空气动力学基础要点

合集下载

空气动力学前六章知识要点

空气动力学前六章知识要点

空气动力学基础前六章总结第一章 空气动力学一些引述1、 空气动力学涉及到的物理量的定义及相应的单位①压强:是作用在单位面积上的正压力,该力是由于气体分子在单位时间内对面发生冲击(或穿过该面)而发生的动量变化,具有点属性。

0,lim →⎪⎭⎫ ⎝⎛=dA dA dF p 单位:Pa, kPa, MPa 一个标准大气压:101kPa②密度:定义为单位体积内的质量,具有点属性。

0,lim →=dv dvdm ρ 单位:kg/㎡ 空气密度:1.225Kg/㎡③温度:反应平均分子动能,在高速空气动力学中有重要作用。

单位:℃ ④流速:当一个非常小的流体微元通过空间某任意一点的速度。

单位:m/s ⑤剪切应力:dy dv μτ= μ:黏性系数 ⑥动压:212q v ρ∞∞∞= 2、 空气动力及力矩的定义、来源及计算方法空气动力及力矩的来源只有两个:①物体表面的压力分布 ②物体表面的剪应力分布。

气动力的描述有两种坐标系:风轴系(L,D )和体轴系(A,N)。

力矩与所选的点有关系,抬头为正,低头为负。

cos sin L N A αα=- , s i n c o s D N A αα=+3、 气动力系数的定义及其作用气动力系数是比空气动力及力矩更基本且反映本质的无量纲系数,在三维中的力系数与二维中有差别,如:升力系数S q L C L ∞=(3D ),cq L c l ∞='(2D )L L C q S ∞≡,D D C q S ∞≡,N N C q S ∞≡,A A C q S ∞≡,M M C q Sl ∞≡,p p p C q ∞∞-≡,f C q τ∞≡ 二维:S=C(1)=C4、 压力中心的定义压力中心,作用翼剖面上的空气动力,可简化为作用于弦上某参考点的升力L,阻力D 或法向力N ,轴向力A 及绕该点的力矩M 。

如果绕参考点的力矩为零,则该点称为压力中心,显然压力中心就是总空气动力的作用点,气动力矩为0。

空气动力学基础理论及应用

空气动力学基础理论及应用

空气动力学基础理论及应用空气动力学是研究空气对运动物体产生影响的学科,它是航空、航天、汽车、建筑等领域的重要基础理论。

空气动力学研究的对象是运动物体在空气中受力和运动状态等问题,这些问题涉及空气流动、气体压力、动量、能量等物理量。

本文将从空气动力学的基础理论、空气动力学在航空领域的应用以及未来的发展趋势三个方面进行探讨。

一、空气动力学基础理论1.1 空气的基本物理性质空气是由各种气体混合在一起形成的,其中最主要的成分是氮气、氧气和二氧化碳。

空气的物理性质包括密度、粘度、温度等等。

1.2 空气流动的基本形式空气流动包括定常流动和非定常流动,定常流动是指空气流动状态不随时间变化或是很缓慢地随时间变化,如静止空气中飞机飞行时的气流;非定常流动是指空气流动状态随时间变化而变化,如气象条件不断变化导致的气流。

1.3 空气动力学力学模型空气动力学力学模型分为二维模型和三维模型,二维模型是指将空气流动看作平面二维的,可以用二维平面的流体力学模型来描述;三维模型则是指考虑空气流动在三个维度上的变化,需要用三维流体力学模型来描述。

1.4 推导气体静压力公式静压力是指空气在物体表面上所产生的压力,它可以用气体动力学的基本理论,即流体静力学的连续性方程、动量守恒方程和能量守恒方程来推导出。

例如,对于一个静止的物体而言,其表面上的静压力可以表示为:P = ρgh其中,P表示静压力,ρ表示空气密度,g表示重力加速度,h表示物体表面上某一点与大气之间的距离。

二、空气动力学在航空领域的应用2.1 飞机的气动设计飞机的气动设计是指根据空气动力学的基本理论,对飞机的机翼形状、机身结构等进行设计,以便能够有效地减小空气阻力,并且能够更好地实现飞机的稳定飞行。

气动设计一般包括很多方面的内容,如翼型选取、机身布局设计、飞行控制系统设计等等。

2.2 飞行稳定性和控制飞行稳定性和控制是指在飞机受到外来干扰时,如何通过飞机自身的特性来保持飞行的稳定性和控制性,以便能够平稳地飞行。

空气动力学基础知识什么是空气动力学

空气动力学基础知识什么是空气动力学

空气动力学基础知识什么是空气动力学空气动力学是力学的一个分支,研究飞行器或其他物体在同空气或其他气体作相对运动情况下的受力特性、气体的流动规律和伴随发生的物理化学变化。

以下是由店铺整理关于空气动力学基础知识的内容,希望大家喜欢!空气动力学的分类通常所说的空气动力学研究内容是飞机,导弹等飞行器在各种飞行条件下流场中气体的速度、温度、压力和密度等参量的变化规律,飞行器所受的升力和阻力等空气动力及其变化规律,气体介质或气体与飞行器之间所发生的物理化学变化以及传热传质规律等。

从这个意义上讲,空气动力学可有两种分类法:1)根据流体运动的速度范围或飞行器的飞行速度,空气动力学可分为低速空气动力学和高速空气动力学。

通常大致以400千米/小时(这一数值接近于地面1atm,288.15K下0.3Ma的值)这一速度作为划分的界线。

在低速空气动力学中,气体介质可视为不可压缩的,对应的流动称为不可压缩流动。

大于这个速度的流动,须考虑气体的压缩性影响和气体热力学特性的变化。

这种对应于高速空气动力学的流动称为可压缩流动。

2)根据流动中是否必须考虑气体介质的粘性,空气动力学又可分为理想空气动力学(或理想气体动力学)和粘性空气动力学。

除了上述分类以外,空气动力学中还有一些边缘性的分支学科。

例如稀薄气体动力学、高温气体动力学等。

空气动力学的研究内容在低速空气动力学中,介质密度变化很小,可视为常数,使用的基本理论是无粘二维和三维的位势流、翼型理论、升力线理论、升力面理论和低速边界层理论等;对于亚声速流动,无粘位势流动服从非线性椭圆型偏微分方程,研究这类流动的主要理论和近似方法有小扰动线化方法,普朗特-格劳厄脱法则、卡门-钱学森公式和速度图法,在粘性流动方面有可压缩边界层理论;对于超声速流动,无粘流动所服从的方程是非线性双曲型偏微分方程。

在超声速流动中,基本的研究内容是压缩波、膨胀波、激波、普朗特-迈耶尔流动(压缩波与膨胀波的基本关系模型及其函数模型)、锥型流,等等。

空气动力学的基础理论

空气动力学的基础理论

空气动力学的基础理论空气动力学是研究物体在空气中运动的科学,它对飞行器设计与性能优化具有重要意义。

本文将从空气动力学的基础理论入手,介绍气动力、流体力学以及相关的实验方法。

一、气动力学基本概念气动力学是研究运动物体与周围气流相互作用的学科,其中重要的概念包括气动力和气动力系数。

气动力是指空气对物体施加的力。

根据牛顿第二定律,物体所受的气动力与其质量和加速度成正比,与气流速度和密度有关。

气动力可分为升力和阻力两个方向,其中升力垂直于气流方向,使飞行器产生升力;阻力平行于气流方向,使飞行器受到阻碍。

气动力系数是将气动力与流体的速度、密度、物体特性等无量纲化的比值,是空气动力学研究中常用的参考指标。

常见的气动力系数有升力系数、阻力系数、升阻比等。

二、流体力学基本原理在空气中运动的物体受到空气流体的阻力和升力的影响,因此了解流体的基本原理对于理解空气动力学至关重要。

1. 理想流体模型理想流体模型假设流体是无黏性、无旋转、不可压缩的。

在此假设下,流体的运动可以通过欧拉方程或伯努利方程来描述。

欧拉方程描述了流体中的速度和压力分布。

通过欧拉方程,可以研究不可压缩理想流体的运动状态。

伯努利方程描述了流体在不同区域的速度、压力和高度之间的关系。

伯努利方程表明,当流体速度增大时,压力将下降,反之亦然。

2. 边界层理论在实际气流中,流体的黏性导致了边界层的存在。

边界层是沿着固体表面形成的流速逐渐变化的一层流体。

边界层理论通过分析边界层的速度分布和压力分布,研究物体与流体之间的摩擦力和压力分布。

边界层厚度和摩擦阻力是设计飞行器时需要考虑的重要因素之一。

三、空气动力学实验方法实验方法在研究空气动力学中起着关键作用,通过实验可以验证理论模型,并为飞行器的设计和改进提供依据。

1. 风洞实验风洞实验是模拟真实空气流动场景的方法之一。

通过在风洞中放置模型,可以获得模型在不同风速下的升力和阻力等数据,从而分析空气动力学性能。

2. 数值模拟数值模拟是使用计算机模拟和解析相关方程来研究空气动力学。

空气动力学基础要点[整理版]

空气动力学基础要点[整理版]

空气动力学基础(教学重点)绪论(1学时)第一章,,,,,,,,,,流体静力学(5学时)1、掌握连续介质假设的概念、意义和条件;2、了解掌握流体的基本物理属性,尤其是易流性、粘性、压缩性等属性的物理本质和数学表达;3、掌握流体力学中作用力的分类和表达、静止流体中压强的定义及其特性;4、初步掌握静止流体微团的力学分析方法,重点掌握流体平衡微分方程的表达及其物理意义;5、在流体平衡微分方程的应用方面,掌握重力场静止液体中的压强分布规律,重点掌握标准大气问题。

第二章,,,,,流体运动学与动力学基础(12学时)1、了解两种描述流场的方法的区别与特点,重点掌握欧拉法下加速度的表达和意义2、掌握流体微团的几种变形和运动及其数学表达,掌握流体微团的运动分解与刚体运动的异同;3、了解系统分析方法与控制体分析方法的区别与联系,了解雷诺输运方程的表达及意义;4、空气动力学基本方程是本章重点,积分形式方程要掌握质量方程、动量方程和能量方程的表达和意义,并会用它们解决实际工程问题;微分形式方程要重点掌握连续方程、欧拉方程和能量方程的表达和意义;掌握微元控制体分析方法;掌握伯努利方程的表达、意义、条件和应用;5、重点需要掌握的概念:流线、流量、散度、旋度、位函数、流函数、环量与涡的表达、意义及其相互之间的关系;第3章,,,,,,,,,,低速平面位流(6学时)3.1,,,,,,,,,,平面不可压位流的基本方程及其边界条件二维流动不可压无旋流动的基本方程是位函数满足的拉普拉斯方程不穿透条件(可滑移条件)拉普拉斯方程的叠加原理,速度也可叠加,压强不可叠加流函数也满足拉普拉斯方程3.2,,,,,,,,,,几种简单的二维位流各基本解的速度、位函数、流函数直匀流源,汇偶极子,偶极子的形成,轴线,方向点涡点涡的环量3.3,,,,,,,,,,一些简单的迭加举例直匀流加点源压强系数直匀流加偶极子达朗培尔疑题直匀流加偶极子加点涡儒可夫斯基升力定理了解二维对称物体绕流的数值解粘性流体动力学基础(4学时)流体粘性及其对流动的影响(流体的粘滞性,粘性流体运动特点)粘性流体的应力状态(理想流体与粘性流体作用面的受力特点,粘性流体的应力状态)广义牛顿内摩擦定理粘性流体动力学方程N-S方程粘性流体运动的基本性质(了解Re实验)边界层理论及其近似(6学时)边界层近似及其特征平面不可压缩流体层流边界层方程平板层流边界层相似解边界层动量积分方程(应用例子)边界层的分离现象第6,,,,,章,,,,,,,,,,高速可压流(12)6.1,,,,,,,,,,热力学基础知识(掌握)热力学的物系;平衡过程和可逆过程热力学一定律:内能和焓热力学第二定律,熵气体的状态方程完全气体等熵过程关系式6.2,,,,,,,,,,音速和马赫数(重点)现象微弱扰动传播过程与传播速度——音速音速公式马赫数6.3,,,,,,,,,,高速一维定常流(重点)一维定常绝热流的能量方程一维定常绝热流参数间的基本关系式总温T0,,总焓,临界点,,,,,,速度系数使用驻点参考量的参数关系式使用临界参考量的参数关系式等熵管流的速度与截面积关系,拉瓦尔管喷管的设计压强比,,,,,,M(λ)及流量的计算6.4,,,,,,,,,,微弱扰动的传播区,马赫锥(重点)马赫角6.5 ,,,,,,,,,,膨胀波(介绍)壁面外折dδ外折δ诸参数的变化趋势超音速流绕外钝角膨胀的计算6·6,,,,,,,,,,激波正激波(重点)正激波的形成,计算弱激波可以看作等熵波斜激波(介绍)波前波后气流参数的关系激波图线及应用压强决定激波圆锥激波(介绍)收敛—扩张喷管在非设计状态下的工作(介绍)。

空气动力学知识点总结

空气动力学知识点总结

空气动力学知识点总结一、概述空气动力学是涉及空气对物体运动产生的力学现象的学科,是研究空气的流动和物体在空气中运动时所产生的力及其相互作用的学科。

空气动力学在现代工程设计、航空航天、交通运输、建筑设计、气象学等领域都有广泛的应用。

二、基本概念1.空气动力学基础学科:空气动力学是理论力学、气体力学、热力学、流体力学等多个领域交叉的学科。

2.气动力学:指空气运动对物体所产生的力学效应和物体所受的力学反作用。

3.机翼:是创造升力的部分,承受飞行器全部重量的部分。

4.升力:是指在流体中飞行的物体所受的上升力。

5.阻力:是指在流体中移动的物体所受的阻碍力。

三、空气动力学的应用1.飞行器在飞行器方面的应用,空气动力学的重要性相当突出。

要使飞机的设计、制造、试验及飞行达到令人安全放心的水平,必须依靠空气动力学的理论和方法。

2.轮船船的航行速度直接受到水流的阻力,而气体在飞行器上产生的阻力同样发生在船身上,空气动力学理论可用于轮船的设计和制造。

3.高速列车在铁路运输领域,高速列车的瞬息万变的空气动力学作用是影响其行驶稳定性和运输安全的重要因素。

4.建筑设计在建筑领域中,从设计建筑物的表面阻力与表面空气动力学特征,到楼宇的空气流体力学设计以及可持续建筑的改进,空气动力学在建筑设计上的作用愈发重要。

5.运动器材设计在运动器材设计方面,空气动力学可用于设计高尔夫球头、拉力器、船桨、滑翔机等不同型号和用途的器材。

四、空气动力学知识点总结1.空气动力学的研究对象,包括流体的流动状态、物体的运动状态以及流体和物体之间的相互作用。

2.气体的运动状态与流速、压力、温度和密度等相关。

3.常用的空气动力学运动模型,包括旋转圆盘模型、圆柱模型、球模型、机翼模型等。

4.空气动力学方程主要有牛顿运动定律、伯努利定理、连续性方程、动量守恒方程、热力学第一定律等。

5.空气动力学实验包含风洞实验,飞行器模型的地面试验,飞行器在空中的试飞试验等。

空气动力学基础知识

空气动力学基础知识

空气动力学基础知识目录一、空气动力学概述 (2)1. 空气动力学简介 (3)2. 发展历史及现状 (4)3. 应用领域与重要性 (5)二、空气动力学基本原理 (6)1. 空气的力学性质 (7)1.1 气体状态方程 (8)1.2 空气密度与温度压力关系 (8)1.3 空气粘性 (9)2. 牛顿运动定律在空气动力学中的应用 (10)2.1 力的作用与动量变化 (11)2.2 牛顿第二定律在空气动力学中的体现 (13)3. 空气动力学基本定理 (14)3.1 伯努利定理 (15)3.2 柯西牛顿定理 (16)3.3 连续介质假设与流动连续性定理 (17)三、空气动力学基础概念 (18)1. 流体力学基础概念 (19)1.1 流速与流向 (20)1.2 压力与压强 (21)1.3 流管与流量 (22)2. 空气动力学特有概念 (23)2.1 空气动力系数 (25)2.2 升力与阻力 (26)2.3 空气动力效应与稳定性问题 (27)四、空气动力学分类及研究内容 (28)1. 空气动力学分类概述 (30)2. 理论空气动力学研究内容 (31)一、空气动力学概述空气动力学是研究流体(特别是气体)与物体相互作用的力学分支,主要探讨流体流动过程中的能量转换、压力分布和流动特性。

空气动力学在许多领域都有广泛的应用,如航空航天、汽车、建筑、运动器材等。

空气动力学的研究对象主要是不可压缩流体,即流体的密度在运动过程中保持不变。

根据流体运动的特点和流场特性,空气动力学可分为理想流体(无粘、无旋、不可压缩)和实际流体(有粘性、有旋性、可压缩)两类。

在实际应用中,理想流体问题较为简单,但现实生活中的流体大多具有粘性和旋转性,因此实际流体问题更为复杂。

空气动力学的基本原理包括牛顿定律、质量守恒定律、动量守恒定律、能量守恒定律等。

这些原理构成了空气动力学分析的基础框架,通过建立数学模型和求解方程,可以预测和解释流体流动的现象和特性。

空气动力学的理论基础及实用方法

空气动力学的理论基础及实用方法

空气动力学的理论基础及实用方法空气动力学是研究气体在流体力学背景下的运动和力学行为的学科。

他是现代航空、天空科学中发展最快、知识量最大的分支之一,伴随着人类勇攀高空和深空的追求,空气动力学的发展也变得格外重要。

本文将从空气动力学的理论基础和实用方法两方面进行探讨。

一、理论基础1. Reynold数海洋的浪花漫过了沙滩,空气在空中飘荡。

然而,对于运动的物体而言,无论它们是飞机或者是汽车,来自气流的阻力就会阻碍物体前进的速度。

对于能够调整它们的运动方式,减少阻力的机制而言,Reynold数就是理论基础中的重要参数。

Reynold数可以看作是“速度除以粘性系数的比值”,用来判断气体是否可以被视为一层不可压缩的物质。

具体而言,如果Reynold数小于2100,那么气流被视为层流;如果Reynold数大于4000,那么气流被视为湍流;如果在2100和4000之间,则转换区域并不稳定,需要使用难度更大的数学公式进行分析。

2. 化学反应在空气动力学中,化学反应同样是理论基础的重要组成部分。

一些创新的技术,如喷水等操作,都是基于控制化学反应过程来实现的。

例如,在涡流喷气发动机(turbofan)中,高压气流经过燃料喷嘴时,与燃料相互作用,产生高能量燃烧反应,从而提供大量的推力。

但是,要了解从燃料到推力的过程涉及到大量的化学和物理学知识,这些学科相互依存,彼此交错。

因此,在工程领域中实际应用这些基础理论时,必须进行准确和细致的计算和论证。

3. Navier-Stokes方程Navier-Stokes方程是描述气动力学现象的一组完整的方程式。

它是描述空气运动、热、质量传递和化学反应的主要背景,几乎出现在每个研究气动力学问题的工程师和科学家的笔记本上。

Navier-Stokes方程的组合与运动物体的物理性质相互交互,为研究气动力学现象打下了基础。

二、实用方法1. 试验试验是空气动力学研究的中心,通过对实际的研究对象进行测量和分析,来验证和完善理论预测。

空气动力学基础知识

空气动力学基础知识

3、中间层


中间层是在平流层之上,其顶端离地面的高度 大约为80~100公里。 中间层的特点: 1)随着高度的增加,空气的温度先升后降 中间层的气温,当高度增加到45公里时,由35 公里时的-56.5℃增加到40℃左右,再随着高度的 增加,到80公里时,温度降低到-65.5℃以下。 2)有大量臭氧存在。 3)有水平方向的风,且风速相当大。 4)空气质量很少,只占整个大气的三千分之一。 这层空气不利于飞机飞行,只有探空气球飞行。

四、国际标准大气(表)

飞机的飞行性能与大气状态(温度、气压、 密度等)密切相关,而大气状态是瞬息多变的, 为了便于比较飞机的飞行性能,就必须以一定 的大气状态作为衡量标准。国际航空协会组织 参照中纬度地区(北纬35º ~60º 之间)大气状态的 平均值,订出了大气的状态数值,作为计算和 试验飞行器的统一标准,以便于对飞机、发动 机和其他飞行器的试飞结果和计算结果加以比 较。处于这种状态下的大气,我们叫国际标准 大气。

2、空气的压缩性
一定质量的空气,当压力或温度改变时, 引起空气密度变化的性质,叫做空气的压缩性。 影响空气压缩性的主要因素: 1)气流的流动速度(v)。气流的流动速 度越大,空气密度的变化显著增大(或密度减 小的越多),空气易压缩(或空气的压缩性增 大)。 2) 空气的温度(t)。空气的温度越高, 空气的密度变化越小(或密度减小的越少) , 空气不易压缩(或空气的压缩性减小)。



4)有云、雨、雾、雪等天气现象 地球表面的海洋、江河中的水由于太阳照射而不断蒸 发,使大气中常常聚集着各种形态的水蒸气,在空中形成 了“积雨云”,随着季节的变化,就会形成云、雨、雾、 雪、雹和打雷、闪电等天气现象。 5)空气的组成成分一定 对流层中几乎包含了全部大气质量的3/4,主要是由于 地球引力作用的结果。 由于对流层具有以上特点,会给飞机的飞行带来很大 影响。在高空飞行时,气温低,容易引起飞机结冰,温度 变化还会引起飞机各金属部件收缩,改变机件间隙,甚至 影响飞机正常工作。上下对流空气会使飞机颠簸,既不便 于操纵,又使飞机受力增大。

空气动力学知识点

空气动力学知识点

空气动力学知识点空气动力学是研究空气在机体表面运动时产生的力学效应的学科。

空气动力学知识点涵盖了各种与空气流动有关的原理和现象,对于飞机、汽车、火箭等交通工具的设计和性能优化发挥着至关重要的作用。

下面将介绍一些关键的空气动力学知识点。

1. 升力和阻力在空气动力学中,升力和阻力是两个最基本的概念。

升力是指机翼等物体在飞行或运动时受到的垂直向上的力,使得物体能够获得提升力以保持飞行。

阻力则是运动物体在空气中受到的阻碍力,是飞机、汽车等移动物体必须克服的力量。

升力和阻力的大小和方向取决于空气流动的速度、密度、物体的形状等因素。

2. 卡门涡街卡门涡街是指当流体经过物体时,流体两侧产生的交错的涡流。

这些涡流会在物体后部形成一串被称为卡门涡街的旋涡,对物体的性能和稳定性产生重要影响。

减小或控制卡门涡街可以提高交通工具的效率和性能。

3. 翼型翼型是用于生产升力的构件,通常指飞机机翼的截面。

不同的翼型设计会影响飞机的飞行稳定性、速度、升力和阻力等性能。

常见的翼型包括对称翼型、半对称翼型和非对称翼型,每种翼型都有其独特的特点和应用场景。

4. 涡流涡流是液体或气体在流动中形成的旋涡状结构。

在空气动力学中,涡流是产生升力和阻力的重要因素,也是风洞模拟实验和流场仿真计算的关键对象。

通过研究和控制涡流的生成和演变,可以改善飞机、汽车等交通工具的性能。

5. 马赫数马赫数是描述物体相对于音速运动速度的无量纲指标。

当飞机等物体的速度达到音速时,其马赫数为1,称为音速。

超音速则指马赫数大于1的速度范围,而亚音速则指马赫数小于1的速度范围。

马赫数的变化会对空气动力学效应和物体性能产生显著影响。

以上是关于空气动力学的一些基本知识点,这些知识点涵盖了空气流动、升力产生、阻力控制等领域的重要内容。

深入理解和掌握空气动力学知识,对于设计和优化交通工具的性能至关重要。

希望以上内容能为您对空气动力学有更深入的了解提供帮助。

空气动力学前六章知识要点

空气动力学前六章知识要点

空气动力学基础前六章总结第一章 空气动力学一些引述1、 空气动力学涉及到的物理量的定义及相应的单位①压强:是作用在单位面积上的正压力,该力是由于气体分子在单位时间内对面发生冲击(或穿过该面)而发生的动量变化,具有点属性。

0,lim →⎪⎭⎫ ⎝⎛=dA dA dF p 单位:Pa, kPa, MPa 一个标准大气压:101kPa②密度:定义为单位体积内的质量,具有点属性。

0,lim →=dv dvdm ρ 单位:kg/㎡ 空气密度:1.225Kg/㎡③温度:反应平均分子动能,在高速空气动力学中有重要作用。

单位:℃ ④流速:当一个非常小的流体微元通过空间某任意一点的速度。

单位:m/s ⑤剪切应力:dy dv μτ= μ:黏性系数 ⑥动压:212q v ρ∞∞∞= 2、 空气动力及力矩的定义、来源及计算方法空气动力及力矩的来源只有两个:①物体表面的压力分布 ②物体表面的剪应力分布。

气动力的描述有两种坐标系:风轴系(L,D )和体轴系(A,N)。

力矩与所选的点有关系,抬头为正,低头为负。

cos sin L N A αα=- , sin cos D N A αα=+3、 气动力系数的定义及其作用气动力系数是比空气动力及力矩更基本且反映本质的无量纲系数,在三维中的力系数与二维中有差别,如:升力系数S q L C L ∞=(3D ),cq L c l ∞='(2D ) L L C q S ∞≡,D D C q S ∞≡,N N C q S ∞≡,A A C q S ∞≡,M M C q Sl ∞≡,p p p C q ∞∞-≡,f C q τ∞≡ 二维:S=C(1)=C4、 压力中心的定义压力中心,作用翼剖面上的空气动力,可简化为作用于弦上某参考点的升力L,阻力D 或法向力N ,轴向力A 及绕该点的力矩M 。

如果绕参考点的力矩为零,则该点称为压力中心,显然压力中心就是总空气动力的作用点,气动力矩为0。

空气动力学部分知识讲解

空气动力学部分知识讲解

空气动力学及飞行原理课程空气动力学部分知识要点一、流体属性与静动力学基础1、流体与固体在力学特性上最本质的区别在于:二者承受剪应力和产生剪切变形能力上的不同。

2、静止流体在剪应力作用下(不论所加剪切应力τ多么小,只要不等于零)将产生持续不断的变形运动(流动),换句话说,静止流体不能承受剪切应力,将这种特性称为流体的易流性。

3、流体受压时其体积发生改变的性质称为流体的压缩性,而抵抗压缩变形的能力和特性称为弹性。

4、当马赫数小于0.3时,气体的压缩性影响可以忽略不计。

5、流层间阻碍流体相对错动(变形)趋势的能力称为流体的粘性,相对错动流层间的一对摩擦力即粘性剪切力。

6、流体的剪切变形是指流体质点之间出现相对运动(例如流体层间的相对运动)流体的粘性是指流体抵抗剪切变形或质点之间的相对运动的能力。

流体的粘性力是抵抗流体质点之间相对运动(例如流体层间的相对运动)的剪应力或摩擦力。

在静止状态下流体不能承受剪力;但是在运动状态下,流体可以承受剪力,剪切力大小与流体变形速度梯度有关,而且与流体种类有关7、按照作用力的性质和作用方式,可分为彻体力和表面力(面力)两类。

例如重力,惯性力和磁流体具有的电磁力等都属于彻体力,彻体力也称为体积力或质量力。

8、表面力:相邻流体或物体作用于所研究流体团块外表面,大小与流体团块表面积成正比的接触力。

由于按面积分布,故用接触应力表示,并可将其分解为法向应力和切向应力:9、理想和静止流体中的法向应力称为压强,其指向沿着表面的内法线方向,压强的量纲是[力]/[长度]210、标准大气规定在海平面上,大气温度为15℃或T0=288.15K ,压强p0 = 760 毫米汞柱= 101325牛/米2,密度ρ0 =1.225千克/米311、从基准面到11 km 的高空称为对流层,在对流层内大气密度和温度随高度有明显变化,温度随高度增加而下降,高度每增加1km,温度下降6.5 K。

从11 km 到21km 的高空大气温度基本不变,称为同温层或平流层,在同温层内温度保持为216.5 K。

空气动力学的基础理论与应用

空气动力学的基础理论与应用

空气动力学的基础理论与应用空气动力学是研究物体在空气中运动时,所受到的气动力及其作用性能的科学。

自人类研制飞行器以来,空气动力学便成为飞行器设计和研究的重要领域。

但实际上,空气动力学研究的范围远不止飞行器,还适用于汽车、高铁、桥梁等领域。

本文将介绍空气动力学的基础理论和应用。

一、空气动力学的基础理论1.流体力学空气动力学的基础理论是流体力学,它主要研究流体的运动方式和运动规律。

在空气动力学中,流体大多指气体。

气体的流动可以分为层流和湍流。

层流指气流的运动呈现平滑的状态,流线整齐,速度分布均匀,剪应力小。

而湍流则是气流的运动方式呈现混沌、无规律的状态,流线混乱,速度分布不均匀,剪应力大。

2.空气动力学基本方程空气动力学基本方程包括质量守恒方程、动量守恒方程和能量守恒方程。

质量守恒方程描述的是气体内部质量的守恒。

动量守恒方程描述的是气体内部动量的守恒。

能量守恒方程描述的是气体内部能量的守恒。

这些方程组成了解决气体流动问题的数学基础。

3.气动力学气动力学研究物体在空气中运动时所受到的气动力。

气动力可以由压力力和剪力组成。

气体静压力是气体由于分子速度和数密度变化产生的压力。

气体剪切力是气体分子之间的相互作用力,作用在物体表面上。

二、空气动力学的应用1.飞行器在飞行器设计中,空气动力学是不可或缺的。

飞行器的气动外形和气动力性能的研究需要应用空气动力学的基础理论和计算方法。

在工程实践中,需要进行气动计算、模拟和试验研究,以验证新型设计的气动性能,并进行数据分析和优化。

2.汽车汽车空气动力学研究主要是优化车身外形和改善车辆的空气动力性能。

优化车辆外形可以提高燃油效率、降低汽车空气阻力、提高安全性和稳定性。

在汽车设计中,也需要进行气动计算、模拟和试验研究,以验证新型设计的气动性能,并进行数据分析和优化。

3.高铁高铁空气动力学研究主要是优化列车外形和改善列车的空气动力性能。

在高速列车行驶过程中,空气阻力对列车运行速度和能源消耗有着重要影响。

空气动力学基础知识

空气动力学基础知识
20世纪创建完整的空气动力学体系:儒可夫斯基、普朗 特、冯卡门、钱学森等,包括无粘和粘性流体力学。 1903年莱特兄弟实现飞行,60年代计算流体力 学。。。。。。
分类:
低速 亚声速 跨声速 超声速(高超)
稀薄气体空气动力学、气体热化学动力学、电磁流体力 学等
工业空气动力学
研究方法:
(1)流体微团: 空气的小分子群,空气分子间的自由行程与飞行器相 比较 太小,可忽略分子的运动
(2)流线:
一、流场(续)
(3)流管:
多个流线形成流管
管内气体不会流出
管外气体也不会流入,不同的截面上,流量相同
(4)定常流:
流场中各点的速度、加速度以及状态参数等只是几
何位置的函数,与时间无关
(5)流动的相对性
质量守恒原理在流体力学中的应用
或写成:
d dV dA0 V A
VAm(常数)
在连续V小方、程小:范围内常 数 , d0 A大,V小
VA常数 A小,V大
三、伯努里方程(能量守恒定律)
在低速不可压缩的假设下,密度为常数
伯努里方程: 其中:p-静压,
p1V2 C(常数)
2
1/2V2 — 动压,单位体积的动能,与高
四、飞机的操纵机构
飞机:升降舵、方向舵、副翼及油门杆 导弹:摆动发动机喷管,小舵面 1.升降舵偏转角e
后缘下偏为正,产生正升力,正e产生负俯仰力矩M 2.方向舵偏转角r 方向舵后缘左偏为正,
正r产生负偏航力矩N 3.副翼偏转角a
右副翼后缘下偏 (左副翼随同上偏)为正 正a产生负滚转力矩L
五 、弹飞行运动的特点
刚体飞机,空间运动,有6个自由度:
三质、心飞x、行y、器z线运运动动的(自速度由增度减,升降,左右移动)

空气动力学的基础知识

空气动力学的基础知识

空气动力学的基础知识空气动力学是研究流体力学中与气体运动有关的力和运动的学科。

空气动力学的研究对象是运动的气体,其中包括飞行器、汽车、建筑物、船舶、火箭等物体在气体中的运动、流动和受力等问题。

本文将从空气动力学的基础知识入手,为读者介绍空气动力学的相关内容。

流场和速度场空气动力学研究的第一个问题是流体的流动。

流体的流动可以用流场和速度场来描述。

流场是指各点流体运动状态(流速、流速方向、密度、温度等)的分布情况。

速度场是指各点流体的流动速度。

流体的运动状态决定了它受力的状态,因此分析流场和速度场是空气动力学研究的第一步。

流场和速度场的计算方法以及它们之间的关系是空气动力学中的基础问题。

流体的连续性方程和动量守恒方程空气动力学中研究流体的运动过程需要遵循连续性方程和动量守恒定律。

连续性方程是描述流体运动过程的基本方程之一,它表述了流体在单位时间内通过任何一定横截面积内的物质流量相等。

动量守恒方程则描述了流体受力过程中的运动状态,这个方程能够反映物体在流体中穿过一个受力区域时所受的阻力、压力、力矩等信息。

空气动力学中的雷诺数在空气动力学中,雷诺数是一个非常重要的概念。

它是空气动力学中的无量纲参数,决定了流体的稳定性和不稳定性,可以用于描述边界层和湍流状态。

简而言之,当雷诺数越大时,流体会越容易变得湍流,这会对空气动力学的研究和设计带来许多影响。

翼型和飞行器翼型是空气动力学中的一个重要概念,它是描述飞行器机翼截面形状的函数。

翼形的设计对飞行器的性能有着至关重要的影响。

它能够影响到飞机的升力、阻力、抗扭稳定性、滚转和俯仰稳定性等方面。

因此,研究翼型的设计和性能是空气动力学研究的重要方向。

结语空气动力学是一门重要的学科,涉及众多的物理和数学知识。

通过本文的介绍,我们可以了解到空气动力学中的一些基础知识,例如流场和速度场、连续性方程和动量守恒方程、雷诺数、翼型和飞行器等。

对于空气动力学的学习者来说,深入了解这些基础知识对于学习和掌握这门学科是非常有帮助的。

空气动力学基础

空气动力学基础

空气动力学基础空气动力学是研究空气对物体的作用力和物体在空气中运动规律的学科。

它在航空航天工程中起着重要的作用。

本文将介绍空气动力学的基本概念、主要原理和应用。

一、空气动力学概述空气动力学是围绕着气体流动学和力学展开的学科,主要研究气体与物体相互作用产生的力以及物体在气体中的运动。

空气动力学基础理论包括气体流动方程、边界条件和流场特性等。

它是航空航天工程设计和性能分析的重要依据。

二、空气动力学原理1. 气体流动方程空气动力学中的主要流动方程是连续性方程、动量方程和能量方程。

连续性方程描述了流体的质量守恒,动量方程描述了流体的动量守恒,能量方程描述了流体的能量守恒。

2. 升力和阻力在运动中的物体受到空气的作用力,其中最重要的是升力和阻力。

升力使得物体能够克服重力向上运动,而阻力则阻碍物体的运动。

这两个力的大小和方向与物体的形状、速度和气体性质等有关。

3. 测试和模拟为了研究物体在空气中的行为,人们通常会进行实验和数值模拟。

实验方法包括风洞试验和模型试飞等,而数值模拟则利用计算机技术对气体流动进行数值计算和模拟。

三、空气动力学应用1. 飞行器设计空气动力学是飞行器设计的重要基础。

通过研究飞行器在不同速度和高度下的空气动力学特性,可以优化飞行器的外形设计,提高其升阻比,提高飞行效率和安全性。

2. 空气动力学仿真使用计算机模拟和仿真技术,可以在设计阶段对飞行器进行空气动力学分析。

这样可以预测飞行器在各种工况下的性能和稳定性,指导设计改进。

3. 空气动力学研究空气动力学研究不仅应用于飞行器设计,还广泛用于其他领域,如汽车、建筑物和体育器材等的设计和优化。

通过研究空气动力学原理,可以改进产品性能,提高安全性和舒适度。

四、结论空气动力学作为研究物体在空气中运动的学科,对于航空航天工程和其他领域的设计和性能分析至关重要。

通过学习空气动力学的基本概念和原理,并运用到实际应用中,可以推动科技的进步,提升产品的质量和性能。

空气动力学部分知识要点

空气动力学部分知识要点

精心整理空气动力学及飞行原理课程空气动力学部分知识要点一、流体属性与静动力学基础1、流体与固体在力学特性上最本质的区别在于:二者承受剪应力和产生剪切变形2、3、4、5、6、力是抵抗流体质点之间相对运动(例如流体层间的相对运动)的剪应力或摩擦力。

在静止状态下流体不能承受剪力;但是在运动状态下,流体可以承受剪力,剪切力大小与流体变形速度梯度有关,而且与流体种类有关7、按照作用力的性质和作用方式,可分为彻体力和表面力(面力)两类。

例如重力,惯性力和磁流体具有的电磁力等都属于彻体力,彻体力也称为体积力或质量力。

8、表面力:相邻流体或物体作用于所研究流体团块外表面,大小与流体团块表面积成正比的接触力。

由于按面积分布,故用接触应力表示,并可将其分解为法向应力和切向应力:9、理想和静止流体中的法向应力称为压强,其指向沿着表面的内法线方向,压强10、毫米11、11km12、13、14、连续方程是质量守恒定律在流体力学中具体表达形式。

由于连续方程仅是运动的行为,与受力无关,因此既适用于理想流体也适用于粘性流体。

15、定常流是指在流场中任一固定点的所有流体属性(如流速、压力、密度等)都和时间无关的流动,在定常流情况下,所有参数对时间的导数都等于0。

非定常流是指流场任一固定点的一个或多个速度分量或其他流体属性随时间发生变化的流动。

注:流动类型:定常流/非定常流,可压缩流动/不可压缩流动,无粘流动/粘性流动,有旋流动/无旋流动。

16、环量的定义:在流场中任取一条封闭曲线,速度沿该封闭曲线的线积分称为该封闭曲线的速度环量。

速度环量的符号不仅决定于流场的速度方向,而且与封17、18、19、涡线是20、沿平面上一封闭围线L做速度的线积分,所得的环量等于曲线所围面积上每个微团角速度的2倍乘以微团面积之和,即等于通过面积S的涡通量。

21、当无涡线穿过给定曲线L1时,沿L1的速度环量Γ1等于零;当有涡线穿过给定曲线L2时,沿L2的速度环量Γ2等于过曲线所围面积内的涡通量,也等于该区域的涡强度;如果曲线所围面积内涡通量越大,则沿该曲线的速度环量越大,该区域内涡的强度越大;过同一曲线上张开的不同曲面,其涡通量是相同的,都等于沿该曲线的速度环量,都代表s1和s2面上旋涡的强度;22、理想流中涡定理:沿涡线或涡管涡强不变;一根涡管在流体里不可能中断,可以伸展到无限远去,可以自相连接成一个涡环(不一定是圆环),也可以止于边界(固体的边界或自由边界如自由液面)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空气动力学基础(教学重点)
绪论(1学时)
第一章流体静力学(5学时)
1、掌握连续介质假设的概念、意义和条件;
2、了解掌握流体的基本物理属性,尤其是易流性、粘性、压缩性等属性的物理本质和数学表达;
3、掌握流体力学中作用力的分类和表达、静止流体中压强的定义及其特性;
4、初步掌握静止流体微团的力学分析方法,重点掌握流体平衡微分方程的表达及其物理意义;
5、在流体平衡微分方程的应用方面,掌握重力场静止液体中的压强分布规律,重点掌握标准大气问题。

第二章流体运动学与动力学基础(12学时)
1、了解两种描述流场的方法的区别与特点,重点掌握欧拉法下加速度的表达和意义
2、掌握流体微团的几种变形和运动及其数学表达,掌握流体微团的运动分解与刚体运动的异同;
3、了解系统分析方法与控制体分析方法的区别与联系,了解雷诺输运方程的表达及意义;
4、空气动力学基本方程是本章重点,积分形式方程要掌握质量方程、动量方程和能量方程的表达和意义,并会用它们解决实际工程问题;微分形式方程要重点掌握连续方程、欧拉方程和能量方程的表达和意义;掌握微元控制体分析方法;掌握伯努利方程的表达、意义、条件和应用;
5、重点需要掌握的概念:流线、流量、散度、旋度、位函数、流函数、环量与涡的表达、意义及其相互之间的关系;
第3章低速平面位流(6学时)
3.1 平面不可压位流的基本方程及其边界条件
二维流动
不可压无旋流动的基本方程是位函数满足的拉普拉斯方程
不穿透条件(可滑移条件)
拉普拉斯方程的叠加原理,速度也可叠加,压强不可叠加
流函数也满足拉普拉斯方程
3.2 几种简单的二维位流
各基本解的速度、位函数、流函数
直匀流
源,汇
偶极子,偶极子的形成,轴线,方向
点涡点涡的环量
3.3 一些简单的迭加举例
直匀流加点源
压强系数
直匀流加偶极子
达朗培尔疑题
直匀流加偶极子加点涡
儒可夫斯基升力定理
了解二维对称物体绕流的数值解
粘性流体动力学基础(4学时)
流体粘性及其对流动的影响
(流体的粘滞性,粘性流体运动特点)
粘性流体的应力状态
(理想流体与粘性流体作用面的受力特点,粘性流体的应力状态)广义牛顿内摩擦定理
粘性流体动力学方程N-S方程
粘性流体运动的基本性质(了解Re实验)
边界层理论及其近似(6学时)
边界层近似及其特征
平面不可压缩流体层流边界层方程
平板层流边界层相似解
边界层动量积分方程(应用例子)
边界层的分离现象
第6 章高速可压流(12)
6.1 热力学基础知识(掌握)
热力学的物系;平衡过程和可逆过程
热力学一定律:内能和焓
热力学第二定律,熵
气体的状态方程完全气体等熵过程关系式
6.2 音速和马赫数(重点)
现象
微弱扰动传播过程与传播速度——音速
音速公式
马赫数
6.3 高速一维定常流(重点)
一维定常绝热流的能量方程
一维定常绝热流参数间的基本关系式
总温T0,,总焓,临界点,速度系数
使用驻点参考量的参数关系式
使用临界参考量的参数关系式
等熵管流的速度与截面积关系,拉瓦尔管
喷管的设计压强比,M(λ)及流量的计算
6.4 微弱扰动的传播区,马赫锥(重点)
马赫角
6.5 膨胀波(介绍)
壁面外折dδ
外折δ
诸参数的变化趋势
超音速流绕外钝角膨胀的计算
6·6 激波
正激波(重点)
正激波的形成,计算
弱激波可以看作等熵波
斜激波(介绍)
波前波后气流参数的关系
激波图线及应用
压强决定激波
圆锥激波(介绍)
收敛—扩张喷管在非设计状态下的工作(介绍)。

相关文档
最新文档