、单选题1.(2024·安徽池州·高三统考期末)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转π3后与原图象重合,则在以下各项中f(1)的取值只可能是A.3B.1C.33D.0【答案】B【解析】由题意可得:问题相当于圆上由6个点为一组,每次绕原点逆时针旋转π3个单位后与下一个点会重合.设f(π)处的点为A1,∵f(x)的图象绕原点逆时针旋转π3后与原图象重合,∴旋转后A1的对应点A2也在f(x)的图象上,同理A2的对应点A3也在图象上,以此类推,f(x)对应的图象可以为一个圆周上6等分的6个点,当f(1)=3时,即A1(1,3),此时A5(1,-3),不满足函数定义;当f(1)=33时,即A11,33,此时A61,-33,不满足函数定义;当f(1)=0时,即A6(1,0),此时A112,32,A512,-32,不满足函数定义;故选B.2.(2024·贵州贵阳·高一贵阳一中校考阶段练习)设D是含数3的有限实数集,f x 是定义在D上的函数,若f x 的图象绕原点逆时针旋转45°后与原图象重合,则在以下各项中,f3 的可能取值只能是()A.3B.3C.-3D.0【答案】A【解析】对于A项,若f3 =3,则构造如图1的函数图象,使得点A13,3,根据定义可得图象上不存在关于x轴对称的点,符合函数的定义,所以f3 的取值可能是 3.故A正确;对于B项,若f3 =3,构造如图2的函数图象,使得点A13,3,,根据定义可推得点A73,-3所以有f3 =-3,不符合函数的定义,故B错误;对于C项,若f3 =-3,构造如图3的函数图象,使得点A13,-3,根据定义可推得点A33,3,所以有f3 =3,不符合函数的定义,故C错误;对于D项,若f3 =0,构造如图4的函数图象,使得点A13,0,所以f3 =3.,根据定义可推得则点A23,3又A83,-3,所以f3 =-3,不符合函数的定义,故D错误.故选:A.3.(2024·上海浦东新·高三上海市实验学校校考开学考试)2021年第十届中国花卉博览会举办在即,其中,以“蝶恋花”为造型的世纪馆引人瞩目(如图①),而美妙的蝴蝶轮廓不仅带来生活中的赏心悦目,也展示了极致的数学美学世界.数学家曾借助三角函数得到了蝴蝶曲线的图像,探究如下:如图②,平面上有两定点O 、A ,两动点B 、Q ,且|OA |=|OB |=1,OA 绕点O 逆时针旋转到OB 所形成的角记为θ,设函数f θ =4⋅sign θ ⋅cos θ-sin5θ-π≤θ≤π ,其中sign x =1x >00x =0,-1x <0令ρ=f θ ,作OQ =ρOB ,随着θ的变化,就得到了点Q 的轨迹,其形似“蝴蝶”,则以下4幅图中,点Q 的轨迹(考虑蝴蝶的朝向)最有可能为()A.B.C. D.【答案】B【解析】先考虑与OA 共线的蝴蝶身方向,令θ=π,则f π =4⋅sign π ⋅cosπ-sin5π=-4,所以OQ =-4OB =4OA ,令θ=-π,则f -π =4⋅sign -π ⋅cos -π -sin -5π =4,所以OQ =4OB =-4OA,所以排除AC ,先考虑与OA垂直的蝴蝶身方向,令θ=π2,则f π2 =4⋅sign π2 ⋅cos π2-sin 5π2=-1,所以OQ =-OB ,所以排除D ,故选:B4.(2024·陕西榆林·高三校考阶段练习)已知函数f x =x 2-m 与函数g (x )=ln 1x-x ,x ∈12,2的图像上恰有两对关于x 轴对称的点,则实数m 的取值范围是()A.0,2-ln2B.0,-14+ln2 C.-14+ln2,2-ln2 D.-14+ln2,ln2 【答案】B【解析】函数f x =x 2-m 关于x 轴对称的函数为h (x )=-f (x )=-x 2+m ,根据题意h (x )和g (x )在12,2上有两个交点,即-x 2+m =ln 1x -x ,所以m =x 2-ln x -x ,令h (x )=x 2-ln x -x ,由h(x )=2x -1x -1=2x 2-x -1x,令h (x )=0,可得x =1或x =-12故当x ∈12,1时,h (x )<0,h (x )为减函数,当x ∈1,2 时,h (x )>0,h (x )为增函数,由h 12 =14-12-ln 12=-14+ln2<1,h (1)=1-0-1=0,h (2)=4-2-ln2=2-ln2>1,所以m ∈0,-14+ln2 时m =x 2-ln x -x 有两解,故选:B5.(2024·贵州六盘水·高三校考期末)已知函数f (x )=-x 3+ax ∈1e ,e(e 是自然对数的底数)与g (x )=3ln x 的图象上存在关于x 轴对称的点,则实数a 的取值范围是()A.0,1e 3+2B.0,e 3-4C.1,e 3-3D.e 3-4,+∞ ,【答案】C【解析】由已知,得到方程a -x 3=-3ln x ⇔-a =3ln x -x 3在1e ,e上有解.设f (x )=3ln x -x 3,求导得:f ′(x )=3x -3x 2=31-x 3 x,∵1e ≤x ≤e ,∴f ′(x )=0在x =1有唯一的极值点,∵f 1e =-3-1e3,f (e )=3-e 3,f (x )极大值=f (1)=-1,且知f (e )<f 1e,故方程-a =2ln x -x 2在上有解等价于3-e 3≤-a ≤-1.从而a 的取值范围为[1,e 3-3].故答案为C .6.(2024·贵州贵阳·高三贵阳一中阶段练习)若函数y =x 3-x 2-1-a ,((x ∈1e ,e,e 为自然对数的底数)与y =x 2-3ln x 的图象上存在两组关于x 轴对称的点,则实数a 的取值范围是A.0,1e3+2B.0,e 3-4C.1e3+2,e 3-4D.1e 3+2,+∞【答案】A【解析】根据题意得到x 3-x 2-1-a =-(x 2-3ln x )=-x 2+3ln x ,这个方程由两个不同的根,变量分离得到a=x 3-1-3ln x =g x ,gx =3x 3-1x ⇒x =1是导函数的根,函数在1e,1 ,g <0;(1,e ],g >0,故函数先减后增,且g x min =g 1 =0;g 1e =2+1e3<g e =e 3-4, 则使得两个函数y =a 和g (x )有两个交点只需,a ∈0,g 1e即0,1e3+2.故答案为A .7.(2024·湖北·校联考二模)已知函数f (x )=a -x 2(1e≤x ≤e ,e 为自然对数的底数)与g (x )=2ln x 的图象上存在两组关于x 轴对称的点,则实数a 的取值范围是()A.1,e 2-2B.1,1e 2+2C.1e 2+2,e 2-2D.1e 2+2,e 2-2【答案】B【解析】由题意知,a -x 2+2ln x =0在1e,e上有两个解,则a =x 2-2ln x ,令h x =x2-2ln x,x∈1e,e,则h x =2x-2x=2x2-1x,令h x <0⇒1e≤x<1,令h x >0⇒1<x≤e,得h x 在1e,1单调递减,1,e 上单调递增,又h1 =1,h e =e2-2,h1e=1e2+2,所以1<a≤1e2+2.故选:B.8.(2024·全国·高三专题练习)函数y=f x 定义在R上,已知y=f(x)的图象绕原点旋转90°后不变,则关于方程f x =x的根,下列说法正确的是()A.没有实根B.有且仅有一个实根C.有两个实根D.有两个以上的实根【答案】B【解析】∵函数y=f(x)定义在R上,y=f(x)的图象绕原点旋转90°后不变,∴f(x)与其反函数是同一个函数,∴f(x)关于y=x对称,原点(0,0)是它的对称点,当f(x)=x时,2y=x,y=x,解得x=y=0,是唯一解.∴方程f(x)=x有且仅有一个实数根.故选:B.9.(2024·河南·高三校联考阶段练习)已知函数f x =x2+m与函数g x =-ln1x -3x x∈12,2的图象上至少存在一对关于x轴对称的点,则实数m的取值范围是()A.54+ln2,2B.2-ln2,54+ln2C.54+ln2,2+ln2D.2-ln2,2【答案】D【解析】原问题等价于h x =f x +g x =x2+ln x-3x+m在12,2有零点,而h x =2x+1x-3=1x2x-1x-1,∴x∈12,1,h x <0,h x 单调递减,x∈1,2 ,h x >0,h x 单调递增,又h1 =m-2,h2 =ln2-2+m,h12=-ln2-54+m,由ln2>12可判断h2 >h12,因而h x 的值域为m-2,m+ln2-2,又h x 有零点,有m-2≤0≤m+ln2-2,所以m∈2-ln2,2.故选:D.10.(2024·青海海南·高三校联考期末)已知函数f x =ln-x与函数g x =e x-e-1x-a的图象上存在关于y轴对称的点,则实数a的取值范围为()A.0,eB.1,+∞C.e,+∞D.1e,+∞【答案】B【解析】由题意,f (x )=ln (-x )、h (x )=ln x 关于y 轴对称,∴h (x )与g (x )在(0,+∞)上有交点,则e x -(e -1)x -a =ln x 在(0,+∞)有解,令k (x )=e x -(e -1)x -a -ln x ,则k (x )=e x -1x -(e -1),k (x )=e x +1x2>0,∴k (x )在(0,+∞)上递增,而k (1)=e -1-e +1=0,∴在(0,1)上k (x )<0,k (x )递减;在(1,+∞)上k (x )>0,k (x )递增;∴k (x )≥k (1)=1-a ,故只需1-a ≤0即可,得a ≥1.故选:B11.(2024·全国·高三专题练习)已知函数f (x )=e x -12(x <0)与g (x )=ln (x +a )的图象上存在关于y 轴对称的点,则实数a 的取值范围是()A.-∞,1eB.0,eC.-1e,eD.-e ,1e【答案】B【解析】函数f x 与g x 的图象上存在关于y 轴对称的点,即f (-x )=g (x )有解,即函数y =f (-x )与函数y =g (x )的图象有交点,在同一坐标系内画出函数y =f (-x )=e -x -12与函数y =g (x )=ln (x +a )的图象.由图象,得ln a <12,即0<a <e ;故选B .12.(2024·湖北·高三校联考阶段练习)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石,布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔,简单的讲就是对于满足一定条件的连续函数f (x ),存在一个实数x 0,使得f x 0 =x 0,那么我们称该函数为“不动点”函数,x 0为函数的不动点.设函数f (x )=e x -1+e 1-x +x 2-x +a ,a ∈R .若f (x )在区间(0,3)上存在不动点,则a 的取值范围是()A.-e 2-e -2-3,-1B.-e 2-e -2,-1C.-e 2-e -2-7,-e -e -1D.-e 2-e -2-5,-e -e -1【答案】A【解析】由题意可得,f (x )=e x -1+e 1-x +x 2-x +a =x 在(0,3)上有解,即e x -1+e 1-x +x 2-2x +1=1-a 有解,令x -1=t ,t ∈(-1,2),则-a +1=e t +e -t +t 2,令函数g (t )=e t +e -t +t 2,g (t )=e t -e -t +2t ,当t ∈(0,2)时,g (t )>0,所以g (t )在(0,2)上单调递增,g (-t )=e -t +e t +-t 2=e t +e -t +t 2=g (t ),所以g (t )为偶函数,所以g (t )在(-1,0)上单调递减.g (t )min =g (0)=2,g (t )<g (2)=e 2+e -2+4,故-a +1∈2,e 2+e -2+4 ,a ∈-e 2-e -2-3,-1 ,故选:A .13.(2024·山东菏泽·统考一模)定义在实数集R 上的函数y =f x ,如果∃x 0∈R ,使得f x 0 =x 0,则称x 0为函数f x 的不动点.给定函数f x =cos x ,g x =sin x ,已知函数f x ,f g x ,g f x 在0,1 上均存在唯一不动点,分别记为x 1,x 2,x 3,则()A.x 3>x 1>x 2B.x 2>x 3>x 1C.x 2>x 1>x 3D.x 3>x 2>x 1【答案】C【解析】由已知可得,cos x 1=x 1,则cos x 1-x 1=0,且sin cos x 1 =sin x 1,所以sin cos x 1 -sin x 1=0.又cos sin x 2 =x 2,sin cos x 3 =x 3.令h x =x -sin x ,x ∈0,1 ,则h x =1-cos x >0恒成立,所以,h x 在0,1 上单调递增,所以h x >h 0 =0,所以x >sin x .所以,sin cos x 3 =x 3>sin x 3,即sin cos x 3 -sin x 3>0.令F x =sin cos x -sin x ,x ∈0,1 ,因为函数y =sin x 在0,1 上单调递增,y =cos x 在0,1 上单调递减,且0<cos x <1,根据复合函数的单调性可知,函数y =sin cos x 在0,1 上单调递减,所以F x 在0,1 上单调递减.又F x 1 =0,F x 3 >0=F x 1 ,所以x 3<x 1.因为y =cos x 在0,1 上单调递减,sin x 2<x 2,所以cos sin x 2 >cos x 2.又cos sin x 2 =x 2,所以x 2>cos x 2,即cos x 2-x 2<0.令G x =cos x -x ,x ∈0,1 ,则G x =-sin x -1<0恒成立,所以,G x 在0,1 上单调递减.又G x 1 =cos x 1-x 1=0,G x 2 =cos x 2-x 2<0=G x 1 ,所以x 2>x 1.综上可得,x 2>x 1>x 3.故选:C .14.(2024·河南开封·统考一模)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并且是构成一般不动点定理的基石.简单地讲就是对于满足一定条件的连续函数f x ,存在点x 0,使得f x 0 =x 0,那么我们称该函数为“不动点”函数.若函数f x =x ae x -ln x 为“不动点”函数,则实数a 的取值范围是()A.-∞,0 B.-∞,1eC.-∞,1D.-∞,e【答案】B【解析】由题意得若函数f x =x ae x -ln x 为不动点函数则满足f x 0 =x 0ae x 0-ln x 0 =x 0,即ae x=ln x 0+1,即a =ln x 0+1ex设g x =ln x +1e x ,g x =ln x +1 ⋅e x -e x ln x +1 e x 2=1x-ln x -1e x 设h x =1x -ln x -1,h x =-1x2-1x <0所以h x 在0,+∞ 单调递减,且h 1 =0x ∈0,1 ,h x >0,g x >0所以g x 在0,1 上单调递增,x ∈1,+∞ ,h x <0,g x <0,所以g x 在1,+∞ 上单调递减,所以g x max =ln1+1e1=1e 当x ∈0,1e ,ln x +1 <0,e x >0,则g x <0当x ∈1e,+∞ ,ln x +1 >0,e x >0,则g x >0所以g x 的图像为:要想a =ln x 0+1ex成立,则y =a 与g x 有交点,所以a ≤g x max =1e 故选:B15.(2024·全国·高三专题练习)对于函数f x ,若f x =x ,则称x 为f x 的“不动点”,若f f x =x ,则称x 为f x 的“稳定点”,记A =x f x =x ,B =x f f x =x ,则下列说法错误的是()A.对于函数f x =x ,有A =B 成立B.若f x 是二次函数,且A 是空集,则B 为空集C.对于函数f x =12 x,有A =B 成立D.对于函数f x =bx ,存在b ∈0,+∞ ,使得A =B 成立【答案】D【解析】对于A :函数f x =x ,A =x x =x =R =B ,故A 正确.对于B :若A 是空集,则f x >x 恒成立或f x <x 恒成立.若f x >x 恒成立,用f x 代替x 可得f f x >f x >x ,同理可得f f x <f x <x ,所以f f x =x 无解,即B 为空集,故B 正确.对于C :函数f x =12 x ,设方程12 x =x 的解为x 0,则12 x 0=x 0,A =x 0 ,f f x =x 即f 12 x=x ,因为函数f x =12x在R 上单调递减,且f x ∈0,+∞ ,所以函数f f x 在R 上单调递增,且f f x ∈0,1 .又因为f 12 x 0=f x 0 =12 x 0=x 0,所以x 0是方程f 12x=x 的唯一解,则B =x 0=A ,故C 正确.对于D :函数f x =b x,A =x b x =x =b ,-b ,B =x f f x =x =x f b x =x =x x ≠0 ,A ≠B ,故D 错误.故选:D16.(2024·全国·高三专题练习)对于函数f x ,若f x 0 =x 0,则称x 0为函数f x 的“不动点”;若f f x 0 =x 0,则称x 0为函数f x 的“稳定点”.如果函数f x =x 2+a a ∈R 的“稳定点”恰是它的“不动点”,那么实数a 的取值范围是()A.-∞,14B.-34,+∞ C.-34,14D.-34,14【答案】D【解析】因为函数的“不动点”一定是“稳定点”,而函数的“稳定点”恰是它的“不动点”,即不存在非“不动点”的“稳定点”,所以f x =x 有解,但方程组f x 1 =x 2f x 2 =x 1x 1≠x 2 无解,由f x =x ,得x 2-x +a =0有解,所以1-4a ≥0,解得a ≤14.由f x 1 =x 2,f x 2 =x 1, 得x 21+a =x 2,x 22+a =x 1,两式相减,得x 1-x 2 x 1+x 2 =x 2-x 1,因为x 1≠x 2,所以x 2=-x 1-1,消去x 2,得x 21+x 1+a +1=0,因为方程x 21+x 1+a +1=0无解或仅有两个相等的实根,所以1-4a +1 ≤0,解得a ≥-34,故a 的取值范围是-34,14.故选:D .17.(2024·全国·高三专题练习)若存在一个实数t ,使得F t =t 成立,则称t 为函数F x 的一个不动点.设函数g x =e x +1-e x -a (a ∈R ,e 为自然对数的底数),定义在R 上的连续函数f x 满足f -x +f x=x 2,且当x ≤0时,f 'x <x .若存在x 0∈x f x +12≥f 1-x +x ,且x 0为函数g x 的一个不动点,则实数a 的取值范围为()A.-∞,e2B.e 2,+∞ C.e2,eD.e2,+∞【答案】B【解析】依题意知f -x +f x =x 2,令h x =f x -x 22,x ∈R ,∴h x =-h -x ,∴h x 为奇函数,∵h x =f 'x -x ,且当x ≤0时,f x <x ,∴当x ≤0时,h x <0,h x 单调递减,∴h x 在R 上单调递减,由f x +12≥f 1-x +x ,得f x -x 22≥f 1-x -1-x 22,即h x ≥h 1-x ,∴x ≤1-x ,即x ≤12,∴x 0≤12,∵x 0为函数g x 的一个不动点,∴g x 0 =x 0,即e x-e x 0-a =0,∴a =e x 0-e x 0,即关于x 的方程a =e x -e x 在x ∈-∞,12上有解.令t x =e x -e x ,x ∈-∞,12,则t x =e x -e 12≤0,∴t x 在-∞,12上单调递减,∴t x min =t 12 =e2,要使关于x 的方程a =e x -e x 在x ∈-∞,12 上有解,则a ≥e 2,即实数a 的取值范围为e 2,+∞ .故选:B二、多选题18.(2024·安徽六安·高三六安一中校考期末)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹·布劳威尔,简单地讲就是对于满足一定条件的连续函数f(x),存在一个点x0,使得f x0=x0,那么我们称该函数为“不动点”函数,而称x0为该函数的一个不动点,依据不动点理论,下列说法正确的是()A.函数f(x)=sin x有3个不动点B.函数f(x)=ax2+bx+c(a≠0)至多有两个不动点C.若函数f(x)=ax2+bx+c(a≠0)没有不动点,则方程f(f(x))=x无实根D.设函数f(x)=e x+x-a(a∈R,e为自然对数的底数),若曲线y=sin x上存在点(x0,y0)使f(f(y0))=y0成立,则a的取值范围是1,e【答案】BCD【解析】对于A,令g(x)=sin x-x,x∈R,g (x)=cos x-1≤0,当且仅当cos x=1时取“=”,则g(x)在R上单调递减,而g(0)=0,即g(x)在R上只有一个零点,函数f(x)只有一个不动点,A不正确;对于B,因二次函数y=ax2+(b-1)x+c至多有两个零点,则函数f(x)至多有两个不动点,B正确;对于C,依题意,方程f(x)-x=0⇔ax2+(b-1)x+c=0无实数根,即Δ=(b-1)2-4ac<0,当a>0时,二次函数y=f(x)-x的图象开口向上,则f(x)-x>0恒成立,即∀x∈R,恒有f(x)>x,而f(x)∈R,因此有f[f(x)]>f(x)>x恒成立,即方程f(f(x))=x无实根,当a<0时,二次函数y=f(x)-x的图象开口向下,则f(x)-x<0恒成立,即∀x∈R,恒有f(x)<x,而f(x)∈R,因此有f[f(x)]<f(x)<x恒成立,即方程f(f(x))=x无实根,所以函数f(x)=ax2+bx+c(a≠0)没有不动点,则方程f(f(x))=x无实根,C正确;对于D,点(x0,y0)在曲线y=sin x上,则y0∈[-1,1],又f(f(y0))=y0,即有0≤y0≤1,当0≤y0≤1时,f(y0)=y0满足f(f(y0))=y0,显然函数f(x)=e x+x-a是定义域上的增函数,若f(y0)>y0,则f(f(y0))>f(y0)>y0与f(f(y0))=y0矛盾,若f(y0)<y0,则f(f(y0))<f(y0)<y0与f(f(y0))=y0矛盾,因此,当0≤y0≤1时,f(y0)=y0,即当0≤x≤1时,f(x)=x,对x∈[0,1],e x+x-a=x⇔a=e x-x2+x,令h(x)=e x-x2+x,x∈[0,1],h (x)=e x-2x+1≥2-2x≥0,而两个“=”不同时取得,即当x∈[0,1]时,h (x)>0,于是得h(x)在[0,1]上单调递增,有h(0)≤h(x)≤h(1),即1≤h(x)≤e,则1≤a≤e,D正确.故选:BCD19.(2024·全国·高三专题练习)将函数h x =e x x≥0的图像绕坐标原点逆时针方向旋转角θθ∈0,π,得到曲线C,若曲线C仍然是一个函数的图像,则θ的可能取值为()A.π4B.π2C.3π4D.π【答案】ABCD 【解析】如上图所示,L 1,L 2,L 3,L 4分别是h x =e x 绕着原点逆时针方向旋转π4,π2,3π4,π,所得到的的曲线,根据函数的定义可知,这四个曲线都符合函数图像的定义.故选:ABCD .20.(2024·新疆克孜勒苏·高三统考期末)在数学中,布劳威尔不动点定理可应用到有限维空间,是构成一般不动点定理的基石,它得名于荷兰数学家鲁伊兹·布劳威尔(L .E .J .Brouwer ),简单地讲,就是对于满足一定条件的连续函数f x ,存在一个点x 0,使得f x 0 =x 0,那么我们称该函数为“不动点”函数,下列函数是“不动点”函数的是()A.f x =x 2-x -3 B.f x =2x+xC.f x =x 12+2D.f x =log 2x -1【答案】ACD【解析】选项A ,若f x 0 =x 0,则x 20-2x 0-3=0,解得x 0=3或x 0=-1,故该函数是“不动点”函数;选项B ,若f x 0 =x 0,则2x=0,该方程无解,故该函数不是“不动点”函数;选项C ,若f x 0 =x 0,则x 0+2=x 0,得x 0 2-x 0-2=0,且x 0≥0,解得x 0=4,该函数是“不动点”函数;选项D ,若f x 0 =x 0,则log 2x 0 -1=x 0,即log 2x 0 =x 0+1,在同一坐标系中,作出y =log 2x 与y =x +1的函数图象,如图,由图可知,方程log 2x =x +1有实数根x 0,即存在x 0,使log 2x 0 -1=x 0,故该函数是“不动点”函数.故选:ACD .21.(2024·广东珠海·高三校考期末)布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家布鲁伊·布劳威尔,简单地讲就是对于满足一定条件的连续函数f x ,存在一个定点x 0,使得f x 0 =x 0,那么我们称该函数为“不动点”函数,而称x 0为该函数的不动点,则下列说法中正确的有()A.函数f x =ln x +1 是“不动点”函数B.函数f x =x 2-x -3的不动点为-1和3C.函数f x =e x +x 的导函数是“不动点”函数D.函数f x =e x +x 的导函数不是“不动点”函数【答案】ABD【解析】对于A ,由于f x =ln x +1 的定义域为-1,+∞ ,且f 0 =ln 0+1 =0,所以x =0是f x =ln x +1 的不动点,故f x =ln x +1 是“不动点”函数,A 正确,对于B ,令f x =x 2-x -3=x ,则x 2-2x -3=0,解得x =3或x =-1,故函数f x =x 2-x -3的不动点为-1和3,B 正确,对于C ,由于f x =e x +1,定义域为R ,令n x =e x +1-x ,则n x =e x -1,则当x >0,n (x )>0,n (x )单调递增,当x <0,n (x )<0,n (x )单调递减,所以n (x )≥n (0)=2>0,故n x =e x +1-x >0,故f x =e x +1=x 无实数根,因此f x =e x +1不是“不动点”函数,C 错误,D 正确,故选:ABD22.(2024·全国·高三专题练习)(多选)在数学中,布劳威尔不动点定理可应用到有限维空间,是构成一般不动点定理的基石,它得名于荷兰数学家鲁伊兹·布劳威尔(L .E .J .Brouwer ),简单地讲,就是对于满足一定条件的连续函数f x ,存在一个点x 0,使得f x 0 =x 0,那么我们称该函数为“不动点”函数,下列函数是“不动点”函数的是()A.f x =2x +xB.f x =x 2-x -3C.f x =1x 2+1 D.f x =log 2x -1【答案】BCD【解析】选项A ,若f x 0 =x 0,则2x 0=0,该方程无解,故该函数不是“不动点”函数;选项B ,若f x 0 =x 0,则x 20-2x 0-3=0,解得x 0=3或x 0=-1,故该函数是“不动点”函数;选项C ,若f x 0 =x 0,则1x 20+1=x 0,得x 20-3x 0+1=0,且x 0≥1,解得x 0=3+52,该函数是“不动点”函数;选项D ,若f x 0 =x 0,则log 2x 0 -1=x 0,即log 2x 0 =x 0+1,在同一坐标系中,作出y =log 2x 与y =x +1的函数图象,如图,由图可知,方程log 2x =x +1有实数根x 0,即存在x 0,使log 2x 0 -1=x 0,故该函数是“不动点”函数.故选:BCD 三、填空题23.(2024·全国·高三专题练习)设函数y =12x -1 +12x -2 +1.(1)该函数的最小值为;(2)将该函数的图象绕原点顺时针方向旋转角θ0≤θ≤π2得到曲线C .若对于每一个旋转角θ,曲线C 都是一个函数的图象,则θ的取值范围是.【答案】 20,π4 【解析】(1)先画出函数y =12x -1 +12x -2 +1的图象由图可知,该函数的最小值为2.(2)由图可知,当图象绕坐标原点顺时针方向旋转角大于等于π4时,曲线C 都不是一个函数的图象则θ的取值范围是:0,π4.故答案为:2;0,π4.24.(2024·浙江温州·统考一模)将函数y =12x -1 +12x -2 +1的图像绕原点顺时针方向旋转角θ0≤θ≤π2得到曲线C .若对于每一个旋转角θ,曲线C 都是一个函数的图像,则θ的取值范围是.【答案】0,π4【解析】29.(2024·云南·统考模拟预测)已知函数f x =16x 3-mx +3,g x =-5x -4ln 1x,若函数f x 与g x x ∈1e ,4的图象上至少存在一对关于x 轴对称的点,则实数m 的取值范围是.【答案】8ln2-12,-92【解析】函数f x 与g x x ∈1e ,4的图象上至少存在一对关于x 轴对称的点,等价于f x +g x 在1e ,4上有零点,令h x =f x +g x=12x 2-m -5x -4ln 1x =12x 2-m -5x +4ln x 则h x =x -5+4x =x -1 x -4 x,所以在1e ,1上,h x ≥0,h x 单调递增,在1,4 上,h x ≤0,h x 单调递减,则h x ≤h 1 ,又h 1 =-m -92,h 1e=12e2-m -5e -4,h 4 =8ln2-m -12,因h 4 -h 1e =8ln2-8+5e -12e 2<0,又h 4 <h 1e,则h x ≥h 4 ,所以h 4 =8ln2-m -12≤0①h 1 =-m -92≥0②解得8ln2-12≤m ≤-92.故答案为:8ln2-12,-9225.(2024·四川攀枝花·高一统考期末)已知函数f (x )=e x -2(x <0)与g (x )=ln (x +a )的图象上存在关于y 轴对称的点,则实数a 的取值范围是.【答案】-∞,1e 【解析】函数f (x )与g (x )图象上存在关于y 轴有对称的点,就是f (-x )=g (x )有解,也就是函数y =f (-x )与函数y =g (x )有交点,在同一坐标系内画函数y =f (-x )=e -x -2=1ex-2(x >0)与函数y =g (x )=ln (x +a )的图象:∴函数y =g (x )=ln (x +a )的图象是把由函数y =ln x 的图象向左平移且平移到过点(0,-1)后开始,两函数的图象没有有交点,把点(0,-1)代入y =ln (x +a )得,-1=ln a ,∴a =1e,∴a <1e,故答案为:-∞,1e .26.(2024·全国·高三专题练习)曲线y =ln x 绕坐标原点逆时针旋转90°后得到的曲线的方程为.【答案】y =e -x【解析】设曲线y=ln x上一点(a,b),绕坐标原点逆时针旋转90°后对应点的坐标为(x,y),则x=-by=a,即a=yb=-x,即-x=ln y,即y=e-x.故答案为:y=e-x.27.(2024·宁夏银川·高三校考阶段练习)在数学中,布劳威尔不动点定理是拓扑学(一个数学分支)里一个非常重要的定理,简单的讲就是对于满足一定条件的图象为连续不断的函数f x ,存在一个点x0,使得f x0= x0,那么我们称该函数为“不动点”函数,下列为“不动点”函数的有(填写序号)①f x =x+1②f x =1x-x,x>0③f x =x2-x+3④f x =log12x【答案】②④【解析】对于①,f x0=x0+1=x0,显然无解,对于②,f x0=1x0-x0=x0,x0>0,易得2x0=1x0⇒x0=22,符合题意,对于③,f x0=x20-x0+3=x0⇒x0-12+2=0,显然无实数解, 对于④,f x0=log12x0=x0,如下图所示,作出两函数y=log12x,y=x,显然两函数有交点,即存在一个点x0,使得f x0=x0,故答案为:②④.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析 如果方程有实数根,注意到两个根之积为-4<0,
可知两根必定一正一负,
因此在[2,4]上有且只有一个实数根,
设f(x)=x2+ax-4,则必有f(2)f(4)≤0,
所以2a(12+4a)≤0,即a∈[-3,0].
解析答案
返回
高考题型精练
1
2
3
4
5
6
7
8
9 10 11 12
2 1.方程|x2-2x|=a2+1(a>0)的解的个数是________.
数 b,使得关于 x 的方程 f(x)=b 有三个不同的根,则 m 的取值范围是
(3 ,+∞) ________. 解析 如图,当x≤m时,f(x)=|x|;
当x>m时,f(x)=x2-2mx+4m,
在(m,+∞)为增函数,若存在实数b,
使方程f(x)=b有三个不同的根,
则m2-2m· m+4m<|m|.∵m>0,∴m2-3m>0,解得m>3.
点评
解析
答案
变式训练2
已知f(x)=x2-2ax+2,当x∈[-1,+∞)时,f(x)≥a恒成立,
求a的取值范围.
解析答案
题型三 例3
方程与不等式的转化
关于x的二次方程x2+(m-1)x+1=0在区间[0,2]上有解,求实数m的
取值范围.
点评
解析答案
若关于x的方程x2+ax-4=0在区间[2,4]上有实数根,则实 [-3,0] 数a的取值范围是________. 变式训练3
点评
解析
答案
变式训练 1
|lg x|,x>0, 设定义域为 R 的函数 f(x)= 则关于 x 2 -x -2x,x≤0,
7 的函数 y=2f2(x)-3f(x)+1 的零点的个数为________.
解析 1 由 y=2f (x)-3f(x)+1=0 得 f(x)=2或 f(x)=1,
|1-a+b|=|f(-1)|≤2,
故|a+b|≤3,|a-b|≤3.
|a+b|,ab≥0, 由|a|+|b|= 得|a|+|b|≤3. |a-b|,ab<0,
当a=2,b=-1时,|a|+|b|=3,
且|x2+2x-1|在[-1,1]上的最大值为2.
即M(2,-1)=2.所以|a|+|b|的最大值为3.
专题2 不等式与线性规划
第 3 练 “三个二次”的转 化与应用
题型分析 高考展望
“二次函数、二次方程、二次不等式”是高中数学知识的基础,在高
考中虽然一般不直接考查,但它是解决很多数学问题的工具 .如函数
图象问题、函数与导数结合的问题、直线与圆锥曲线的综合问题
等.“三个二次”经常相互转化,相辅相成,是一个有机的整体.如果
解析
答案
1
2
3
4
5
[-3,1] 3.(2016· 江苏)函数 y= 3-2x-x2的定义域是________. 解析 要使原函数有意义,需且仅需3-2x-x2 ≥ 0. 解得-3 ≤ x ≤ 1.故函数定义域为[-3,1].
解析答案
1
2
3
4
5
|x|,x≤m, 4.(2016· 山东)已知函数 f(x)= 2 其中 m>0, 若存在实 x -2mx+4m,x>m,
lg xx>0, 函数 g(x)= 1 - x<0, x
又∵x1+x2=1-a,
x1+x2 1-a ∴ 2 = 2 ,0<a<3. 1-a ∴ 2 >-1.∵x1<x2,
∴x1离对称轴的距离小于x2离对称轴的距离.
又∵a>0,∴f(x1)<f(x2).
解析答案
1
2
3
4
5
6
7
8
9 )满足 f(x+1)=-f(x),且 x∈[ -1,1] 时,f(x)=1-x2.
解析答案
1
2
3
4
5
5.(2015· 浙江)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区 间[-1,1]上的最大值. (1)证明:当|a|≥2时,M(a,b)≥2;
解析答案
1
2
3
4
5
(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值. 解 由M(a,b)≤2得|1+a+b|=|f(1)|≤2,
解析
1
2
3
4
5
2-|x|,x≤2, 2.(2015· 天津改编)已知函数 f(x)= 函数 g(x)=b-f(2- 2 x-2 ,x>2,
x),其中 b∈R,若函数 y=f(x)-g(x)恰有 4 个零点,则 b 的取值范围是 7 , 2 4 ________.
解析 (数形结合法)
∵a>0,∴a2+1>1.
而y=|x2-2x|的图象如图,
∴y=|x2-2x|的图象与y=a2+1的图象总有两个交点.
解析答案
1
2
3
4
5
6
7
8
9 10 11 12
2.已知函数f(x)=ax2+2ax+4(0<a<3),若x1<x2,x1+x2=1-a,则f(x1) f(x1)<f(x2) 与f(x2)的大小关系为___________. 解析 f(x)的对称轴为直线x=-1,
解析答案
返回
高考必会题型
题型一
例 1
函数与方程的转化
已知 f(x)是定义在 R 上且周期为 3 的函数,当 x∈[0,3)时,f(x)= y=f(x)-a 在区间[ -3,4] 上有 10 个零点(互不相同), 则
1 2 x - 2 x + .若函数 2
实数 a
1 0 , 2 的取值范围是________.
能很好地掌握三者之间的转化及应用方法,会有利于解决上述有关问
题,提升运算能力.
栏目 索引
体验高考
高考必会题型 高考题型精练
体验高考
1
2
3
4
5
1.(2015· 陕西改编)对二次函数f(x)=ax2+bx+c(a为非零整数),四位同学 分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是 ________. ①-1是f(x)的零点; √ ②1是f(x)的极值点; ③3是f(x)的极值; ④点(2,8)在曲线y=f(x)上.
2
解析答案
题型二
函数与不等式的转化
例2
已知函数y=f(x)是定义在R上的增函数,函数y=f(x-1)的图象关于
点 (1,0) 对称 .若对任意的 x, y∈R,不等式 f(x2 - 6x+ 21) + f(y2 -8y) < 0 恒 (13,49) 成立,则当x>3时,x2+y2的取值范围是________.
相关文档
最新文档