液压第九章多缸控制回路

合集下载

液压基础-常见液压回路介绍

液压基础-常见液压回路介绍

常见液压回路介绍液压只有形成回路,才能发挥作用: 常见的液压回油有 1. 差动回路 2. 节流回路 3. 闭式容积回路 4. 多泵回路 5. 多缸回路 6. 闭式控制回路1, 差动回路:功能:在必要的时候提高有油缸伸出速度,使设备动作速度加快一般回路 差动回路 一般回路:u= q /A A 即速度(dm/min)=流量(L/min)/活塞截面积 (dm²) 1L=1dm ³p A = F /A A 即压力pA (N/㎡)=负载力(N )/活塞截面积(m²) 1Pa=1N/㎡ 差动回路:两腔都有压力,实际作业面积只是活塞杆截面积 u= q /A C 流量不变、,速度加快p A = F /A C 负载力不变,负载压力提高2、节流回路功能:通过控制流量来控制油缸速度进口节流出口节流旁路节流2.1 进口节流通过调节进口节流口面积,控制进入油缸的流量,最终控制油缸速度;2-1-1 进口节流 2-1-2 能量消耗 2-1-3 进口节流(恒压)能量消耗:液压功率=压力×流量(压强每升高5Mpa,液压温度上升约3°)图2-1-2图2-1-3,进入油缸流量qA与压差开方成正比,为保持恒定压力,增加溢流阀,成本最低,但会产生新的能耗,多余流量从溢流阀流出qY=qP-qA 溢流阀作为恒压阀2-1-4 能量消耗图2-1-5 采用恒压泵 图2-1-6 采用流量调节阀为减少能量损耗,用恒压泵实时调节泵输出流量,使输出流量几乎全部进入油缸,如超出油缸所需,减小泵排量。

图2-1-5采用流量调节阀,通过调节节流孔大小,实时控制压差,控制进入油缸流量 2.2 出口节流通过调节出口节流面积,限制油液流出,有杆腔有压力,油缸速度降低;图2-2-1 图2-2-2油缸速度与有杆腔流量qB 成正比,qB 由PB 和A 就决定,所以调节节流孔大小可以调节速度。

图2-2-3 图2-2-4 图2-2-5 以上原理同进口节流相似使用单向节流阀的进口节流回路:由于两腔面积不同,同样的速度时,进出流量不同,所以不同程度的节流。

第09章 液压基本回路

第09章 液压基本回路

(二)容积调速回路 容积调速回路分为变量泵调速回路、变量马达调速回路和变量 泵-变量马达调速回路三种,如图9-8所示。 与节流调速相比较,容积调速的主要优点是压力和流量的损耗 小,发热少;但缺点是难于获得较高的运动平稳性,且变量泵和变 量马达的结构复杂,价格较贵。
a)变量泵调速回路
图9-8 容积调速回路 b)变量马达调速回路 c)变量泵-变量马达调速回路
v = q 1 / A = C A T ( Dp ) j / A = C A T ( p p - F / A ) j / A
图9-7
回油路节流调速回路
所得公式与进油路节流调速公式完全相同,可知回油路节流调
速的一些基本性能也都和进油路节流调速相同,其不同之点有:
1) 回油路节流调速回路运动比较平稳。 2) 进油路节流调速回路较易实现压力控制。
运动速度随之减小;反之,则速度增大。
3 ) 运动平稳性较差。
2.回油路节流调速回路
如图9-7所示,活塞受力关系仍为:
p1A= F + p2A


p1 = pp
p2 = p1- F / A = pp – F / A
故节流阀前后的压力差为 Dp = p 2 所以活塞运动的速度为 = pp - F / A
图9-6
进油路节流调速 回路
p1 A= F + p2A
式中
p1 ——液压缸右腔的工作压力;
p2 ——液压缸左腔的背压,在此 p2≈0; A ——活塞有效作用面积。
F ——活塞的负载阻力。
整理上式得ቤተ መጻሕፍቲ ባይዱ
p1 = F / A
故节流阀前后的压力差为
Dp = p p - p 1 = p p - F / A 因通过节流阀进入液压缸的流量为

《多缸动作回路》课件

《多缸动作回路》课件
率和使用寿命。
PART 04
多缸动作回路的优缺点
优点
01
02
03
04
高效率
多缸动作回路能够实现多个缸 的同时动作,提高了工作效率

高精度
由于多个缸的协同工作,可以 实现更精确的位置和速度控制

高可靠性
多缸动作回路具有较高的可靠 性和稳定性,减少了故障发生
的可能性。
易于扩展
随着生产需求的增加,可以方 便地增加缸的数量,提高生产
成本和风险。
应用领域拓展
航空航天领域
多缸动作回路在航空航天领域的应用,如飞机起落架的收放、火箭 发动机的启动等。
汽车工业领域
多缸动作回路在汽车工业领域的应用,如发动机的点火、制动系统 的控制等。
能源领域
多缸动作回路在能源领域的应用,如风力发电机的叶片控制、核反应 堆的冷却控制等。
环境保护与节能减排
PART 05
多缸动作回路的实际应用
在农业机械中的应用
拖拉机
多缸动作回路在拖拉机中 主要用于控制油缸,实现 耕作、播种、收割等作业 的自动化。
灌溉机械
利用多缸动作回路控制水 泵,实现农田的自动灌溉 。
实现高效、均匀的 农药喷洒。
在工程机械中的应用
起重机械
多缸动作回路在起重机械中用于 控制油缸,实现吊装、移动等作
定期保养
润滑
定期对多缸动作回路的各运动部件进行润滑,保证其正常运转。
紧固
定期检查并紧固各连接部位,确保其牢固可靠。
清洁
定期对多缸动作回路进行全面清洁,清除积聚的污垢和杂质。
常见故障及排除方法
动作不协调
检查各缸的动作是否协调一致,调整相关参数以解决故障。

第四讲-多缸动作控制回路

第四讲-多缸动作控制回路
中,两个或两个以上液
压缸按照各缸之间旳运动关系要求
进行控制,完毕预定功能旳回路。
分类
顺序动作回路 同步回路 互不干扰回路
1.顺序动作回路
功用 使多种执行元件严格按照预定顺
序动作。
分类 压力控制
行程控制 时间控制
压力控制顺序动作回路
定义 利用系统工作过程中压力旳变化 使执行元件按顺序先后动作。
分类
顺序阀控制 压力继电器控制
顺序阀控制
换向阀左位工作时,主压力油 进入缸1实现动作顺序①,当 油压升高到顺序阀3旳开启压 力时,主压力油进入缸2,实现 动作顺序②; 换向阀右位工作时,主压力油 进入缸2,实现动作顺序③,当 油压升高到顺序阀5旳开启压 力时,主压力油进入缸1,实现 动作顺序④ 。
动画演示
同步缸2是两个尺寸相
同旳缸体和活塞共用
4
5
一种活塞杆旳液压缸,
在回路中起着配流旳
作用,使有效面积相 2
等旳两个液压缸4和5
实现双向同步运动。
3
同步缸2旳两个活塞上 1
装有双作用单向阀,
能够在行程端点消除
1Y
2Y
误差。
双作用式单向阀3的 局部放大图
活塞
双作用式单向阀
伺服同步回路
根据两个位移传感器
流量同步回路
容积同步回路
伺服同步回路
流量同步回路
流量同步是利用流量控制阀 来控制进入和流出液压缸旳流 量,使液压缸活塞运动速相等, 实现速同步。
用调速阀控制旳同步回路
用两个调速阀分别 调整两个液压缸活塞旳 运动速度。经过调整两 个调速阀旳开口大小, 就能使两个液压缸旳活 塞保持速同步。这种回 路构造简朴,但调整比 较麻烦,同步精度不高, 不宜用于偏载或负载变 化频繁旳场合。

液压传动第9章 其他基本回路

液压传动第9章 其他基本回路
26
2)、慢进: 进油路: 换向阀3(右)、换向阀2(左)→ 活 塞缸7(左)和增速缸→活塞慢速向右移动; 回油路:活塞缸7(右)→换向阀2(左)→油箱。 3)、返回: 进油路:换向阀2(右)、换向阀3(右) →活塞缸7(右)→活塞快速向左返回;
27
回油路: • 增速缸6→换向阀2(右)→油箱; • 活塞缸7(左)→液控单向阀→副油箱; • 活塞缸7(左) →换向阀3(右)→换向阀 2(右)→油箱。 特点 这种回路可以在不增加液压泵 流量的情 况下获得较快的速度, 使功率利用比较合理,但结构比较复 杂。
48
三、多缸快慢速互不干扰回路
功用
防止液压系统中的几个液压缸因 速度快慢的不同(因而是工作压力不 同)而在动作上相互干扰。
特点
1)、液压缸6、7各自要完成“快进→工进→快退”的 自动工作循环。 2)、这个回路之所以能实现快慢运动互不干扰,是由 于快速和慢速各由一个液压泵来分别供油,再通过相 应电磁阀进行控制的缘故。
16
1、溢流阀 2、换向阀 3、单向顺序阀
五、保压回路
功 用
使系统 在液压缸不 动或仅有极微小 的位移下稳定地 维持住压力。
1、溢流阀 2、换向阀 3、液控单 向阀 4、电接触 式压力表
17
1、工作原理 • 当换向阀右位接入回路时→缸上腔成为 压力腔→压力到达预定上限值时→电接 触式压力表发生信号→换向阀切换成中 位→这时液压泵卸荷→液压缸由液控单 向阀保压; • 当液压缸上腔压力下降到预定下限值时 →压力表发出信号→换向阀右位接入回 路→泵给缸上腔补油,使其压力上升。 2、特点: 这种回路保压时间长,压力稳定性 高,适用于保压性能较高的高压系统。
24
3、通过增速缸来实现快速运动的回路

多缸工作控制回路及其他回路

多缸工作控制回路及其他回路
液压泵2与液压马达同轴,利用泵2可将液压马达的转速反馈给变量调节机构,故泵2称为计量泵。
进口节流阀4和背压阀5配合,实现马达转速的预选。
这种回路也能使多个并联的执行元件在同一供压的回路中互不干扰地按自己需要的转速和转矩工作。
图为组合机床液压系统原理图。该系统具有夹紧和进给两个液压缸,要求完成的动作循环如左图,读懂该系统,并完成如下工作:
当阀4、8的右侧电磁铁通电,实现快退。
这种回路是利用顺序阀实现互不干扰的。顺序阀的开启压力决定于液压缸的工作压力。
当有快进转变成工进时,节流顺序阀打开,系统由高压小流量的泵1供油。由于高压油的作用,单向阀关闭。
当阀4、8的电磁铁均断电,液压缸停止运动。
特点:可靠性较高。主要用于组合机床的液压系统。
05
三.多缸快慢速互不干扰回路
多缸快慢速互不干扰回路的功用是防止液压系统中几个液压缸因速度快慢的不同而在动作上的相互干扰。
1.双泵供油实现的多缸快慢速互不干扰回路
当阀5、阀6 均通电,液压缸A、B均差动联接,并由大流量泵2供油,实现快进。
若当缸A完成快进动作,由挡块或行程开关使阀7通电,阀6断电,此时由高压小流量泵1供油,实现工进。而此时缸B仍作快进,互不影响。
顺序动作回路
1.行程控制的顺序动作回路
行程阀
行程开关
行程开关
图a)为行程阀控制的顺序动作回路,回路工作可靠,但动作顺序一经确定,再改变比较困难,同时管路较长,布置比较麻烦。 图b)为行程开关控制的顺序动作回路,该回路控制灵活方便,但其可靠程度主要取决于电器元件的质量。
2.压力控制的顺序动作回路
图中,缸1有肝腔的有效作用面积等于缸2无肝腔的有效作用面积。
补偿原理为:若缸1的活塞先运动到缸底,压下行程开关a使阀5得电。

液 压与气动技术9-1

液 压与气动技术9-1

电磁阀断电,最高压力由A调定, 电磁阀通电,系统压力由B调定. p1 > p 2
3. 多级调压回路
实现多级压力变换
pB < p A
pC < p A
二,减压回路
作用:使系统中某一部分获得稳定的低压.
B A
三,卸荷回路
作用:在工作部件暂时停止工作时,使泵在低 压下工作,减少动力消耗,延长寿命. 1.利用三位换向阀中位卸荷
第九章 其它基本回路
§9-1 概述 压力回路 快速运动和速度换接回路 换向回路和锁紧回路 多缸动作回路
§9-2 压力回路 调压回路 减压回路 卸荷回路 平衡回路 保压回路
一,调压回路
作用:调整或限定系统压力. 1.单级调压回路
a.调整系统压力并保持恒定
b.限制系统最高压力
2. 二级调压回路
B
A
应用:保压时间长,压力稳 定性要求高的场合
§9-3 快速运动和速度换接回路 一,快速运动回路
作用:空载时加快执行元件的运动速度.
1.差动
2. 双泵供油
快进:双泵供油 工进:左泵卸荷, 右泵压力由溢流阀调定 快退:双泵供油
二,速度换接回路
作用:在一个工作循环中,实现不同速度的转换. 1.用行程阀
M型,H型,K型
2. 利用两位两通阀卸荷
断电:泵卸荷 通电:系统压力由溢流阀调定 用于小流量
3. 利用溢流阀卸荷
断电:p由溢流阀调定 通电:泵卸荷 可用于大流量
4. 利用卸荷阀卸荷
使大泵卸荷
四,平衡回路
作用:防止垂直工作部件因自重自由下落
1. 利用顺序阀的平衡回路 应用:重量不大,锁紧定 位要求不高的场合.
一,顺序动作回路

多缸运动回路

多缸运动回路

3.采用同步马达控制的同步回路
图中为采用两个同轴等排量的 双向液压马达作为等流量分流装置 的同步回路。液压马达把等量的液 压油分别输入两个尺寸相同的液压 缸中,使两液压缸实现同步。
1.3 多缸快慢速互不干扰回路
各缸快速进退皆由大泵2供油, 当其中一个液压缸进入工进时,则由 小泵1供油,彼此无干涉。
液压与气动控制
序阀4的调定压力大于液压缸1活塞伸出 最大工作压力时,顺序阀4关闭,压力油 进入液压缸1的左腔,缸1的右腔经单向 顺序阀3的单向阀回油,实现动作①;当 缸1的伸出行程结束到达终点后,压力升 高,压力油打开顺序阀4进入液压缸2的 左腔,缸2的右腔回油,实现动作②;
同理,当换向阀5电磁铁得电,左位接入回路且顺序阀3的调定压力 大于液压缸2活塞缩回最大供油压力时,顺序阀3关闭,压力油进入 缸2的右腔,缸2的左腔经单向顺序阀4的单向阀回油,实现动作③; 当液压缸2的缩回行程结束到达终点后,压力升高,压力油打开顺 序阀3进入缸1的右腔,缸1的左腔回油,实现动作④。
2.调速阀控制的同步回路
图中是两个并联的液压缸,分别用 调速阀控制的同步回路。两个调速阀分 别调节两缸活塞的运动速度,当两缸有 效面积相等时,则流量也调整的相同; 若两缸面积不等,则改变调速阀的流量 也能达到同步的运动。
用调速阀控制的同步回路,结构简 单,并且可以调速,但是由于受到油温 变化以及调速阀性能差异等影响,同步 精度较低,一般在5%~7%左右。
1.2 同步回路
同步回路是保证液压系统中,两个及以上的液压缸在运动过 程中保持相同位移或者相同速度的回路。
在多缸液压系统中,影响同步精度的因素有很多,例如:负 载不均衡、油液泄漏、加工制造精度、油液中空气含量等。这些 不利因素都可能引起运动的不同步。

第九章 液压基本回路

第九章 液压基本回路
常用的调速回路:节流调速、容积调速和容积节流调速。
(一)节流调速回路 按照流量阀安装位置的不同,有进油路节流调速、回 油路节流调速和旁油路节流调速三种。下面对常用的前两 种基本回路进行分流调速回路
式中
p1A= F +p2A p1 ——液压缸右腔的工作压力; p2 ——液压缸左腔的背压,在此 p2≈0; A ——活塞有效作用面积。
F ——活塞的负载阻力。
整理上式得
p1 = F/A
故节流阀前后的压力差为
Dp =pp -p1 =pp -F/A
因通过节流阀进入液压缸的流量为
q1 = CAT(Dp)j
故活塞运动的速度为
v = q1/A =CAT(Dp)j /A =CAT(pp-F/A)j /A
根据上式v =CAT(pp-F/A)φ /A及对回路工作情况的分 析可知,进油路节流调速有如下性能:
中的局部压力远高于液压泵的输出压力。 回路内有三个以上液压
缸,其中之一需要较高的工 作压力,同时其它的液压缸 仍用较低的压力,此时即可 用增压回路提供高压给那个 特定的液压缸。最简单的增 压方法是采用增压器,右图 为采用增压器的增压回路。
图 采用增压器的增压回路 1-增压器 2-补油箱 3-工作缸
4、保压回路 有的机械设备在工作过程中,常常要求液压执行机构在其
四、数字式多速回路 图所示是一种数字式多级选速回路,多用于数字控制 系统。
图数字式多速回路
第三节 多缸动作回路 在多缸液压系统中,各液压缸之间往往需要有一定的 控制要求,或顺序动作,或同步动作。这就需要用多缸控 制回路来实现。 一、顺序回路 1.用行程开关和电磁阀联合控制的顺序回路(见图)
图用行程开关和电磁阀的顺序回路
图用三位换向阀使泵卸荷的回路

液压与气压传动 第4版 第9章 气动控制阀及基本回路

液压与气压传动 第4版 第9章 气动控制阀及基本回路
2021/11/4
梭阀结构及应用回路
原理动画
2021/11/4
原理动画
(3)双压阀
双压阀也相当于两个单向阀的组合。它有P1和P2 两个输入口和一个输出口A。只有当P1、P2同时有输 入时,A才有输出,否则A无输出。
2021/11/4
原理动画
双压阀应用回路
2021/11/4
原理动画
(4)快速排气阀
2021/11/4
1.单向型方向控制阀
(1)单向阀 在气动单向阀中,阀芯和阀座之间有一
层胶垫。下图 所示为单向阀的典型结构。
2梭阀
梭阀它有两个输入口P1、P2,一个输出
口A,阀芯在两个方向上起单向阀的作用。 当P1进气时,阀芯将P2切断,P1与A相通, A有输出。当P2进气时,阀芯将P1切断,P2 与A相通,A也有输出。如P1和P2都有进气 时,阀芯移向低压侧,使高压侧进气口与A 相通。如两侧压力相等,先加入压力一侧 与A相通,后加入一侧关闭。
先导式,其中先导式又分为内部先导式 和外部先导式两种。
2021/11/4
(1)直动型减压阀
右图为QTY型直动 型减压阀的结构图。
阀处于工作状态时, 压缩空气从左端输入, 经阀口11节流减压后 再从阀出口流出。
当推力与弹簧的作用 相互平衡后,阀口开度 稳定在某一值上,使减 压阀的出口减小,并保 持出口压力基本不变。
结构原理动画
2021/11/4
(2)先导型减压阀
由先导阀和主阀两部 分组成。当气流从左端 流入阀体后,一部分经 进气阀口9流向输出口, 另一部分经固定节流孔1 进入中气室5经喷嘴2、 挡板3、孔道反馈至下气 室6,在经阀杆7中心孔 及排气孔8排至大气。
2021/11/4

第九章液压系统的设计与计算

第九章液压系统的设计与计算

按各执行元件在工作中的速度v以及位移s或经历的时间t 绘制v-s或v-t速度循环图。
三、确定液压系统的主要参数
液压系统的主要参数——工作压力和流量是选择液压元 件的主要依据,而系统的工作压力和流量分别取决于液压执 行元件工作压力、回路上压力损失和液压执行元件所需流量 、回路泄漏,所以确定液压系统的主要参数实质上是确定液 压执行元件的主要参数。 1. 初选液压系统的主要参数 执行元件工作压力是确定其结构参数的重要依据。工作 压力选得低一些,对液压系统工作平稳性、可靠性和降低噪 声等都有利,但对液压系统和元件的体积、重量就相应增大 ;工作压力选得过高,虽然液压元件结构紧凑,但对液压元 件材质、制造精度和密封要求都相应提高,制造成本也相应 提高。执行元件的工作压力一般可根据负载进行选择。
二、液压系统的工况分析和系统的确定
对执行元件负载分析与运动分析,也称为液压系统的工 况分析。工况分析就是分析每个液压执行元件在各自工作过 程中负载与速度的变化规律,一般执行元件在一个工作循环 内负载、速度随时间或位移而变化的曲线——用负载循环图 和速度循环图表示。 1. 负载分析 液压缸与液压马达运动方式不同,但他们的负载都是由 工作负载、惯性负载、摩擦负载、背压负载等组成的。 (1) 工作负载 FW 包括切削力、夹紧力、挤压力、重力等, 其方向与液压缸运动方向相反时为正,相同时为负;
2. 确定执行元件的主要结构参数 (1)确定液压缸主要结构参数 根据负载分析得到的最
大负载Fmax和初选的液压缸工作压力p,再设定液压缸回
油腔背压pb以及杆径比d/D,即可由第四章中液压缸的力 平衡公式来求出缸的内径D、活塞杆直径d和缸的有效工作
面积A,其中D、d值应圆整为标准值 。
(2)确定液压马达排量VM 排量VM 由马达的最大负载扭矩Tmax、

第9章液压系统设计与计算-

第9章液压系统设计与计算-
积)。
• 快进时:
差动系统
p F A1 A2
qv快 (A1A2)
非差动系统
p1

F A1
A2 A1
p2
q v快A1
P pq
•工进时:
p1
A2 A1
F pb A1
q v工A1
P p工q工
• 快退
p1
A2 A1
pb

F A1
qv快退A2
P pq
图9-2 组合机床执行元件工况图
Ff f FN
(9-2)
式中 FN——运动部件及外负载对支撑面的正压力; f——摩擦系数,分 静摩擦系数( fS≤0.2~0.3)和动摩擦系数(fd ≤0.05~0.1)。
(3)惯性负载 Fa 惯性负载是运动部件的速度变化时,由其惯性而产生的负
载,可用牛顿第二定律计算:
Fa
ma Gv g t
液压缸推力F(N)
F =( Ffs + FL ± Fg) /ηm F =( Ffd + FL +Fa± Fg) /ηm F =( Ffd + FL± Fg) /ηm F =( Ffd + FL — Fa± Fg) /ηm F =( Ffd + FL ± Fg) /ηm F =( Ffd + FL — Fa± Fg) /ηm F =( Ffs + Fa ± Fg) /ηm
来验பைடு நூலகம்,即
A q min v min
(9-5)
qmin—流量阀最小稳定流量。
液压马达:排量的计算式为
2T
V
p Mm
(9-6)
式中 T—液压马达的总负载转矩,N.m; ηMm—液压马达的机械效率; p—液压马达的工作压力,pa; V—所求液压马达的排量,m3/r。

液压缸同步回路原理

液压缸同步回路原理

液压缸同步回路原理
液压缸同步回路是一种用于控制多个液压缸同时运动的系统。

其原理是通过将多个液压缸连接在同一个液压回路中,使它们受到相同的压力和流量控制,从而实现同步运动。

液压缸同步回路通常包括以下组成部分:
1. 液压源:提供压力和流量的液压泵或液压发生器。

2. 液压阀:控制液压流量和压力的阀门,包括流量阀、压力阀、方向阀等。

3. 液压缸:转换液压能为机械能的执行元件。

4. 传感器:用于监测液压缸位置、速度和力等参数的传感器,包括位移传感器、速度传感器、压力传感器等。

液压缸同步回路的控制原理是通过液压阀控制液压流量和压力,使多个液压缸受到相同的控制信号,从而实现同步运动。

当液压泵提供压力和流量时,液压阀根据控制信号调节液压流量和压力,使多个液压缸受到相同的作用力,从而实现同步运动。

传感器监测液压缸的运动状态,将反馈信号送回控制系统,以实现闭环控制。

液压缸同步回路广泛应用于各种工业机械、冶金设备、船舶装备等领域,可以有效提高工作效率和生产质量。

多缸同步回路

多缸同步回路

多缸同步回路多缸同步回路是指由多个缸体组成的回路,在工程领域中广泛应用于液压系统中。

它是一种用于控制液压柱塞缸工作的回路,通过同步回路可以实现多个缸体的同步工作,确保系统的稳定性和精度。

多缸同步回路的结构通常由主缸、从缸和回路控制阀组成。

主缸是整个系统的核心,它负责主要的工作任务。

从缸是主缸的辅助装置,通过与主缸相连,实现对主缸的支持和协调。

回路控制阀则起到控制和调节液压系统的作用,保证各缸体的同步工作。

在多缸同步回路中,主缸和从缸的工作是相互协调的。

主缸通过执行器产生的运动信号传递给从缸,从缸通过感应器接收到信号后,按照一定的规律进行动作。

这样,主缸和从缸的动作就可以保持同步,确保系统的稳定性和精度。

多缸同步回路的工作原理是利用液压流体的力学性质来实现的。

当主缸运动时,液压流体会从主缸流向从缸,从缸则通过控制阀调节流量和压力,以实现对主缸的支持和协调。

在这个过程中,液压流体的流动速度和压力会受到多种因素的影响,如液压泵的输出压力、回路控制阀的开启程度等。

因此,为了确保多缸同步回路的稳定性和精度,需要对液压系统进行严密的控制和调节。

多缸同步回路在工程领域中有着广泛的应用。

例如,在起重机、注塑机、机床等设备中,多缸同步回路可以实现对重物的平稳提升、注塑机构件的精准运动、机床切削的高精度等工作任务。

通过合理设计和调节,可以使多缸同步回路的工作更加稳定可靠,提高设备的工作效率和性能。

然而,多缸同步回路也存在一些问题和挑战。

首先,由于液压系统中液压泵和回路控制阀等元件的性能和参数会随着时间的变化而发生变化,因此需要定期进行维护和检修,以保证系统的正常工作。

其次,多缸同步回路的设计和调节需要考虑到多个缸体之间的配合和协同,这对工程师的技术要求较高。

此外,多缸同步回路的故障诊断和排除也是一个复杂的过程,需要对系统的各个部分进行全面的分析和判断。

多缸同步回路是一种用于控制液压柱塞缸工作的回路,通过同步回路可以实现多个缸体的同步工作,确保系统的稳定性和精度。

液压系统 多缸工作控制回路

液压系统 多缸工作控制回路

顺序动作回路
• 功用: 功用: 使多个执行元件严格按预定顺序依次动作。 使多个执行元件严格按预定顺序依次动作。
当用一个液压泵向几个执行元件供油时,如果这些元 件需要按一定顺序依次动作,就应该采用顺序回路。如夹 紧机构的定位和夹紧,自动车床中刀架的纵横向运动等。
• 分类: 分类: • 行程控制 压力控制 时间控制
5. 带补偿措施的串联液压缸同步回路
B
A
下行过程中,若缸 1先运动到底,则 触动开关使阀4通 电,压力油向缸2 的B腔补油,使其 继续运动到底;若 缸2先运动到底, 则使阀3通电,缸1 的A腔回油,使其 继续运动到底。
功用: 功用: 在多缸系统中,防止其压力、速度互相干扰。 在多缸系统中,防止其压力、速度互相干扰。 • 如:组合机床液压系统中,若用同一个液压泵供油, 组合机床液压系统中,若用同一个液压泵供油, 当某缸快速运动时,会造成系统压力降低, 当某缸快速运动时,会造成系统压力降低,影响其 它缸的稳定工作进给。 它缸的稳定工作进给。
仔细调节两个调速阀的开口大小便可调节进入两个液压缸的流量使两个液压缸在一个运动方向上实现同步即单向同这种同步回路结构简单但由于两个调速阀的调节比较麻烦而且还受油温泄漏等的影响很难调整得使两个流量完全一致所以同步精度较差
7.4 多缸工作控制回路
多缸工作控制回路
在液压系统中,如果由一个液压泵给多个液压缸输 送压力油,这些液压缸会彼此影响而在动作上相互牵制, 必须使用一些特殊的回路才能实现预定的动作要求,常 见的这类回路主要有以下三种。 1.顺序动作回路 1.顺序动作回路 2.同步回路 2.同步回路 3.多缸快慢互不干扰回路 3.多缸快慢互不干扰回路
2. 用分流集流阀的同步回路
3. 同步泵同步回路 用两个同 轴同排量 泵来供油。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

顺序阀控制顺序动作是用压力继电器控制电磁换向阀来
实现顺序动作的回路。
液压基本回路
2 退回 进给 3 2 工作台 3 松开 1 夹紧 4 1 夹紧缸 4 3 4 1 4 1 2 3 2
1K
2K
1Y
2Y
3Y
4Y5a) 图 7-3源自 压力控制顺序动作回路b)
液压基本回路 2.行程控制顺序动作回路
行程阀控制顺序动作动画是采用行程阀控制的多 缸顺序动作回路。图示位置两液压缸活塞均退至 左端点。
行程开关控制顺序动作动画是采用行程开关控制 电磁换向阀的多缸顺序动作回路。 1、 2、 3、 4、
液压基本回路
液压基本回路
(二)同步回路 1.流量控制阀同步回路
调速阀同步动画
采用分流集流阀3(同步 阀)代替调速阀来控制 两液压缸的进入或流出 的流量,分流集流阀具 有良好的偏载承受能力, 可使两液压缸在承受不 同负载时仍能实现速度 同步。
4
3 3 4 2
2
1 a)
1
b) 用同步缸,同步马达的同步回路
a) 用同步缸的同步回路 b) 用同步马达的同步回路
液压基本回路
4.采用比例阀或伺服阀 的同步回路
伺服阀同步动画所示, 伺服阀4根据两个位移 传感器B、C 的反馈信 号,持续不断地调整阀 口开度,控制两个液压 缸的输入或输出流量, 使它们获得双向同步运 动。
B
C
A
图 7-41 采用伺服阀 的同步回路
液压基本回路
(三)多执行元件互不干扰回路 这种回路的功用是使系统中几个执行元件在完成各自工 作循环时彼此互不影响。 图、多元件互不干涉动画是通过双泵供油来实现多缸快 慢速互不干扰的回路。液压缸1和2各自要完成“快进— —工进——快退”的自动工作循环。 图
液压基本回路
1 2
3
4
1Y
5
2Y
6
3Y
7
4Y
8 接入其它 回路 9 10
图 7-42
多缸快、慢互不干扰回路
四、多缸卸荷回路
液压基本回路

液压基本回路
2.用串联液压缸的同步 回路 带补偿装置同步动画所示。
1S
5
6
2S
4 3
3Y 4Y
2
1Y 2Y
1
图 7-39 带补偿装置的
液压基本回路
3.用同步缸或同步马达的同步回路
同步缸的同步动画,同步马达同步动画示,节流阀4用于行程端点消除两 缸位置误差。这种回路的同步精度比采用流量控制阀的同步回路高,但 专用的配流元件使系统复杂、制作成本高。
液压基本回路 第五节
(一)顺序动作回路
顺序动作回路的功用在于使几个执行元件严格按照预 定顺序依次动作。按控制方式不同,顺序动作回路分为 压力控制 行程控制。
多缸动作回路
液压基本回路
1.压力控制顺序动作回路
利用液压系统工作过程中运动状态变化引起的压力变化
使执行元件按顺序先后动作,这种回路就是压力控制顺 序动作回路。压力继电器控制动画。
相关文档
最新文档