数学建模-最优化模型

合集下载

数学建模中的优化模型ppt课件

数学建模中的优化模型ppt课件

2
3
4
• 制订月生产计划,使工厂的利润最大.
• 如果生产某一类型汽车,则至少要生产80辆,
那么最优的生产计划应作何改变? 15
汽车厂生产计划
模型建立
设每月生产小、中、大型 汽车的数量分别为x1, x2, x3
小型 钢材 1.5 时间 280 利润 2
中型 3
250 3
大型 5
400 4
现有量 600 60000
p(t)w(t) p(t)w(t) 4
每天利润的增值 每天投入的资金
保留生猪直到利润的增值等于每天的费用时出售
由 S(t,r)=3 若 1.8 w 2.2(10%), 则 7 t 13(30%) 建议过一周后(t=7)重新估计 p, p, w, w, 再作计算。
13
研究 r, g变化时对模型结果的影响 估计r=2, g=0.1
• 设r=2不变
t 3 20 g , 0 g 0.15 g
t 对g的(相对)敏感度 30
t
S(t, g) Δ t / t dt g 20 Δ g / g dg t
S(t, g) 3 3 3 20 g
7
常用优化软件
1. LINGO软件 2. MATLAB优化工具箱 3. EXCEL软件的优化功能 4. SAS(统计分析)软件的优化功能 5. 其他
8
2.简单的优化模型
——生猪的出售时机
问 饲养场每天投入4元资金,用于饲料、人力、设 题 备,估计可使80千克重的生猪体重增加2公斤。
市场价格目前为每千克8元,但是预测每天会降 低 0.1元,问生猪应何时出售。
均为整数,重新求解. 17
模型求解 整数规划(Integer Programming,简记IP)

数学建模第二讲简单的优化模型

数学建模第二讲简单的优化模型

数学建模第二讲简单的优化模型数学建模是利用数学方法对实际问题进行建模、分析和求解的过程。

在实际问题中,常常需要针对一些指标进行优化,以达到最优的效果。

本讲将介绍一些简单的优化模型。

一、线性规划模型线性规划是一种重要的数学优化方法,广泛应用于工程、经济、管理等领域。

其数学模型可以表示为:\begin{aligned}&\text{max} \quad c^Tx \\&\text{s.t.} \quad Ax \leq b, \quad x \geq 0\end{aligned}\]其中,$x$为决策变量,$c$为目标函数系数,$A$为约束条件系数矩阵,$b$为约束条件右端向量。

线性规划模型指的是目标函数和约束条件都是线性的情况。

通过线性规划模型,可以求解出使得目标函数取得最大(或最小)值时的决策变量取值。

二、非线性规划模型非线性规划模型指的是目标函数或约束条件中存在非线性部分的情况。

非线性规划模型相对于线性规划模型更为复杂,但在实际问题中更为常见。

对于非线性规划问题,通常采用数值优化方法进行求解,如梯度下降法、牛顿法等。

这些方法通过迭代的方式逐步靠近最优解。

三、整数规划模型整数规划模型是指决策变量必须为整数的规划模型。

整数规划在实际问题中应用广泛,如物流配送问题、工程调度问题等。

整数规划模型通常难以求解,因为整数规划问题是一个NP难问题。

针对整数规划问题,常用的求解方法有枚举法、分支定界法、遗传算法等。

四、动态规划模型动态规划模型是指将问题划分为子问题,并通过求解子问题最优解来求解原问题最优解的方法。

动态规划通常用于求解具有重叠子问题和最优子结构性质的问题。

动态规划模型具有递推性质,通过递归或迭代的方式求解子问题的最优解,并保存中间结果,以提高求解效率。

五、模拟退火模型模拟退火是一种用来求解组合优化问题的随机优化算法。

模拟退火算法基于固体退火过程的模拟,通过温度的控制和随机跳出来避免陷入局部最优解。

数学模型最优化方法实现

数学模型最优化方法实现

数学模型最优化方法实现数学建模最优化方法是将数学建模问题转化为数学模型,并通过数学方法求解最优解的过程。

最优化方法在数学建模中起着非常重要的作用,可以帮助我们解决各种复杂的实际问题。

本文将介绍最优化方法的实现过程,并详细讨论最优化方法的几种常见算法。

最优化方法的实现过程主要分为以下几个步骤:建立数学模型、寻找最优解算法、编写程序实现、求解并分析结果。

首先,我们需要根据实际问题建立数学模型。

数学模型是问题的抽象表示,通常包括目标函数、约束条件和变量等要素。

通过合理地选择目标函数和约束条件,可以将问题转化为数学形式,便于后续的分析和求解。

其次,我们需要根据模型选择适当的最优解算法。

最优化方法有很多种,根据具体问题的特点和求解要求,我们可以选择不同的算法来求解最优解。

然后,我们需要编写程序将数学模型和求解算法实现。

编写程序是最优化方法实现的核心步骤,通过编写程序,我们可以自动化地求解最优化问题,并得到最优解。

最后,我们需要进行求解和结果分析。

通过求解模型并分析结果,可以验证模型的合理性,并根据结果调整模型或改进算法,以得到更好的最优解。

在实际应用中,根据问题的特点和求解需求,我们可以选择不同的最优化方法。

常见的最优化方法有:线性规划、非线性规划、整数规划、动态规划、遗传算法等。

下面将分别介绍这几种方法的原理和实现过程。

线性规划是最常用的最优化方法之一,适用于目标函数和约束条件都是线性的情况。

线性规划的基本思想是将问题转化为求解一个线性函数在约束条件下的最大值或最小值。

线性规划的求解算法有很多,例如单纯形法、内点法和对偶法等。

这些算法都是基于线性规划的特点和数学性质,通过迭代求解来逼近最优解。

实现线性规划方法的主要步骤包括:建立数学模型、选择适当的算法、编写相应的程序、求解并分析结果。

非线性规划是另一种常见的最优化方法,适用于目标函数或约束条件中包含非线性项的情况。

非线性规划的求解相对复杂,通常需要使用迭代算法来逼近最优解。

最优化问题的建模与解法

最优化问题的建模与解法

最优化问题的建模与解法最优化问题(optimization problem)是指在一组可能的解中寻找最优解的问题。

最优化问题在实际生活中有广泛的应用,例如在工程、经济学、物流等领域中,我们经常需要通过数学模型来描述问题,并利用优化算法来求解最优解。

本文将介绍最优化问题的建模和解法,并通过几个实例来说明具体的应用。

一、最优化问题的数学建模最优化问题的数学建模包括目标函数的定义、约束条件的确定以及变量范围的设定。

1. 目标函数的定义目标函数是一个表达式,用来衡量问题的解的优劣。

例如,对于一个最大化问题,我们可以定义目标函数为:max f(x)其中,f(x)是一个关于变量x的函数,表示问题的解与x的关系。

类似地,对于最小化问题,我们可以定义目标函数为:min f(x)2. 约束条件的确定约束条件是对变量x的一组限制条件,用来定义问题的可行解集合。

约束条件可以是等式或不等式,通常表示为:g(x) ≤ 0h(x) = 0其中,g(x)和h(x)分别表示不等式约束和等式约束。

最优化问题的解必须满足所有的约束条件,即:g(x) ≤ 0, h(x) = 03. 变量范围的设定对于某些变量,可能需要限定其取值的范围。

例如,对于一个实数变量x,可能需要设定其上下界限。

变量范围的设定可以通过添加额外的不等式约束来实现。

二、最优化问题的解法最优化问题的解法包括数学方法和计算方法两种,常见的数学方法有最优性条件、拉格朗日乘子法等,而计算方法主要是通过计算机来求解。

1. 数学方法数学方法是通过数学分析来求解最优化问题。

其中,常见的数学方法包括:(1)最优性条件:例如,对于一些特殊的最优化问题,可以通过最优性条件来判断最优解的存在性和性质。

最优性条件包括可导条件、凸性条件等。

(2)拉格朗日乘子法:对于带有约束条件的最优化问题,可以通过拉格朗日乘子法将原问题转化为无约束最优化问题,从而求解最优解。

2. 计算方法计算方法是通过计算机来求解最优化问题。

数学建模~最优化模型(课件)

数学建模~最优化模型(课件)

投资组合优化
在风险和收益之间寻求平衡,通 过优化投资组合实现最大收益。
03
非线性规划模型
非线性规划问题的定义
目标函数
一个或多个非线性函数,表示 要最小化或最大化的目标。
约束条件
决策变量的取值受到某些限制 ,通常以等式或不等式形式给 出。
决策变量
问题中需要求解的未知数,通 常表示为x1, x2, ..., xn。
这是一种常用的求解整数规划问题的算法,通过不断将问题分解为更 小的子问题,并确定问题的下界和上界,逐步逼近最优解。
割平面法
该方法通过添加割平面来限制搜索区域,从而逼近最优解。
迭代改进法
该方法通过不断迭代和改进当前解,逐步逼近最优解。
遗传算法
这是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传机 制来寻找最优解。
定义域
决策变量的取值范围,通常是 一个闭区间或开区间。
非线性规划问题的求解方法
梯度法
利用目标函数的梯度信息,通过迭代方法寻 找最优解。
共轭梯度法
结合梯度法和牛顿法的思想,通过迭代方法 寻找最优解。
牛顿法
利用目标函数的二阶导数信息,通过迭代方 法寻找最优解。
信赖域方法
在每次迭代中,通过限制搜索步长来保证求 解的稳定性。
02
线性规划模型
线性规划问题的定义
01
02
03
线性规划问题
在给定一组线性约束条件 下,求一组线性函数的最 大值或最小值的问题。
约束条件
包括资源限制、物理条件 等,通常以等式或不等式 形式给出。
目标函数
需要最大化或最小化的线 性函数,通常表示为决策 变量的线性组合。
线性规划问题的求解方法

数学建模最优化模型

数学建模最优化模型

数学建模最优化模型随着科学与技术的不断发展,数学建模已经成为解决复杂实际问题的一种重要方法。

在众多的数学建模方法中,最优化模型是一种常用的方法。

最优化模型的目标是找到最佳解决方案,使得一些目标函数取得最大或最小值。

最优化模型的基本思想是将实际问题抽象为一个数学模型,该模型包含了决策变量、约束条件和目标函数。

决策变量是需要优化的变量,约束条件是对决策变量的限制条件,目标函数是优化的目标。

最优化模型的求解方法可以分为线性规划、非线性规划和整数规划等。

线性规划是最优化模型中最基本的一种方法,其数学模型可以表示为:max/min c^T xs.t.Ax<=bx>=0其中,c是目标函数的系数向量,x是决策变量向量,A是约束条件的系数矩阵,b是约束条件的右边向量。

线性规划的目标是找到最优的决策变量向量x,使得目标函数的值最大或最小。

非线性规划是最优化模型中更为复杂的一种方法,其数学模型可以表示为:max/min f(x)s.t.g_i(x)<=0,i=1,2,...,mh_i(x)=0,i=1,2,...,p其中,f(x)是目标函数,g_i(x)是不等式约束条件,h_i(x)是等式约束条件。

非线性规划的求解过程通常需要使用迭代的方法,如牛顿法、拟牛顿法等。

整数规划是最优化模型中另一种重要的方法,其数学模型在线性规划的基础上增加了决策变量的整数限制。

max/min c^T xs.t.Ax<=bx>=0x是整数整数规划的求解通常更为困难,需要使用特殊的算法,如分支定界法、割平面法等。

最优化模型在实际问题中有着广泛的应用,如资源调度、生产计划、路线选择、金融投资等。

通过建立数学模型并求解,可以得到最优的决策方案,提高效益和效率。

总结起来,最优化模型是数学建模的重要方法之一、通过建立数学模型,将实际问题转化为数学问题,再通过求解方法找到最佳解决方案。

最优化模型包括线性规划、非线性规划和整数规划等方法,应用广泛且效果显著。

最优化问题数学模型

最优化问题数学模型
• 飞机飞行的方向角调整幅度不应超过30 ; • (因飞机飞行的速度变化不大)所有飞机的飞行 速度 v 均为800km/h;

• 进入该区域的飞机在到达区域边缘时,与区域内 飞机的距离应在60km以上;
根据当年竞赛题目给出的数据,可以验证 新进入的飞机与区域内的飞机的距离超过 60公里。
• 最多需考虑六架飞机;
cij xij 表示该队员的成 目标函数:当队员i入选泳姿j时, 绩,否则 cij xij 0 。于是接力队的成绩可表示为
f cij xij .
j 1 i 1
4
5
约束条件:根据接力队要求, xij 满足约束条件
a. 每人最多只能入选4种泳姿之一,即
x
j 1
4
ij
1.
b. 每种泳姿必须有1人而且只能有一人入选,即
分析,对实际问题进行合理的假设、简化,首先考虑用
线性规划模型,若线性近似误差较大时,则考虑用非线 性规划.
例题讲解
例1 1995年全国数学建模A题:飞行管理问题 在约1万米的高空的某边长为160km的正方 形区域内,经常有若干架飞机作水平飞行,区 域内每架飞机的位置和速度向量均由计算机记 录其数据,以便进行飞行管理。当一架欲进入 该区域的飞机到达区域边缘时,计算机记录其 数据后,要立即计算并判断是否会发生碰撞。 若会发生碰撞,则应计算如何调整各架飞机 (包括新进入的飞机)飞行的方向角,以避免 碰撞,且使飞机的调整的幅度尽量小,
目标:求函数极值或最值,求取得极值时变量的取值。
x
1.线性规划
问题:某工厂在计划期内要安排生产I、II两种产品,已 知生产单位产品所需的设备台时及A、B两种原材料的消 耗,如下表所示
I 设备 1 II 2 8台时

数学建模最优化模型

数学建模最优化模型
或x=fminsearch(fun,X0 ,options) (3)[x,fval]= fminunc(...);
或[x,fval]= fminsearch(...) (4)[x,fval,exitflag]= fminunc(...);
或[x,fval,exitflag]= fminsearch (5)[x,fval,exitflag,output]= fminunc(...);
41m外点法sutm内点法障碍罚函数法1罚函数法2近似规划法罚函数法罚函数法基本思想是通过构造罚函数把约束问题转化为一系列无约束最优化问题进而用无约束最优化方法去求解这类方法称为序列无约束最小化方法简称为sumt法其一为sumt外点法其二为sumt内点法其中txm称为罚函数m称为罚因子带m的项称为罚项这里的罚函数只对不满足约束条件的点实行惩罚
曲线不一定通过那m个测量点,而要产生“偏差”.
将测量点沿垂线方向到曲线的距离的
y
平方和作为这种“偏差”的度量.即
2
x
S
m i 1
yi
a1
1 a3
a2 ln 1 exp
xi a4 a5
显然偏差S越小,曲线就拟合得越好,说明参数值就选择得越好,从而 我们的问题就转化为5维无约束最优化问题。即:
一下是否达到了最优。 (比如基金人投资)
• 在各种科学问题、工程问题、生产管理、社会 经济问题中,人们总是希望在有限的资源条件 下,用尽可能小的代价,获得最大的收获。
(比如保险)
数学家对最优化问题的研究已经有很多年的 历史。
以前解决最优化问题的数学方法只限于古典 求导方法和变分法(求无约束极值问题),拉格 朗日(Lagrange)乘数法解决等式约束下的条件 极值问题。

数学建模作业---优化模型

数学建模作业---优化模型

P104页,复习题题目:考虑以下“食谱问题":某学校为学生提供营养套餐,希望以最小的费用来满足学生对基本营养的需求按照营养学家的建设,一个人一天要对蛋白质,维生素A和钙的需求如下:50g蛋白质、4000IU维生素A和1000mg的钙,我们只考虑以不食物构成的食谱:苹果,香蕉,胡萝卜,枣汁和鸡蛋,其营养含量见下表。

制定食谱,确定每种食物的用量,以最小费用满足营养学家建议的营养需求,并考虑:(1)对维生素A的需求增加一个单位时是否需要改变食谱?成本增加多少?如果对蛋白质的需求增加1g呢?如果对钙的需求增加1mg呢?(2)胡萝卜的价格增加Ⅰ角时,是否需要改变食谱?成本增加多少?问题分析:(1)此优化问题的目标是使花费最小.(2)所做的决策是选择各种食物的用量,即用多少苹果,香蕉,胡萝卜,枣汁,鸡蛋来制定食谱。

(3)决策所受限制条件:最少应摄入的蛋白质、维生素和钙的含量(4)设置决策变量:用x1表示苹果的个数、x2表示香蕉的个数、x3表示胡萝卜的个数、x4表示枣汁的杯数量、x5表示鸡蛋的个数(5)x1个苹果花费10·x1角x2个香蕉花费15·x2角x3个胡萝卜花费5·x3角x4杯枣汁花费60·x4角x5个鸡蛋花费8·x5角目标函数为总花费金额:z=10·x1+15·x2+5·x3+60·x4+8·x5 (角)(6)约束条件为:最少摄入蛋白质的含量:0.3x1+1.2x2+0.7x3+3.5x4+5.5x5≥50最少摄入维生素A的含量:73x1+96x2+20253x3+890x4+279x5≥4000最少摄入钙的含量:10x1+15x2+5x3+60x4+8x5≥1000非负约束:x 1,x 2,x 3,x 4,x 5≥0优化模型:minz =10x 1+15x 2+5x 3+60x 4+8x 5s.t. 0.3x 1+1.2x 2+0.7x 3+3.5x 4+5.5x 5≥5073x 1+96x 2+20253x 3+890x 4+279x 5≥4000 9.6x 1+7x 2+19x 3+57x 4+22x 5≥1000 x 1,x 2,x 3,x 4,x 5≥0由线性规划模型的定义,容易得到线性规划的性质:1. 比例性 每个决策变量的对目标函数的“贡献”与该决策变量的取值成正比;每个决策变量对每个约束条件右端项的“贡献”,与该决策变量的取值成正比.2. 可加性 各个决策变量对目标函数的“贡献”,与其他决策变量的取值无关;各个决策变量对每个约束条件右端项的“贡献”,与其他决策变量的取值无关.3. 连续性 每个决策变量的取值是连续的. 考察本题,实际上隐含下面的假设 :1.购买苹果、香蕉、胡萝卜、枣汁、鸡蛋每个(杯)的花费是与各自的用量无关的常数;苹果、香蕉、胡萝卜、枣汁、鸡蛋每个(杯)所包含的蛋白质、维生素、钙的含量是与各自的用量无关的常数.(线性规划性质1—比例性)2.购买苹果、香蕉、胡萝卜、枣汁、鸡蛋每个(杯)的花费是与它们相互间用量无关的常数;苹果、香蕉、胡萝卜、枣汁、鸡蛋每个(杯)所包含的蛋白质、维生素A 、钙的含量是与它们相互间的用量无关的常数. (线性规划性质2—可加性)3. 购买苹果、香蕉、胡萝卜、枣汁、鸡蛋的数量都是实数. (线性规划性质3—连续性) 模型求解:(决策变量是5维的,不适用图解法求解模型)软件求解:线性规划模型:min z=10x1+15x2+5x3+60x4+8x5s.t. 0.3x1+1.2x2+0.7x3+3.5x4+5.5x5≥5073x1+96x2+20253x3+890x4+279x5≥40009.6x1+7x2+19x3+57x4+22x5≥1000x1,x2,x3,x4,x5≥0模型全局最优解:(Global optimal solution)x1=0x2=0x3=49.38272x4=0x5=2.805836z的最优值为269.3603角用LINGO 软件求解,得到如下输出:结果分析:1. 3个约束条件的右端项可视为3种资源:蛋白质含量、维生素A 含量、钙含量.LINGO 的输出项Row Slack or Surplus ,给出了3种资源在最优解下的剩余.2.目标函数可视为“支出(成本)”,紧约束的“资源”增加1单位时,“支出”的增加由LINGO 的输出项 Dual Price 给出。

人力资源案例-数学建模

人力资源案例-数学建模

审题:近半年,集团下属各分公司经理纷纷向集团总经理“要人”,表示公司业务发展太快,人手不够。

总经理通过人力资源部门了解到,这种情况普遍存在,并且日益严重。

该集团人力资源部找到咨询公司,寻求解决方案。

请以咨询公司项目经理身份,从数理建模分析视角为此项目设计解决方案。

提示:1.人员使用效率为人员配置的主要衡量指标,人员调配将涉及到公司的定岗定编需求;2.集团决策需考虑各家分公司之间的平衡,分公司对集团政策具有执行和反馈权。

(一) 效率最优化模型:{}11max n i i n i i I R I D =*+∑ 约束方程:1ni i C I D B*+=∑D > 其中: 1) i R :i 分公司人员使用效率指标(如:人均月创造利润);2) i I :分配给i 分公司的人数;3) i C :i 分公司平均招一个人的成本(如:人均月工资);4) n : 分公司的总数目;5) B : 总公司最多能承担的每月总的新招人成本;6) D : 总公司最终相比于预算节省下来的资金。

注:把i I 求出来后,向下取整,得到近似最优解。

建模思路:尽量使公司利润最大化。

(二) 公平最优化模型:{}()12*1min n i i n i i I i I I G =-∑约束方程:1n i i C I B*≤∑ 其中: 1) i G :i 分公司的规模指标(如现有员工总数,公司月营业额等)2) *i I :i 分公司向总公司所要的人数;建模思路:分公司的规模越大,缺同样数量的人影响越小。

尽可能满足各公司的用人需求,不单单用利润为导向。

因为:1、人员使用效率指标不好选取;2、各公司对自身的情况最了解,因此其提出用人需求一定有自己的原因,应尽可能满足。

另:简单但实用的模型:按分公司的规模等比例分配名额。

(三)问题总体建模思路:1)根据公司实力(B)沿着公平和效率(稀缺性所决定的经济的永恒主题)两条主线构建最优化模型;2)根据需要考虑赋权;3)尽量选取合适的衡量指标(多查些专业书籍)。

数学建模方法融入初中数学课堂教学的实践研究

数学建模方法融入初中数学课堂教学的实践研究

数学建模方法融入初中数学课堂的实践研究因刘成英(山东省淄博市沂源县历山中学)目前,新课标不断对学科教学提出新要求,数学新课标多次提到数学建模思想,明确了将数学建模教学作为培养初中数学核心素养的重要途径。

在实际课堂教学中,在对数学建模思想的认识和应用上存在着一些问题,笔者根据实际教学研究,提出了数学建模的方法和步骤,对推动当前阶段初中数学建模思想的落实,具有一定的借鉴意义。

一、初中数学常用的建模模型数学建模是通过科学假设简化问题,运用数学公式表示问题内在联系的过程。

(一)最优化模型解决现实生活中的问题时,常需要消耗最少资源来达到最好效果,为达到这个目标就需要最优化模型。

比如社区要解决最大限度降低环境消耗成本的问题,这时需要社区制订相关标准,明确影响环境消耗成本的一个或几个关键变量,通过控制某些关键变量,使其他变量达到最佳状态,这就是最优化模型的运用过程。

(二)动态模型这个模型可以解决时间发展过程中一些动态的变量、动态变化过程的演变。

动态模型的构造容易,但是求解很难,多数情况下需要借助计算机技术模拟分析动态模型。

(三)概率模型人们在解决现实问题时,往往会受到某些不确定因素的干扰,需要用数学语言表述随机变量的不确定性,这时需要运用概率模型的方式解决此类问题。

连续概率模型和离散概率模型是常见的概率模型。

二、建模思想在初中数学课堂教学中应用的意义我国对数学教学重视程度不断增加,数学知识与日常生活的联系成为重要的研究课题,数学建模思想将数学知识和学生的日常生活相联系,拓展了数学知识的学习范围,为培养社会主义科技人才奠定了综合基础。

数学建模与初中数学课堂教学相融合,形成应用数学知识解决生活难题的全新思路,培养学生应用数学建模知识解决生活现实问题的数学思维方式,有助于培养中学生基本科学素养,提升数学综合创新能力促进学生全学科的成长。

三、建模思想在初中数学课堂教学中应用现状及存在的主要问题(一)应用现状随着数学课堂改革的深度推进,初中数学教师不断探索适合社会发展的数学课堂教学方法,数学应用的宽度、广度得到了全面发展,数学建模成为培养中学数学课程素养的重要途径。

数学建模模型常用的四大模型及对应算法原理总结

数学建模模型常用的四大模型及对应算法原理总结

数学建模模型常用的四大模型及对应算法原理总结四大模型对应算法原理及案例使用教程:一、优化模型线性规划线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。

如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

案例实操非线性规划如果目标函数或者约束条件中至少有一个是非线性函数时的最优化问题叫非线性规划问题,是求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。

建立非线性规划模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,即目标函数。

然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,即约束条件。

整数规划整数规划分为两类:一类为纯整数规划,记为PIP,它要求问题中的全部变量都取整数;另一类是混合整数规划,记之为MIP,它的某些变量只能取整数,而其他变量则为连续变量。

整数规划的特殊情况是0-1规划,其变量只取0或者1。

多目标规划求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。

目标规划目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法,是线性规划的特殊类型。

目标规划的一般模型如下:设xj是目标规划的决策变量,共有m个约束条件是刚性约束,可能是等式约束,也可能是不等式约束。

设有l个柔性目标约束条件,其目标规划约束的偏差为d+, d-。

设有q个优先级别,分别为P1, P2, …, Pq。

在同一个优先级Pk中,有不同的权重,分别记为[插图], [插图](j=1,2, …, l)。

数学建模中的优化模型

数学建模中的优化模型

数学建模中的优化模型发展前景
01
随着大数据和人工智能技术的快速发展,优化模型的应用领域将进一 步扩大。
02
优化模型将与机器学习、深度学习等算法结合,实现更加智能化的决 策支持。
03
优化模型将面临更多大规模、复杂问题的挑战,需要发展更加高效、 稳定的算法和求解技术。
04
优化模型将与可持续发展、环境保护等社会问题结合,为解决全球性 挑战提供解决方案。
优化模型的应用领域
工业生产
金融投资
优化模型在工业生产中广泛应用于生产计 划、工艺流程、资源配置等方面,以提高 生产效率和降低成本。
优化模型在金融投资领域中用于资产配置 、风险管理、投资组合等方面,以实现最 优的投资回报和风险控制。
交通运输
科学研究
优化模型在交通运输领域中用于路线规划 、车辆调度、物流配送等方面,以提高运 输效率和降低运输成本。
,为决策提供依据。
优化模型在实际应用中需要考虑各种约束条件和目标 函数,同时还需要处理大规模数据和复杂问题。
优化模型在数学建模中占据重要地位,用于解 决各种实际问题,如生产计划、物流运输、金 融投资等。
优化模型有多种类型,包括线性规划、非线性规 划、动态规划、整数规划等,每种类型都有其适 用的场景和特点。
非线性规划模型
非线性规划模型的定义与特点
总结词
非线性规划模型是一种数学优化模型,用于解决目标函数和约束条件均为非线性函数的 问题。
详细描述
非线性规划模型通常由目标函数、约束条件和决策变量三个部分组成。目标函数是要求 最小化或最大化的非线性函数,约束条件可以是等式或不等式,决策变量是问题中需要 优化的未知数。非线性规划模型的特点在于其非线性性,即目标函数和约束条件不能用

数学建模最优化模型例题

数学建模最优化模型例题

数学建模最优化模型例题好,咱们今天来聊聊数学建模和最优化模型这块儿。

数学建模,这名字听起来就挺高大上的,实际上,咱们日常生活中处处都是它的身影。

想象一下,早上起床,看到窗外阳光明媚,心里琢磨着今天去不去公园,顺便锻炼锻炼。

于是,你心里开始盘算,公园离家有多远,走路要多久,还是骑个单车比较快?这就是在用数学建模,算一算,看看哪个更划算。

再说说最优化模型,这就像是在挑选午饭一样。

你有一大堆选择,米饭、面条、快餐还是外卖,真是眼花缭乱。

你心里想,要是不吃太油腻的,又想吃得饱,还得好吃。

于是开始分析:今天外卖不如自己做,自己做的话,买啥材料比较好,怎么搭配更营养呢?这时候,你的脑子就像一个小计算机,开始进行各种选择。

想想,如果能把所有的选择变成一个数学问题,肯定能算出最优解,嘿,生活简直就像在解题一样,乐趣多多。

再说说商场里打折的那种,真是让人心痒痒的。

假如你打算买新鞋,满心期待。

可是一进商场,各种颜色、各种款式扑面而来,心里顿时就犯了选择困难症。

想要买的那双鞋打折了,可是另外一双颜色也不错,怎么办呢?这时候,最优化模型就可以帮你了。

想一想,你最看重什么,舒适、样式还是价格?用数学的眼光来审视,看看哪双鞋的性价比最高,没准儿就能找到那个最适合自己的了。

有些小伙伴可能会问了,数学建模到底有什么用呢?你知道吗,很多企业在决策的时候都离不开这些模型。

就拿快递公司来说,他们每天都要处理成千上万的包裹,怎么能保证包裹及时送到呢?他们需要用到最优化模型来安排路线,减少运输成本。

想象一下,如果没有这些模型,快递员可能跑了一大圈,最后才发现原来只需要直走就到了。

那可真是得不偿失,没准儿包裹还会晚到,这可就麻烦了。

数学建模的魅力就在于它能把复杂的问题简单化。

我们生活中遇到的各种难题,最终都可以转化为一个个数学问题。

你说这是不是挺神奇的?比如你要规划一次旅行,想去多少个地方,怎么安排最合适,住哪儿能便宜又舒服,这些全都可以用建模来解决。

常见数学建模模型

常见数学建模模型

常见数学建模模型数学建模是数学与现实问题相结合的一门学科,通过数学方法和技巧对现实问题进行抽象和描述,从而得到问题的解决方案。

常见数学建模模型有线性规划模型、回归分析模型、离散事件模型和优化模型等。

下面将分别介绍这些常见数学建模模型的基本原理和应用领域。

一、线性规划模型线性规划模型是一种数学模型,用于解决具有线性约束条件的最优化问题。

其基本原理是通过线性目标函数和线性约束条件,找到使目标函数取得最大或最小值的变量取值。

线性规划模型广泛应用于生产调度、物流配送、资源优化等领域。

二、回归分析模型回归分析模型是通过建立变量之间的数学关系,预测或解释一个变量与其他变量之间的关系。

常见的回归分析模型包括线性回归模型、多项式回归模型和逻辑回归模型等。

回归分析模型在市场预测、金融风险评估等领域有广泛的应用。

三、离散事件模型离散事件模型是一种描述系统内离散事件发生和演化的数学模型。

该模型中,系统的状态随着事件的发生而发生改变,事件之间的发生是离散的。

离散事件模型广泛应用于排队系统、供应链管理、网络优化等领域。

四、优化模型优化模型是通过建立目标函数和约束条件,寻找使目标函数取得最大或最小值的变量取值。

常见的优化模型包括整数规划模型、非线性规划模型和动态规划模型等。

优化模型广泛应用于生产调度、资源分配、路径规划等领域。

以上是常见数学建模模型的基本原理和应用领域。

数学建模模型的应用能够帮助我们解决实际问题,优化决策过程,提高效率和准确性。

在实际应用中,我们可以根据具体问题的特点选择合适的数学建模模型,并通过数学方法求解得到最优解。

数学建模案例分析最优化方法建模动态规划模型举例

数学建模案例分析最优化方法建模动态规划模型举例

§6 动态规划模型举例以上讨论的优化问题属于静态的,即不必考虑时间的变化,建立的模型——线性规划、非线性规划、整数规划等,都属于静态规划。

多阶段决策属于动态优化问题,即在每个阶段(通常以时间或空间为标志)根据过程的演变情况确定一个决策,使全过程的某个指标达到最优。

例如:(1)化工生产过程中包含一系列的过程设备,如反应器、蒸馏塔、吸收器等,前一设备的输出为后一设备的输入。

因此,应该如何控制生产过程中各个设备的输入和输出,使总产量最大。

(2)发射一枚导弹去击中运动的目标,由于目标的行动是不断改变的,因此应当如何根据目标运动的情况,不断地决定导弹飞行的方向和速度,使之最快地命中目标。

(3)汽车刚买来时故障少、耗油低,出车时间长,处理价值和经济效益高。

随着使用时间的增加则变得故障多,油耗高,维修费用增加,经济效益差。

使用时间俞长,处理价值也俞低。

另外,每次更新都要付出更新费用。

因此,应当如何决定它每年的使用时间,使总的效益最佳。

动态规划模型是解决这类问题的有力工具,下面介绍相关的基本概念及其数学描述。

(1)阶段 整个问题的解决可分为若干个相互联系的阶段依次进行。

通常按时间或空间划分阶段,描述阶段的变量称为阶段变量,记为k 。

(2)状态 状态表示每个阶段开始时所处的自然状况或客观条件,它描述了研究过程的状况。

各阶段的状态通常用状态变量描述。

常用k x 表示第k 阶段的状态变量。

n 个阶段的决策过程有1+n 个状态。

用动态规划方法解决多阶段决策问题时,要求整个过程具有无后效性。

即:如果某阶段的状态给定,则此阶段以后过程的发展不受以前状态的影响,未来状态只依赖于当前状态。

(3)决策 某一阶段的状态确定后,可以作出各种选择从而演变到下一阶段某一状态,这种选择手段称为决策。

描述决策的变量称为决策变量。

决策变量限制的取值范围称为允许决策集合。

用)(k k x u 表示第k 阶段处于状态k x 时的决策变量,它是k x 的函数,用)(k k x D 表示k x 的允许决策集合。

数学建模中的最优化模型研究

数学建模中的最优化模型研究

1单变 量的 最优 化 对 于最优 化模型 的研 究, 常是 从单 变量 最优 化 的研 究开始 。单 变量 的 通 最优 化 问题通 常 又被 称 为极 人一 … 极 小化 问题 。 1 1五步 方法 用数学 建模解 决单变 量最优 化 的问题包 括五 个步骤 : 出 问题 : 择建模 提 选 方 法 : 导 出模 型 的数学表 达 式 : 解模 型 : 推 求 蚓答 问题 。这是 最常 用到 的 种 方 法, 也是 建模 中最基 本 的方 法 。例 l 一头猪 重 2 0 , : 0 磅 每天 增重 5 , 磅 饲养 每 天需要 花费 4 美分 , 的 市场价格 是 6 美 分每磅 , 5 猪 5 但是每 天会 F 1 降 美分, 求 出售猪 的最 佳 时间 。第 ‘ 是提 出 问题 , 步 并用数 学语 言 表达 。在 这个 问题 中 的全部变量 包括 : 的重量 W 磅) 从现 在到 出售猪 期 问经历 的时 间 t 天 ) 猪 ( , ( , t 内饲 养猪 的花 费 c美 元) 猪 的市场价 格 P 美 元 / )售 出生猪 所获 得 的 天 ( , ( 磅 , 收益 R 美 元) 最 终的 净收 益 P( ( , 美元 ) 。 第 一 步的结 果是 : = 0 } t p O 6 . 2:= . 5 := w t≥ 0 目 w 2 0 5 = . 5 0 0 C O 4 t R p・ : 。 标是求 出 P的最 大 值 。第二 步是 选 择建 模 的方 法 。根 据 已有 的 ‘ 个用 数 学 语言表 述 的问题, 用一 种数 学方 法来 获得 解 。第 三步是推 导 出模 型 的数学表 达 式, 即把第 步得 到 的问题应 用 第二步 , 出所选 的建 模方法 需要 的标准 写 形 式 。即 :

1 0—0 0 00 .6

优化模型

优化模型
12
MIN 66.8x11+75.6x12+87x13+58.6x14 +… … +67.4x51+71 x52+83.8x53+62.4x54 SUBJECT TO x11+x12+x13+x14 <=1 …… x41+x42+x43+x44 <=1 x11+x21+x31+x41+x51 =1 …… x14+x24+x34+x44+x54 =1 END INT 20
最优化模型
主讲人
张兴永
1
最优化模型
在数学建模竞赛中,经常会遇到有关最优化问题, 下面介绍几个简单的最优化模型。 最优化模型是在解决实际问题中应用最广泛的模 型之一,它涉及面广、内容丰富,且随着计算机的发 展,解决问题的范围越来越宽。一般地,人们做的任 何一件事情,小的如日常生活、学习工作等,大的如 工农业生产,国防建设及科学研究等,为了达到预先 设想的目的,都要做计划,选择好的方案,进行优化 处理。最优化模型主要有线性规划模型、整数规划模 型、非线性规划模型、动态规划模型等。
这样把多目标规划变成一个目标的线性规划,下 面给出三个单目标优化模型:
24
1、在实际投资中,投资者承受风险的程度不一样, 若给定风险一个界限a,使最大的一个风险qixi/M≤a, 可找到相应的投资方案。 模型1 固定风险水平,优化收益 目标函数:Q=max (ri pi ) xi i 0 约束条件: q x ≤a
9
问题二 混合泳接力队的选拔
5名候选人的百米成绩
蝶泳 仰泳 蛙泳 自由泳 甲 1’06”8 1’15”6 1’27” 58”6 乙 57”2 1’06” 1’06”4 53” 丙 1’18” 1’07”8 1’24”6 59”4 丁 1’10” 1’14”2 1’09”6 57”2 戊 1’07”4 1’11” 1’23”8 1’02”4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

建立无约束优化模型为:min y =- (3 2x)2 x , 0< x <1.5
先编写M文件fun0.m如下:
function f=fun0(x)
f=-(3-2*x).^2*x; 主程序为wliti2.m:
[x,fval]=fminbnd('fun0',0,1.5);
xmax=x fmax=-fval
运行结果:
x =1.0000 1.0000 fval =1.9151e-010 exitflag = 1
output= iterations: 108 funcCount: 202
一下是否达到了最优。 (比如基金人投资)
• 在各种科学问题、工程问题、生产管理、社会 经济问题中,人们总是希望在有限的资源条件 下,用尽可能小的代价,获得最大的收获。
(比如保险)
a
3
数学家对最优化问题的研究已经有很多年的 历史。
以前解决最优化问题的数学方法只限于古典 求导方法和变分法(求无约束极值问题),拉格 朗日(Lagrange)乘数法解决等式约束下的条件 极值问题。
电力市场的堵塞管理(2004B)
……
a
5
几个概念
• 最优化是从所有可能方案中选择最合理的一种 以达到最优目标的学科。
• 最优方案是达到最优目标的方案。 • 最优化方法是搜寻最优方案的方法。 • 最优化理论就是最优化方法的理论。
a
6
经典极值问题
包括:Байду номын сангаас①无约束极值问题 ②约束条件下的极值问题
a
7
1、无约束极值问题的数学模型
或[x,fval,exitflag,output]= fminsearch(...)
a
14
例 用fminsearch函数求解 输入命令:
f='100*(x(2)-x(1)^2)^2+(1-x(1))^2'; [x,fval,exitflag,output]=fminsearch(f,[-1.2 2])
(3)[x,fval]= fminbnd(…) (4)[x,fval,exitflag]= fminbnd(…) (5)[x,fval,exitflag,output]= fminbnd(…)
其中等式(3)、(4)、(5)的右边可选用(1)或(2) 的等式右边.
函数fminbnd的算法基于黄金分割法和二次插值法,它要求 目标函数必须是连续函数,并可能只给出局部最优解.
或x=fminsearch(fun,X0 ,options) (3)[x,fval]= fminunc(...);
或[x,fval]= fminsearch(...) (4)[x,fval,exitflag]= fminunc(...);
或[x,fval,exitflag]= fminsearch (5)[x,fval,exitflag,output]= fminunc(...);
函数f(x)在x=4取得在[-3,4]上得最大值f(4)=142,在 x=1处取得在[-3,4]上取得最小值f(1)=7
a
9
a
10
用MATLAB解无约束优化问题
1. 一元函数无约束优化问题: min f (x) x1 x x2
常用格式如下: (1)x= fminbnd (fun,x1,x2) (2)x= fminbnd (fun,x1,x2 ,options)
最优化模型
一、最优化方法概述 二、无约束最优化问题 三、无约束最优化问题的MATLAB
求解 四、有约束最优化问题
a
1
最优化方法概述
1、最优化理论和方法是近二十多年来发展十分迅 速的一个数学分支。
2、在数学上,最优化是一种求极值的方法。 3、最优化已经广泛的渗透到工程、经济、电子技
术等领域。
a
2
• 在实际生活当中,人们做任何事情,不管是分 析问题,还是进行决策,都要用一种标准衡量
MATLAB(wliti2)
运算结果为: xmax = 0.5000,fmax =2.0000.即剪掉的正方形的边 长为0.5m时水槽的容积最大,最大容积为2m3.
a
13
2.多元函数无约束优化问题
标准型为:min F ( X )
命令格式为: (1)x= fminunc(fun,X0 );或x=fminsearch(fun,X0 ) (2)x= fminunc(fun,X0 ,options);
[xmax,ymax]=fminbnd (f1, 0,8)
运行结果: xmin = 3.9270 xmax = 0.7854
ymin = -0.0279 ymax = 0.6448
a
12
例2 有边长为3m的正方形铁板,在四个角剪去相等的正方形以 制成方形无盖水槽,问如何剪法使水槽的容积最大?
解 设剪去的正方形的边长为 x ,则水槽的容积为: (3 2x)2 x
计算机技术的出现,使得数学家研究出了许 多最优化方法和算法用以解决以前难以解决的问 题。
a
4
最优化:在一定的条件下,寻求 使得目标最大(最小)的策略
• 约一半以上的问题与最优化问题有关。如: 飞行管理问题(95A) 最优捕鱼策略(96A) 节水洗衣机(96B) 零件的参数设计(97A) 投资收益和风险(98A) 钢管订购和运输(2000B)
a
11
MATLAB(wliti1)
例 1 求 x = 2ex sin x 在 0< x <8 中的最小值与最大值.
主程序为wliti1.m: f='2*exp(-x).*sin(x)'; fplot(f,[0,8]); %作图语句 [xmin,ymin]=fminbnd (f, 0,8)
f1='-2*exp(-x).*sin (x)';
min f (x) x
2、约束条件下极值问题的数学模型
min f (x) x
s.t. gi(x)0, i1,2,...,m
hi(x)0, i1,2,...,n
其中,极大值问题可以转化为极小值问题来
进行求解。如求: max f ( x) x
可以转化为:min f (x)
xa
8
1、无约束极值问题的求解
例1:求函数y=2x3+3x2-12x+14在区间[-3,4]上的最 大值与最小值。
解:令f(x)=y=2x3+3x2-12x+14
f’(x)=6x2+6x-12=6(x+2)(x-1) 解方程f’(x)=0,得到x1= -2,x2=1,又 由于f(-3)=23,f(-2)=34,f(1)=7,f(4)=142, 综上得,
相关文档
最新文档