运筹学 单纯形法1
运筹学单纯形法
只要取 x5=min{-,8/2,12}=4 就有上式成立。 x5=4时, x4=0,故决定用x5换x4 x1 =4- 1/4 x4 x5 =4-1/2 x4 +2 x3 x2 =2+1/8 x4–1/2 x3 代入得 z=14-3/2 x3 –1/8 x4 ,令x3 ,x4=0得z=14。新基可 行解为 X(3) =(4,2,0,0,4) T –为最优解,新顶点Q2 最优目标值z=14 。
§3.4 最优性检验和判别定理
线性规划解的四种可能: 1、有唯一解; 2、无穷多最优解; 3、无界解; 4、无可行解。 何时达最优解, 何种最优解?
将基本可行解X(0)和X(1)分别代入目标函数得
z z
(0)
= ∑ ci xi0
i =1 m
mቤተ መጻሕፍቲ ባይዱ
(1)
= ∑ ci [ xi0 − θ aij ] + θ ci
§3.3 从初始基可行解转换为另一基可行解
0 0 记初始基可行解为X(0),有 X ( 0 ) = (x10 x 2 L x m 0 L 0
)
Pi xi0 = b 该解满足约束方程, 即 ∑
i =1
m
(1)
非基向量可以用基向量的线性组合表示
Pj = ∑ aij Pj
i =1 m
m
(2) (3)
Pj − ∑ aij Pj = 0
从实际例子中分析单纯形法原理的基本框架为 •第一步:将LP线性规划变标准型,确定一个初始可行解 (顶点)。 •第二步:对初始基可行解最优性判别,若最优,停止;否 则转下一步。 •第三步:从初始基可行解向相邻的基可行解(顶点)转 换,且使目标值有所改善—目标函数值增加,重复第二和 第三步直到找到最优解。
运筹学
1(单纯形法)例:Min Z=-2x1-x2+x3 , s.t. 3x1+x2+x360≤x1-x2+2x310≤,x1+x2-x320≤,xj 0≥,解析:对第一、二、三个不等式添加松弛变量x4 x5 x6,则原线性问题化成标准形形式为:(略)因为B=(A4 A5 A6)是一单位矩阵,且b=(60 10 20)T>0 所以基B 是可行基,x4 x5 x6为基变量,x1 x2 x3为非基变量,基B 对应的基本可行解为检验数02>=ξ,故当前解不是最优解,A1列中有三个元素a11 a21 a31 均为正数,取min ()313212111,,a b a b a b =min ()120110360,,=10故转轴元为a21,x1为进基变量,x5为出基变量,进行旋转后得下表(略)它对应的基本可行解为x=(10 0 0 30 0 10)T,其目标函数值为Z0=-20,但,032>=ξ仍不是最优解,(以下的过程跟前面一样)最后得Z0=-35,检验向量0<ξ故为最优解。
故基本可行解x*=(15 ,5 ,0 )Tm 目标函数值为Z0=-35。
2(两阶段法)例 max z=3x1+4x2+2x3 s.t. x1+x2+x3+x430≤, 3x1+6x2+x3-2x40≤, x24≥解:化为标准形形式为min z=-3x1-4x2-2x3 s .t.分别加x5 x6 x7松弛变量,因为该线性规划的系数矩阵的系数矩阵已包含两个单位向量,就是A5=(100)T ,A6=(010)T ,第一阶段只要增加一个人工变量x8得到辅助LP 问题为min g=x8 s.t .以下略,作如下表(略),将表中第三行加到关于g 的第0行中,得到第一张单纯形表(略)按单纯形迭代,表略,第一阶段结束,得到辅助问题的一个最优解,3(对偶单纯形法)例 min 2x1+3x2+4x3, s.t. x1+2x2+x33≥ 2x1-x2+3x34≥ x1 x2 x3 0≥,解:引进非负的剩余变量x40≥,x50≥,将不等式约束化为等式约束直接利用对偶单纯形法求解,b2=- 4<b1=-3,所以x5为出基变量,由以下比值决定进基变量min(3422,----)=21a ξ=1,所以x1为进基变量,以a21为转轴元进行旋转变换得下表(略)因为b1=-1<0,所以x4为出基变量,因为min( )所以x2为进基变量,以a12为转轴得表(略)此时b>0,故原问题最优解为x*=( )T,其最优值Z0=() 4写出下面线性规划的对偶规划。
运筹学课件1-4单纯形法计算步骤
b 21 4
9 4
3 x1 1 -1 3 4 -1 12
9 x2 3 1 9 0 1 0
0 x3 1 0 0 1 0 0
0 x4 0 1 0 -3 1 -9
θ 7 4
9/4 -
所以把x3换出为非基变量,x1为换入变量即新的基变量。
第20页
cj
CB 0 0
0 9 3
XB x3 x4 cj-zj x3 x2 cj-zj x1
cj-zj
x3 x1 x5 cj-zj
6
0 1 0
5
5/2 1/2 1
0
1 0 0
0
-1/2 1/2 -1
0
0 0 1
75 5
0
2
0
-3
0
5
x2
5
0
1
0
-1
1
第10页
cj CB 0 0 0 0 6 0 XB x3 x4 x5 b 90 75 80 105/2 75/2 5
6 x1 1 2 2
5 x2 3 1 2
9/4
-
3 9
9/4 25/4
1 0 0
25
第24页
cj CB 0 0 XB x3 x4 cj-zj b 21 4
3 x1 1 -1 3
9 x2 3 1 9
0 x3 1 0 0
0 x4 0 1 0 θ 7 4
0
9
x3
x2 cj-zj x1 x2 cj-zj
9
4
4
-1 12
0
1 0 0 1 0
1
0 0 1/4 1/4 -3
i 1
第1页
单纯形表求解线性规划问题
运筹学单纯形法的计算步骤
b2
0… 0
a2,m+1
…
a2n
2
…
…
…
…
cm xm
bm
0… 1
am,m+1
…
amn
m
-z -z 值 0 … 0
m+1
…
n
XB 列——基变量, CB 列——基变量的价值系数(目标函数系数) cj 行——价值系数,b 列——方程组右侧常数 列——确定换入变量时的比率计算值
下面一行——检验数, 中间主要部分——约束方程系数
(4).根据max(j > 0) =k,拟定xk为换入变量,按 规则计算 =min{bi/aik\aik>0}
可拟定第l行旳基变量为换出变量。转入下一步。
(5).以 alk 为主元素进行迭代(即用高斯消去法或称为旋转变 换),把 xk 所对应的列向量变换为(0,0,…,1,…,0)T,将
XB 列中的第 l 个基变量换为 xk,得到新的单纯形表,返回(2)。
b
x1
x2
x3
x4
x5
2 x1 2 0 x4 8 3 x2 3
1
0
1
0 -1/2 -
0 0 -4 1 (2 ) 4
0 1 0 0 1/4 12
-z
-13
0
0 -2
0 1/4
X(2)=(2,3,0,8,0)T, z2 =13
cj
2 30 0 0
CB XB
b
x1
x2
x3
x4
x5
2 x1 4 0 x5 4 3 x2 2
量,给出第一阶段的数学模型为:
min = x6+x7
x1-2x2+x3+x4
运筹学-第一章-单纯形法基本原理
X ( 0) ( x1 , x2 ,, xm ,0,0,...,0)T (b1 , b2 ,......,bm ,0,0,...,0)T
0
0
0
单纯形法基本原理
2、基变换 定义:两个基可行解称为相邻的,如果它们之间变换 且仅变换一个基变量。 初始基可行解的前m个为基变量,
X
凸集
顶点
凸集
不是凸集
顶点:如果凸集C中不存在任何两个不同的点X1,X2,使X 成为这两个点连线上的一个点
单纯形法基本原理
定理1:若线性规划问题存在可行解,则该问题的可行域是 凸集。 定理2:线性规划问题的基可行解X对应可行域(凸集)的顶 点。 定理3:若问题存在最优解,一定存在一个基可行解是最优 解。(或在某个顶点取得)
的左边变成一个单位矩阵,
b (b1 a1 j ,.,bl 1 al 1 j , , bl 1 al 1 j ,.,bm am1 j , ) ( x1 , x2 ,..., xl 1 , x j , xl 1 ,..., xm )
X
(1)
T
与X
( 0)
是相邻的基可行解。
M M bm 0 L
M M
M M
L 1 am,m1 L L 00
M , M amn m
bi 其中: i a kj 0 a kj
j c j ci aij c j z j
单纯形法的计算步骤
例1.12 用单纯形法求下列线性规划的最优解
max Z 3 x1 4 x 2 2 x1 x 2 40 x1 3 x 2 30 x , x 0 1 2
xi0 aij 0, aij 0,取值无限,
运筹学单纯形法
AX+IXs=b
X≥0
X,Xs≥0
-x1+x2+4x3≤2 (引入松弛变量x4) -x1+x2+4x3+x4=2 松弛变量的意义:未被充分利用(剩余)的资源, 松弛变量的价格系数是0(c4=0)。
(3) -x1+x2+4x3≥2 (引入剩余变量x5) -x1+x2+4x3-x5=2 剩余变量的意义:超用的资源(c5=0)
运筹学
Operations Research
2.2 单纯形法
2.2.1 线性规划模型的标准形式
一、标准型要求:
(1)目标最大化(max) (2)约束是“=”约束 (3)右端项非负 (4)所有变量非负 标准型
二、非标准型化为标准型
(1) min CX
加负号
max(-CX)
min z=2x1+4x2 (令z’=-z) max z’=-2x1-4x2 (2) AX≤b
例2:将下面的线性规-x1,x3=x3’-x3”,增加松弛变量x4, 增加剩余变量x5。
(4) xj≤0
( 令 xj’= -xj )
x j ’≥ 0
(5) xj为自由变量
( 令xj=xj’-xj’’ )
xj’≥0, xj’’≥0
例1:在煤电油例中,其线性规划模型为: maxz = 7x1+12x2 9x1+ 4x2≤360 4x1+ 5x2≤200 s.t. 3x1+10x2≤300 x1,x2≥0 化标准型:增加松弛变量x3、x4、x5 maxz = 7x1+12x2+0x3+0x4+0x5 9x1+ 4x2 +x3 =360 +x4 =200 s.t. 4x1+ 5x2 3x1+10x2 +x5 =300 x1,…,x5≥0
运筹学第5章 单纯形法
0 0 1
在第一次找可行基时,所找到的基或为单位矩阵或为由单位矩阵的 各列向量所组成,称之为初始可行基,其相应的基本可行解叫初始基 本可行解。如果找不到单位矩阵或由单位矩阵的各列向量组成的基作 为初始可行基,我们将构造初始可行基,具体做法在以后详细讲述。
8Leabharlann §1 单纯形法的基本思路和原理
二、 最优性检验 所谓最优性检验就是判断已求得的基本可行解是否是最优解。
5
§1 单纯形法的基本思路和原理
线性规划解之间的关系:
1.可行解与最优解: 最优解一定是可行解,但可行解不一定是最优解。
2. 可行解与基本解: 基本解不一定是可行解,可行解也不一定是基本解。
3. 可行解与基本可行解: 基本可行解一定是可行解,但可行解不一定是基本可行解。
4. 基本解与基本可行解: 基本可行解一定是基本解, 但基本解不一定是基本可行解。
9
§1 单纯形法的基本思路和原理
2.最优解判别定理
对于求最大目标函数的问题中,对于某个基本可行解,如
果所有检验数 j≤0,则这个基本可行解是最优解。 下面我
们用通俗的说法来解释最优解判别定理。设用非基变量表示
的目标函数为: z z0 j xj jJ 由于所有的xj的取值范围为大于等于零,当所有的 j都小
由线性代数的知识知道,如果我们在约束方程组系数矩阵中找
到一个基,令这个基的非基变量为零,再求解这个m元线性方程组就
可得到唯一的解了,这个解我们称之为线性规划的基本解。
在此例中我们不妨找到
1 1 0 B3 1 0 0
为A的一个基,令这个基的非
1 0 1
基变量x1,s2为零。这时约束方程就变为基变量的约束方程:
第五章 单 纯 形 法
运筹学单纯形法
单纯形表
max z=x1+2x2 s.t. x1+x23 x2 1 x1, x2 0
Cj CB XB b 0 0 Z X3 3 X4 1 0 1 2 0 0
标准化
max z=x1+2x2 s.t. x1+x2+ x3 =3 x2 +x4=1 x1, x2 ,x3, x40
X1 X2 X3 X4 1 0 1 1 1 2 1 0 0 0 1 0
Z=x1+2x2 x1+x2+ x3 =3 x2 +x4=1 单纯形表
Cj
1
2
0
0
单纯形法原理 单纯形表 CB XB b
z=x1+2x2 x3 =3-x1-x2 x4=1 -x2
x2进基,x4离基
X1 X2 X3 X4
3/1 11
0
1 0
1 1
1 1
2 2 0 1 0 2 0 1 0 0 1 0 -1 0
max z=x1+2x2 s.t. x1+x2+x3 =3 x2 +x4=1 x1, x2, x3, x40
x1=0
(x1,x2,x3,x4)= (0,1,2,0), z=2 C (x1,x2,x3,x4)= (2,1,0,0), z=4,最优解
B
x4=0 x3=0
(x1,x2,x3,x4)= (0,0,3,1), z=0
1 0
0 0
0 1
0
CB XB b 0 2 Z Cj CB XB b 1 2 Z X1 2 X2 1 4 X3 2 X2 1 2 1 1 0 0
X1 X2 X3 X4 1 0 1 1 0 0 0 -1 1 -1
运筹学单纯形法
16
三、其他解旳情况 1、无穷多种解 例2 解LP问题:
min Z x1 2 x2 x3 0 x4 0 x5
xx51
1 2c 5 3c
其中c是满足非负性旳任意常数。
21
再由
x1,
x5
旳非负性,知:
x1 x2
1 2c c
0 0
x5 5 3c 0
解出 0 c 5 3
最优解为:
(2c 1, c,0,0,5 3c)T (其中0 c 5 )
3
最优值为:max S 1.
22
2、无最优解旳两种情况:
相应地,将 X 0代入目的函数得 Z ( X 0 ) 0
从数学角度看,若让非基变量 x1, x2 取值从零增长,
6
min Z 2x1 x2 0x3 0x4 0x5
相应旳目旳函数值Z也将随之降低。所以有可能找到一种 新旳基本可行解,使其目旳函数值有所改善。即进行基变
换,换一种与它相邻旳基。再注意到 x1 前旳系数-2比 x2
x3
6 x1 x1
2x2 x2
x4 x5
xi 0
i 1,,5
15 24 5
目前可行基{ x3, x4 , x5 }所相应旳基本可行解
X 0 (0,0,15,24,5)T
(相应可行域旳 o(0,0) )
显然不是最优。 因为从经济意义上讲, x1 0, x2 0
意味着该厂不安排生产,所以没有利润。
2
运筹学单纯形法各个步骤详解
运筹学单纯形法各个步骤详解1. 引言大家好,今天咱们来聊聊一个听起来有点高深莫测,但其实特别有意思的东西——运筹学的单纯形法。
别看它名字复杂,其实它就是解决线性规划问题的绝招,像一把钥匙,打开了优化的宝藏。
想象一下,如果你有一大堆资源,要把它们分配到不同的地方,听起来就像玩拼图一样。
好了,废话不多说,咱们直接进入正题!2. 单纯形法的基本概念2.1 线性规划的起源首先,线性规划是啥?简单来说,它就是在一系列限制条件下,想要最大化或最小化某个目标函数。
这听起来像是在做一场抉择,你得在各种选择中找到最优解。
有点像在超市里,看到一堆零食,犹豫不决,最后只能选那包最爱吃的,既美味又划算。
2.2 单纯形法的基本思路而单纯形法就是解决这个问题的武器。
它的核心思想很简单,跟追求完美一样,咱们要一步步地朝着最优解迈进。
想象你在爬山,每一步都在找那个最容易走的路,直到你站在山顶,俯瞰整个美景,啊,真是太棒了!3. 单纯形法的步骤3.1 初始化那么,怎么开始呢?首先,咱们得把问题转化为标准形式。
这就像把一个繁杂的图案简化成几何图形,让它看起来更清晰。
要把不等式转换为等式,添加松弛变量,这样就可以把问题整理得干干净净。
3.2 构建初始单纯形表接下来,咱们构建初始单纯形表。
这个表就像一本菜单,上面列出了所有可能的选择和它们的成本。
每个变量都有自己的“价格”,而咱们的目标就是尽量少花钱,最大化收益。
想想你逛街时,总是想着要花最少的钱买到最好的东西,嘿,这就是单纯形法的精神!3.3 寻找基变量和入基变量然后,咱们得找出“基变量”和“入基变量”。
基变量就像在舞台上表演的演员,而入基变量就是准备加入的“新人”。
在这个过程中,咱们得判断哪个新人能让整个表演更精彩。
如果找对了,舞台瞬间就能变得熠熠生辉,若是找错了,哎呀,那可就尴尬了。
3.4 更新单纯形表一旦找到了合适的入基变量,咱们就得更新单纯形表。
这一步就像在调味,添加新的元素,让整体味道更加丰富。
物流运筹学单纯形法
如何确定出基变量(可以按照下述方法来理解) 当x2定为入基变量后,必须从x3 、 x4 、 x5中换出来一个,并保 证其余的变量在新可行解中还都是非负,即: x3≥0 、 x4 ≥0 、 x5 ≥0
因为x1 仍为基变量, 所以将x1=0,带入约 束条件,得到:
4 x2 x3 360 5 x2 x4 200 s.t . 10x2 x5 300 x , x , x , x , x 0 1 2 3 4 5
需要解决的问题: (1)为了使目标函数逐步变优,怎么转移? (2)目标函数何时达到最优?判断标准是什么?
1.5.1单纯形法原理
单纯形法步骤
确定初始基本可行解
检验其 是否为最优
是
停
主要工作: 最优性检验
否 寻找更好的 基本可行解
主要工作: 1、基变换(将原来的基换成新的基) 2、修正单纯形表,得到新的基本可行解
基变量的 价值系数 基变量
基本 可行解
CB
0 0 0
XB
X3 X4 X5 机会成本行 σj
7 B b 360 200 300
-1
12 X2 4 5 10 0 12
0 X3 1 0 0 0 0
0 X4 0 1 0 0 0
0 X5 0 0 1 0 0
X1 9 4 3 0 7
θ
90 40 30
因为基变量的检验数σ1和σ2都大于0,所以当前解不是最优。需要变换可行 基,寻找新的解。即原来的非基变量x1 、x2,要有一个被换为基变量,基变 量中也要有一个被换为非基变量,以确定新的基、新的解。
0
0
0
主元列 (确定入基变量)
主元行 (确定 出基变 量)
主元素
运筹学 单纯形法的迭代原理讲解
运筹学单纯形法的迭代原理讲解
单纯形法是一种用于解决线性规划问题的常用方法,其基本思想是通过迭代的方式逐步接近最优解。
下面是单纯形法的迭代原理的讲解:
1. 初始解的选择:首先需要选择一个初始解,通常选择的方法是构造一个基可行解,即使所有的约束条件都满足的解。
2. 判断最优性:在每一次迭代中,需要判断当前解是否为最优解。
首先,计算当前解对应的目标函数值。
然后,检查是否存在非基变量的系数大于等于0(对于最小化问题)或者小于等于0(对于最大化问题),如果存在这样的非基变量,则当前解不是最优解;如果不存在这样的非基变量,则当前解是最优解。
3. 生成新解:如果当前解不是最优解,则需要生成新的解。
首先,选择一个非基变量,使得目标函数的值可以通过增加(对于最小化问题)或减少(对于最大化问题)该变量的值来改善。
然后,需要计算这个非基变量能够增加或减少的最大量,称为变量的进步长度。
最后,通过调整基变量的值来生成新的解。
4. 更新目标函数和约束条件:在生成新解之后,需要更新目标函数和约束条件,以便于下一次迭代。
具体操作包括计算新解对应的目标函数值,计算新解对应的约束条件的值,调整目标函数和约束条件的系数。
5. 重复迭代:根据判断最优性的结果,进行下一次迭代。
如果当前解是最优解,
则算法结束;否则,继续进行下一次迭代。
通过不断重复这一迭代过程,直到找到最优解或者确定问题无解为止。
单纯形法的迭代过程一般会在有限次数内结束,并且能够得到最优解。
运筹学单纯形法例题求解过程
运筹学单纯形法例题求解过程摘要:一、运筹学单纯形法概述二、单纯形法求解步骤1.确定基变量和初始基本可行解2.编制初始单纯形表3.判断基本可行解是否为最优解4.迭代求解最优解三、例题求解过程1.题目描述2.化为标准型3.建立初始单纯形表4.迭代计算四、总结正文:一、运筹学单纯形法概述运筹学单纯形法是一种求解线性规划问题的方法,它的主要思想是通过不断迭代,逐步优化基变量的值,从而求得问题的最优解。
单纯形法可以有效地解决具有如下特点的问题:目标函数线性,约束条件线性,变量非负。
二、单纯形法求解步骤1.确定基变量和初始基本可行解在求解线性规划问题时,首先需要确定基变量,即在约束条件方程组中,选择一部分变量作为基变量,用于表示其他变量。
通过寻找或构造单位矩阵的方法,可以确定基变量,从而求出初始基本可行解。
2.编制初始单纯形表基于初始基本可行解和线性规划模型提供的信息,可以编制初始单纯形表。
单纯形表包含了基变量、非基变量、目标函数系数、约束条件系数和检验数等信息,用于描述问题的基本情况。
3.判断基本可行解是否为最优解通过检验数cj-zj 来判断基本可行解是否为最优解。
如果所有非基变量的检验数cj-zj<0,说明已经达到最优解,计算停止。
如果存在cj-zj>0,但所有cj-zj>0 所在列对应的所有aij<0,说明无最优解,计算停止。
如果至少存在一个cj-zj>0,并且所对应的所有j 列中至少有一个aij>0,说明没有达到最优解,需要继续迭代求解。
4.迭代求解最优解在迭代过程中,首先需要确定换入变量,即选择最大检验数对应的非基变量。
然后,利用特定公式计算出换出变量,即在基变量中选择一个与换入变量对应的变量进行替换。
接着,生成新的单纯形表,将换入变量和换出变量进行置换后,调整新基变量对应的矩阵为单位矩阵。
最后,重新计算检验数和目标函数值,返回第二步,直至找到最优解。
三、例题求解过程假设有一个线性规划问题,目标函数为MINfx1x2Mx4Mx6,约束条件为:3x1 + 4x2 ≤ 122x1 + 3x2 ≤ 10x1, x2 ≥ 0首先,将约束条件化为标准型:3x1 + 4x2 + s1 = 122x1 + 3x2 + s2 = 10x1, x2 ≥ 0然后,建立初始单纯形表:| 基变量| 非基变量| 目标函数系数| 约束条件系数| 检验数| ---------------------------------------------------------------------行1 | x1 | s1 | -3 | -4 | -12 |行2 | x2 | s2 | -4 | -3 | -10 |行3 | x1 | x2 | 0 | 0 | 0 | 行4 | s1 | x2 | 0 | 3 | 0 | 行5 | s2 | x1 | 0 | 2 | 0 | 根据初始单纯形表,可以得到初始基本可行解为:x1 = 0, x2 = 0接下来,判断基本可行解是否为最优解:c1 = -12, c2 = -10, c3 = 0, c4 = 0, c5 = 0由于c3、c4 和c5 都小于等于0,所以基本可行解不是最优解,需要继续迭代求解。
运筹学一般单纯形法
1
0 0 0 1
0
1 0 0 0
0
0 1 0 -2
3
6 2 →
Cj-Zj
0
2
0
4
x4
x2 →
8
15
3 P1
10 P2
0 P3
0 P4
θi
注
3
-1
4
5
1
0
0
1
段 1 cj-zj
cj ↓ 0 0
→
0
3
10
0
0
基
x3 x4 →
b
24 15
P1
3 -1 3
P2
4 5 10
P3
1 0 0
P4
0 1 0
θi
注
步骤4.2:判断
(1)若所有检验数均≤0时,即得到最优解和 最优值; (2)若检验数存在正值,继续下一步。
3
0 3 1 3
2
(1) 4 0 0
0
0 0 1 0
1
0 0 0 1
0
1 0 -2 -2
6
2 →
Cj-Zj
0 2 0
4
x2
→
2
0
1
0
0
1
Cj-Zj
Cj 段 ↓
→ 基
0 b
3 P1
4 P2
0 P3
0 P4
0 Qi P5 注
0
1 0 0
x3
x4 x5 → x3
6
12 2 0 2
1
3 0 3 1
2
2 (1) 4 0
用主元列对应的变量(入基变量/调入变量)代替之,进入 下一段。
运筹学1-4单纯型法的计算步骤
2 X1 1 3 X2 2
Z8
1 0 -1 4/3 -1/3 0 1 2 -1/3 1/3 0 0 -1 -5/3 -1/3
从最优表可知: 该LP的
最优解是X*=(1, 2, 0, 0, 0)T 相应的目标函数最优值是Zmax=8
表格单纯形法求解步骤
第一步:将LP化为标准型,并加以整理。
引入适当的松驰变量、剩余变量和人工变量 ,使约束条件化为等式,并且约束方程组的系数 阵中有一个单位阵。
(这一步计算机可自动完成)
确定初始可行基,写出初始基本可行解
第二步:最优性检验
计算检验数,检查: 所有检验数是否≤ 0?
是——结束,写出最优解和目标函数最优值; 还有正检验数——检查相应系数列≤ 0?
是——结束,该LP无“有限最优解”! 不属于上述两种情况,转入下一步—基变换。
确定是停止迭代还是转入基变换?
0 1 0
0
0
1
0
0
0
1 c1 c2
0 a1,m1 a1,m2 0 a2,m1 a2,m2
1 a a m,m1 m,m2 cm cm1 cm2
a1,n b1
a2,n
b2
am,n bm
cn 0
-Z,x1,…,xm所对应的系数 列向量构成一个基
用矩阵的初等行变换将该基变成单位阵,这时
c1, c2 , , cm 变成0,相应的增广矩
第四步:判断检验数、入基、出基变量。 …….
三、表格单纯形法:
1、 初始单纯形表的建立 (1)表格结构:
Cj 2 3 3 0 0
CB
XB
b xj
x1 x2 x3 x4 x5
j
0 X4
3
运筹学单纯形法讲解
运筹学单纯形法讲解一、单纯形法基本概念在运筹学中,单纯形法是一种在给定点搜索可行解集合的一种技术。
设有m个点x、 y、 z分布在两点P、 Q,它们是相互独立的,这样的点组成了单纯形。
单纯形是可以用于求解最优化问题的一种简单的对象,因而又称为对象或对象群。
由单纯形求出的最优解就叫做单纯形的最优解。
在实际应用中,一般用来求最优解的都是单纯形。
二、单纯形法适用条件和范围在运筹学中,单纯形法常用于求解线性规划、非线性规划和整数规划等,还可以求解网络的流量、质量等。
但当运输问题用单纯形法求解时,解不存在,无最优解,也无单纯形。
非线性规划只能得到对象最优解。
三、单纯形法具体步骤和算法介绍1、明确问题的目标。
2、计算出所有解,按确定的先后顺序排列。
3、计算出各解在横坐标上的相对位置,即计算每个解在左右方向上的距离,再根据此距离大小,取其中的最小值作为该点的最优解。
四、单纯形法的误差和精度1、明确问题的目标。
一般在最优化问题中,用最小值对准目标是最理想的,但是在实际工程应用中,人们往往要求越多越好,甚至有时只要求几个较小的值。
但要注意所得结果的可靠性和正确性,也要尽可能减少计算过程中的误差。
2、计算出所有解,按确定的先后顺序排列。
首先,找出最优解,再在这个最优解附近寻找另外的比最优解更好的最优解,直到所有点都达到满意的精度。
这种方法称为“穷举法”。
穷举法通常用于没有更好的方法时,常用于工程实际中。
3、计算出各解在横坐标上的相对位置,即计算每个解在左右方向上的距离,再根据此距离大小,取其中的最小值作为该点的最优解。
4、单纯形法的误差:由于人们认识上的错误或操作不当造成的,如排除法的计算次数与数据采集次数之比,以及采样值的平均数与真值之比,与取值的个数有关,与取值的精度也有关,必须合理确定取值范围。
5、单纯形法的精度:根据问题的规模,计算数据量和计算次数,反复调整取值点,改进计算方法,从而得到尽可能高的精度。
单纯形法的精度可达0.01或0.05。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/4/3
12
单纯形表
cj CB XB 0 x4 -M x6 -M x7
σj 0 x4 0 x2 -M x7
σj
0 x4 0 x2 -3 x1
σj
0 x4 0 x2 1 x3
σj
-3 0 1 0
bi x1 x2 x3 x4
4
1
1
1
1
1 -2 [ 1 ] -1 0
9
03
1
0
-3-2M [4M] 1 0
6 [ 6 ] 0 4 0 3 -3 1 1
[ 6] 0
40
3
-4 0 x1入,x7出
0 0 0 0 1 -1/2 1/2 -1/2 3 0 1 1/3 0 0 0 1/3 1 1 0 2/3 0 1/2 -1/2 1/6
0
0
000
-1
-1
所以:已得最优解,且人工变量为非基变量,则可 去掉人工变量,得原问题的一个即可行基。
σj 0 x4 0 x2 -1 x7
σj
0 x4 0 x2 0 x1
σj
0 0 0 0 0 -1 -1
bi x1 x2 x3 x4 x5 x6 x7 θ
4
1
1
1
1
0 0 04
1
-2 [ 1 ] -1
0
-1
1
01
9
0
3
1
0
0
0
13
-2 [ 4 ] 0 0 -1
0 0 x2入,x6出
3 3 0 2 1 1 -1 0 1 1 -2 1 -1 0 -1 1 0 -
0
C x1
x2 x3 x4 x5 Z 可行解 图中点
0 8 16 12 0 √
O
4 0 16 -4 12 ╳
A
0
无解
3 2 16 0 9 √
Q4
0 0 -16 12 16 ╳
C
0 4 0 12 8 √
Q1
0
0 无解
2 0 0 4 14 √
Q2
3 0 8 0 13 √
Q3
3 -2 0 0 17 ╳
B
max z 2x1 3x2
量
“=” →加一个人工变量
目标函数: 人工变量的系数为“-M”,即罚因子
2020/4/3
10
若线性规划问题有最优解则人工变量必为0。
MaxZ=-3x1+x3
MaxZ=-3x1+x3-Mx6-Mx7
x1+ x2+ x3≤4
x1+ x2+ x3+x4
=4
-2x1+ x2- x3≥1 3x2+x3=9
标准化 及变形
-9/2 0
0 0 -3/4 -M+3/4 -M-1/4
2020/所4/3以:X*=(x1,x2,x3)T=(0,5/2, 3/2)T Z*=3/2
13
二、两阶段法
• 第一阶段暂不考虑原问题是否存在基可行解,给原问题加 入人工变量,并构建一个仅含人工变量的目标函数(求极 小化),人工变量的价值系数一般为1,约束条件和原问 题的一样。
0
2 0 -1
θ -
50
x1入,x4出
因为σ2 = 2,且ai2 全≤0
所以:无界
2020/4/3
22
例3: 下表为一极大化问题对应的单纯形表
x1
x2
x3
x4
x5
bi
x1
1
0
a1
0
a2
a6
x2
0
1
1
0 -2 2
x4
0
0
-2
1
a3
3
σj
0
0
a4
0
a5
讨论在a1,a2,a3,a4,a5,a6取何值的情况下,该表中的解为:
40
σj
40 45 25
0
0 x2入,x4出
……
45 X2 80/3 1/3 1
0 2/3 -1/3
25 x3 20 1 0 1 -1 1
σj
0
0 0 -5 -10
因为全σj ≤ 0,且σ1=0,则有无穷多最优解。
所以:其中一个最优解为X*=(0,80/3,20,0,0) T,Z*=1700
2020思/4/3考:无穷多最优解的一般形式? 21
B:(1,3/2)
2020/4/3
0: (0,0)
x1 A: (87/5,0)
回顾:单纯形法求解步骤:
2020/4/3
8
第5节 单纯形法的进一步讨论
2020/4/3
9
第5节 单纯形法的进一步讨论
一、人工变量法(大M法)
约束条件:
“≤” →加一个松弛变量 “≥” →减一个剩余变量后,再加一个人工变
x1 2x 2 x3
8
4x1
x4 16
4 x2
x5 12
x j 0, j 1, ,5
3
• Step2:检查非基变量所对应的检验数σj,若所有的σj≤0,则当 前的基可行解就是最优解,当前的目标函数值就是最优值,停 止计算。
• 否则,转入下一步。
• SP算tke≤。p03(即:P若k中存每在一一个个分σk>量0a,ikσ≤k0所),对则应该的L变P无量有xk限的最系优数解列,向停量止计 • 否则,转入下一步。
2020/4/3
16
(第二阶段)单纯形表2
cj
-3 0 1 0 0
CB XB bi x1 x2 x3 x4 x5 θ
0 x4 0
0
0
0
1 -1/2 -
0 x2 3 0 1 1/3 0 0 9
-3 x1 1
1
0 [2/3] 0 1/2 3/2
σj
0
0 [3]
0 3/2 x3入,x1出
0 X4 0
0
0
新加变量系数
xs
xa
0
-M
2020/4/3
18
第5节 单纯形法的进一步讨论
人工变量法(大M法)和两阶段法
约束条件:
“≤” →加一个松弛变量 “≥” →减一个剩余变量后,再加一个人工变
量
“=” →加一个人工变量
若线性2020规/4/划3 问题有最优解则人工变量必为0。
19
三、单纯形法计算中的几个问题
• ⑴.要求解问题的目标函数能用数值指 标来反映,且为线性函数;
• ⑵.存在着多种方案; • ⑶.要求达到的目标是在一定条件下实
现的,这些约束可用线性等式或不等式描 述。
2020/4/3
25
建模步骤:
第一步:设置要求解的决策变量。决策变量选取得 当,不仅能顺利地建立模型而且能方便地求解,否则 很可能事倍功半。
• 目标函数极小化时解的最 当所有非基变量的σj≥0时为最优解;
优性判别;
• 无可行解的判别;
最优解中人工变量为非0的基变量时;
• 无界的判别; • 无穷多最优解的判别; • 唯一最优解的判别.
存在某个σk>0,且所有的aik≤0时;
得最优解时,有检验数为0的非基变量; 得最优解时,所有非基变量检验数为负;
第4节 单纯形法计算步骤
2020/4/3
1
Step 1 化为标准型,找出初始可行基,并列出初始单纯形表
2020/4/3
2
• 上述初始单纯形表中,最后一行称为检验数σj
x2
A 4
Q4
Q3
B
3
2
Q2
1
2020/4/3
O
1
2
3 4 Q1
基 基向量 x1 B1 P3P4P5 0 B2 P2P4P5 0 B3 P2P3P5 0 B4 P2P3P4 0 B5 P1P4P5 8 B6 P1P3P5 4 B7 P1P3P4 B8 P1P2P5 4 B9 P1P2P4 2 B1 P1P2P3 4
✓唯一最优解;
• a4<0,a5<0, a6≥0
✓无穷多最优解;
• a6≥0,a4≤0, a5≤0, a4=0或a5=0
✓无界; ✓无可行解;
✓非最优,继续换基:
• a6≥0,a5>0,a2≤0, a3≤0 • a4≤0,a5≤0, x4或x2为人工变量,a6≥0 ; x1为人工变量,a6>0 • a4>0,a4>a5;a6/a1>2→a1>0
33 0 2 1 1 -2 1 -1 0
6 [ 6] 0 4 0
[6M-3] 0 4M+1 0 00 0 0 1
3 0 1 1/3 0 1 1 0 [2/3] 0
0 0 [ 3] 0 00 0 0 1 5/2 -1/2 1 0 0
0 -M -M
x5 x6 x7 θ
0 0 04 -1 1 0 1
0 0 13
xi ≥0,j=1,2,3
-2x1+ x2-x3 -x5+x6 =1
3x2+x3
+x7=9
xi ≥0,j=1,…,7
增加人工变量后,线性规划问题中就存在一个B为单位矩阵, 后面可以根据我们前面所讲的单纯形法来进行求解。
2020/4/3
11
练习:列出初始单纯形表,并求解第2
小题的最优解
1. P55,2.2(1) 2.
3 4 1 03 [ 5 ] 2 0 1 8/5
[10] 5
0
0 x1入,x4出
0 [14/5] 1 -3/5 3/2
1 2/5 0 [1]
0 0
1/5 4
x2
-2 x2入,x3出