动力学普遍方程及拉格朗日方程
第十七章 拉格朗日方程
![第十七章 拉格朗日方程](https://img.taocdn.com/s3/m/23d73940767f5acfa1c7cdca.png)
17.2
d T T Q ,得 由 ( ) dt 1 2 M (2Q 9 P)(r R) 6g
拉 6Mg 即 格 (2Q 9 P)(r R) 2 朗 积分得曲柄的运动方程为 日 3Mg 2 0t 0 t 方 2 (2Q 9 P)(r R) 程 0分别为初始转角和初始角速度。 式中, 0 、
1
O
g MA
A
1 mg g FB
则 yC R1 R 2 (1) 由动力学普遍方程得
g g MA 1 M B 2 (mg FBg )yC 0
17.1 将惯性力及(1)式代入上式,得 1 1 2 mR 1 1 mR 2 2 2 (mg ma ) R( 1 2 ) 0 2 动 2 整理得 力 (mgR maR 1 mR 2 ) (mgR maR 1 mR 2 ) 0 1 1 2 2
例1 图示滑轮系统中,动滑轮上悬挂着重为Q1 的重物,绳子绕过定滑轮后,挂着重为Q2的重物, 设滑轮和绳子的重量不计,求重为Q2的重物下降的 加速度。 g 解:以系统为研究对象,系统具 F2 Q 有理想约束,系统所受的主动力 1 a g g 2 s 2 g Q2 为 Q2 、 ,假想加上惯性力 F1 F2 、 。 F1 s 1 Q1 Q2 g g a 其中 F1 a1 F2 a2 1 g g Q1 给系统以虚位移s1和s2,由动力 学普遍方程,得 Q2 Q1 (Q2 a2 )s2 (Q1 a1 )s1 0 g g 1 1 由运动学关系 s1 s2 a1 a2 代入上式得 2 2
以上两式是由达朗伯原理和虚位移原理相结合 而得到的结果,称为动力学普遍方程,也称达朗 伯——拉格朗日方程。动力学普遍方程可以叙述如 下:在理想约束条件下,在任一瞬时作用在质点系 上所有的主动力和虚加的惯性力,在该瞬时质点系 所处位置的任何虚位移上的元功之和等于零。
理论力学-第13章 动力学普遍方程和第二类拉格朗日方程
![理论力学-第13章 动力学普遍方程和第二类拉格朗日方程](https://img.taocdn.com/s3/m/40daa69b804d2b160a4ec0b3.png)
*第13章 动力学普遍方程和第二类拉格朗日方程
第二类拉格朗日方程
返回
第二类拉格朗日方程
在动力学普遍方程中,由于系统存在约束,一般情形下,各 质点的虚位移并不完全独立,应用时须建立各虚位移与广义坐标 之间的关系。
第二类拉格朗日方程
N
(Qk Qk*) δ qk 0
k 1
其中Qk为对应于广义所标qk的广义力(generalized forces); Qk*为广义惯性力(generalized inertia forces)
Qk
n i 1
Fi
ri qk
Qk*
n i 1
miai
ri qk
由于在完整约束下,δq1, δq2,…, δqN 相互独立,
Qk*
n i 1
miri
ri qk
d dt
n
(
i 1
miri
ri qk
)
n i 1
miri
d dt
( ri qk
)
d dt
n i1
mi
ri
ri qk
n i1
mi
ri
ri qk
d dt
qk
n
(
i 1
1 2
miri2 )
qk
n
(
i 1
1 2
miri2 )
d dt
(
T qk
理论力学
第3篇 工程动力学基础
第3篇 工程动力学基础
*第13章 动力学普遍方程 和第二类拉格朗日方程
*第13章 动力学普遍方程和第二类拉格朗日方程
第二十五章动力学普遍方程和拉格朗日方程
![第二十五章动力学普遍方程和拉格朗日方程](https://img.taocdn.com/s3/m/3b079ec4dbef5ef7ba0d4a7302768e9950e76e1d.png)
例6:空心轮的质量为m1、半径R,绳子的一端悬挂一质量为m2的 物体A,另一端固结在弹簧上。试求:物体A的微振动周期。
解: 自由度1 取广义坐标 法一
T
1 2
J0 2
1 2
m2v2
1 2
(m1
m2 )R2 2
T
(m1
m2 )R2
d dt
(
T
)
(m1
m2
)R
2
d dt
T
T
Q
δ
m1
T 0
d dt
FIi
ri q j
(3)
——广义惯性力
k
则
(Qj QI j ) δ q j 0
即
Q j QI j 0
QI j
j 1
n miai
i 1
ri q j
i
n
mi
1
d( dt
d vi ri
d
n
i 1
t mi
vi qqjrij
)
n i 1
mivi
d dt
(
ri q j
)
(4) (5)
[
5 2
aA
RC
g]m δ
x
[aA
3 2
RC
g]mR δ
0
[
5 2
aA
RC
g]
0
[aA
3 2
RC
g]
0
aA
C
FAI A
mg
M BI B
FC
mg
I
M
C
I
FAI ma A
C
M BI J B B
mg
M C I JCC
拉格朗日方程
![拉格朗日方程](https://img.taocdn.com/s3/m/998e6d2e2f60ddccda38a0e9.png)
2、分析系统的运动,写出用广义坐标及广义速 度表示的系统的动能。(速度及角速度均为绝对的)
d L L ( ) 0 (k 1,2, , N ) k dt q qk
1.2
拉 T T d T 或 L L d L ( ) ( ) 格 q q j k dt q k dt q k q k q k k 朗 5、写出拉格朗日方程并加以整理,得到N个二 日 阶常微分方程。由2 N个初始条件,解得运动方程。 方 程
1.2
d T T Q ,得 由 ( ) dt 1 2 M (2Q 9 P)(r R) 6g
拉 6Mg 即 格 (2Q 9 P)(r R) 2 朗 积分得曲柄的运动方程为 日 3Mg 2 0t 0 t 方 2 (2Q 9 P)(r R) 程 0分别为初始转角和初始角速度。 式中, 0 、
1.2
拉 格 朗 日 方 程
例4 如图轮A的质量为 m1,在水平面上只滚动不 滑动,定滑轮B的质量为 m2,两轮均为均质圆盘,半 m3 径均为R,重物C的质量为 ,弹簧的弹性系数为 , k 试求系统的运动微分方程。 k AR 解:以系统为研究对象, B R 系统具有一个自由度。取 x x C 为广义坐标,x 从重物的平衡 位置量起。系统的动能为 2 1 1 2 1 1 3 x x 2 2 2 T ( m1 R )( ) ( m2 R )( ) m3 x 2 2 2R 2 2 R 2 1 2 (3m1 4m2 8m3 ) x 16 设系统平衡时弹簧的静伸长为 st ,则有关系式
整理后得 3 1 1 2 2 1 2 2 2 2 T m1 x m2 ( x L Lx cos ) m2 L 4 2 4 24
理力13(动力学-李卓球)-动力学普遍方程和拉格朗日方程
![理力13(动力学-李卓球)-动力学普遍方程和拉格朗日方程](https://img.taocdn.com/s3/m/b5d603e65ef7ba0d4a733b4a.png)
i
0
在理想约束的条件下,质点系在任一瞬时所受的主动 力系和虚加的惯性力系在虚位移上所作虚功的和等于零。 ——动力学普遍方程(达朗贝尔-拉格朗日原理)
解析表达式: x y z (( Fxi mi i ) xi ( Fyi mi i ) yi ( Fzi mi i ) zi ) 0
(a)
s1 2s2 R 0
s1 2s2 R
(b)
22
例题
第13章 动力学普遍方程和拉格朗日方程
例 题 13-5
(a)
s1 πR 2s2 2c 2πR a R l
s1 2s2 R 0
s1 2s2 R
例 题 13-3
或
Hale Waihona Puke 1 g a 2 R 0 (a) 2 令 1 0, 2 0, 则 h R1。根据动力
学普遍方程
Ⅰ O
M I1
1
或
Ⅱ FI 2
mgh FI h M I 11 0 1 g a 1R 0 2
(b)
考虑到运动学关系
s 2
2
,
a2 a1 2
a 2 s 2 ) 0 2 2
( m2 g m2 a 2 )s2 ( m1 g m1
消去δs2 ,得
FI1
m1g
a2
4m2 2m1 g 4m2 m1
6
例题
第13章 动力学普遍方程和拉格朗日方程
例 题 13-2
两个半径皆为r的均质轮,中心用连杆相连,在倾角为θ的 斜面上作纯滚动,如图所示。设轮子质量皆为m1 ,对轮心的 转动惯量皆为J,连杆质量为m2,求连杆运动的加速度。
动力学普遍方程及拉格朗日方程
![动力学普遍方程及拉格朗日方程](https://img.taocdn.com/s3/m/14309452168884868762d650.png)
动力学普遍方程的直角坐标形式
[(F
i
ix
mi xi ) δxi (Fiy mi yi ) δyi (Fiz mi zi ) δzi ] 0 i 1, 2, , N
动力学普遍方程 适用于具有理想约束或双面约束的系统。 动力学普遍方程 既适用于具有定常约束的系统,也适用于 具有非定常约束的系统。 动力学普遍方程 既适用于具有完整约束的系统,也适用于 具有非完整约束的系统。 动力学普遍方程 既适用于具有有势力的系统,也适用于具有 无势力的系统。
(m1 m2 ) g m1lcos
2
例题3 质量为m 的三棱柱ABC 1
通过滚轮搁置在光滑的水平面上。 质量为m2、半径为R的均质圆轮沿 三棱柱的斜面AB无滑动地滚下。
y
A ae C2
D
2 ar B
求:1、三棱柱后退的加速度a1; OC 2、圆轮质心C2相对于三棱 柱加速度ar。 解:1、分析运动 三棱柱作平动,加速度为 a1。 圆轮作平面运动,质心的牵连 加速度为ae= a1 ;质心的相对加 速度为ar;圆轮的角加速度为2。
N N ri ri d d ri mi ri mi (ri ) mi ri ( ) q j i 1 dt q j dt q j i 1 i 1 N
N r ri d i r r ( ) mi ri d ri i mi i ri dt q q i 1 i 1 j j dt q q q N
将虚位移原理和达朗贝尔原理综合应用于动力学
★ 建立分析力学的新体系 拉格朗日力学
动力学普遍方程
考察由N个质点的、具有理想约束的系统。根据 达朗贝尔原理,有
Fi FRi mi ai 0
理论力学-拉格朗日方程
![理论力学-拉格朗日方程](https://img.taocdn.com/s3/m/6ba9fae8dc3383c4bb4cf7ec4afe04a1b171b043.png)
d dt
(
L qr
)
L qr
0
24
积分得:
L qr
C
(常数)
(rk)
循环积分
因L = T - U,而U中不显含 qr ,故上式可写成
L qr
qr
(T
U
)
T qr
Pr
C
(常数)
Pr称为广义动量,因此循环积分也可称为系统的广义动量积分。 保守系统对应于循环坐标的广义动量守恒。
能量积分和循环积分都是由保守系统拉格朗日方程积分一 次得到的,它们都是比拉格朗日方程低一阶的微分方程。
12 g
W ( ) M
Q
W (
)
M
T
1 6
2P
9Q g
(R r)2
;
d dt
T
1 6
2P
9Q g
(
R
r)
2
;
T
0
15
代入拉氏方程:
1 2P 9Q (R r)2 0 M
6g
6M
g
(2P 9Q)(R r)2
积分,得:
3M (2 P 9Q )(R r ) 2
gt
2
C1t
C2
代入初始条件,t =0 时, 0 0 , 0 0 得 C1 C2 0
故:
3M
gt 2
(2P9Q)( Rr)2
16
[例2] 与刚度为k 的弹簧相连的滑块A,质量为m1,可在光 滑水平面上滑动。滑块A上又连一单摆,摆长l , 摆锤质量为 m2 ,试列出该系统的运动微分方程。
解:将弹簧力计入主 动力,则系统成为具 有完整、理想约束的 二自由度系统。保守
系统。取x , 为广义
分析力学动力学普遍方程和拉格朗日方程实用课件
![分析力学动力学普遍方程和拉格朗日方程实用课件](https://img.taocdn.com/s3/m/421a539a336c1eb91b375d44.png)
圆柱的角速度为 O (设圆柱o的半径为r)
m(l
R )2,
d dt
L
2mR (l
R) 2
m(l
R ) 2
L mR(l R) 2 mg (l R)sin
已求得
d dt
L
2mR (l
R) 2
m(l
R ) 2
L mR(l R) 2 mg (l R)sin
将式上式代入保守系统的拉氏方程
d dt
L
L
0
得摆的运动微分方程
(l R) R 2 g sin 0
M v
P
R'=-R=- ma
此力是摆锤被迫作非惯性运动时产生的“反作用力”, 称为惯性力。
结论:质点在作非惯性运动的任意瞬时,对于施力于它的物 体会作用一个惯性力,该力的大小等于其质量与加速度的乘 积,方向与其加速度方向相反。
若用Fg表示惯性力,则有 Fg =- ma
说明: 1.此力是不是真实的力! 2.此力作用于施力给质点的物体上! 3.此力又称为牛顿惯性力!
拉格朗日
1736 — 1813,法籍 意大利人,数学家、 力学家、天文学家, 十九岁成为数学教 授,与欧拉共同创 立变分法,是十八 世纪继欧拉后伟大 的数学家。
设质点系由n个质点组成,具有s个完整理想约束,则有 N=3n-s个自由度(广义坐标)。
用q1,q2,…qN表示系统的广义坐标,第i个质点质量为mi, 矢径为ri。则
i 1
n
或 (Fi miai ) δri 0 i 1
动力学普遍方程
表明:在理想约束条件下,在任意瞬时,作用于质点系上 的主动力和惯性力在质点系的任意虚位移上所做虚功之和 等于零。
若 Fi X ii Yi j Zik, ai xii yi j zik,
动力学普遍方程与拉格郎日方程
![动力学普遍方程与拉格郎日方程](https://img.taocdn.com/s3/m/7e1277f5ba0d4a7302763afa.png)
a A = x′′ A ′′ aC = xC
Mg − 3 f s mg M − 3 f s m g = = M + 3m M + 3m M + 2m − f s m = g M + 3m
讨论: (1)只有 M − 3 f s m > 0 时符合题意。 若 M − 3 f s m ≤ 0 ,则
∂ ri δ ri = ∑ δ qj j =1 ∂ q j 代入动力学普遍方程,可得
k
n k
虚位移:
(i = 1, 2,L , n )
(16-4)
∂ ri ∑ (Fi − m ai ) ⋅ ∑ ∂ q δ q j = 0 i =1 j =1 j
(16-5)
∑
j =1
k
n ∂ri ∑ Fi ⋅ i =1 ∂q j
拉格朗日变换式: (1)速度对广义速度的偏导数
∂ri ∂ri ∂ri ∂ri ′ ′ ′ vi = ri′ = q1 + q2 + L + qk + ∂q1 ∂q2 ∂qk ∂t
∂ ri ∂ ri 、 中不包括广义速度, ∂qj ∂t 该式两端对 q ′j 求偏导数
∂ vi ∂ ri = ∂ q′j ∂ q j
Mg δxC − FS δx A − FIA δx A − FIC δxC − M IC δϕ = 0
′′ Mgδ xC − FS δ x A − mx′′δ x A − MxCδ xC A 1 1 ′′ − Mr ( xC − x′′ ) ⋅ (δ xC − δ x A ) = 0 A 2 r 1 ′′ ′′ A Mg − MxC − 2 M ( xC − x′′ ) δ xC
动力学普遍方程
![动力学普遍方程](https://img.taocdn.com/s3/m/6beed0d9dd88d0d233d46a56.png)
ai
xi , yi , zi ,
δ
ri
δ
xi ,δ
yi ,δ
zi
动力学普遍方程的直角坐标形式
(Fix mi xi ) δ xi (Fiy mi yi ) δ yi (Fiz mi zi ) δ zi 0
i
i 1,2, ,n
动力学普遍方程的意义和应用
动力学普遍方程是将达朗伯原理和虚位移原 理而得到的,可用来求解质点系的动力学问题。
Qk 称为与第j个广义坐标 qk 对应的广义主动力
特别地:有势力的广义力
Qk=-
V qk
在势力场中,对应于第 j个广义坐标 qk 的广义力等
于系统势能对于这一广义坐标的偏导数的负数。
三、拉格朗日方程
Qk=
d dt
T ( qk
)-
T qk
对于主动力为有势力的情况,拉格朗日方程可改写为:
d ( L )- L =0 dt qk qk
利用理想约束条件
i
FNi δ ri 0 (i 1,2, , n)
i
得到
(Fi FIi ) δ ri 0 (i 1,2,, n)
i
(Fi FIi ) δ ri 0 (i 1,2,, n)
i
注意到:
FIi mai
动力学普遍方程
(Fi mi ai ) δ ri 0 (i 1,2, , n)
由n个质点所 组成的质点系
主 动 力 F1, F2 , , Fn
质点位置坐标 x1, y1, z1, x2 , y2 , z2 , , xn , yn , zn ,
广义坐标
q1, q2 , , qN
第i个质 点的位矢
虚位移
N 3n S
第18章分析力学基础动力学普遍方程拉格朗日方程.ppt
![第18章分析力学基础动力学普遍方程拉格朗日方程.ppt](https://img.taocdn.com/s3/m/b22eee2033687e21af45a9cd.png)
Q2
3 i 1
Xi
xi
2
Yi
yi
2
Zi
zi
2
(P cos2
W2 2
sin 2 )l2
5
解2:(几何法)选1、2为广义坐标,对应虚位移为1、2。
① 先令1≠0、2=0,如图(a)。所
有力在此虚位移上的虚功为
ΣWF
mO (W1)1
注:由于使用动力学普遍方程较麻烦,通常不用其直接求
解动力学问题。其意义在于导出拉格朗日方程。
作业:选做18-5(试用动力学普遍方程求。注意为2自由度问题) 11
§18-3 拉格朗日方程(简介)
简称拉氏方程。拉格朗日推导出两种形式的拉氏方程,即第一类拉格朗日 方程和第二类拉格朗日方程。第一类方程使用直角坐标及约束方程(用待 定乘子法),因而方程组中的方程很多;第二类方程使用广义坐标、广义 力及动能的概念,使方程组中的方程数大大减少(为广义坐标数或自由度 数)。一般(此处亦如此)的拉格朗日方程均指第二类方程。
Q g
vC2
1 2
1 2
Q g
r 2 2
s
P 2Q v2 P 2Q s2
2g
2g
A C
设系统起始位置为0势能位置,系统 势能为:
vC aC
Q
V Ps Q s sin
OB
Q va
P
s
则拉格朗日函数: 拉格朗日方程:
L T V P 2Q s2 Ps Qssin
WF
n
Wi
i 1
n i 1
(
王振发版分析力学第2章动力学普遍方程和拉格朗日方程
![王振发版分析力学第2章动力学普遍方程和拉格朗日方程](https://img.taocdn.com/s3/m/cfcc479776a20029bd642d97.png)
二、质点系的达朗伯原理
设质点系由n个质点组成, 第i个质点质量为mi,受力有主动力 Fi ,约束反力FNi ,加速度为ai ,假想地加上其惯性力Fgi=-miai ,则根据质点的达朗伯原理,Fi 、 FNi与Fgi应组成形式上的平衡 力系,即
Fi + FNi +Fgi=0 (i =1,2,…,n )
解得
a((22m m11m m22))rr22si2nJ g
(a) (b)
2. 拉格朗日方程
将动力学普遍方程用广义坐标表示,即可推导出第二类拉 格朗日方程。
m
j &x&j x j
m
j &y&j
Fyj
k i1
i
fi y j
m j &z&j
Fzj
N i1
ri qk
δqk
n
n
动力学普遍方程可写成
Fiδri miaiδri 0
其中
i1
i1
i n1miaiδri i n1mi r ikN 1qrikδqk
Nn
k1 i1
mi ri qrik
δqk
根据虚位移原理中广义力与广义虚位移的表示形式,有
n
N
Fi δri Qkδqk
设质点系由n个质点组成,第i个质点质量为mi,
受主动力Fi,约束反力FNi,加速度为ai,虚加上 M
Fgi
其惯性力Fgi=-miai
则根据达朗伯原理, Fi 、FNi 与Fgi, 应组成形式上的平衡力系,即
FNi
ai Fi
Fi + FNi +Fgi= 0
若质点系受理想约束作用,应用虚位移原理,有
动力学普遍方程和拉格朗日方程
![动力学普遍方程和拉格朗日方程](https://img.taocdn.com/s3/m/6230aa5ecc22bcd127ff0cae.png)
由动力学普遍方程(达朗贝尔—拉格朗日原理):
n
(Fi miai ) δ ri 0
i1
n
i1
( Fi
miai )
k j1
ri q j
δqj
0
(23.7)
10
交换求和顺序
k j1
n i1
( Fi
miai )
ri q j
δqj
0
k
j1
n i1
( Fi
miai )
9
推导广义坐标的动力学普遍方程
设完整约束质点系由n个质点组成,系统的自由度为k,其
广义坐标为q1,q2,……,qk,
则各质点相对于定点O的矢径为
ri
ri
(q1,
q2
,,
qk
,t)
(i=1,2,…,n)
(23.5)
各质点的虚位移为
ri
k
ri
j1 q j
δqj
(i=1,2,…,n)
(23.6)
那么能否建立一种不含约束力的非自由质点系的动力学方 程呢?
将达朗贝尔原理和虚位移原理结合起来可以达到这一目的, 因为达朗贝尔原理给出了通过列写形式上的静力学平衡方程求 解质点系的动力学问题的方法,而虚位移原理又建立了不含约 束力的非自由质点系的平衡方程。
3
动力学普遍方程 (general equations of dynamics)
4
第23章 动力学普遍方程和 拉格朗日方程
(general equations of dynamics and lagrange equations)
§23.1 动力学普遍方程 (general equations of dynamics)
动力学普遍方程和拉格朗日方程
![动力学普遍方程和拉格朗日方程](https://img.taocdn.com/s3/m/41eaee8c0029bd64783e2c63.png)
第十四章 动力学普遍方程和拉格朗日方程一、目的要求1.掌握动力学普遍方程的推导过程及式中各项的含义,会对具体问题分析、画受力图后代入动力学普遍方程求解。
2.熟记拉格朗日方程的各种形式,清楚拉格朗日方程与动力学普遍方程的关系。
熟练应用拉格朗日方程求解动力学问题(主要是列运动微分方程、求出加速度或角加速度)。
3.知道在多自由度情况下,用拉格朗日方程求解动力学问题方法简单、步骤规范、容易掌握。
二、基本内容1.基本概念动力学普遍方程、拉格朗日方程的推导及表达式2.主要公式(1)动力学普遍方程∑==⋅-ni i i i i r δa m F 10)( []∑==⋅-+⋅-+⋅-n i i i i iz i i i iy i i i ix z z m F y y m F x x m F10)()()(δδδ (2)拉格朗日方程K k k Q q L q L dt d '=∂∂-∂∂)( N k ,,2,1 = V T L -=,叫拉格朗日函数或动势,T 为质点系的功能,是广义速度k q 和广义坐标k q 的函数V 是势能,是广义坐标的函数。
N 是质点系的自由度数。
k kk q W Q δδ∑'=' 是质点系的非保守力对应于第k 个广义坐标的广义力。
三、重点和难点1.重点(1)质点系自由度的判断;(2)应用拉格朗日方程解题的步骤,拉格朗日方程中各项的计算;(3)不同形式拉格朗日方程的用途。
2.难点(1)正确地选取广义坐标;(2)有保守力时,势能零点的选择及势能的计算;(3)将动能写成广义速度和广义坐标的函数。
四、学习提示1.建议(1)强调用动力学普遍方程和拉氏方程解题均以整体为研究对象。
(2)广义坐标、广义速度的个数均与质点系自由度相同。
(3)强调拉氏方程和动力学普遍方程适用于求多自由度系统的运动量,如加速度、角加速度,建立系统的运动微分方程。
2.例题:P317~P325例14-1,14-2,14-4,14-5,14-6。
拉格朗日方程
![拉格朗日方程](https://img.taocdn.com/s3/m/c5d3b2f204a1b0717fd5dd49.png)
对i求和并移项得
∂ri d ∂ 1 ∂ 1 2 2 mi v i • = ∑[ ( mi vi ) − ( mi vi )] ∑ • ∂qs dt ∂ q 2 ∂qs 2 i i s
•
引入系统动能
T =
∑
i
1 2 m i vi 2
s = 1, 2, • • •, n
dvi ∂ri Qs − ∑ mi • =0 dt ∂qs i
若全部主动力均为有势力,设势能函数为 V(xi,yi,zi),则有
∂V ∂V ∂V ∂V = −( Fi = − i+ j+ k) ∂ri ∂xi ∂ yi ∂zi
∂ri Qs = ∑ Fi • ∂qs i =1
N
s=1,2, …,n 上式即为主动力有势时的广义力表达式。
∂V ∂ri • = −∑ ∂qs i =1 ∂r i
ri = ri(q1, q2, …, qn,t)
i=1,2, … ,N
于是用广义坐标的独立变分表示的虚位移为
δ ri =
∑
s =1
n
∂ ri δqs ∂qs
i
i=1,2, …,N
δW = ∑ Fi • δri
n N ∂ri ∂ri δW = ∑ Fi • ( ∑ δqs ) = ∑ ( ∑ Fi • )δqs ∂qs i =1 s =1 ∂qs s =1 i =1
m φ1 φ2
m
ϕ1 + ϕ 2 2 mr 2 • 2 • 2 cr 2 L= (ϕ1 + ϕ 2 ) − (1 − 2 cos ) 2 2 2
mr 2 • 2 • 2 cr 2 ϕ1 + ϕ 2 2 L= (ϕ1 + ϕ 2 ) − (1 − 2 cos ) 2 2 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O1
x1
δα
l α α l
A
− FIA ⋅ δxA + FIB ⋅ δxB + m1g ⋅ δyA + m1g ⋅ δyB + m2 g ⋅ δyC = 0
根据几何关系,有 根据几何关系,
ωB
δrC
δrB FIB
l m1g
xA = −lsinα yA = lcosα xB = lsinα yB = lcosα yC = 2lcosα
由动力学普遍方程, 由动力学普遍方程,得
∑F ⋅ δr −∑m a ⋅ δr
i =1 i i i =1 i i
n j j
N
N
i
=0
∑F ⋅ δr = ∑Q δ q
i =1 i i j =1
N
Q j ——广义力
n N ∂ri ∂r && ⋅ ∑ δ qj = ∑(∑mi && ⋅ i )δ qj ri ∑miai ⋅ δr i = ∑miri j=1 ∂qj ∂qj i =1 j =1 i =1 i =1
MI2 = J2 α2
J2 = 1 m2 R2 2
α
m2 g
B
x
m1g
ar = Rα2
m2 gsinα ⋅ Rδϕ + FI2ecosα ⋅ Rδϕ − FI2r ⋅ Rδϕ-J2α2 ⋅ δϕ = 0
1 3 sinα ⋅ + (a1cosα − ar ) = 0 g 2
解:4、应用动力学普遍方程 令: δ x ≠ 0,δ ϕ = 0
i i i i i
(i = 1,2, ⋅⋅⋅, N)
动力学普遍方程的直角坐标形式
∑[(F
i
ix
− mi &&i ) ⋅ δxi + (F − mi &&i ) ⋅ δyi + (Fiz − mi &&i ) ⋅ δzi ] = 0 x y z iy i =1,2, ⋅⋅⋅, N
动力学普遍方程 适用于具有理想约束或双面约束的系统。 适用于具有理想约束或双面约束的系统。 动力学普遍方程 既适用于具有定常约束的系统,也适用于 既适用于具有定常约束的系统, 具有非定常约束的系统。 具有非定常约束的系统。 动力学普遍方程 既适用于具有完整约束的系统,也适用于 既适用于具有完整约束的系统, 具有非完整约束的系统。 具有非完整约束的系统。 动力学普遍方程 既适用于具有有势力的系统,也适用于具有 既适用于具有有势力的系统, 无势力的系统。 无势力的系统。
ωB
l m1g m2g y1
FIB
球A、B绕 y轴等速转动;重锤静止不动。 轴等速转动;重锤静止不动。 球A、B的惯性力为
FIA = FIB = mlsin αω2
2、令系统有一虚位移δα。A、B、C 三处的 虚位移分别为δ 虚位移分别为δrA、δrB、 δrC 。 3、应用动力学普遍方程 δrA FIA m1g l
解:5、求解联立方程
1 3 sinα ⋅ + (a1cosα − ar ) = 0 g 2
(m + m2 )a1 1 ar = m2 cosα
m2 gsin2α a1 = 2 3(m + m2 )- m2cos α 2 1 2gsin α(m + m2 ) 1 ar = 2 3(m + m2 )- m2cos α 2 1
j
j
& ∂ri d N & = ∑mri ⋅ & dt i=1 ∂qj
δri
系统的总虚功为
(i =1,2, ⋅⋅⋅, N)
− miai ) ⋅ δri = 0 (i =1,2, ⋅⋅⋅, N)
∑(F + F
i i
Ri
系统的总虚功为
∑(F + F
i i
Ri
− miai ) ⋅ δri = 0
(i = 1,2, ⋅⋅⋅, N)
利用理想约束条件
∑F
i
RiΒιβλιοθήκη ⋅ δri = 0∂ri ∂ri 函数, 和 仅为时间和广义坐标的 函数, ∂t ∂q j
q 与广义速度& j无关
& ∂ri ∂ri = ⇒ 第一个Lagrange经典关系(消点) 第一个Lagrange经典关系 消点) 经典关系( & ∂qj ∂qj
n ∂ri ∂ri &= & ri qk +∑ ∂t k =1 ∂qk
拉格朗日(Lagrange) 拉格朗日(Lagrange)方程
主 动 力 虚 位 移 由N个质点所 组成的质点系 广义坐标 第i个质 点的位矢
F , F2 , ⋅⋅⋅, FN 1
δ r1,δ r2 ,L,δ rN
q1, q2 , ⋅⋅⋅, qn
ri = ri (q1, q2 , ⋅⋅⋅, qn , t)
动力学普遍方程 和拉格朗日方程
※ ※ ※ 引 言 动力学普遍方程 拉格朗日方程
※ 拉格朗日方程的初积分 ※ 结论与讨论
经典动力学的两个发展方面
拓宽研究领域
牛顿运动定律由单个自由质点
★ 受约束质点和质点系(以达朗贝尔原理为基础) 受约束质点和质点系(以达朗贝尔原理为基础)
欧拉将牛顿运动定律
★ 刚体和理想流体 矢量动力学又称为牛顿- 矢量动力学又称为牛顿-欧拉动力学 又称为牛顿 寻求新的表达形式
将虚位移原理和达朗贝尔原理综合应用于动力学
★ 建立分析力学的新体系 拉格朗日力学
动力学普遍方程
考察由N个质点的、具有理想约束的系统。 考察由N个质点的、具有理想约束的系统。根据 达朗贝尔原理, 达朗贝尔原理,有
Fi + FRi − miai = 0
主动力
(i = 1,2, ⋅⋅⋅, N)
惯性力
令系统有任意一组虚位移
δ x = 0,δ ϕ ≠ 0
第二组
二自由度系统具有两组虚 位移: 位移:
δ x ≠ 0,δ ϕ = 0
解:4、应用动力学普遍方程 令: δ x = 0,δ ϕ ≠ 0
y A
FI 2 r
MI2
δϕ D C2
FI 2 e
FI1 = m a1 1
FI2e = m2a1
C1 OC
FI1
FI2r = m2ar
y A δx OC
FI 2 r
MI2
D C2
FI 2 e
FI1 = m a1 1
FI2e = m2a1
C1
FI1
FI2r = m2ar
MI2 = J2 α2
J2 = 1 m2 R2 2
α
m2 g
B
x
m1g
ar = Rα2
− (FI1 + FI2e )δx + FI2r cosα ⋅δx = 0
(m + m2 )a1 1 ar = m2 cosα
& ∂ri ∂qj
=
d ∂ri ∂q dt j
第二个拉格朗日关系式
N N ∂ri ∂ri d d ∂ri & & ri ∑mi&& ⋅ ∂q = ∑mi dt (ri ⋅ ∂q ) −∑mi ri ⋅ dt (∂q ) i =1 i =1 i =1 j j j N
N & & ∂ri d r ∂ri & ∂ri mi ∂ (ri ⋅ & =∑ = i& ) − ∑mi ri ⋅ d ∂ri & dtq ∂qj ∂dtj ∂q q i =1 i =1 & ∂q ∂ N
y A a1 C1 ae C2 α
D α2 ar B
求:1、三棱柱后退的加速度a1; 三棱柱后退的加速度a OC 2、圆轮质心C2相对于三棱 圆轮质心C 相对于三棱 柱加速度a 柱加速度ar。 解:1、分析运动 三棱柱作平动, 三棱柱作平动,加速度为 a1。 圆轮作平面运动,质心的牵连 圆轮作平面运动, 加速度为a 加速度为ae= a1 ;质心的相对加 速度为a 圆轮的角加速度为α 速度为ar;圆轮的角加速度为α2。
N
N
n
∂ri δ ri = ∑ δ qj j =1 ∂q j
n
∂r ∂ri && ∑Fi ⋅ δr i −∑miai ⋅ δr i = ∑(Qj − ∑miri ⋅ ∂q )δ qj = 0 i =1 i =1 j =1 i=1 j
N N n N
∂ri Qj − ∑mi && ⋅ ri = 0 ( j = 1,2,L, n) ∂qj i =1
(m1 + m2 )g ω = m1lcosα
2
例题3 质量为m 三棱柱ABC 例题3 质量为m 的三棱柱ABC 1
通过滚轮搁置在光滑的水平面上。 通过滚轮搁置在光滑的水平面上。 质量为m 半径为R 质量为m2、半径为R的均质圆轮沿 三棱柱的斜面AB无滑动地滚下 无滑动地滚下。 三棱柱的斜面AB无滑动地滚下。
δrA FIA m1g l
C
O1
x1
δα
l α α l
A
δxA = −l cosαδα δyA = −l sin αδα δxB = l cosαδα δyB = −l sin αδα δyC = −2l sin αδα
ωB
δrC
δrB FIB
l m1g
m2g y1
2m1lsinαω2lcosαδα− 2m1glsinαδα− 2m2 glsinαδα = 0
动力学普遍方程的应用
动力学普遍方程 主要应用于求解动力学第二类问
题,即:已知主动力求系统的运动规律。 已知主动力求系统的运动规律。
应用 动力学普遍方程 求解系统运动规律时,重 求解系统运动规律时, 要的是正确分析运动,并在系统上施加惯性力。 要的是正确分析运动,并在系统上施加惯性力。 应用 动力学普遍方程 ,需要正确分析主动力和 惯性力作用点的虚位移,并正确计算相应的虚功。 惯性力作用点的虚位移,并正确计算相应的虚功。 由于 动力学普遍方程 中不包含约束力,因此, 中不包含约束力,因此, 不需要解除约束,也不需要将系统拆开。 不需要解除约束,也不需要将系统拆开。