第一章电路分析的基本定律
电路分析基础第一章 电路模型和电路定律
+
–
+
–
+
实际方向
实际方向
+
U >0
U<0
上页
下页
电压参考方向的两种表示方式
(1) 用正负极性表示
+
(2) 用双下标表示
U
A
UAB
B
UAB =UA- UB= -UBA
上页 下页
3. 关联参考方向 元件或支路的u,i 采用相同的参考方向称之为关联 采用相同的参考方向称之为 参考方向,即电流从电压的“+”极流入,从“-” 极流出该元件。反之,称为非关联参考方向。 极流出该元件
P6吸 = U 6 I 3 = (−3) × (−1) = 3W
上页 下页
注
对一完整的电路,发出的功率=吸收的功率
3. 电能(W ,w)
在电压、电流一致参考方向下,在t0到t的时间内 该部分电路吸收的能量为
w(t0 , t ) = ∫ p (τ ) dτ = ∫ u (τ )i (τ ) dτ
t0 t0
电源 Sourse
灯 Lamp
RS US 电路模型
R
Circuit Models 干电池 Battery
上 页 下 页
电路理论中研究的是 理想电路元件构成的电路(模型)。
电路模型,不仅能够反映实际电路及 其器件的基本物理规律,而且能够对 其进行数学描述。这就是电路理论把 电路模型作为分析研究对象的实质所 在。
干电池 Battery 电路理论中,“电路”与“网络”这两个术语可通用。“网络” 的含义较为广泛,可引申至非电情况。
例:手电筒电路
开关 灯泡
10BASE-T wall plate
电路分析基础第1章 电路的基本概念与定律
第1章电路的基本概念和定律 (1) (2)按选定的参考方向分析电路,求解电流。若计算结 果为正(i>0),说明电流的参考方向与实际方向相同;若计 算结果为负值(i<0),说明电流的参考方向与实际方向相反, 如图1-3 (3)若没有设定参考方向,则电流的正、负没有意义。 在电路中,元件的电流参考方向可用箭头表示,如图14所示;在文字叙述时可用电流符号加双字母构成的下标表 示,如iab,它表示电流由a流向b,并有iab=-ib方向与实际方向的关系
16
第1章电路的基本概念和定律
图1-4 电流参考方向的表示
17
第1章电路的基本概念和定律 【例1-1】 图1-5中,1、2、3三个方框表示三个元件或 电路,箭头表示电流的参考方向,i1、i2、i3表示电路中的电 流。说明当i1=i2=i3=1A和当i1=i2=i3=-1A时各电路电流 的真实方向。 解 (1)当电流大小均为1A时,由于电流大于零,故其真 实方向与参考方向相同。即i2真实方向由c流向d;i3真实方 向由f流向e;而i1由于没有参考方向而无法确定其实际方向。
6
第1章电路的基本概念和定律 为了便于对电路进行分析与计算,对复杂的实际问题进 行研究,在理论分析中常常把实际电路中的各种设备和电路 元(器)件用能够表征电路主要电磁性质的理想化的电路元件 来表示。例如,电阻具有消耗电能的特性,我们就可以将具 有这一特性的电灯、电炉等用电器都用电阻来代替,虽然这 种替代会带来一定的误差,但在一定条件下是可以忽略的。 在实际工程问题中,若需要更精密地做研究时,可再考虑由
20
第1章电路的基本概念和定律
1.2.2 1. 一般情况下,导体中的电荷无规则的自由运动不能形成
在匀强电场中,正电荷Q在电场力的作用下,由a点移
第一章电路的基本概念和基本定律
开关
实际电路
电源
电路模型 3
(1)电源:供给电能的设备。
把其它形式的能量转换为电能。
(2)负载: 消耗电能的设备。
把电能转换为其它形式的能量
(3)中间环节(又称传输控制环节):
各种控制电器和导线,起传输、分 配、控制电能的作用。
4
1.1.2 电路中的物理量 1、电流
定义 电荷有规律的定向运动即形成电流
(2) 列电路方程:
Uab UR E
UR Uab E
IR
UR R
Uab E R
15Leabharlann R aIR E UR
b U
IR
U
R
E
(3) 数值计算
U 3V
IR
3-2 1
1A
(实际方向与假设方向一致)
U 1V
IR
1 2 1
1A
(实际方向与假设方向相反)
16
(共7 个)
31
(一) 克氏电流定律(KCL)
对任何节点,在任一瞬间,流入节点的电流等于由节点
流出的电流, 即: I 入= I 出 或者说,在任一瞬 间,一个节点上电流的代数和为 0。 即: I =0
例
I2
I1 I3 I2 I4
I1
I3
或:
I4
I1 I3 I2 I4 0
(二) 克氏电压定律(KVL)
对电路中的任一回路,沿任意循行方向转一周,其 电位升等于电位降。或各电压的代数和为 0。
I1
a
I2
即: U 0
R1
R2
例如: 回路 #3
电路的基本原理(第一章)
参考方向 实际方向
若 P = UI 0
a +
b U_ R
“吸收功率” I (负载)
若 P = UIa 0
I
+ + “发出功率”
-
U_ b
(电源)
(2)当U和I参考方向选择不一致的前提下
若 P = UI 0
a +
b U_ R
“吸收功率” I (负载)
若 P = UI 0
I
+
-
+
U_
“发出功率” (电源)
中间环节:连接电源和负载的部分,其传输和分 配电能的作用。例如:输电线路
举例:(电子电路,即信号电路)
放 大 器
电源 (信号源) 中间环节
负载
电路的作用之二:传递和处理信号。
1.2 电路模型
I
电 池
灯 泡
+ E
_
+
RU
_
电源
负载
理想电路元件:在一定条件下,突出其主要电磁性能, 忽略次要因素,将实际电路元件理想化
对任何节点,在任一瞬间,流入节点的电流等于 由节点流出的电流。或者说,在任一瞬间,一个节
点上电流的代数和为 0。 即: I =0
例
I2
I1 I3 I2 I4
I1
I3
或:
I4
I I I I 0
1
3
2
4
克氏电流定律的依据:电流的连续性
克氏电流定律的扩展
电流定律还可以扩展到电路的任意封闭面。
例 I1 A
I
a
+
RO
+
U
E_
-
b
I=0
第一章(二) 电路的基本定律
第一章 电路的三大定律一、欧姆定律欧姆定律是电路分析中的重要定律之一,主要用于进行简单电路的分析,它说明了流过线性电阻的电流与该电阻两端电压之间的关系,反映了电阻元件的特性。
遵循欧姆定律的电路叫线性电路,不遵循欧姆定律的电路叫非线性电路。
1、部分电路的欧姆定律定律: 在一段不含电源的电路中,流过导体的电流与这段导体两端的电压成正比,与这段导体的电阻成反比。
其数学表示为:RUI =(1-1) 式中 I ——导体中的电流,单位)(A ;U ——导体两端的电压,单位)(V ; R ——导体的电阻,单位)(Ω。
电阻是构成电路最基本的元件之一。
由欧姆定律可知,当电压U 一定时,电阻的阻值R 愈大,则电流愈小,因此,电阻R 具有阻碍电流通过的物理性质。
例1:已知某灯泡的额定电压为V 220,灯丝的电阻为Ω2000,求通过灯丝的电流为多少?解: 本题中已知电压和电阻,直接应用欧姆定律求得:A R U I 11.02000220===例2:已知某电炉接在电压为V 220的电源上,正常工作时通过电炉丝的电流为A 5.0,求该电炉丝的电阻值为多少?解: 本题中已知电压和电流,将欧姆定律稍加变换求得:Ω===4405.0220I U R欧姆定律的几种表现形式:电压和电流是具有方向的物理量,同时,对某一个特定的电路,它又是相互关联的物理量。
因此,选取不同的电压、电流参考方向,欧姆定律的表现形式便可能不同。
1) 在图1.1 a.d 中,电压参考方向与电流参考方向一致,其公式表示为: RI U = (1-2)2) 在图1.1 b.c 中,电压参考方向与电流参考方向不一致,其公式表示为:RI U -= (1-3)3) 无论电压、电流为关联参考方向还是非关联参考方向,电阻元件的功率为:RU R I P RR22== (1-4)上式表明,电阻元件吸收的功率恒为正值,而与电压、电流的参考方向无关。
因此,电阻元件又称为耗能元件。
例3:应用欧姆定律求图1.1所示电路中的电阻R图1.1 电路中的电阻解:在图1.1.a 中,电压和电流参考方向一致,根据公式RI U =得: Ω===326I U R 在图1.1.b 中,电压和电流参考方向不一致,根据公式RI U -=得: Ω=--=-=326I U R(a ) (b) (c) (d)在图1.1.c 中,电压和电流参考方向不一致,根据公式RI U -=得: Ω=--=-=326I U R 在图1.1.d 中,电压和电流参考方向一致,根据公式RI U =得: Ω=--==326I U R 结论:在运用公式解题时,首先要列出正确的计算公式,然后再把电压或电流自身的正、负取值代入计算公式进行求解。
电路基本分析 主编石生 第1章 电路分析的基本概念及定律
Chapter 1 电阻、电容、 1-3 电阻、电容、电感元件及其特性
一、电阻元件 1.定义:由u-i 平面的一条曲线确定的二端元件在任一时刻 的电压电流关系,此二端元件称为二端电阻元件。 表为: f(u,i)=0 此曲线称为伏安特性曲线。
Chapter 1
2.分类:
时变 线性电阻 时不变 电阻元件 非线性电阻 时变 时不变
u
e
u
e
u
(b) u=e
e
(a)
(b)
(c)
电压和电动势的参考方向
(c) u=-e
Chapter 1
四、电功率与电能 1.电功率:单位时间电路消耗的能量。表为 1. 直流时
P = W t
功率随时间变化时,则有 即
dw p (t ) = dt
∆w dw p (t ) = lim = ∆t → 0 ∆ t dt
Chapter 1
三、电压电流的关联参考方向 电压电流的参考方向关系共4种:
a
a
a
a
(a)关联参考方向
u
i
u i
u
i
u
(b)关联参考方向
i
(c)非关联参考方向
b (d)
b (a)
b (b)
b (c)
(d)非关联参考方向
分两类:(1)一致方向称为关联参考方向; (2)不一致方向称为非关联参考方向。
Chapter 1
将dw=udq,且dq=idt 代入得: 单位换算:
p=ui
3
单位:瓦特(W)
1MW = 10 kW,
3
1kW = 10 W,
1W = 10 mW
3
Chapter 1
电路分析重点内容 (1)
第一章电路分析的基本概念和定理(主要知识点)1.电路理论主要研究电路的基本规律和分析方法,包括电路分析和电路综合二个内容电路分析:指在给定电路结构和元件参数的条件下,求解电路在特定激励下的响应电路综合:在给定电路技术指标的情况下,设计出电路并确定元件参数。
2.实际电路的基本功能概括为两种:(1)实现电能的产生,传输,分配,和转换,如电力系统(2)实现电信号的处理,如语音信号,图像信号和控制信号等。
3.实际电路通常由电源,负载和中间环节三部分组成。
4.关联参考方向:指电压和电流的参考方向一致。
即电流的参考方向是从电压的“+”端流入,“-”端流出。
5.元件的功率:当电压电流取关联参考方向时,P(t)=U(t)×I(t),当P>0,元件吸收功率(或消耗功率),反之,P<0,元件发出功率(或产生功率)6.对一个完整的电路来说,任一时刻电路中各元件吸收的功率总和应等于发出的功率总和,或者说总功率的代数和为零,即必须遵守功率守恒定律。
7.电阻元件:任一时刻,如果一个二端元件电压U与电流I的关系可以用U-I平面上的唯一一条曲线确定,则称该元件为电阻。
电容元件:任一时刻,如果一个二端元件电荷Q与电压U的关系可以用U-Q平面上的一条曲线确定,则称该二端元件为电容元件。
电感元件:任一时刻,如果一个二端元件磁通链(磁链)与电流的关系可以用i-φ平面上的一条曲线确定,则称二端该元件为电感元件。
8.理想电压源:其端电压与流过的电流无关,不受外电路影响。
电压源可以开路(电流I=0),理想电压源不允许短路。
9.理想电流源:其电流与端电压无关,不×受外电路影响。
电流源可以短路(电流U=0),理想电流源不允许开路。
10.受控电源:受控电源是一种非独立电源,受控源不是激励。
11.电路分析遵循两类约束:元件约束和拓扑约束元件约束:由元件的特性,即元件的电压,电流关系形成的约束。
如欧姆定律拓扑约束:由元件在电路中的连接关系形成的约束,由基尔霍夫电流定律和电压定律体现。
(大学物理电路分析基础)第1章电路分析的基本概念和定律
当电容并联时,总电容 等于各电容之和,总电 流等于各电容电流之和。
电感的并联
当电感并联时,总电感 为各电感倒数之和,总 电压等于各电感电压之
和。
05
非线性电阻电路的分析简介
非线性电阻元件的特点
伏安特性曲线
非线性电阻元件的伏安特性曲线不是一条直线,而是随着电压的 变化而变化。
电流与电压不成正比
非线性电阻元件的电流与电压不成正比,即不满足欧姆定律。
大学物理电路分析基础 第1 章 电路分析的基本概念和定
律
目录
• 电路分析的基本概念 • 电路分析的几个重要定律 • 线性电阻电路的分析方法 • 含电容和电感的电路分析 • 非线性电阻电路的分析简介
01
电路分析的基本概念
电路的定义与组成
总结词
电路是由若干个元件按照一定的方式连接起来,用于实现电能或信号传输的闭 合回路。
动态特性
非线性电阻元件的动态特性是指其阻值随时间、温度等因素的变化 而变化。
非线性电阻电路的分析方法
解析法
通过建立数学模型,利用数学工具求解非线性电 阻电路的电压、电流等物理量。
实验法
通过实验测量非线性电阻电路的电压、电流等物 理量,并进行分析。
仿真法
利用电路仿真软件对非线性电阻电路进行模拟, 得到电路的电压、电流等物理量。
电流源
电流源是一种理想电源,能够保持输出电流恒定,不受输出电压变 化的影响。
等效变换
对于线性电阻电路,电压源和电流源可以通过适当的等效变换进行相 互转换。等效变换是指两种电路在端口处具有相同的电压和电流。
支路电流法与节点电压法
支路电流法
支路电流法是一种通过设定支路电流变量,然后根据基尔霍夫定律建立方程组求解的方法。该方法适 用于支路数较少、节点数较多的电路。
电路分析刘健版第一章课件
例
3A 1A 2A
3
I
U1
3V
图示电路, 求U 和 I。
U
2V
解: 3+1-2+I=0,I= -2(A)
U1=3I= -6(V) U+U1+3-2=0,U=5(V)
KCL、KVL小结
(1) KCL是对支路电流的线性约束,KVL是对支路电压 的线性约束。 (2) KCL、KVL与组成支路的元件性质及参数无关。
分(d)
拍(P)
飞(f)
十 (da )
艾(E)
皮(p)
百(h)
泽(Z)
能量 w
功率 p
焦耳J
纳 纳(n)
10-9
10-6
千(k)
103
106
尧(Y)
1024
——
瓦特W
微 (μ ) 兆 (M)
——
各物理量的关系
i dq dt
u
d dt
p
dw dt
1.2.1 电流及参考方向 1、电流
A、定义 i
(3) 回路(loop):由支路组成的闭合路径。 (4) 网孔(mesh):对平面电路,每个网眼即为网孔。网孔是回路, 但回路不一定是网孔。
例题1-2
例1-2
b
I1
I2 R3
支路:ab、bc、ca… (共6条) 结点:a、 b、c、d (共4个) 回路:abd、abcd … (共7 个) 网孔:abd、bcd … (共3 个)
A、概念
在分析计算电路时, 对电压任意假定的方向。
B、表示方法
a 正负号
双下标 箭标
+
第1章 电路的基本概念与基本定律
1第1章电路的基本概念与基本定律1.11.1电路和电路模型电路和电路模型1.21.2电路中的基本物理量电路中的基本物理量 1.3 1.3 电阻电阻电阻、、电感电感、、电容元件 1.4 1.4 电压源和电流源电压源和电流源 1.5 1.5 基尔霍夫定律基尔霍夫定律2实际电路是实际电路是为实现某种应用目的由若干电器设备或器件按一定方式用导线连接而成的电流通路成的电流通路。
实现电能的传输和转换 电力电路或强电电路实现信号的传递和处理 电子电路或弱电电路1.1 电路和电路模型一、电路的定义3负载电源电源((或信号源或信号源):):):提供电能提供电能提供电能((或信号源或信号源))的部分的部分。
负载负载::吸收或转换电能的部分吸收或转换电能的部分。
中间环节中间环节::连接和控制它们的部分连接和控制它们的部分。
电路的组成中间环节4电路在工作时电路在工作时,,对电源来说对电源来说,,通常处于下列三种方式之一种方式之一::负载负载、、空载和短路。
负载与电源接通负载与电源接通,,负载中有电流通过有电流通过,,负载电流的大小与负载电阻有关与负载电阻有关。
负载都是并联负载都是并联。
因此当负,负载电阻减小负载电阻减小,,负,即功率增大即功率增大。
一般所说的负载的大小一般所说的负载的大小,,指的是负载电流或功率的大小的是负载电流或功率的大小,,而不是指负载电阻的大小不是指负载电阻的大小。
负载工作方式:5空载开路这时电源两端的外电阻等于零,电源输出的电流仅由电源内阻限制限制,,此电流称为短路电流此电流称为短路电流。
6为了保证电器设备和器件为了保证电器设备和器件((包括电线包括电线、、电缆电缆))可以安全、可靠和经济地工作可靠和经济地工作,,每种电器设备每种电器设备、、器件在设计时都对其规定了工作时允许的最大电流对其规定了工作时允许的最大电流、、最高电压和最大功率等参数值等参数值,,这些数值统称为额定值这些数值统称为额定值。
电工技术第一章 电路的基本概念和基本定律习题解答
第一章 电路的基本概念和基本定律本章是学习电工技术的理论基础,介绍了电路的基本概念和基本定律:主要包括电压、电流的参考方向、电路元件、电路模型、基尔霍夫定律和欧姆定律、功率和电位的计算等。
主要内容: 1.电路的基本概念(1)电路:电流流通的路径,是为了某种需要由电工设备或电路元件按一定方式组合而成的系统。
(2)电路的组成:电源、中间环节、负载。
(3)电路的作用:①电能的传输及转换;②信号的传递及处理。
2.电路元件及电路模型(1)电路元件:分为独立电源和受控电源两类。
①无源元件:电阻、电感、电容元件。
②有源元件:分为独立电源和受控电源两类。
(2)电路模型:由理想电路元件所组成反映实际电路主要特性的电路。
它是对实际电路电磁性质的科学抽象和概括。
采用电路模型来分析电路,不仅使计算过程大为简化,而且能更清晰地反映该电路的物理本质。
(3)电源模型的等效变换①电压源及电阻串联的电路在一定条件下可以转化为电流源及电阻并联的电路,两种电源之间的等效变换条件为:0R I U S S =或0R U I SS =②当两种电源互相变换之后,除电源本身之外的其它外电路,其电压和电流均保持及变换前完全相同,功率也保持不变。
3.电路的基本物理量、电流和电压的参考方向以及参考电位 (1)电路的基本物理量包括:电流、电压、电位以及电功率等。
(2)电流和电压的参考方向:为了进行电路分析和计算,引入参考方向的概念。
电流和电压的参考方向是人为任意规定的电流、电压的正方向。
当按参考方向来分析电路时,得出的电流、电压值可能为正,也可能为负。
正值表示所设电流、电压的参考方向及实际方向一致,负值则表示两者相反。
当一个元件或一段电路上的电流、电压参考方向一致时,称它们为关联参考方向。
一般来说,参考方向的假设完全可以是任意的。
但应注意:一个电路一旦假设了参考方向,在电路的整个分析过程中就不允许再作改动。
(3)参考电位:人为规定的电路种的零电位点。
电路分析-第1章 电路的基本概念和基本定律
Uad=φa—φd=10—(—3)=13V
Ubd=Uba+Uad=—2+13=11V
以上用两种思路计算所得结果完全相同,由此可 (1) 两点之间的电压等于这两点之间路径上的
(2) 测Uab和Ubd的电压表应按图(b)所示跨接在 待测电压的两端,其极性已标注在图上。
§1-3 电功率与电能
一 、电功率 1. 定义 图中表示电路中的一部分 a 、 b 段,图中采 用了关联参考方向,设在 dt 时间内,由 a 点转移 到b点的正电荷量为dq,ab间的电压为u,在转移 过程中dq失去的能量为 d udq 因此,ab段电路所消耗的功率为
(a)开路状态;
(b)短路状态
§1-5电压源和电流源
例1.5 某电压源的开路电压 为30V,当外接电阻R后, 其端电压为25V,此时流经 的电流为5A,求R及电压源 内阻RS。 解: 用实际电压源模型表征该 电压源,可得电路如图所示。 即: 设电流及电压的参考方向如图 中所示,根据欧姆定律可得:
+ 30 V - RS R I + U -
U=U -R I S S
(a)
(b)
内阻
电阻Rs表示实际 电源的能量损耗
§1-5电压源和电流源
电路的两种特殊状态 开路状态。如图(a)所示。此时不接负载,电 流为零,端电压等于开路电压。可用开路电压 和内阻两个参数来表征。
+ US - RS - U=UOC + + US - RS ISC = UOC RS
§1-5电压源和电流源
U R I
根据
S S
U R I
25 5 5
U U R I
30 25 1 5
U S U 可得:R S I
§1-5电压源和电流源
电路第1章电路的基本定律
图1.15(b)
3、短路
图1.16(c)
短路电流:
IS
E R0
电源端电压: U 0
负载消耗功率:P 0
短路时,由于电源内阻R0很小,故短
路电流很大,电源所产生功率全部消
电耗源在短内路阻是上一。种非常严重的事故,应该
在电路中设置短路保护装置。
例1-4 。试
在图1.16所示电路中,已知E=100V,
例如,图示复杂电路各支路电流关系 可写成: I1 I2 I3
或
I1 I2 I3 0
基尔霍夫定律不仅适用于电路中的任一节点,也可 推广至任一 封闭面如图1.19。
节点a: Ica Ia Iab
节点b: 节点c:
Iab Ibc Ib
Ibc Ica Ic
图1.19 KCL推广形式
图1.18 复 杂电路
1、基尔霍夫电流定律(KC L)任一瞬间流入某个节点的电流之和等于流出该节点的
电流之和。其表示式为
Ii I0
也可写成
Ii I0 Ii (I0 ) 0
I 0
也可表述成,任一瞬间流入某个节点的电流代 数和为0。若流入节点的电流为正,那么流出节 点的电流就取负。
图1.14 线性电容元件
1.3 电气设备的额定值及电路的 工作状态
• 1.3.1 电气设备的额定值 • 1.3.2 电路的3种工作状态
1.3.1 电气设备的额定值
基本概念:
• 额定电流 I N :为使电气设备工作温度不超过其最高允许温度,对电气设 备长期运行时的最大容许电流设定了一个限制值,该限制值便是电气设备 的额定电流。
• 信号的处理.如电话机、电视机、收音机等。将 声音或图像信号转换成电信号经各种处理后,送 到负载,负载再将电信号转换成声音或图像信号 。
4-第一章 电路的基本概念及基本定律分析
第一章 电路的基本概念及基本定律第一节 电路的概念、组成和作用一、电路的概念电路是电流的通路,是为了某种需要而由一些电工设备或元件按照一定方式联接而成的闭合回路。
二、电路的组成电路由电源、负载和中间环节三个基本部分组成的(一)电源电源是供应电能的设备。
它把其他形式的能量转化为电能。
(二)负载负载,是对取用电能设备的统称。
(三)中间环节中间环节是指联接电源和负载的部分.三、电路的作用(一)电路能够实现电能的传输、分配和转换。
(二)电路能够实现信号的传递和处理。
四、电路的激励与响应激励(输入):作用在电路上的电源或信号源的电压或电流.响应(输出):由于激励在电路各部分产生的电压和电流。
第二节 电路的基本物理量一、电流(一)电流的概念把电荷有规则的定向运动现象,称为“电流”。
(二)电路的大小和种类所谓电流强度就是单位时间内通过导体横截面的电量。
电流分直流电流和交流电流两种。
1.直流电流大小和方向都不随时间的变化而变化的电流,称为直流电流.2.交流电流大小和方向都随时间的变化而变化的电流,称为“交流电流.对于直流,其电流强度(I )等于单位时间(t )内通过导体横截面的电量(Q )。
I=tQ (1-1) (三)电流的单位在国际单位制中,电流(I)----安(A );电量(Q )----库仑(C );时间(t )----秒(s )(四)电流的方向习惯上规定正电荷运动的方向为电流的方向。
二、电压(一)电压的概念定义:a 、b 两点间的电压U ab 在数值上等于把单位正电荷从a 点移到b 点,电场力所作的功。
(二)电压的大小和单位用公式表示为(1-2) 上式说明:(1)a 、b 两点间的电压U ab 在数值上等于电场力把单位正电荷从a点移到b 点所作的功,也就是单位正电荷从a 点到b 点所失去的能量。
(2)电路中任意两点间的电压等于这两点的电位之差,所以电压又叫做“电位差”。
(三)电压的方向电压方向规定为高电位点指向低电位点。
第一章 电路的基本概念与基本定律
元件
想想 练练
电压、电位、 电动势有何异 同?
电功率大的用电器, 电功也一定大,这种说 法正确吗?为什么?
思考 回答
在电路分析中,引入参考方向的目的是什么? 应用参考方向时,你能说明“正、负”、“加、 减” 及“相同、相反”这几对词的不同之处吗? 电路分析中引入参考方向的目的是为分析和计算电路提 供方便和依据。应用参考方向时,“正、负”是指在参考方 向下,电压和电流的数值前面的正、负号,若参考方向下一 个电流为“-2A”,说明它的实际方向与参考方向相反,参考 方向下一个电压为“+20V”,说明其实际方向与参考方向一 致;“加、减”指参考方向下列写电路方程式时,各项前面 的正、负符号;“相同、相反”则是指电压、电流是否为关 联参考方向, “相同”是指电压、电流参考方向关联,“相 反”指的是电压、电流参考方向非关联。
1.2.2 电压、电位和电动势
a
电动势E 只存 在于电源内部 ,其大小反映 了电源力作功 的本领。其方 向规定由电源 “负极”指向 电源“正极” 。
S
I
R0
+
U
+ _
b E
RL
–
电压U是反映电 场力作功本领的 物理量,是产生 电流的根本原因 。电压的正方向 规定由“高”电 位指向“低”电 位。
电位V是相对于参考点的电压。参考点的 电位:Vb=0;a点电位: Va=E-IR0=IR
电压和电位的关系:Uab=Va-Vb
电动势和电位一样属于一种势能,它能够将低 电位的正电荷推向高电位,如同水路中的水泵能够 把低处的水抽到高处的作用一样。电动势在电路分 析中也是一个有方向的物理量,其方向规定由电源 负极指向电源正极,即电位升高的方向。
电压、电位和电动势的区别
电工技术--第一章电路的基本概念与基本定律
第一章电路的基本概念与基本定律知识要点一、内容提要直流电路的基本概念和基本定理是分析和计算电路的基础和基本方法。
这些基础和方法虽然在直流电路中提出,但原则上也适用于正弦交流电路及其它各种线性电路。
并且,这些方法也是以后分析电子线路的基础。
本章重点讲述电路中几个基本物理量、参考方向、电路的工作状态及基本定律。
二、基本要求1.了解电路模型及理想电路元件的意义;2.能正确应用电路的基本定侓;3.正确理解电压、电流正方向的意义;4.了解电路的有载工作、开路与短路状态,并能理解电功率和额定值的意义;5.熟练掌握分析与计算简单直流电路和电路中各点电位的方法。
三、学习指导本章重点讲述了三个问题:电压、电流和参考方向。
同时,对克希荷夫定律和电路中电位的概念及计算进行了详细的分析推导和计算。
虽然这些问题都比较简单,但由于它们贯穿电工学课程始终,所以读者应通过较多的例题和习题逐步建立并加深这些概念,使之达到概念清晰,运用自如灵活,能解决实际问题的目的。
1.1 电路的组成及作用在学习本课程中,首先应掌握电路的两大作用(即强电电路电的传输、分配和转换;弱电电路中是否准确地传递和处理信息),及其三大组成部分(即电源、中间环节、负载)。
要特别注意信号源与一般电源的概念与区别:信号源输出的电压与电流的变化规律取决于所加的信息;电源输出的功率和电流决定于负载的大小。
1.2 电路模型由理想电路元件组成的电路;其中理想电路元件包括电阻元件、电感元件、电容元件和电源元件等。
电源的电压或电流称为激励;激励在各部分产生的电压和电流称为响应。
1.3 电路的几个基本物理量若要正确地分析电路,必须先弄清楚电路中的几个基本物理量。
因为电流、电压和电动势这些物理量已在物理课中讲过,但是本章主要讨论它们的参考方向(正方向)和参考极性。
在本章学习的过程中应注意两点:第一,在分析任何一个电路中列关系式时,必须首先在电路图上标明电压、电动势和电流的参考方向和参考极性;第二,考虑电压和电流本身给定的正负,即要注意两套正负符号。
第一章 电路的基本概念和基本定律
不能充分利用设备的能力
降低设备的使用寿命甚至损坏设备
2、电源开路
A
C
I
E
U0
R
R0
B
D
特征
I=0 U=U0=E P=0
3、电源短路
IS
R1
E
U
R2
R0
特 U=0
I=IS=E/ R0
征 P = 0 PE = P = R0IS2
电流过大,将烧毁电源
R0
R1
I
E
U R2
有 I 视电路而定
源
电
路
U=0
短接
P<0,L把磁场能转换为电能,放出功率。
储存的磁场能
WL=
1 2
Li 2
L为储能元件
3、电容元件 i
uC
库仑(C)
q C= u
q 法拉(F)
(伏)V
q
若C为大于零的常数,
则称为线性电容。
电容器的电容与极板的尺寸 及其间介质的介电常数有关。C
=
S d
S —极板面积(m2) d —板间距离 (m) —介电常数(F/m)
2) 传递与处理信号
发电机
升压 输电线 降压
变压器
变压器
电灯 电动机
话筒
扬声器 放
大
器
1 电源
2 中间环节
3 负载 信号源
负载
其它形式的能量电能
话筒把声音(信息)电信号
连接电源和负载,传输、分配电能 扬声器把电信号 声音(信
电能其它形式的能量
息)
电路的组成
发电机
升压 输电线 降压
变压器
变压器
一定值,而其两端电压U 是任意的, 由负载电阻和 IS确定,这样的电源称为 理想电流源或恒流源。
电路分析基础第一章
I =-2A
在求解电路中的电流时,应该首先选定电流的 参考方向(正方向),然后根据假设的电流方向进 行分析求解。 若求得I > 0,则电流的实际方向与参考方向一致 若求得I < 0,则电流的实际方向与参考方向相反
二、受控源的类型
电压控制电压源(VCVS) 电压控制电流源(VCCS) 电流控制电压源(CCVS); 电流控制电流源(CCCS)
三、受控源的符号
+ u1 + + u1 -
u1
-
+
u1
-
电压控制电压源
电压控制电流源
i1
i1
-
i1
gi1
电流控制电压源
电流控制电流源
1-4 基尔霍夫定律
在电路理论中,电路元件的电压、电流受自身伏安关系的 约束。当各元件联接成一个电路以后,电路中的电压、电流除 了必须满足元件自身的约束方程以外,还必须同时满足电路结 构的约束。这种约束体现为基尔霍夫的两个定律,即基尔霍夫 电流定律(Kirchhoff’s Current Law),简写为KCL)和基尔 霍夫电压定理(Kirchhoff’s Voltage Law),简写为KVL。
1-2 电路的基本变量
1-2-1 电流
一、电流的定义
电荷的定向移动形成电流,电流的大小 用电流强度来描述,符号为I或i。电流强度 定义为电位时间流过导体横截面的电量,即
dq i dt
如果电流的大小方向随时间变化,称为交流电 流;若电流的大小方向不随时间变化,称为直流电 流。在这种情况下,通过导体横截面的电量Q与时间 t呈正比,即
i iS u / RS
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I=0
二、 基尔霍夫电压定律(KVL定律)
1.定律 在任一时刻,沿电路中的任一回路的绕行方向 (顺时针或逆时针),回路中所有支路电压的 代数和恒等于零。
对回路abca: US1 = I1 R1 +I3 R3 或 I1 R1 +I3 R3 –US1 = 0
对回路 abda:I2 R2+I3 R3=US2 或 I2 R2+I3 R3 –US2 = 0
? 计算:当一个元件上的电流、电压满足关联参考方
向时,功率计算为
p ? ui
而当一个元件上的电流、电压为非关联参考
方向时,功率计算为
p ? ?ui
? 判别:元件上的功率有吸收和发出两种可能,用功
率计算值的正负相区别。当 p>0时表示元件
吸收功率,起负载的作用;当 p<0时表示元
件发出功率,起电源的作用。
US1–
+ US2
–
B +
1 UBE
R1
R2
I2
_
E
结论:
(1)电位值是相对的,参考点选取的不同,电路中 各点的电位也将随之改变;
(2) 电路中两点间的电压值是固定的,不会因参考 点的不同而变, 即与零电位参考点的选取无关。
? 借助电位的概念可以简化电路作图
c 20? a 5?
c 20? d
E1
? 4A 6?
有
I
源
+
电
U
路
–
2. 短路处的电流 I 视电路情况而定。
1. 5 基尔霍夫定律
支路:电路中的每一个分支。 一条支路流过一个电流,称为支路电流。
结点:三条或三条以上支路的联接点。 回路:由支路组成的闭合路径。 网孔:内部不含支路的回路。
例1: d
a
I1
I2
IG
G
I3 b I4 I
+U –
支路:ab、bc、ca、… (共6条)
为直流电动势,用大写字母 E表示。大小和方向随 时间变化的电动势称为交变电动势,用小写字母 e
表示。 ? 电动势的实际方向与电压实际方向相反,规定在
电源内部由低电位指向高电位。电动势的参考方 向也可用箭头、双下标或“ +、-”极性表示。
四、电功率
? 定义:电场力在单位时间内所做的功称为电功率,
简称功率。
内阻 消耗 功率
负载大小的概念 : 负载增加指负载取用的
电流和功率增加 (电压一定 )。
电气设备的额定值
额定值: 电气设备在正常运行时的规定使用值 1. 额定值反映电气设备的使用安全性;
2. 额定值表示电气设备的使用能力。 例:灯泡:UN = 220V ,PN = 60W
电阻: RN = 100? ,PN =1 W 电气设备的三种运行状态
u
(2)用正、负极性表示:
+u
(3)用双下标表示:
A
uAB
B
3、关联参考方向
元件或支路的 u,i 采用相同的参考方向称为关联 参考方向。反之,称为非关联参考方向。
i
+
u
关联参考方向
i
--
u
+
非关联参考方向
例1
i
+
AuB
-
电压、电流参考方向如图中所标, 问:对A、B两部分电路电压、电 流参考方向是否关联?
1 ? A=10-6A
规定正电荷的 运动方向为电流的实际 方向
?参考方向
任意假定一个电流的方向即为 电流的参考方向。
注意:电流 (代数量)
大小 方向(正负)
电流的参考方向与实际方向的关系:
i 参考方向
i 参考方向
A
实际方向 B A
实际方向 B
i>0
i< 0
电流参考方向的两种表示:
? 用箭头表示:箭头的指向为电流的参考方向 。
1. 开路处的电流等于零;
有I
源
+
电
U
路
–
I =0
2. 开路处的电压 U 视电路情况而定。
三、短路工作状态
电源外部端子被短接
特征
??U ? 0
? ?
I
?
?
I SC
?
US RO
?? PS ? PO ? RO I SC 2 , P ? 0
电路中某处短路时的特征 : 1. 短路处的电压等于零; U =0
1.3 欧姆定律
U、I 参考方向相同时, U、I 参考方向相反时,
+
U=IR +
U = – IR
U IR
U IR
–
–
表达式中有两套正负号:
① 式前的正负号由 U、I 参考方向的关系确定;
② U、I 值本身的正负则说明实际方向与参考 方向之间的关系。
通常取 U、I 参考方向相同。
例:应用欧姆定律对下图电路列出式子,并求电阻 R。
I
++
U–S U
Ro
–
电池
S 开关
导线
R 灯泡
特点: 1、每一个电路模型都可以用
确切的数学表达式描述。 2、同一部件,不同的外部工
作条件,电路模型不同。
电池是电源元件,
灯泡主要具有消耗电 能的性质,是电阻元件, 其参数为电阻 R;
筒体用来连接电池和 灯泡,其电阻忽略不计, 认为是无电阻的理想导体。
开关用来控制电路的 通断。
额定工作状态: I = IN ,P = PN (经济合理安全可靠 )
过载(超载): I > IN ,P > PN (设备易损坏 )
欠载(轻载): I < IN ,P < PN (不经济)
二、开路工作状态
开关 断开 特征:
I=0
U =UOC= Us 电源端电压 ( 开路电压 )
P = 0 负载功率 电路中某处断开时的特征 :
+
UI 6V 2A
R
– (a)
+
U 6V
I R
–2A
–
(b)
解:对图(a)有, U = IR 所以 : R ? U ? 6 ? 3Ω I2
对图(b)有, U = – IR 所以 : R ? ? U ? ? 6 ? 3Ω I ?2
线性电阻的概念:
遵循欧姆定律的电阻称为线性电阻,它表示该 段电路电压与电流的比值为常数。
降压 变压器
电灯 电动机 电炉
...
(2)实现信号的传递与处理(信号电路)
信号处理:
信号源:
放大、调谐、检波等
提供信息 话筒
放 扬声器
大
器
直流电源 :
负载
提供能源
直流电源
电源或信号源的电压或电流称为激励,它推动电路 工作;由激励所产生的电压和电流称为响应。
二、电路模型
为了便于用数学方法分析电路 ,一般要将实际电路模
1.1 电路和电路模型
一. 电路的功能和组成 1、组成 电源: 提供
电能的装置
发电机
升压 输电线 变压器
负载: 取用 电能的装置
降压 变压器
电灯 电动机 电炉
...
中间环节: 传递、分 配和控制电能的作用
2. 电路的分类与作用 (1) 实现电能的传输、分配与转换 (电力电路)
发电机
升压 变压器
输电线
或 I1+I2–I3= 0
? 实质: 电流连续性的体现。
基尔霍夫电流定律 (KCL)反映了电路中任一 结点处各支路电流间相互制约的关系。
2.推广
电流定律可以推广应用于包围部分电路的任一 假设的闭合面。
例:
IA
A
广义结点
I =? I
IB IC B
C
5?
6V+_ 1?
2?
+_12V 1? 5?
IA + IB + IC = 0
型化,用足以反映其电磁性质的理想电路元件或其组合 来模拟实际电路中的器件,从而构成与实际电路相对应 的电路模型。
理想电路元件主要有 手电筒的电路模型
电阻元件、电感元件、电
I
容元件和电源元件等。 例:手电筒
++
U–S U
手电筒由电池、灯泡、 Ro
开关和筒体组成。
–
电池
S 开关
导线
R 灯泡
手电筒的电路模型
即: ? U = 0 基尔霍夫电压定律 (KVL) 反映了电路中任一 回路中各段电压间相互制约的关系。
注意:
1.列方程前 标注回路循行方向;
2.应用 ? U = 0列方程时,项前符号的确定:
如果规定电位降取正号,则电位升就取负号。
3. 开口电压可按回路处理
对回路1:
+
-US2 +UBE + I2R2 =0
? 单位 V (伏[特])、kV、mV、? V
在复杂电路或交变电路中,两点间电压的 实际方向往往不易判别,给实际电路问题的分 析、计算带来困难。
? 电压的参考方向
参考方向
+
u
–
+ 实际方向 –
假设高电位指向低电 位的方向。
参考方向
+
u
–
– 实际方向 +
u >0
u <0
电压参考方向的三种表示方式: (1) 用箭头表示:
–12V
I R1 A RP B
R2
–? 12V
零电位参考点为 +12V 电源的“ –”端与–12V 电源的“ +”端的联接处。
(2) VA = – IR1 +12 VB = IR2 – 12