高中数学人教版习题《函数的单调性》

合集下载

新教材人教B版高中数学必修第一册练习-函数的单调性答案含解析

新教材人教B版高中数学必修第一册练习-函数的单调性答案含解析

3.1.2函数的单调性第三章函数3.1函数的概念与性质3.1.2函数的单调性考点1函数单调性的定义1.(2019·山东栖霞二中高一月考)下列命题正确的是()。

A.定义在(a,b)上的函数f(x),若存在x1,x2∈(a,b),当x1<x2时,有f(x1)<f(x2),那么f(x)在(a,b)上为增函数B.定义在(a,b)上的函数f(x),若有无穷多对x1,x2∈(a,b),当x1<x2时,有f(x1)<f(x2),那么f(x)在(a,b)上为增函数C.若函数f(x)在区间I1上为减函数,在区间I2上也为减函数,那么f(x)在区间I1∪I2上一定是减函数D.若函数f(x)是区间I上的增函数,且f(x1)<f(x2)(x1,x2∈I),则x1<x2答案:D解析:A项中,并不是对任意x1,x2都成立,故A错;B项中,虽然有无穷多对,但也不能代表“所有”“任意”,为例,虽然在(-∞,0)及(0,+∞)上均为减函数,但在整个定义域上却不具有单调性,故C错。

故B错;C项中,以f(x)=1x故选D。

2.若函数f(x)在R上是减函数,则下列关系式一定成立的是()。

A.f(a)>f(2a)B.f(a2)<f(a)C.f(a2+a)<f(a)D.f(a2+1)<f(a2)答案:D解析:因为f(x)是R上的减函数,且a2+1>a2,所以f(a2+1)<f(a2)。

故选D。

3.如果函数f(x)在[a,b]上是增函数,对于任意的x1,x2∈[a,b](x1≠x2),则下列结论中不一定正确的是()。

>0A.f(x1)-f(x2)x1-x2B.(x1-x2)[f(x1)-f(x2)]>0C.f(a)≤f(x1)<f(x2)≤f(b)D.f(x1)≠f(x2)答案:C解析:由函数单调性的定义可知,若函数y=f(x)在给定的区间上是增函数,则x1-x2与f(x1)-f(x2)同号,由此可知,选项A,B,D中结论正确;对于C,若x1>x2,则f(x1)>f(x2),故C中结论不一定正确。

函数的单调性练习题

函数的单调性练习题

函数的单调性练习题函数的单调性是高中数学中的一个重要概念,它在解决各种实际问题时起着重要的作用。

通过对函数的单调性进行分析,我们可以更好地理解函数的性质,并在解决问题时提供指导。

下面,我将给大家提供一些关于函数单调性的练习题,希望能够帮助大家更好地掌握这一概念。

练习题1:已知函数f(x) = x^2 + 3x - 2,求函数f(x)的单调区间。

解析:要求函数f(x)的单调区间,首先需要求出函数f(x)的一阶导数f'(x)。

对函数f(x)进行求导得到f'(x) = 2x + 3。

由于一阶导数的符号可以反映函数的单调性,我们只需要找出f'(x)的正负变化区间即可。

令f'(x) = 0,解得x = -1.5。

这个点将数轴分成了两个区间:(-∞, -1.5)和(-1.5, +∞)。

我们只需要在这两个区间内取一点代入f'(x),判断f'(x)的正负即可。

选取x = 0代入f'(x),得到f'(0) = 3,说明在区间(-∞, -1.5)内f'(x) > 0,在区间(-1.5, +∞)内f'(x) > 0。

因此,函数f(x)在整个定义域上都是递增的,即f(x)的单调区间为(-∞, +∞)。

练习题2:已知函数g(x) = x^3 - 6x^2 + 9x + 2,求函数g(x)的单调区间。

解析:同样地,我们需要求出函数g(x)的一阶导数g'(x)。

对函数g(x)进行求导得到g'(x) = 3x^2 - 12x + 9。

令g'(x) = 0,解得x = 1。

这个点将数轴分成了两个区间:(-∞, 1)和(1, +∞)。

选取x = 0代入g'(x),得到g'(0) = 9,说明在区间(-∞, 1)内g'(x) > 0,在区间(1, +∞)内g'(x) > 0。

数学人教B版必修第一册 3.1.2函数的单调性 作业 Word版含解析

数学人教B版必修第一册 3.1.2函数的单调性 作业 Word版含解析

2020-2021学年高一数学人教B 版(2019)必修第一册同步课时作业3.1.2函数的单调性1.已知函数224,0()4,0x x x f x x x x ⎧--≥=⎨-<⎩,若()22()a f a f ->,则实数a 的取值范围是( ) A.(,1)(2,)-∞-⋃+∞ B.(1,2)- C.()2,1- D.,2(),)1(-∞-⋃+∞2.已知函数()f x 的图像关于直线1x =对称,且在()1,+∞上单调递增,设1,(2),(3)2a f b f c f ⎛⎫=-== ⎪⎝⎭,则,,a b c 的大小关系为( ) A.c b a << B.b a c << C.b c a << D.a b c <<3.已知函数(3)5,1()2,1a x x f x a x x-+≤⎧⎪=⎨>⎪⎩是R 上的减函数,则实数a 的取值范围是( ) A.()0,3 B.(]0,3 C.()0,2 D.(]0,24.设函数2()2x f x x =-在区间[]3,4上的最大值和最小值分别为,M m ,则2m M =( ) A.23 B.38 C.32 D.835.若函数()f x 在R 上是减函数,则下列关系式一定成立的是( )A.()()2f a f a >B.()2()f a f a <C.()2()f a a f a +<D.()()221f a f a +<6.()21y k x b =-+是R 上的减函数,则有( )A.12k > B.12k >- C.12k < D.12k <- 7.设函数()f x 是(),-∞+∞上的减函数,若R a ∈,则( )A. ()()2f a f a >B. ()()2f a f a <C. ()()2f a a f a +< D. ()()21f a f a +<8.函数y x =+ )A.有最小值12,无最大值 B.有最大值12,无最小值 C.有最小值12,最大值2 D.无最大值,也无最小值9.若函数()245f x x mx =-+在区间[)2,-+∞上是增函数,则()1f 的最小值是( )A.-7B.7C.-25D.2510.函数()y f x =在R 上为增函数,且()()29f m f m >-+,则实数m 的取值范围是( )A.(),3-∞-B.()0,+∞C.()3,+∞D.()(),33,-∞-⋃+∞11.已知函数()2,166,1x x f x x x x ⎧≤⎪=⎨+->⎪⎩,则()()2f f -= ,()f x 的最小值是 .12.函数y =的值域是 .13.函数()2||f x x x =-的单调递减区间为__________,最大值和最小值的情况为__________. 14.已知函数()[]1,1,31x f x x x -=∈+,则函数()f x 的最大值为__________,最小值为__________. 15.已知函数()22x x a f x x++=,[)1,x ∈+∞. (1)当12a =时,求函数()f x 的最小值;(2)若对任意[)1,x ∈+∞, ()0f x >恒成立,试求实数a 的取值范围.答案以及解析1.答案:D解析:作出函数()f x的大致图像,如图所示,易知函数()f x在R上为减函数,所以22a a-<,解得1a>或2a<-,故选D.2.答案:B解析:函数()f x的图像关于直线1x=对称,1522a f f⎛⎫⎛⎫∴=-=⎪ ⎪⎝⎭⎝⎭.又()f x在(1,)+∞上单调递增,()()5232f f f⎛⎫<<⎪⎝⎭∴,即b a c<<.3.答案:D解析:由题意,得30(3)152aaa a-<⎧⎪>⎨⎪-⨯+≥⎩,解得02a<≤,故选D.4.答案:D解析:易知24()222xf xx x==+--,所以()f x在区间[3,4]上单调递减,所以44(3)26,(4)243242M f m f==+===+=--,所以216863mM==.5.答案:D解析:因为()f x是R上的减函数,且221a a+>,所以()()221f a f a+<.故选D.6.答案:C解析:若()21y k x b=-+是R上的减函数,则必有210k-<,所以12k<。

(部编本人教版)最新度高中数学 第一章 1.3.1 第一课时 函数的单调性练习 新人教A版必修1【经典练习】

(部编本人教版)最新度高中数学 第一章 1.3.1 第一课时 函数的单调性练习 新人教A版必修1【经典练习】

第一课时函数的单调性【选题明细表】1.函数y=x2+x+1(x∈R)的单调递减区间是( C )(A)[-,+∞) (B)[-1,+∞)(C)(-∞,-] (D)(-∞,+∞)解析:y=x2+x+1=(x+)2+,其对称轴为x=-,在对称轴左侧单调递减,所以当x≤-时单调递减.故选C.2.如图是定义在区间[-5,5]上的函数y=f(x),则下列关于函数f(x)的说法错误的是( C )(A)函数在区间[-5,-3]上单调递增(B)函数在区间[1,4]上单调递增(C)函数在区间[-3,1]∪[4,5]上单调递减(D)函数在区间[-5,5]上没有单调性解析:若一个函数出现两个或两个以上的单调区间时,不能用“∪”连接.故选C.3.在区间(0,+∞)上不是增函数的是( C )(A)y=2x+1 (B)y=3x2+1(C)y= (D)y=2x2+x+1解析:由反比例函数的性质可得,y=在区间(0,+∞)上是减函数,故满足条件.故选C.4.函数f(x)=|x|-3的单调增区间是( B )(A)(-∞,0) (B)(0,+∞)(C)(-∞,3) (D)(3,+∞)解析:根据题意,f(x)=|x|-3=其图象如图所示,则其单调增区间是(0,+∞).故选B.5.已知函数f(x)=2x2-ax+5在区间[1,+∞)上是单调递增函数,则实数a的取值范围是( A )(A)(-∞,4] (B)(-∞,4)(C)[4,+∞) (D)(4,+∞)解析:若使函数f(x)=2x2-ax+5在区间[1,+∞)上是单调递增函数,则对称轴应满足≤1,所以a≤4,选A.6.已知函数f(x)是定义在区间[0,+∞)上的增函数,则满足f(2x-1)<f()的x的取值范围是( D )(A)(,) (B)[,)(C)(,) (D)[,)解析:因为函数f(x)是定义在区间[0,+∞)上的增函数,且满足f(2x-1)<f(),所以0≤2x-1<,解得≤x<.故选D.7.已知函数f(x)=则f(x)的单调递减区间是.解析:当x≥1时,f(x)是增函数;当x<1时,f(x)是减函数,所以f(x)的单调递减区间为(-∞,1). 答案:(-∞,1)8.函数f(x)=x2-2mx-3在区间[1,2]上单调,则m的取值范围是.解析:二次函数在某区间内是否单调取决于对称轴的位置,函数f(x)=x2-2mx-3的对称轴为x=m,函数在区间[1,2]上单调,则m≤1或m≥2.答案:(-∞,1]∪[2,+∞)9.已知f(x)=,试判断f(x)在[1,+∞)上的单调性,并证明.解:f(x)=在[1,+∞)上是增函数.证明:任取x1,x2∈[1,+∞),且x1<x2,则f(x2)-f(x1)=-==.因为1≤x1<x2,所以x2+x1>0,x2-x1>0,+>0.所以f(x2)-f(x1)>0,即f(x2)>f(x1).故函数f(x)在[1,+∞)上是增函数.10.函数y=f(x)是定义在(0,+∞)上的减函数,且f(2m)>f(-m+9),则实数m的取值范围是( B )(A)(-∞,3) (B)(0,3)(C)(3,+∞) (D)(3,9)解析:因为函数y=f(x)在(0,+∞)上为减函数,且f(2m)>f(-m+9),所以解得0<m<3,故选B.11.已知f(x)是定义在区间[-1,1]上的增函数,且f(x-2)<f(1-x),则x的取值范围是. 解析:由题意,得解得1≤x<,故满足条件的x的取值范围是1≤x<.答案:[1,)12.已知函数f(x)的定义域是(0,+∞),且f(x·y)=f(x)+f(y),当x>1时,f(x)>0.(1)求f(1);(2)证明f(x)在定义域上是增函数;(3)如果f()=-1,求满足不等式f(x)-f(x-2)≥2的x的取值范围.(1)解:令x=y=1,得f(1)=2f(1),故f(1)=0.(2)证明:令y=,得f(1)=f(x)+f()=0,故f()=-f(x).任取x1,x2∈(0,+∞),且x1<x2,则f(x2)-f(x1)=f(x2)+f()=f().由于>1,故f()>0,从而f(x2)>f(x1).所以f(x)在(0,+∞)上是增函数.(3)解:由于f()=-1,而f()=-f(3),故f(3)=1.在f(x·y)=f(x)+f(y)中,令x=y=3,得f(9)=f(3)+f(3)=2.故所给不等式可化为f(x)-f(x-2)≥f(9),所以f(x)≥f[9(x-2)],所以x≤.又所以2<x≤.所以x的取值范围是(2,].13.已知函数f(x)=是R上的增函数,则a的取值范围是.解析:由题意得解得-3≤a≤-2.答案:[-3,-2]。

高中数学中的函数单调性测试题

高中数学中的函数单调性测试题

高中数学中的函数单调性测试题在高中数学的学习中,函数的单调性是一个非常重要的概念。

它不仅在数学理论中有着广泛的应用,也是解决实际问题的有力工具。

为了帮助同学们更好地掌握这一知识点,下面为大家精心准备了一套函数单调性的测试题。

一、选择题1、函数\(f(x) = x^2 2x\)在区间\(0, 2\)上的单调性是()A 单调递增B 单调递减C 先增后减D 先减后增2、下列函数中,在区间\((\infty, 0)\)上单调递增的是()A \(f(x) = x\)B \(f(x) =\frac{1}{x}\)C \(f(x) =x^2\) D \(f(x) = x^2\)3、函数\(f(x) =\ln x\)的单调递增区间是()A \((\infty, 0)\)B \((0, +\infty)\)C \((-1, 1)\)D \((1, +\infty)\)4、已知函数\(f(x) = 2x^3 6x^2 + 7\),则函数\(f(x)\)在区间\(-1, 2\)上的单调性为()A 单调递增B 单调递减C 先增后减D 先减后增5、函数\(f(x) =\frac{x + 1}{x 1}\)的单调递减区间是()A \((\infty, 1)\)和\((1, +\infty)\)B \((\infty, 1)\)C \((1, +\infty)\)D \((\infty, -1)\)和\((-1,+\infty)\)二、填空题1、函数\(f(x) = 3 2x\)的单调递减区间为________。

2、函数\(f(x) = x +\frac{1}{x}\)的单调递增区间为________,单调递减区间为________。

3、若函数\(f(x) = x^2 2ax + 3\)在区间\(-1, 2\)上单调递增,则实数\(a\)的取值范围是________。

4、函数\(f(x) =\log_{05}(x^2 4x + 3)\)的单调递减区间是________。

高中数学人教A版必修一课后练习9 函数的单调性

高中数学人教A版必修一课后练习9 函数的单调性

高中数学人教A版必修一课后练习9函数的单调性题组1:夯实基础1.下列函数在区间(0,+∞)上不是增函数的是()A.y=2x+1 B.y=x2+1C.y=3-x D.y=x2+2x+1解析:函数y=3-x在区间(0,+∞)上是减函数.答案:C2.函数f(x)=-x2+2x+3的单调减区间是()A.(-∞,1) B.(1,+∞)C.(-∞,2) D.(2,+∞)解析:易知函数f(x)=-x2+2x+3是图象开口向下的二次函数,其对称轴为x=1,所以其单调减区间是(1,+∞).答案:B3.若定义在R上的函数f(x)对任意两个不相等的实数a,b,总有f(f)-f(f)f-f>0成立,则必有()A.f(x)在R上是增函数B.f(x)在R上是减函数C.函数f(x)是先增后减D.函数f(x)是先减后增解析:由f(f)-f(f)f-f>0知f(a)-f(b)与a-b同号,即当a<b时,f(a)<f(b),或当a>b时,f(a)>f(b),所以f(x)在R上是增函数.答案:A4.函数f(x)=x2-2(a-1)x+1在区间(2,3)上为单调函数,则实数a的取值范围是()A.(-∞,3]∪[4,+∞) B.(-∞,3)∪(4,+∞)C.(-∞,3] D.[4,+∞)解析:二次函数图象开口向上,对称轴为直线x=a-1,因为函数在区间(2,3)上为单调函数,所以a-1≤2或a-1≥3,相应解得a≤3或a≥4,故选A.答案:A5.已知函数f(x)在(-∞,+∞)上是减函数,若a∈R,则() A.f(a)>f(2a) B.f(a2)<f(a)C.f(a2+a)<f(a) D.f(a2+1)<f(a)解析:选项D中,因为a2+1>a,f(x)在(-∞,+∞)上是减函数,所以f(a2+1)<f(a).而在其他选项中,当a=0时,自变量均是0,应取等号.故选D.答案:D6.若函数f(x)=x2+3ax+5在区间(-∞,5)上为减函数,则实数a的取值范围是()A.(-∞,-103]B.[-103,+∞)C.(-∞,103]D.[103,+∞)解析:因为函数f(x)=x2+3ax+5的单调递减区间为(-∞,-3f2),所以(-∞,5)⊆(-∞,-3f2),所以a≤-103.答案:A7.函数f(x)=|x-2|的单调递增区间是__________.解析:由图象可知,f(x)的单调递增区间是[2,+∞).答案:[2,+∞)8.已知函数f(x)=2x2-mx+3,当x∈[-2,+∞)时,f(x)是增函数,当x∈(-∞,-2)时,f(x)是减函数,则f(1)=__________.解析:∵函数f(x)在(-∞,-2)上是减函数,在[-2,+∞)上是增函数,∴x=-f2f =f4=-2,∴m=-8,即f(x)=2x2+8x+3.∴f(1)=13.答案:139.已知函数f(x)=-2x2+mx+1在区间[1,4]上是单调函数,则实数m的取值范围是____________________. 解析:二次函数f(x)的图象的对称轴是直线x=f4.因为二次函数在对称轴的两侧的单调性相反,即f4∉(1,4),所以f4≤1或f4≥4,即m≤4或m≥16.答案:(-∞,4]∪[16,+∞)10.证明函数f(x)=-√f在定义域上为减函数.证明函数f(x)=-√f的定义域为[0,+∞).设x1,x2是[0,+∞)上的任意两个实数,且0≤x1<x2,则x2-x1>0,f(x2)-f(x1)=(-√f2)-(-√f1)=√f1−√f2=f1-f2)(f1+√f2)√f+√f12√f+√f.∵x1-x2<0,√f1+√f2>0,∴f(x2)-f(x1)<0,即f(x2)<f(x1).∴函数f(x)=-√f在定义域[0,+∞)上为减函数.题组2:难点突破1.函数f(x)=|x|与g(x)=x(2-x)的单调递增区间分别为()A.(-∞,0],[1,+∞) B.(-∞,0],(-∞,1]C.[0,+∞),[1,+∞) D.[0,+∞),(-∞,1]解析:由函数图象(图略)可知选D.答案:D2.若函数y=ax与y=-ff在区间(0,+∞)上都是减函数,则函数y=ax2+bx在区间(0,+∞)上是() A.增函数B.减函数C.先增后减D.先减后增解析:由于函数y=ax与y=-ff在区间(0,+∞)上都是减函数,所以a<0,-b>0,即a<0,b<0.因为抛物线y=ax2+bx的对称轴为x=-f2f<0,且抛物线开口向下,所以y=ax2+bx在区间(0,+∞)上是减函数.答案:B3.若定义在R上的二次函数f(x)=ax2-4ax+b在区间[0,2]上是增函数,且f(m)≥f(0),则实数m的取值范围是()A.0≤m≤4 B.0≤m≤2C.m≤0 D.m≤0或m≥4解析:由f(x)在区间[0,2]上是增函数,所以f(2)>f(0),解得a<0.又因为f(x)图象的对称轴为x=--4f2f=2,所以f(x)在区间[0,2]上的值域与在区间[2,4]上的值域相同.所以满足f(m)≥f(0)的m的取值范围是0≤m≤4.答案:A4.若f(x)=-x2+2ax与g(x)=ff+1在区间[1,2]上都是减函数,则a的取值范围是()A.(-1,0)∪(0,1) B.(-1,0)∪(0,1]C.(0,1) D.(0,1]解析:f(x)=-x2+2ax=-(x-a)2+a2,∵f(x)在区间[1,2]上为减函数,∴a≤1.∵g(x)=ff+1在区间[1,2]上为减函数,∴a>0,∴0<a≤1.答案:D5.给出下列三个结论:①若函数y=f(x)的定义域为(0,+∞),且满足f(1)<f(2)<f(3),则函数y=f(x)在(0,+∞)上是增函数;②若函数y=f(x)在(-∞,+∞)上是减函数,则f(a2+1)<f(a2);③函数f(x)=1f在其定义域上是减函数.其中正确的结论有()A.0个B.1个C.2个D.3个解析:①函数单调性的定义中,x1,x2具有任意性,不能仅凭区间内有限个函数值的大小关系判断函数单调性,①错误;②∵a2+1>a2,又y=f(x)在(-∞,+∞)上是减函数,∴f(a2+1)<f(a2),②正确;③取x1=-1,x2=1,∵f(-1)=-1,f(1)=1,∴f(-1)<f(1),故f(x)=1f不是其定义域上的减函数,③错误.答案:B6.已知函数f(x)=ff+1f+2,若x1>x2>-2,则f(x1)>f(x2),则实数a的取值范围是__________.(用区间来表示)解析:由“若x1>x2>-2,则f(x1)>f(x2)”可知函数f(x)在(-2,+∞)上单调递增.而f(x)=ff+1f+2=a+1-2ff+2,故有1-2a<0,解得a>12,即a的取值范围为(12,+∞).答案:(12,+∞)7.若函数f (x )={f 2+2ff +3,f ≤1,ff +1,f >1是减函数,则实数a 的取值范围为__________.解析:由题意可得{-f ≥1,f <0,12+2f ×1+3≥f ×1+1,解得-3≤a ≤-1,则实数a 的取值范围是[-3,-1].答案:[-3,-1]8.讨论函数f (x )=ff +1f +2(f ≠12)在区间(-2,+∞)上的单调性. 解f (x )=ff +1f +2=a +1-2f f +2,设任意的x 1,x 2∈(-2,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=1-2ff 1+2−1-2ff 2+2=(1-2a )f 2-f 1(f2+2)(f 1+2).∵-2<x 1<x 2,∴x 2-x 1>0,(x 2+2)(x 1+2)>0.当a<12时,1-2a>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 故f (x )在区间(-2,+∞)上为减函数. 当a>12时,1-2a<0,∴f (x 1)-f (x 2)<0,f (x 1)<f (x 2),故f (x )在区间(-2,+∞)上为增函数.综上,当a<12时,f (x )在区间(-2,+∞)上为减函数;当a>12时,f (x )在区间(-2,+∞)上为增函数. 9.某市一家报刊摊点,从该市报社买进该市的晚报价格是每份0.40元,卖出价格是每份0.60元,卖不掉的报纸以每份0.05元的价格退回报社.在一个月(按30天计算)里,有18天每天可卖出400份,其余12天每天只能卖出180份.则摊主每天从报社买进多少份晚报,才能使每月获得的利润最大(设摊主每天从报社买进晚报的份数是相同的)?解设摊主每天从报社买进x (180≤x ≤400,x ∈N )份晚报,每月获利为y 元,则有y =(0.60-0.40)(18x +12×180)-(0.40-0.05)×12(x -180)=-0.6x +1 188,180≤x ≤400,x ∈N .因为函数y =-0.6x +1 188在{x |180≤x ≤400,x ∈N }上是减函数,所以x =180时函数取得最大值,最大值为y =-0.6×180+1 188=1 080.故摊主每天从报社买进180份晚报时,每月获得的利润最大,为1 080元.。

高中数学函数的单调性练习题及其答案

高中数学函数的单调性练习题及其答案

高中数学函数的单调性练习题及其答案1.在区间(0.+∞)上不是增函数的函数是:A。

y=2x+1 C。

y=1/x B。

y=3x^2+1 D。

y=2x^2+x+12.函数f(x)=4x^2-mx+5在区间[-2.+∞]上是增函数,在区间(-∞。

-2)上是减函数,则f(1)等于:C。

173.函数f(x)在区间(-2.3)上是增函数,则y=f(x+5)的递增区间是:B。

(-7.-2)4.函数f(x)=(ax+1)/(x+2)在区间(-2.+∞)上单调递增,则实数a的取值范围是:B。

(0.+∞)5.已知函数f(x)在区间[a。

b]上单调,且f(a)f(b)<0,则方程f(x)=0在区间[a。

b]内:A。

至少有一实根6.已知函数f(x)=8+2x-x^2,如果g(x)=f(2-x^2),那么函数g(x):C。

在区间(-2.0)上是增函数7.已知函数f(x)是R上的增函数,A(0.-1)、B(3.1)是其图象上的两点,那么不等式|f(x+1)|<1的解集的补集是:D。

(-∞。

-1)∪[2.+∞)8.已知定义域为R的函数f(x)在区间(-∞。

5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么下列式子一定成立的是:B。

f(13)<f(9)<f(-1)9.函数f(x)=|x|和g(x)=x(2-x)的递增区间依次是:C。

(-∞。

1]。

[1.+∞)10.已知函数f(x)=x^2+2(a-1)x+2在区间(-∞。

4]上是减函数,则实数a的取值范围是:a≤0 或a≥51.对于第一题,正确答案为D,即a≥3.2.第二题中,删除了明显有问题的选项,正确答案为C,即f(a)+f(b)≥-f(a)+f(b)。

3.对于第三题,正确答案为B,即f(0)>f(3)。

4.填空题的答案为:13.(1.+∞),14.(-∞。

3),15.(-∞。

3]。

5.解答题的答案为:17.(1) f(1)=0;(2) f(x+3)-f(x)5,即单调递减区间为(-∞,1)∪(5.+∞)。

高中数学《函数的单调性与奇偶性》针对练习及答案

高中数学《函数的单调性与奇偶性》针对练习及答案

第二章 函数2.2.2 函数的单调性与奇偶性(针对练习)针对练习针对练习一 单调性与奇偶性的判断1.下列函数中,既是奇函数,又是R 上的增函数的是( ) A .cos y x x = B .66x x y -=- C .23y x =+ D .1y x x =+2.下列函数中,是奇函数且在()0,∞+上为增函数的是( )A .()1f x x=- B .()f x C .()f x x = D .()31f x x =+3.下列函数在其定义域内既是奇函数又单调递减的是( ) A .sin y x =- B .cos 2y x = C .tan y x = D .3y x =-4.下列函数是偶函数且在(0,+∞)是增函数的是( ) A .2xy =B .2y xC .12y x =D .13xy ⎛⎫= ⎪⎝⎭5.下列函数中,是奇函数,又在定义域内为减函数的是( )A .12xy ⎛⎫= ⎪⎝⎭B .2y x=C .32y x =-D .2log ()y x =-针对练习二 函数(包含复合函数)的单调区间6.若函数()f x 的图象如图所示,则其单调递减区间是( )A .[]4,1--,[]1,4B .[]1,1-C .[]4,4-D .[]22-,7.函数()1x f x x在( )A .(,1)(1,)-∞⋃+∞上是增函数B .(,1)(1,)-∞⋃+∞上是减函数C .(,1)-∞和(1,)+∞上是增函数D .(,1)-∞和(1,)+∞上是减函数8.已知函数()212f x x x =+-,则下列结论正确的是( )A .()f x 在区间(],1-∞上是增函数B .()f x 在区间[)1,-+∞上是增函数C .()f x 在区间(],1-∞上是减函数D .()f x 在区间[)1,-+∞上是减函数9.函数()f x )A .[)2+∞,B .12⎛⎤-∞ ⎥⎝⎦,C .12⎡⎫+∞⎪⎢⎣⎭, D .(]1-∞-,10.函数12y ⎛= ⎪⎝⎭A .11,2⎡⎤-⎢⎥⎣⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .12⎡⎫+∞⎪⎢⎣⎭D .1,22⎡⎤⎢⎥⎣⎦针对练习三 根据奇偶性求解析式11.设()f x 为奇函数,且当0x ≥时,()21xf x =-,则当0x <时,()f x =( )A .21x --B .21x -+C .21x ---D .21x --+12.已知偶函数()f x ,当0x >时,()23f x x =-,则当0x <时,()f x =( ) A .23x -- B .23x +C .23x -+D .23x -13.函数()y f x =是R 上的奇函数,当0x <时,()2f x x =-,则当0x >时,()f x =( ) A .2x - B .2x -C .2x --D .2x14.已知()f x 是定义在R 上的奇函数,当0x <时,2()f x x x =-,则当0x >时,()f x =( )A .2x x -B .2x x --C .2x x -+D .2x x +15.已知函数()f x 是定义在R 上的奇函数,当0x >时,()ln f x x =,则()f e -=( )A .1-B .1C .2D .2-针对练习四 根据单调性与奇偶性解不等式16.设函数||()x f x e =,则使得(21)()f x f x -<成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭B .1,(1,)3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭ D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭17.若函数y =f (x )在R 上单调递增,且2(1)(1)f m f m +<-+,则实数m 的取值范围是( ) A .(1,0)- B .(2,1)- C .(0,1) D .(,1)(0,)-∞-+∞18.已知定义在实数集R 上的偶函数()f x 在区间[0,)+∞是单调增函数,若(1)(2)f a f -<,则实数a 的取值范围是( )A .13a -<<B .1a <-或3a >C .31a -<<D .3a <-或1a >19.函数()y f x =在R 上为增函数,且(2)(9)f m f m >+,则实数m 的取值范围是( ) A .()9,+∞B .[)9,+∞C .(),9-∞-D .(],9-∞-20.已知函数21()ln(1)1f x x x=+-+,若实数a 满足313(log )(log )2(1)f a f a f +≤,则a 取值范围( ) A .[]1,3 B .10,3⎛⎤⎥⎝⎦C .(]0,3D .1,33⎡⎤⎢⎥⎣⎦针对练习五 根据单调性与奇偶性比大小21.若定义在R 上偶函数()f x 在[)0,+∞上是减函数,下列各式一定成立的是( ) A .()()06f f < B .()()32f f -> C .()()13f f -> D .()()58f f -<-22.设偶函数()f x 的定义域为R ,当(,0]x ∈-∞时,()f x 是增函数,则52f ⎛⎫⎪⎝⎭,(f ,()f π的大小关系是( )A.5()(2f f f π⎛⎫>> ⎪⎝⎭B.5(()2f f f π⎛⎫>> ⎪⎝⎭C.5(()2f f f π⎛⎫>> ⎪⎝⎭D.5()(2f f f π⎛⎫>> ⎪⎝⎭23.若函数()f x 是偶函数,且在区间[0,3]上单调递减,则( ) A .()()1(2)3f f f ->> B .()()()312f f f >-> C .()()()213f f f >-> D .()()()321f f f >>-24.定义在R 上的偶函数()f x 满足:对任意的()1212,(,0]x x x x ∈-∞≠,有()()()21210x x f x f x -->⎡⎤⎣⎦.则当n *∈N 时,有( )A .(1)()(1)f n f n f n +<-<-B .(1)()(1)f n f n f n -<-<+C .()(1)(1)f n f n f n -<-<+D .(1)(1)()f n f n f n +<-<-25.定义在R 上的偶函数()f x 在[)0+∞,上是减函数,则( ) A .(1)(2)(3)f f f <-< B .(3)(2)(1)f f f <-< C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-针对练习六 根据单调性求参数26.设函数()()12f x a x b =-+R 上的增函数,则有( ) A .12a < B .12a >C .12a <-D .12a >-27.函数221y x mx =++在[2,)+∞单调递增,则实数m 的取值范围是( ) A .[2,)-+∞ B .[2,)+∞ C .(,2)-∞ D .(,2]-∞28.若函数()()212f x a x =-+为R 上的减函数,则实数a 的取值范围为( )A .a >1B .a <1C .11a -<<D .-1≤a ≤129.已知0a >且1a ≠,函数(1)34,(0)(),(0)xa x a x f x a x -+-≤⎧=⎨>⎩满足对任意实数12x x ≠,都有2121()()0f x f x x x ->-成立,则a 的取值范围是( )A .0,1B .1,C .51,3⎛⎤⎥⎝⎦D .5,23⎡⎫⎪⎢⎣⎭30.已知(32)4,1()log ,1aa x a x f x x x -+<⎧=⎨≥⎩, 对任意1212,(,),x x x x ∈-∞+∞≠,都有1212()()0f x f x x x -<-,那么实数a 的取值范围是 A .()0,1B .2(0,)3C .1173⎡⎫⎪⎢⎣⎭, D .22,73⎡⎫⎪⎢⎣⎭针对练习七 根据奇偶性求参数31.若函数(31)()y x x a =+-为偶函数,则a =( ) A .1 B .-1 C .13D .232.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A .1- B .13C .0D .333.已知函数222,0()0,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩是奇函数.则实数m 的值是( )A .0B .2C .4D .-234.若()3351f x x x a =++-为奇函数,则a 的值为( )A .0B .-1C .1D .235.若函数()(21)()xf x x x a =+-为奇函数,则a =( )A .12 B .23C .34D .1第二章 函数2.2.2 函数的单调性与奇偶性(针对练习)针对练习针对练习一 单调性与奇偶性的判断1.下列函数中,既是奇函数,又是R 上的增函数的是( ) A .cos y x x = B .66x x y -=- C .23y x =+ D .1y x x =+【答案】B 【解析】 【分析】利用函数奇偶性的定义和单调性的定义逐个分析判断 【详解】对于A ,因为()()cos()cos ()f x x x x x f x -=--=-=-,所以cos y x x =是奇函数,但不单调,所以A 错误;对于B ,因为()66(66)()x x x x f x f x ---=-=--=-,所以66x x y -=-是奇函数,因为6x y =是增函数,6x y -=是减函数,所以66x x y -=-是增函数,所以B 正确;对于C ,因为22()()33()f x x x f x -=-+=+=,所以23y x =+是偶函数,所以C 错误; 对于D ,因为()()()11f x x x x x f x f x -=--+=-+≠-≠,所以1y x x =+是非奇非偶函数,所以D 错误. 故选:B2.下列函数中,是奇函数且在()0,∞+上为增函数的是( ) A .()1f x x=- B .()f x C .()f x x = D .()31f x x =+【答案】A 【解析】 【分析】利用函数奇偶性的定义和单调性的定义逐个分析判断即可 【详解】对于A ,定义域为{}0x x ≠,因为()()11f x f x x x-=-==--,所以函数是奇函数,任取12,(0,)x x ∈+∞,且12x x <,则2121211211()()x xf x f x x x x x --=-+=,因为12,(0,)x x ∈+∞,且12x x <,所以21()()0f x f x ->,即21()()f x f x >,所以()f x 在()0,∞+上为增函数,所以A 正确,对于B ,因为定义域为{}0x x ≥,所以函数()f x 为非奇非偶函数,所以B 错误, 对于C ,因为定义域为R ,因为()()f x x x f x -=-==,所以()f x 为偶函数,所以C 错误,对于D ,因为定义域为R ,因为()()3311()()f x x x f x f x -=-+=-+≠≠-,所以函数()f x 为非奇非偶函数,所以D 错误, 故选:A3.下列函数在其定义域内既是奇函数又单调递减的是( ) A .sin y x =- B .cos 2y x = C .tan y x = D .3y x =-【答案】D 【解析】对于基本初等函数,直接判断其奇偶性和单调性. 【详解】选项A: sin y x =-为偶函数,故A 错误; 选项B: cos 2y x =为偶函数,故B 错误;选项C: tan y x =为奇函数但是在,22k k ππππ⎛⎫-++ ⎪⎝⎭上单增,故C 错误;选项D: 3y x =-既是奇函数又是R 上单调递减. 故选:D4.下列函数是偶函数且在(0,是增函数的是( ) A .2xy =B .2y xC .12y x =D .13xy ⎛⎫= ⎪⎝⎭【答案】B 【解析】 【分析】根据指数函数、二次函数、幂函数的性质进行判断即可. 【详解】因为指数函数不具有奇偶性,所以排除A 、D ,因为幂函数12y x =的定义域为非负实数集,不关于原点对称,所以不具有奇偶性,故排除, 二次函数2yx 图象关于纵轴对称,所以该二次函数是偶函数,它又在(0,+∞)单调递增, 故选:B5.下列函数中,是奇函数,又在定义域内为减函数的是( )A .12xy ⎛⎫= ⎪⎝⎭B .2y x=C .32y x =-D .2log ()y x =-【答案】C 【解析】利用奇函数的定义和减函数的定义,再结合基本函数的性质求解即可 【详解】解:对于A ,D ,由指数函数和对数函数的性质可知其为非奇非偶函数,所以A ,D 不符合题意,对于B ,由反比例函数的性质可知,其为奇函数,在(,0)-∞和(0,)+∞上为减函数,所以不符合题意,对于C ,由于33()2()2()f x x x f x -=--==-,所以3()2f x x =-为奇函数,任取12,x x R ∈,且12x x <,则120x x -<332121()()2(2)f x f x x x -=---33122()x x =- 221211222()()x x x x x x =-++222121232()[()]024x x x x x =-++< 所以21()()f x f x <,所以3()2f x x =-为R 上的减函数,所以C 符合题意, 故选:C针对练习二 函数(包含复合函数)的单调区间6.若函数()f x 的图象如图所示,则其单调递减区间是( )A .[]4,1--,[]1,4B .[]1,1-C .[]4,4-D .[]22-,【答案】B 【解析】 【分析】利用图象判断函数单调性的方法直接写出函数()f x 单调递减区间. 【详解】观察函数()f x 的图象,可知函数()f x 的单调递减区间为[]1,1-. 故选:B 7.函数()1x f x x在( )A .(,1)(1,)-∞⋃+∞上是增函数B .(,1)(1,)-∞⋃+∞上是减函数C .(,1)-∞和(1,)+∞上是增函数D .(,1)-∞和(1,)+∞上是减函数【答案】C 【解析】 【分析】分离常数,作出函数图象,观察即可得出结果. 【详解】1111()1111111x x x f x xxxxx,函数的定义域为(,1)(1,)-∞⋃+∞, 其图象如下:由图象可得函数在(,1)-∞和(1,)+∞上是增函数. 故选:C8.已知函数()212f x x x =+-,则下列结论正确的是( )A .()f x 在区间(],1-∞上是增函数B .()f x 在区间[)1,-+∞上是增函数C .()f x 在区间(],1-∞上是减函数D .()f x 在区间[)1,-+∞上是减函数【答案】A 【解析】配方得二次函数的对称轴,然后判断. 【详解】2()(1)2f x x =--+,对称轴为1x =,二次项系数为10-<,因此()f x 在(,1]-∞上递增,在[1,)+∞上递减, 故选:A .9.函数()f x )A .[)2+∞,B .12⎛⎤-∞ ⎥⎝⎦,C .12⎡⎫+∞⎪⎢⎣⎭, D .(]1-∞-,【答案】C 【解析】根据解析式,先求出函数的定义域;再令22t x x =-+,结合二次函数单调性,以及. 【详解】因为22172024x x x ⎛⎫-+=-+> ⎪⎝⎭显然恒成立,所以函数()f x =R ;令22t x x =-+,则22t x x =-+是开口向上的二次函数,且对称轴为12x =,所以22t x x =-+在12⎛⎤-∞ ⎥⎝⎦,上单调递减,在12⎡⎫+∞⎪⎢⎣⎭,上单调递增; 根据复合函数单调性的判定方法可得,()f x 12⎡⎫+∞⎪⎢⎣⎭,. 故选:C. 【点睛】本题主要考查求根式型复合函数的单调区间,属于基础题型.10.函数12y ⎛= ⎪⎝⎭A .11,2⎡⎤-⎢⎥⎣⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .12⎡⎫+∞⎪⎢⎣⎭D .1,22⎡⎤⎢⎥⎣⎦【答案】D 【解析】 【分析】利用复合函数的单调性求解即可. 【详解】由题得函数的定义域为{|12}x x -≤≤,设函数u u 在1]2[-1,单调递增,在1[2]2,单调递减, 因为函数1()2uv =在定义域上单调递减,所以函数12y ⎛= ⎪⎝⎭1[2]2,单调递增. 故选D 【点睛】和分析推理能力.针对练习三 根据奇偶性求解析式11.设()f x 为奇函数,且当0x ≥时,()21xf x =-,则当0x <时,()f x =( )A .21x --B .21x -+C .21x ---D .21x --+【答案】D 【解析】 【分析】根据题意,设0x <,则0x ->,由函数的解析式可得()21x f x ---=,结合函数的奇偶性分析可得答案. 【详解】根据题意,设0x <,则0x ->, 则()21x f x ---=,又由()f x 为奇函数,则()()21x f x f x -=-=-+-, 故选:D12.已知偶函数()f x ,当0x >时,()23f x x =-,则当0x <时,()f x =( ) A .23x -- B .23x +C .23x -+D .23x -【答案】A 【解析】设0x <,则0x ->,可得()23f x x -=--,利用偶函数的定义()()f x f x -=即可求解. 【详解】设0x <,则0x ->, 所以()23f x x -=--,又()f x 为偶函数,所以()()f x f x -=, 所以()()230f x x x =--<. 故选:A.13.函数()y f x =是R 上的奇函数,当0x <时,()2f x x =-,则当0x >时,()f x =( ) A .2x - B .2x -C .2x --D .2x【答案】C 【解析】 【分析】直接利用代入法求函数解析式. 【详解】当0x >时,0x -<,所以()()2f x x f x -=+=-,所以()2f x x =--. 故选:C .14.已知()f x 是定义在R 上的奇函数,当0x <时,2()f x x x =-,则当0x >时,()f x =( ) A .2x x - B .2x x -- C .2x x -+ D .2x x +【答案】D 【解析】 【分析】利用奇函数的等式()()f x f x -=-求解.【详解】因为()f x 是定义在R 上的奇函数, 所以()()f x f x -=-,x ∈R .当0x >时,0x -<,()()()()22f x f x x x x x ⎡⎤=--=----=+⎣⎦. 故选:D.15.已知函数()f x 是定义在R 上的奇函数,当0x >时,()ln f x x =,则()f e -=( )A .1-B .1C .2D .2-【答案】A 【解析】根据奇函数的定义求函数值. 【详解】 ∵()f x 是奇函数,∵()()ln 1f e f e e -=-=-=-. 故选:A .针对练习四 根据单调性与奇偶性解不等式16.设函数||()x f x e =,则使得(21)()f x f x -<成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭B .1,(1,)3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭ D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】首先判断出函数为偶函数,再判断出函数的单调性,根据单调性可得21x x -<,解绝对值不等式即可求解. 【详解】||()x f x e =,则()()xxf x ee f x --===,函数为偶函数,当0x ≥时,()x f x e =,所以函数在[)0,+∞单调递增, 所以函数在(),0-∞上单调递减, 若(21)()f x f x -<,则21x x -<,即23410x x -+<,解得113x <<,所以不等式的解集为1,13⎛⎫ ⎪⎝⎭.故选:A17.若函数y =f (x )在R 上单调递增,且2(1)(1)f m f m +<-+,则实数m 的取值范围是( ) A .(1,0)- B .(2,1)- C .(0,1) D .(,1)(0,)-∞-+∞【答案】A 【解析】由函数y =f (x )在R 上单调递增,将2(1)(1)f m f m +<-+可化为211m m +<-+,解不等式可得答案 【详解】解:因为函数y =f (x )在R 上单调递增,且2(1)(1)f m f m +<-+, 所以211m m +<-+,解得10m -<<, 故选:A18.已知定义在实数集R 上的偶函数()f x 在区间[0,)+∞是单调增函数,若(1)(2)f a f -<,则实数a 的取值范围是( )A .13a -<<B .1a <-或3a >C .31a -<<D .3a <-或1a >【答案】A 【解析】由偶函数的性质将不等式(1)(2)f a f -<转化为(1)(2)f a f -<,再由其在[0,)+∞是单调增函数,可得12a -<,从而可求出a 的取值范围 【详解】解:因为()f x 是定义在实数集R 上的偶函数,且(1)(2)f a f -<, 所以(1)(2)f a f -<,因为函数()f x 在区间[0,)+∞是单调增函数, 所以12a -<,解得13a -<<, 故选:A19.函数()y f x =在R 上为增函数,且(2)(9)f m f m >+,则实数m 的取值范围是( )A .()9,+∞B .[)9,+∞C .(),9-∞-D .(],9-∞-【答案】A 【解析】根据单调性可得29m m >+,解出即可. 【详解】解:∵()y f x =在R 上为增函数,且(2)(9)f m f m >+, ∵29m m >+,解得9m >, 故选:A . 【点睛】本题主要考查根据函数的单调性解不等式,属于基础题. 20.已知函数21()ln(1)1f x x x=+-+,若实数a 满足313(log )(log )2(1)f a f a f +≤,则a 取值范围( ) A .[]1,3 B .10,3⎛⎤⎥⎝⎦C .(]0,3D .1,33⎡⎤⎢⎥⎣⎦【答案】D 【解析】 【分析】首先判断()f x 的单调性和奇偶性,由此化简不等式313(log )(log )2(1)f a f a f +≤,并求得a 的取值范围. 【详解】()f x 的定义域为R ,且()()f x f x -=,所以()f x 是偶函数.当0x >时,21()ln(1)1f x x x =+-+,2ln(1)y x =+和11y x=-+在()0,∞+上递增,所以()f x 在()0,∞+上递增,而()f x 是偶函数,故()f x 在(),0-∞上递减.依题意313(log )(log )2(1)f a f a f +≤,即33(log )(log )2(1)f a f a f +-≤,即332(log )2(1)(log )(1)f a f f a f ≤⇔≤,所以331log 11log 133a a a ≤⇔-≤≤⇔≤≤,所以a 的取值范围是1,33⎡⎤⎢⎥⎣⎦故选:D 【点睛】本小题主要考查解函数不等式,属于基础题.针对练习五 根据单调性与奇偶性比大小21.若定义在R 上偶函数()f x 在[)0,+∞上是减函数,下列各式一定成立的是( ) A .()()06f f < B .()()32f f -> C .()()13f f -> D .()()58f f -<-【答案】C 【解析】 【分析】由偶函数及在[)0,+∞上是减函数,知在(,0]-∞上是增函数,即可判断各项的正误. 【详解】A :在[)0,+∞上是减函数,即()()06f f >,错误;B :(3)(3)f f -=,()f x 在[)0,+∞上是减函数,有()()32f f <,即()()32f f -<,错误;C :(1)(1)f f -=,()f x 在[)0,+∞上是减函数,有()()31f f <,即()()13f f ->,正确;D :由题意,()f x 在(,0]-∞上是增函数,()()58f f ->-,错误; 故选:C22.设偶函数()f x 的定义域为R ,当(,0]x ∈-∞时,()f x 是增函数,则52f ⎛⎫⎪⎝⎭,(f ,()f π的大小关系是( )A .5()(2f f f π⎛⎫>> ⎪⎝⎭B .5(()2f f f π⎛⎫>> ⎪⎝⎭C .5(()2f f f π⎛⎫>> ⎪⎝⎭D .5()(2f f f π⎛⎫>> ⎪⎝⎭【答案】C 【解析】根据偶函数的性质可得(f f =,由函数的单调性可得函数值的大小关系. 【详解】根据偶函数的性质可知,(f f =当[)0,x ∈+∞时,()f x 是减函数,因为5π2<,所以5()2f f f π⎛⎫>> ⎪⎝⎭故选:C. 【点睛】思路点睛:在比较函数值大小的题目中,主要根据函数的单调性进行判断.当自变量不在同一单调区间时,可以结合偶函数的性质将自变量x 转化为同一单调区间,再进行判断即可.23.若函数()f x 是偶函数,且在区间[0,3]上单调递减,则( ) A .()()1(2)3f f f ->> B .()()()312f f f >-> C .()()()213f f f >-> D .()()()321f f f >>-【答案】A 【解析】由(1)(1)f f -=,结合单调性得出()()1(2)3f f f ->>. 【详解】因为函数()f x 是偶函数,所以(1)(1)f f -= 又()f x 在区间[0,3]上单调递减,且123<< 所以(1)(2)(3)f f f ∴>>,即()()1(2)3f f f ->> 故选:A24.定义在R 上的偶函数()f x 满足:对任意的()1212,(,0]x x x x ∈-∞≠,有()()()21210x x f x f x -->⎡⎤⎣⎦.则当n *∈N 时,有( )A .(1)()(1)f n f n f n +<-<-B .(1)()(1)f n f n f n -<-<+C .()(1)(1)f n f n f n -<-<+D .(1)(1)()f n f n f n +<-<-【答案】A 【解析】首先判断出函数的单调性,再根据函数为偶函数即可求解. 【详解】对任意的()1212,(,0]x x x x ∈-∞≠,()()()21210x x f x f x -->⎡⎤⎣⎦,所以函数在(,0]-∞上为增函数,又因为函数()f x 在R 上的偶函数,所以函数在[)0,+∞上为减函数,且()()f n f n -=, 因为11n n n -<<+,所以(1)()(1)f n f n f n ->>+. 所以(1)()(1)f n f n f n ->->+. 故选:A25.定义在R 上的偶函数()f x 在[)0+∞,上是减函数,则( ) A .(1)(2)(3)f f f <-< B .(3)(2)(1)f f f <-< C .(2)(1)(3)f f f -<< D .(3)(1)(2)f f f <<-【答案】B 【解析】由偶函数的性质将自变量转化到[)0+∞,上,再由函数在[)0+∞,上是减函数可比较大小 【详解】解:因为()f x 是定义在R 上的偶函数, 所以(2)(2)f f -=,因为()f x 在[)0+∞,上是减函数,且321>>, 所以(3)(2)(1)f f f <<,即(3)(2)(1)f f f <-<, 故选:B 【点睛】此题考查利用函数的奇偶性和单调性比较大小,属于基础题针对练习六 根据单调性求参数26.设函数()()12f x a x b =-+是R 上的增函数,则有( ) A .12a < B .12a >C .12a <-D .12a >-【答案】A 【解析】函数()()12f x a x b =-+是R 上的增函数,则120a ->,可得答案. 【详解】函数()()12f x a x b =-+是R 上的增函数,则120a ->,即12a < 故选:A27.函数221y x mx =++在[2,)+∞单调递增,则实数m 的取值范围是( ) A .[2,)-+∞ B .[2,)+∞ C .(,2)-∞ D .(,2]-∞【答案】A 【解析】直接由抛物线的对称轴和区间端点比较大小即可. 【详解】函数221y x mx =++为开口向上的抛物线,对称轴为x m =- 函数221y x mx =++在[2,)+∞单调递增,则2m -≤,解得2m ≥-. 故选:A.28.若函数()()212f x a x =-+为R 上的减函数,则实数a 的取值范围为( )A .a >1B .a <1C .11a -<<D .-1≤a ≤1【答案】C 【解析】利用用一次函数的单调性得到210a -<,再由二次不等式的解法,即可得解. 【详解】函数()()212f x a x =-+为R 上的减函数,则210a -<, 解得11a -<<; 故选:C.29.已知0a >且1a ≠,函数(1)34,(0)(),(0)xa x a x f x a x -+-≤⎧=⎨>⎩满足对任意实数12x x ≠,都有2121()()0f x f x x x ->-成立,则a 的取值范围是( )A .0,1B .1,C .51,3⎛⎤⎥⎝⎦D .5,23⎡⎫⎪⎢⎣⎭【答案】C 【解析】由2121()()0f x f x x x ->-可得函数()f x 在R 上为增函数,所以010134a a a a ⎧->⎪>⎨⎪≥-⎩,从而可求出a 的取值范围 【详解】解:因为()f x 对任意实数12x x ≠,都有2121()()0f x f x x x ->-成立,所以()f x 在R 上为增函数,所以010134a a a a ⎧->⎪>⎨⎪≥-⎩,解得513a <≤,所以a 的取值范围为51,3⎛⎤⎥⎝⎦,故选:C 30.已知(32)4,1()log ,1a a x a x f x x x -+<⎧=⎨≥⎩, 对任意1212,(,),x x x x ∈-∞+∞≠,都有1212()()0f x f x x x -<-,那么实数a 的取值范围是 A .()0,1 B .2(0,)3C .1173⎡⎫⎪⎢⎣⎭, D .22,73⎡⎫⎪⎢⎣⎭【答案】D 【解析】 【分析】根据题设条件可以得到()f x 为R 上的减函数,根据各自范围上为减函数以及分段点处的高低可得实数a 的取值范围. 【详解】因为任意1212,(,),x x x x ∈-∞+∞≠,都有1212()()0f x f x x x -<-,所以对任意的12x x <,总有()()12f x f x >即()f x 为R 上的减函数,所以01320720a a a <<⎧⎪-<⎨⎪-≥⎩,故2273a ≤<,故选D.【点睛】分段函数是单调函数,不仅要求各范围上的函数的单调性一致,而且要求分段点也具有相应的高低分布,我们往往容易忽视后者.针对练习七 根据奇偶性求参数31.若函数(31)()y x x a =+-为偶函数,则a =( )A .1B .-1C .13 D .2【答案】C【解析】【分析】若()y f x =,由奇偶性的性质有()()f x f x =-即可求参数a .【详解】若()y f x =,则()f x 23(13)x a x a =+--为偶函数,∵()()f x f x =-,即223(13)3()(13)()x a x a x a x a +--=-+---,∵2(13)0a x -=恒成立,可得13a =.故选:C32.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( )A .1-B .13 C .0 D .3【答案】B【解析】【分析】根据()f x 的奇偶性求得,a b ,从而求得a b +.【详解】由于()f x 是偶函数,所以0b =,且111233a a a a b -=-⇒=⇒+=.故选:B33.已知函数222,0()0,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩是奇函数.则实数m 的值是( )A .0B .2C .4D .-2【答案】B【解析】【分析】利用函数为奇函数可得()()f x f x -=-,代入即可求解.【详解】取0x >,则0x -<,因为函数为奇函数,则()()f x f x -=-,即()()()222x m x x x -+-=--+, 整理可得2mx x -=-,即2m =.故选:B34.若()3351f x x x a =++-为奇函数,则a 的值为( )A .0B .-1C .1D .2【答案】C【解析】【分析】 根据奇函数的性质()00f =求解即可【详解】∵()f x 为R 上的奇函数,∵()00f =得a =1.验证满足题意.故选:C35.若函数()(21)()x f x x x a =+-为奇函数,则a =( ) A .12B .23C .34D .1 【答案】A【解析】【分析】根据奇函数性质取1和-1分别代入,函数值和为0,即可求得.【详解】 ∵()(21)()x f x x x a =+-为奇函数,∵(1)(1)0f f -+=,得12a =. 故选:A.。

(2021年整理)高中数学函数的单调性练习题及其答案

(2021年整理)高中数学函数的单调性练习题及其答案

高中数学函数的单调性练习题及其答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学函数的单调性练习题及其答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学函数的单调性练习题及其答案的全部内容。

函数的单调性一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于( )A .-7B .1C .17D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2)C .(-2,3)D .(0,5)4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根C .没有实根D .必有唯一的实根6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2),那么函数g (x ) ( )A .在区间(-1,0)上是减函数B .在区间(0,1)上是减函数C .在区间(-2,0)上是增函数D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A (0,-1)、B (3,1)是其图象上的两点,那么不等式 |f (x +1)|<1的解集的补集是( )A.(-1,2)B.(1,4)C.(-∞,-1)∪[4,+∞)D.(-∞,-1)∪[2,+∞)8.已知定义域为R的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么下列式子一定成立的是( )A.f(-1)<f(9)<f(13)B.f(13)<f(9)<f(-1)C.f(9)<f(-1)<f(13) D.f(13)<f(-1)<f(9)9.函数)xgxf-=和的递增区间依次是()A.]1,=xx(2(|)|(x)-∞(-∞],0,(B.)(+∞-∞,1[],0,C.]1,+∞D),0[+∞+∞,1[),(),,0[-∞10.已知函数()()2212f x x a x=+-+在区间(]4,∞-上是减函数,则实数a的取值范围是()A.a≤3 B.a≥-3 C.a≤5 D.a≥311.已知f(x)在区间(-∞,+∞)上是增函数,a、b∈R且a+b≤0,则下列不等式中正确的是()A.f(a)+f(b)≤-f(a)+f(b)]B.f(a)+f(b)≤f(-a)+f(-b)C.f(a)+f(b)≥-f(a)+f(b)]D.f(a)+f(b)≥f(-a)+f(-b)12.定义在R上的函数y=f(x)在(-∞,2)上是增函数,且y=f(x+2)图象的对称轴是x=0,则()A.f(-1)<f(3) B.f(0)>f(3)C.f(-1)=f(-3)D.f(2)<f(3)二、填空题:13.函数y=(x-1)—2的减区间是___ _.14.函数y=x-2x1+2的值域为__ ___.-15、设()y f x=是R上的减函数,则()3=-的单调递减区间为。

高一函数的单调性练习题

高一函数的单调性练习题

函数的单调性一、选择题:1.在区间<0,+∞>上不是增函数的函数是〔 〕 A .y =2x +1B .y =3x 2+1 C .y =x2D .y =2x 2+x +1 2.函数f <x >=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间<-∞,-2>上是减函数,则f <1>等于〔 〕 A .-7B .1 C .17D .253.函数f <x >在区间<-2,3>上是增函数,则y =f <x +5>的递增区间是〔 〕 A .<3,8>B .<-7,-2> C .<-2,3>D .<0,5>4.函数f <x >=21++x ax 在区间<-2,+∞>上单调递增,则实数a 的取值X 围是〔 〕 A .<0,21>B .< 21,+∞>C .<-2,+∞>D .<-∞,-1>∪<1,+∞>5.已知函数f <x >在区间[a ,b ]上单调,且f <a >f <b ><0,则方程f <x >=0在区间[a ,b ]内〔 〕 A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根6.已知函数f <x >=8+2x -x 2,如果g <x >=f < 2-x 2 >,那么函数g <x >〔 〕 A .在区间<-1,0>上是减函数 B .在区间<0,1>上是减函数 C .在区间<-2,0>上是增函数 D .在区间<0,2>上是增函数7.已知函数f <x >是R 上的增函数,A<0,-1>、B<3,1>是其图象上的两点,那么不等式|f <x +1>|<1的解集的补集是〔 〕A .<-1,2>B .<1,4>C .<-∞,-1>∪[4,+∞〕D .<-∞,-1>∪[2,+∞〕8.已知定义域为R 的函数f <x >在区间<-∞,5>上单调递减,对任意实数t ,都有f <5+t >=f <5-t >,那么下列式子一定成立的是〔 〕 A .f <-1><f <9><f <13>B .f <13><f <9><f <-1> C .f <9><f <-1><f <13>D .f <13><f <-1><f <9>9.函数)2()(||)(x x x g x x f -==和的递增区间依次是〔 〕A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值X 围是〔 〕 A .a ≤3 B .a ≥-3C .a ≤5 D .a ≥311.已知f <x >在区间<-∞,+∞>上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是〔 〕 A .f <a >+f <b >≤-f <a >+f <b >]B .f <a >+f <b >≤f <-a >+f <-b > C .f <a >+f <b >≥-f <a >+f <b >]D .f <a >+f <b >≥f <-a >+f <-b >12.定义在R 上的函数y =f <x >在<-∞,2>上是增函数,且y =f <x +2>图象的对称轴是x =0,则〔 〕 A .f <-1><f <3>B .f <0>>f <3> C .f <-1>=f <-3> D .f <2><f <3> 二、填空题:13.函数y =<x -1>-2的减区间是____. 14.函数y =x -2x -1+2的值域为_____. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为.16、函数f <x > = ax 2+4<a +1>x -3在[2,+∞]上递减,则a 的取值X 围是__. 三、解答题:17.f <x >是定义在< 0,+∞>上的增函数,且f <yx> = f <x >-f <y > 〔1〕求f <1>的值.〔2〕若f <6>= 1,解不等式 f < x +3 >-f <x1> <2 . 18.函数f <x >=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论. 19.试讨论函数f <x >=21x -在区间[-1,1]上的单调性.20.设函数f <x >=12+x -ax ,<a >0>,试确定:当a 取什么值时,函数f <x >在0,+∞>上为单调函数. 21.已知f <x >是定义在<-2,2>上的减函数,并且f <m -1>-f <1-2m >>0,##数m 的取值X 围.22.已知函数f <x >=xa x x ++22,x ∈[1,+∞]〔1〕当a =21时,求函数f <x >的最小值;〔2〕若对任意x ∈[1,+∞),f <x >>0恒成立,试##数a 的取值X 围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. <1,+∞>, 14. <-∞,3>,15.[)3,+∞,⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f <1>=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x <x +3>]<f <36>, 又f <x >在<0,+∞>上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx18.解析: f <x >在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈<-∞,+∞>, x 1<x 2 ,则f <x 1>=-x 13+1, f <x 2>=-x 23+1.f <x 1>-f <x 2>=x 23-x 13=<x 2-x 1><x 12+x 1x 2+x 22>=<x 2-x 1>[<x 1+22x >2+43x 22].∵x 1<x 2,∴x 2-x 1>0而<x 1+22x >2+43x 22>0,∴f <x 1>>f <x 2>.∴函数f <x >=-x 3+1在<-∞,+∞>上是减函数. 19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f <x 1>-f <x 2>=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f <x 1>>f <x 2>. 当x 1<0,x 2<0时,x 1+x 2<0,那么f <x 1><f <x 2>.故f <x >=21x -在区间[-1,0]上是增函数,f <x >=21x -在区间[0,1]上是减函数. 20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f <x 1>-f <x 2>=121+x -122+x -a <x 1-x 2>=1122212221+++-x x x x -a <x 1-x 2>=<x 1-x 2><11222121++++x x x x -a ><1>当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f <x 1>-f <x 2>>0,即f <x 1>>f <x 2> ∴a ≥1时,函数f <x >在区间[0,+∞>上为减函数. <2>当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212aa-,满足f <x 1>=f <x 2>=1 ∴0<a <1时,f <x >在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的X 围看还须讨论0<a <1时f <x >的单调性,这也是数学严谨性的体现.21.解析: ∵f <x >在<-2,2>上是减函数∴由f <m -1>-f <1-2m >>0,得f <m -1>>f <1-2m >∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值X 围是<-32,21>22.解析: <1>当a =21时,f <x >=x +x21+2,x ∈1,+∞> 设x 2>x 1≥1,则f <x 2>-f <x 1>=x 2+1122121x x x --=<x 2-x 1>+21212x x x x -=<x 2-x 1><1-2121x x > ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,则f <x 2>>f <x 1> 可知f <x >在[1,+∞>上是增函数.∴f <x >在区间[1,+∞)上的最小值为f <1>=27. <2>在区间[1,+∞)上,f <x >=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞>,由y =<x +1>2+a -1可知其在[1,+∞>上是增函数,当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f <x >>0恒成立.故a >-3.。

人教版高中数学A版必修4习题 1.4.2.2正弦函数、余弦函数的单调性

人教版高中数学A版必修4习题 1.4.2.2正弦函数、余弦函数的单调性

(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.函数f (x )=-2sin x +1,x ∈⎣⎡⎦⎤-π2,π的值域是( ) A .[1,3]B .[-1,3]C .[-3,1]D .[-1,1]解析: ∵x ∈⎣⎡⎦⎤-π2,π,∴sin x ∈[-1,1], ∴-2sin x +1∈[-1,3].答案: B2.函数y =|sin x |的一个单调递增区间是( )A .⎝⎛⎭⎫-π4,π4 B .⎝⎛⎭⎫π4,3π4 C .⎝⎛⎭⎫π,3π2 D .⎝⎛⎭⎫3π2,2π 解析: 由y =|sin x |的图象,易得函数y =|sin x |的单调递增区间为⎝⎛⎭⎫k π,k π+π2,k ∈Z ,当k =1时,得⎝⎛⎭⎫π,3π2为函数y =|sin x |的一个单调递增区间. 答案: C3.下列函数中,既为偶函数又在(0,π)上单调递增的是( )A .y =cos |x |B .y =cos |-x |C .y =sin ⎝⎛⎭⎫x -π2D .y =-sin x 2解析: y =cos |x |在⎝⎛⎭⎫0,π2上是减函数,排除A ;y =cos |-x |=cos |x |,排除B ;y =sin ⎝⎛⎭⎫x -π2=-sin ⎝⎛⎭⎫π2-x =-cos x 是偶函数,且在(0,π)上单调递增,符合题意;y =-sin x 2在(0,π)上是单调递减的.答案: C4.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为( ) A .-1 B .-22C .22D .0解析: 确定出2x -π4的范围,根据正弦函数的单调性求出最小值. ∵x ∈⎣⎡⎦⎤0,π2,∴-π4≤2x -π4≤3π4,∴当2x -π4=-π4时,f (x )=sin ⎝⎛⎭⎫2x -π4有最小值-22. 答案: B二、填空题(每小题5分,共15分)5.已知函数y =3cos (π-x ),则当x =________时,函数取得最大值.解析: y =3cos (π-x )=-3cos x ,当cos x =-1,即x =2k π+π,k ∈Z 时,y 有最大值3. 答案: 2k π+π,k ∈Z6.y =sin x ,x ∈⎣⎡⎦⎤π6,2π3,则y 的范围是________. 解析: 由正弦函数图象,对于x ∈⎣⎡⎦⎤π6,2π3,当x =π2时,y max =1,当x =π6时,y min =12,从而y ∈⎣⎡⎦⎤12,1.答案: ⎣⎡⎦⎤12,17.函数y =sin (x +π)在⎣⎡⎦⎤-π2,π上的单调递增区间为________. 解析: 因为sin (x +π)=-sin x ,所以要求y =sin (x +π)在⎣⎡⎦⎤-π2,π上的单调递增区间,即求y =sin x 在⎣⎡⎦⎤-π2,π上的单调递减区间,易知为⎣⎡⎦⎤π2,π. 答案: ⎣⎡⎦⎤π2,π 三、解答题(每小题10分,共20分)8.比较下列各组数的大小:(1)sin 1017π与sin 1117π; (2)cos 5π3与cos 14π9. 解析: (1)∵函数y =sin x 在⎣⎡⎦⎤π2,π上单调递减,且π2<1017π<1117π<π,∴sin 1017π>sin 1117π. (2)cos 5π3=cos (2π-π3)=cos π3,cos 14π9=cos (2π-4π9)=cos 4π9. ∵函数y =cos x 在[0,π]上单调递减,且0<π3<4π9<π,∴cos π3>cos 4π9,∴cos 5π3>cos 14π9. 9.求下列函数的最大值和最小值:(1)y = 1-12sin x ;(2)y =3+2cos ⎝⎛⎭⎫2x +π3. 解析: (1)∵⎩⎪⎨⎪⎧1-12sin x ≥0,-1≤sin x ≤1,∴-1≤sin x ≤1.∴当sin x =-1时,y max =62; 当sin x =1时,y min =22. (2)∵-1≤cos ⎝⎛⎭⎫2x +π3≤1, ∴当cos ⎝⎛⎭⎫2x +π3=1时,y max =5; 当cos ⎝⎛⎭⎫2x +π3=-1时,y min =1. 能力测评10.函数y =2sin ⎝⎛⎭⎫ωx +π4(ω>0)的周期为π,则其单调递增区间为( ) A .⎣⎡⎦⎤k π-3π4,k π+π4(k ∈Z ) B .⎣⎡⎦⎤2k π-3π4,2k π+π4(k ∈Z ) C .⎣⎡⎦⎤k π-3π8,k π+π8(k ∈Z ) D .⎣⎡⎦⎤2k π-3π8,2k π+π8(k ∈Z ) 解析: 周期T =π,∴2πω=π,∴ω=2,∴y =2sin ⎝⎛⎭⎫2x +π4.由-π2+2k π≤2x +π4≤2k π+π2,k ∈Z ,得k π-38π≤x ≤k π+π8,k ∈Z . 答案: C11.函数y =cos ⎝⎛⎭⎫x +π6,x ∈⎣⎡⎦⎤0,π2的值域为________. 解析: 由y =cos ⎝⎛⎭⎫x +π6,x ∈⎣⎡⎦⎤0,π2可得x +π6∈⎣⎡⎦⎤π6,2π3, 函数y =cos x 在区间⎣⎡⎦⎤π6,2π3上单调递减,所以函数的值域为⎣⎡⎦⎤-12,32.答案: ⎣⎡⎦⎤-12,32 12.求函数y =3-4sin x -4cos 2x 的值域.解析: y =3-4sin x -4cos 2x=3-4sin x -4(1-sin 2x )=4sin 2x -4sin x -1,令t =sin x ,则-1≤t ≤1.∴y =4t 2-4t -1=4⎝⎛⎭⎫t -122-2(-1≤t ≤1). ∴当t =12时,y min =-2, 当t =-1时,y max =7.即函数y =3-4sin x -4cos 2x 的值域为[-2,7].13.(1)求函数y =cos ⎝⎛⎭⎫π3-2x 的单调递增区间; (2)求函数y =3sin ⎝⎛⎭⎫π3-x 2的单调递增区间. 解析: (1)因为y =cos ⎝⎛⎭⎫π3-2x =cos ⎣⎡⎦⎤-⎝⎛⎭⎫2x -π3 =cos ⎝⎛⎭⎫2x -π3, 所以要求函数y =cos ⎝⎛⎭⎫π3-2x 的单调递增区间,只要求函数y =cos ⎝⎛⎭⎫2x -π3的单调递增区间即可.由于y =cos x 的单调递增区间为2k π-π≤x ≤2k π(k ∈Z ),则2k π-π≤2x -π3≤2k π(k ∈Z ),解得k π-π3≤x ≤k π+π6(k ∈Z ). 故函数y =cos ⎝⎛⎭⎫π3-2x 的单调递增区间为⎣⎡k π-π3,k π+ ⎦⎤π6(k ∈Z ). (2)设u =π3-x 2,则y =3sin u . 当π2+2k π≤u ≤3π2+2k π,k ∈Z 时, y =3sin u 随u 增大而减小.又因为u =π3-x 2随x 增大而减小,所以当π2+2k π≤π3-x 2≤3π2+2k π,k ∈Z , 即-7π3-4k π≤x ≤-π3-4k π,k ∈Z , 即-7π3+4k π≤x ≤-π3+4k π,k ∈Z 时, y =3sin ⎝⎛⎭⎫π3-x 2随x 增大而增大. 所以函数y =3sin ⎝⎛⎭⎫π3-x 2的单调递增区间为 ⎣⎡⎦⎤-7π3+4k π,-π3+4k π(k ∈Z ).。

高中数学必修1函数单调性和奇偶性专项练习(含答案)

高中数学必修1函数单调性和奇偶性专项练习(含答案)

高中数学必修1函数单调性和奇偶性专项练习(含答案)高中数学必修1 第二章函数单调性和奇偶性专项练一、函数单调性相关练题1、(1)函数f(x)=x-2,x∈{1,2,4}的最大值为3.在区间[1,5]上的最大值为9,最小值为-1.2、利用单调性的定义证明函数f(x)=(2/x)在(-∞,0)上是减函数。

证明:对于x1<x2.由于x1和x2都小于0,所以有x1<x2<0,因此有f(x2)-f(x1)=2/x1-2/x2=2(x2-x1)/x1x2<0.因此,f(x)在(-∞,0)上是减函数.3、函数f(x)=|x|+1的图像是一条V型曲线,单调区间为(-∞,0]和[0,∞).4、函数y=-x+2的图像是一条斜率为-1的直线,单调区间为(-∞,+∞).5、已知二次函数y=f(x)(x∈R)的图像是一条开口向下且对称轴为x=3的抛物线,比较大小:(1)f(6)与f(4);(2)f(2)与f(15).1) 因为f(x)是开口向下的抛物线,所以对于x>3,f(x)是减函数,对于x<3,f(x)是增函数。

因此,f(6)<f(4).2) 因为f(x)是开口向下的抛物线,所以对于x3,f(x)是增函数。

因此,f(2)>f(15).6、已知y=f(x)在定义域(-1,1)上是减函数,且f(1-a)<f(3a-2),求实数a的取值范围.因为f(x)在(-1,1)上是减函数,所以对于0f(3a-2)。

因此,实数a的取值范围为0<a<1.7、求下列函数的增区间与减区间:1) y=|x^2+2x-3|的图像是一条开口向上的抛物线,单调区间为(-∞,-3]和[1,+∞).2) y=1-|x-1|的图像是一条V型曲线,单调区间为(-∞,1]和[1,+∞).3) y=-x^2-2x+3的图像是一条开口向下的抛物线,单调区间为(-∞,-1]和[1,+∞).4) y=1/(x^2-x-20)的图像是一条双曲线,单调区间为(-∞,-4]和[-1,1]和[5,+∞).8、函数f(x)=ax^2-(3a-1)x+a^2在[1,+∞)上是增函数,求实数a的取值范围.因为f(x)在[1,+∞)上是增函数,所以对于x>1,有f(x)>f(1)。

函数单调性习题大全

函数单调性习题大全

函数的单调性一、选择题1. 下列函数中,在区间上为增函数的是( ).A .B .C .D .2.函数 的增区间是( )。

A .B .C .D .3. 在上是减函数,则a 的取值范围是( )。

A .B .C .D .4.当时,函数的值有正也有负,则实数a 的取值范围是( )A .B .C .D .5.若函数)(x f 在区间(a ,b )上为增函数,在区间(b ,c )上也是增函数,则函数)(x f 在区间(a ,c )上( ) (A )必是增函数 (B )必是减函数 (C )是增函数或是减函数(D )无法确定增减性6.设偶函数)(x f 的定义域为R ,当[)+∞∈,0x 时,)(x f 是增函数,则),2(-f )(πf ,)3(-f 的大小关系是 ( )A )2()3()(->->f f f πB )3()2()(->->f f f πC )2()3()(-<-<f f f πD )3()2()(-<-<f f f π7.已知偶函数()f x 在区间[0,)+∞单调递增,则满足(21)f x -<1()3f 的x 取值范围是 A .(13,23) B .(∞-,23) C .(12,23) D .⎪⎭⎫ ⎝⎛+∞,32 8.已知定义域为(-1,1)的奇函数y =f (x )又是减函数,且f (a -3)+f (9-a 2)<0,a 的取值范围是( ) A.(22,3)B.(3,10)C.(22,4)D.(-2,3)9.若(31)41()log 1a a x ax f x xx -+≤⎧=⎨>⎩是R 上的减函数,那么a 的取值范围是( )A.(0,1)B.1(0,)3C.11[,)73D.1[,1)710.已知函数f (x )=⎩⎪⎨⎪⎧a x, x <0,(a -3)x +4a , x ≥0.满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则a 的取值范围是( )A .(0,3)B .(1,3)C .(0,14]D .(-∞,3)二、填空题1.函数,当时,是增函数,当时是减函数,则f(1)=_____________ 2.已知在定义域内是减函数,且,在其定义域内判断下列函数的单调性:①( 为常数)是___________; ②( 为常数)是___________;③是____________; ④是__________.3.函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ .三、解答题1.求函数的单调递减区间.2.证明函数x x x f 3)(3+=在),(+∞-∞上是增函数3.讨论函数322+-=ax x f(x)在(-2,2)内的单调性。

高中数学人教版B必修一练习题及详解

高中数学人教版B必修一练习题及详解

练习四函数的单调性一、选择题1.若是的单调增区间,,且,则有()A.B.C.D.2.函数的单调递减区间为()A.B.C.D.3.下列函数中,在区间上递增的是()B.C.D.A.4. 若函数在上单调递增,则的取值范围是()A.B.C.D.5. 设函数在上是减函数,则有()A.B.C.D.6. 如果函数在区间上是减函数,那么实数的取值范围是()A.B.C.D.二、填空题7.函数的单调递增区间是____________.8.已知函数在是增函数,则,,的大小关系是__________________________.9.函数的单调递增区间是_______.10.若二次函数在区间是减函数,在区间上是增函数,则________.三、解答题11. 证明函数在上是增函数.12.判断函数在区间上的单调性,并给出证明.13.已知函数在上是减函数,且,求的取值范围.能力题14.若函数在上是单调递增函数,求的取值范围.15.讨论函数在内的单调性.练习四一、选择题二、填空题7.8.9.10.三、解答题11.设,且,则,则.,∴∴.∴在上是增函数.12.函数在区间上单调递增.证明如下:设,且,则,则.,∴,,,∴,∴在区间上的单调递增.13.函数在上是减函数,且,∴解得. ∴的取值范围是.能力题14.在上是单调增函数,∴ ,解得∴.15.,对称轴.∴若,则在上是增函数;若,则在上是减函数,在上是增函数;若,则在上是减函数.练习五函数的奇偶性一、选择题1.若是奇函数,则其图象关于()A.轴对称B.轴对称C.原点对称D.直线对称2.若函数是奇函数,则下列坐标表示的点一定在函数图象上的是()A.B.C.D.3.下列函数中为偶函数的是()B.C.D.A.4. 如果奇函数在上是增函数,且最小值是5,那么在上是()A.增函数,最小值是-5 B.增函数,最大值是-5C.减函数,最小值是-5 D.减函数,最大值是-55. 已知函数是奇函数,则的值为()A.B.C.D.6.已知偶函数在上单调递增,则下列关系式成立的是( )A.B.C.D.二、填空题7.若函数是奇函数,,则的值为____________ .8.若函数是偶函数,且,则与的大小关系为__________________________.9.已知是定义在上的奇函数,当时,的图象如右图所示,那么f (x) 的值域是 .10.已知分段函数是奇函数,当时的解析式为,则这个函数在区间上的解析式为.三、解答题11. 判断下列函数是否具有奇偶性:(1); (2) ;(3); (4); (5).12.判断函数的奇偶性,并指出它的单调区间.13.已知二次函数的图象关于轴对称,写出函数的解析表达式,并求出函数的单调递增区间. 能力题14.设是定义在上的偶函数,且在上是增函数,则与()的大小关系是( )A .B .C .D .与的取值无关若函数15.已知是奇函数,是偶函数,且在公共定义域上有,求的解析式. 练习五一、选择题二、填空题 7. 8. 9.10. 三、解答题11.(1)奇函数,(2)非奇非偶,(3)偶函数,(4) 非奇非偶函数,(5)偶函数12.偶函数. ∴函数的减区间是和,增区间是和.13.二次函数的图象关于轴对称,∴,则,函数的单调递增区间为.能力题14.B (提示: 是定义在上的偶函数,且在上是增函数,∴在上是减函数,.,∴,因此. )15.得 .练习六一次函数与二次函数一、选择题1.已知一次函数,满足,,则()D.A.B.C.2.下列关于函数,的结论正确的是()A.递增函数B.递减函数C.最小值是2 D.最大值是53.函数的值域为()A.B.C.D.4. 若二次函数在区间是减函数,在区间上是增函数,则()A.B.C.D.5. 若二次函数图象关于轴对称,则函数的单调增区间为 ( )A.B.C.D.6.函数上是单调递增的奇函数,则( )A.B.C.D.二、填空题7.二次函数的图象的顶点坐标为________,对称轴方程是_________ .8.已知定义域为,则实数的区值范围是 .9.已知,则直线一定不经过第象限.10.已知是一次函数的图象与轴交点的横坐标,又二次函数的图象与轴有交点则.三、解答题11. 已知二次函数:(1)求它的图象顶点坐标和与轴交点的坐标;(2)作出它的图象;(3)求点关于图象对称轴的对称点的坐标.12.已知函数判断该函数的奇偶性,并求该函数的最小值及单调区间.13.写出二次函数在区间上的最大值和最小值.能力题14.设函数,已知且,求实数的取值范围.15.已知,为常数,且,,且,方程有相等实根.(1)求函数的解析式,函数的最大值,并比较与的大小.若,判断的奇偶性,并证明你的结论.练习六一、选择题二、填空题7.,8.9.三10.三、解答题11.(1)顶点坐标,与轴交点的坐标,;(2)略;(3)二次函数图象对称轴为,∴点关于图象对称轴的对称点为,即.12.偶函数,,单减区间和;单增区间和. 13.当时,;当时,;当时,;当时,.能力题14.,即由于,,代入上式又有可解得的取值范围是.15.(1)由,得;由方程有相等实根,得,并且,即,由得,∴,,∴,故是奇函数.练习七函数的应用一、选择题t01.某学生从家里去学校上学,骑自行车一段时间,因自行车爆胎,后来推车步行,下图中横轴表示出发后的时间,纵轴表示该生离学校的距离,则较符合该学生走法的图是()2.某商店卖、两种价格不同的商品,由于商品连续两次提价%,同时商品连续两次降价%,结果都以每件元售出,若商店同时售出这两种商品各一件,则与价格不升、不降的情况相比较,商店盈利的情况是( ) A .多赚元 B . 少赚元 C .多赚元 D .利益相同3.拟定从甲地到乙地通话分钟的电话费由给出,其中,是大于或等于的最小整数,(如,,),则从甲地到乙地通话时间为分钟的话费为( )A .B .C .D .4.有一批材料可以建成长为的围墙,如果用材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图),则围成的矩形的最大面积是( )A .B .C .D .5.某商品进货单价为元,若销售价为元,可卖出个,如果销售单价每涨元, 销售量就减少个,为了获得最大利润,则此商品的最佳售价应为( )A .元B .元C .元D .元6.抛物线型拱桥的跨度是米,拱高是米,建桥时每隔米用一根支柱支撑,其中最长的支柱是( )A .米B .米C .米D .米二、填空题7.某乡镇现在人均一年占有粮食千克,如果该乡镇人口平均每年增长%,粮食总产量平均每年增长%,那么年后若人均一年占有千克粮食,则函数关于的解析式是______________________.8.某客运公司定客票的方法是:如果行程不超过,票价是元,如果超过,超过部分按元定价,则客运票价元与行程公里数之间的函数关系式是.9.一个高中研究性学习小组对本地区年至年快餐公司发展情况进行了调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销售量的平均数情况条形图(如图),根据图中提供的信息可以得出这三年中该地区每年平均销售盒饭万盒.10.某商人将彩电先按原价提高%,然后在广告中写上“大酬宾,八折优惠”,结果是每台彩电比原价多赚了元,则每台彩电原价是元.三、解答题11.把长为的铁丝弯成下部为矩形,上部为半圆形的框架(如图),若求此框架围成平面图形的面积与之间的函数关系式,并求其定义域.12.经市场调查,某商品在过去天内的销售量和价格均为时间()的函数,且销售量近似地满足(,);前天价格为(,),后天的价格为(,),试写出该种商品的日销售额与时间的函数关系.13.某商场购进一批单价为元的日用品,销售一段时间后,为了获得更多利润,商场决定提高销售价格.经试验发现,若按每件元的价格销售时,每月能卖件,若按元的价格销售时,每月能卖件,假定每月销售件数(件)是价格(元/件)的一次函数.(1)试求与之间的关系式;(2)在商品不积压,且不考虑其它因素的条件下,问销售价格定为多少时,才能时每月获得最大利润?每月的最大利润是多少?能力题14.某宾馆有相同标准的床位张,根据经验,当该宾馆的床价(即每张床价每天的租金)不超过元时,床位可以全部租出,当床位高于元时,每提高元,将有张床位空闲.为了获得较好的效益,该宾馆要给床位订一个合适的价格,条件是:①要方便结账,床价应为元的整数倍;②该宾馆每日的费用支出为元,床位出租的收入必须高于支出,而且高出得越多越好.若用表示床价,用表示该宾馆一天出租床位的净收入(即除去每日的费用支出后的收入)(1)把表示成的函数,并求出其定义域;(2)试确定该宾馆床位定为多少时既符合上面的两个条件,又能使净收入最多?15.经研究发现,学生的接受能力依赖于老师引入概念和描述总量所用的时间,开始讲题时,学生的兴趣保持较理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用表示学生掌握和接受概念的能力,表示提出和讲授概念的时间(单位:分),有以下的公式:(1)开讲后分钟与开讲后分钟比较,学生的接受能力何时强呢?(2)开讲后多少分钟,学生的接受能力最强?能维持多长的时间?(3)若讲解这道数学题需要的接受能力以及分钟的时间,老师能否及时在学生一直达到所需接受能力的状态下讲完这道题?练习七一、选择题二、填空题7.8.9.10.三、解答题11..,由,有.12.13.设(),由解得所以.设利润为,则有所以,当时有最大值为元.能力题14.(1)由已知有,令解得且.所以函数的定义域为.(2)当时,显然当时,取得最大值为(元);当时,,仅当时,取最大值.又因为,所以当时,取得最大值,最大值为元.比较两种情况的最大值,所以当床位定价为元时净收入最多.15.,,所以.所以开讲后分钟学生的接受能力比开讲后分钟强.当时,,所以是增函数,.当时,是递减的函数,所以,故开讲后钟学生达到最强的接受能力,并维持分钟.当时,令,解得.当时,令,解得则.因此,学生达到或超过的接受能力的时间分钟,小于分钟,故这位老师不能在学生所需状态下讲完这道题.练习九指数与指数函数一、选择题1.计算的结果是()A.B.C.D.2.将根式化成分数指数幂为()C.D.A.B.3.某林场计划第一年造林亩,以后每年比前一年多造林%,则第四年造林()A.亩B.亩C.亩D.亩4.曲线分别是指数函数的图象,则与的大小关系是 ( )A.B.C.D.5.若,则下列不等式中成立的是( )A.B.C.D.6.要得到函数的图象,只需将函数的图象( )A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位二、填空题7.函数是指数函数,则的取值为 . 8.比较下列各组数的大小:(1)______ ; (2) ______;(3)______9.函数的定义域是.10.若,则 .三、解答题11.化简12.已知函数的定义域是,求的取值范围.13.设,是上的偶函数.求的值;证明在上是增函数.能力题14. 已知,当该函数的值域为时,求的取值范围.15. 已知,判断的奇偶性;证明.练习九一、选择题二、填空题7.8.> > >9.10.三、解答题11..12.由,得,因为定义域为,所以. 13.因为是上的偶函数,所以,即,解得,因为所以.在上任取,且,则,因为且,所以,即,且,所以式,即.所以在上是增函数.能力题14.设,则,即.因为,所以,所以.15.任取且,则.因为所以是偶函数.当时,,即,所以.所以,所以.因为是偶函数,所以当时,.所以当且时,都有.练习十对数与对数函数一、选择题1.若,那么用表示是()A.B.C.D.2.若等于()C.D.A.B.3.下列函数中,在区间(0,+∞)上是减函数的是()A.B.C.D.4.下列函数与有相同图象的一个函数是()A.B.C.D.5.函数()A.是偶函数,在区间上单调递增B.是偶函数,在区间上单调递减C.是奇函数,在区间上单调递增D.是奇函数,在区间上单调递减6.已知,为不等于1的正数,则下列关系中正确的是()A.B.C.D.二、填空题7.使对数式有意义的的取值范围是.8.比较大小; 1;0;0;;.9.函数与的图像关于对称.10.函数的值域是__________.三、解答题11.已知函数的定义域是,函数的定义域是,确定集合、的关系?12.已知函数在区间上的最大值是最小值的倍,求的值.13.已知函数且.(1)求函数的定义域;(2)求使的的取值范围.能力题14.(1)若函数的定义域为,求的取值范围;(2)若函数的值域为,求的取值范围.15.已知函数.(1)求函数的定义域;(2)讨论函数的奇偶性和单调性.练习十一、选择题二、填空题7.且8.9.轴10.三、解答题11.∵或,,∴.12.∵函数在区间上是减函数,∴.13.(1)函数的定义域是;(2)当时,;当时,.能力题14.(1)恒成立,则,得.(2)须取遍所有的正实数,当时,符合条件;当时,则,得,即.15.(1)函数的定义域为;(2)∵,∴为奇函数;在上为减函数.练习十一幂函数一、选择题1.下列所给出的函数中,是幂函数的是()A.B.C.D.2.所有幂函数的图象都通过点()A.B.C.D.3.函数在区间上的最大值是()B.A.C.D.4.下列函数中为偶函数的是()A.y =B.y = xC.y = x2 D.y = x3+15.当时,函数与函数的图象()A.关于原点对称B.关于轴对称C.关于轴对称D.关于直线对称6.若函数在上为增函数,则的取值范围是()A.B.C.R D.二、填空题7.函数的定义域是.8.比较大小;;.9.已知幂函数的图象经过点,这个函数的解析式为.10.已知幂函数,若,则幂函数在区间上是增函数;若,则幂函数在区间上是减函数.三、解答题11.比较下列两个代数式值的大小:(1),;(2),12.已知函数f (x) =-2.(1)求f (x) 的定义域;(2)证明函数f (x) =-2在 (0,+∞)上是减函数.13.已知幂函数轴对称,试确定的解析式.能力题14.如图所示,曲线是幂函数在第一象限内的图象,已知分别取四个值,写出图象,,,相应的解析式.15.求证:函数在R上为奇函数且为增函数.练习十一一、选择题二、填空题7.8.9.10.,三、解答题11.;≤12.(1)f (x) 的定义域是{x∈R| x≠0};(2)设x1,x2是(0,+∞)上的两个任意实数,且x1 < x2,则x = x1-x2 < 0,y = f (x1) - f (x2) =-2- (-2) =-=.因为x2- x1 = -x >0,x1x2 >0 , 所以y >0.因此 f (x) =-2是 (0,+∞)上的减函数.13.由能力题14.:;:;:;:15.∵,∴在R上为奇函数.设x1,x2是R上的两个任意实数,且x1 < x2,则x = x1- x2 < 0,y = f (x1) - f (x2) =, 因为,=,由于,,且不能同时为0,否则,故.所以y<0.因此函数在R上为增函数.。

函数的单调性练习题

函数的单调性练习题

函数的单调性练习题高一数学同步测试(6)—函数的单调性1.在区间(0.+∞)上不是增函数的函数是:B。

y=3x^2+1.2.函数f(x)=4x^2-mx+5在区间[-2.+∞]上是增函数,在区间(-∞。

-2)上是减函数,则f(1)等于:C。

17.3.函数f(x)在区间(-2.3)上是增函数,则y=f(x+5)的递增区间是:A。

(3.8)。

4.函数f(x)=(ax+1)/(x+2)在区间(-2.+∞)上单调递增,则实数a的取值范围是:B。

(0.+∞)。

5.已知函数f(x)在区间[a。

b]上单调,且f(a)f(b)<0,则方程f(x)=0在区间[a。

b]内:A。

至少有一实根。

6.已知函数f(x)=8+2x-x^2,如果g(x)=f(2-x^2),那么函数g(x):B。

在区间(0.1)上是减函数。

7.已知函数f(x)是R上的增函数,A(0.-1)、B(3.1)是其图象上的两点,那么不等式|f(x+1)|<1的解集的补集是:D。

(-∞。

-1)∪[2.+∞)。

8.已知定义域为R的函数f(x)在区间(-∞。

5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么下列式子一定成立的是:C。

f(9)<f(-1)<f(13)。

9.函数f(x)=|x|和g(x)=x(2-x)的递增区间依次是:B。

(-∞。

]。

[1.+∞)。

10.已知函数f(x)=x^2+2(a-1)x+2在区间(-∞。

4]上是减函数,则实数a的取值范围是:C。

[-1.1]。

1.已知函数 $f(x)$ 在区间 $(-\infty,+\infty)$ 上是增函数,实数 $a,b\in \mathbb{R}$ 且 $a+b\leq 0$,则下列不等式中正确的是()A。

$f(a)+f(b)\leq -f(a)+f(b)$B。

$f(a)+f(b)\leq f(-a)+f(-b)$C。

$f(a)+f(b)\geq -f(a)+f(b)$D。

高中数学必修一课时作业(十八)

高中数学必修一课时作业(十八)

课时作业(十八) 函数的单调性[练基础]1.[多选题]如图所示的是定义在区间[-5,5]上的函数y =f (x )的图象,则下列关于函数f (x )的说法正确的是( )A .函数在区间[-5,-3]上单调递增B .函数在区间[1,4]上单调递增C .函数在区间[-3,1]∪[4,5]上单调递减D .函数在区间[-5,5]上没有单调性2.下列函数中,在(0,2)上为增函数的是( )A .y =-3x +2B .y =3xC .y =x 2-4x +5D .y =3x 2+8x -103.函数f (x )=x |x -2|的增区间是( )A .(-∞,1]B .[2,+∞)C .(-∞,1],[2,+∞)D .(-∞,+∞)4.已知函数y =f (x )在区间[-5,5]上是增函数,那么下列不等式中成立的是( )A .f (4)>f (-π)>f (3)B .f (π)>f (4)>f (3)C .f (4)>f (3)>f (π)D .f (-3)>f (-π)>f (-4)5.若函数y =f (x )在定义域为R ,且为减函数,f (1-a )<f (2a -1),则a 的取值范围是________.6.已知函数f (x )是定义在[0,+∞)上的增函数,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是________.[提能力]7.[多选题]已知函数f (x )=2ax 2+4(a -3)x +5,下列关于函数f (x )的单调性说法正确的是( )A .函数f (x )在R 上不具有单调性B .当a =1时,f (x )在(-∞,0)上递减C .若f (x )的单调递减区间是(-∞,-4],则a 的值为-1D .若f (x )在区间(-∞,3)上是减函数,则a 的取值范围是⎣⎢⎡⎦⎥⎤0,34 8.若函数f (x )=2x -1x +1在区间[m ,+∞)上为增函数,则实数m 的取值范围是________.9.已知函数f (x )=xx -1.(1)求f (f (3))的值;(2)判断函数f (x )在(1,+∞)上的单调性,并用定义加以证明;(3)确定x 的取值范围,使得函数f (x )=x x -1的图象在x 轴上方(写出结论即可).[战疑难]10.已知定义在(0,+∞)上的函数f (x )对任意x ,y ∈(0,+∞),恒有f (xy )=f (x )+f (y ),且当0<x <1时,f (x )>0,f ⎝ ⎛⎭⎪⎫13=1.(1)判断函数f (x )在(0,+∞)上的单调性并加以证明;(2)若f (x )+f (2-x )<2,求x 的取值范围.。

高中数学函数的单调性练习题及其答案(2)(2021年整理)

高中数学函数的单调性练习题及其答案(2)(2021年整理)

(完整版)高中数学函数的单调性练习题及其答案(2)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)高中数学函数的单调性练习题及其答案(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)高中数学函数的单调性练习题及其答案(2)(word版可编辑修改)的全部内容。

函数的单调性一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于( )A .-7B .1C .17D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2)C .(-2,3)D .(0,5)4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2),那么函数g (x ) ( )A .在区间(-1,0)上是减函数B .在区间(0,1)上是减函数C .在区间(-2,0)上是增函数D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式 |f(x+1)|<1的解集的补集是( )A.(-1,2) B.(1,4)C.(-∞,-1)∪[4,+∞) D.(-∞,-1)∪[2,+∞)8.已知定义域为R的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么下列式子一定成立的是()A.f(-1)<f(9)<f(13)B.f(13)<f(9)<f(-1)C.f(9)<f(-1)<f(13)D.f(13)<f(-1)<f(9)9.函数)xgxf-=和的递增区间依次是( )A.]1,=xx)2((|(x)|-∞(-∞(],0,B.)-∞(+∞,1[],0,C.]1,,0[+∞+∞+∞D),1[),(),,0[-∞10.已知函数()()2212=+-+在区间(]4,∞-上是减函数,则实数a的取值范围是()f x x a xA.a≤3 B.a≥-3 C.a≤5 D.a≥311.已知f(x)在区间(-∞,+∞)上是增函数,a、b∈R且a+b≤0,则下列不等式中正确的是()A.f(a)+f(b)≤-f(a)+f(b)]B.f(a)+f(b)≤f(-a)+f(-b) C.f(a)+f(b)≥-f(a)+f(b)]D.f(a)+f(b)≥f(-a)+f(-b)12.定义在R上的函数y=f(x)在(-∞,2)上是增函数,且y=f(x+2)图象的对称轴是x=0,则()A.f(-1)<f(3) B.f(0)>f(3)C.f (-1)=f (-3) D.f(2)<f(3)二、填空题:13.函数y=(x-1)—2的减区间是___ _.14.函数y=x-2x1+2的值域为__ ___.-15、设()y f x =是R 上的减函数,则()3y f x =-的单调递减区间为 。

人教版高中数学选择性必修第二册5.3.1函数的单调性(1课时)

人教版高中数学选择性必修第二册5.3.1函数的单调性(1课时)

题型四 函数的图象与导函数图象的关系
例 4 (1)设 f′(x)是函数 f(x)的导函数,y=f′(x)的图象如图所 示,则 y=f(x)的图象可能是( B )
【解析】 由题中导函数图象知,当 x∈(-∞,-1)时,f ′(x)<0,故 f(x)在(-∞,-1)上单调递减;
5.我们注意到 f(x)=2x,g(x)=3x,f′(x)=2,g′(x)=3, 有 f′(x)<g′(x),画图可见,g(x)与 f(x)都是增函数,但 g(x)比 f(x) 增长得快得多.自己再观察几个函数导数值的大小关系,你会发 现,导数绝对值的大小反映了函数在某个区间上或某点附近变化 的快慢程度,导数绝对值越大,函数增长(f′(x)>0)或减少(f′(x)<0)
探究 2 判断函数在某个区间(a,b)内的单调性可从以下几个 方面入手:
(1)利用函数单调性的定义:在定义域内任取 x1,x2(x1<x2), 通过判断 f(x1)-f(x2)的符号来确定函数 f(x)的单调性.
(2)图象法:利用函数图象的变化趋势直观判断,图象在某个 区间呈上升趋势,则函数在这个区间内是增函数;图象在某个区 间呈下降趋势,则函数在这个区间内是减函数.
【解析】 在区间(a,b)上 f′(x)>0(f′(x)<0)是函数 f(x)在此区间上为 增(减)函数的充分条件,而不是必要条件.如果出现个别点使 f′(x)=0,不 会影响函数 f(x)在包含该点的某个区间上的单调性.例如函数 f(x)=x3 在 定义域(-∞,+∞)上是增函数,但由 f′(x)=3x2 知,f′(0)=0,即并不 是在定义域内的任意一点处都满足 f′(x)>0.
∴f(x)在区间0,2a上为减函数. 若 x∈2a,+∞,则 f′(x)>0. ∴f(x)在区间2a,+∞上为增函数. ∴f(x)的单调递增区间为(-∞,0),2a,+∞,单调递减区 间为0,2a.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基础梳理
1.如果函数f(x)对区间D内的任意x1,x2,当x1<x2时都有f(x1)<f(x2),则f(x)在D内是增函数;当x1<x2时都有f(x1)>f(x2),则f(x)在D内是减函数.
例如:若f(x)=2x-1,能证明出函数f(x)在R上为增函数吗?____.
2.函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2)[或f(x1)>f(x2)].
例如:f(x)是R上的单调函数,若f(3)>f(2),则y=f(x)是R上的单调____函数;若f(3)>f(2),则y=f(x)是R上的单调增函数吗?____.
3.若函数y=f(x)在区间I上是单调增函数或是单调减函数,那么就说函数y=f(x)在区间I上具有单调性,单调增区间和单调减区间统称为单调区间.
4.若函数y=f(x)是R上的增函数,当a>b时,则f(a)____f(b); 若函数y=f(x)是R上的减函数,当a>b时,则f(a)____f(b).5.函数f(x)=x2+2x+11的单调增区间是________,
基础梳理
1.能 2.递增不是 4.>< 5.[-1,+∞)
思考应用
1.如果f(x)在区间D上是单调函数,则函数f(x)是增函数(减函数)的说法正确吗?
1.解析:不正确.函数的单调性是函数的局部性质,所以必须说明函数在哪个区间上是增(减)函数.
2. 函数f(x)在区间D上是增(减)函数,对于任意x1,x2∈D,则有“若x1<x2,则f(x1)<f(x2)[f(x1)>f(x2)]”,反之是否也成立呢?
2.解析:成立.即函数f(x)在D上是增(减)函数,对于∀x1,x2∈D,若f(x1)<f(x2)[f(x1)>f(x2)],则x1<x2,这个性质从函数单调性的图形定义中能形象地体现出来.
自测自评
1.下列结论正确的是()
A .函数y =-2x 在R 上为增函数
B .函数y =x 2在R 上为增函数
C .函数y =1x
在定义域内为减函数 D .函数y =1x
在(-∞,0)上为减函数 2.函数y =-2x 2+3x 的单调减区间是( )
A .[0,+∞)
B .(-∞,0)
C.⎝ ⎛⎦⎥⎤-∞,34
D.⎣⎢⎡⎭
⎪⎫34,+∞ 3.若f (x )在R 上是增函数,且f (x 1)>f (x 2),则x 1,x 2的大小关系为________.
自测自评
1.解析:借助图象知D 正确.故选D.
答案:D
2.解析:借助图象得y =-2x 2
+3x 的单调减区间是⎣⎢⎡⎭⎪⎫34,+∞,故选D.
答案:D
3.解析:∵f (x )在R 上是增函数,且f (x 1)>f (x 2),
∴x 1>x 2.
答案:x 1>x 2
►基础达标
1.使一次函数f (x )=kx +b 为增函数的一个条件是( )
A .k <0
B .k ≤0
C .k >0
D .k ≥0
1.C
2.下列说法正确的是( )
A .反比例函数y =k x
在区间(0,+∞)上是减函数 B .二次函数y =ax 2+bx +c 图象开口向上
C .反比例函数y =2x
是R 上的减函数 D .一次函数f (x )=-2x +b 是R 上的减函数
2.D
3.若函数y=f(x)在区间(a,b)内是增函数,在区间(b,c)内也是增函数,则函数y=f(x)在区间(a,b)∪(b,c)内()
A.必是增函数B.必是减函数
C.是增函数或减函数D.无法确定单调性
3.D
4.函数y=
1
x+2
的大致图象只能是()
4.B
5.函数f(x)图象如下图所示,函数的单调递减区间是____________.
5.[-5,-2]和[1,3]
6.下列函数中,在区间(0,1)上是增函数的是()
A.y=|x| B.y=3-x
C .y =1x
D .y =-x 2+4 6.A
►巩固提高
7.如果函数f (x )在[a ,b ]上是增函数,对于任意的x 1,x 2∈[a ,b ](x 1≠x 2),下列结论不正确的是( )
A.f (x 1)-f (x 2)x 1-x 2
>0 B .(x 1-x 2) [f (x 1)-f (x 2)]>0
C .f (a )<f (x 1)<f (x 2)<f (b )
D.x 2-x 1f (x 2)-f (x 1)
>0 7.解析:由增函数的定义知x 1-x 2与f (x 1)-f (x 2)同号,∴A ,B ,D 都正确,故选C.
答案:C
8.若函数f (x )=4x 2-kx -8在[5,8]上是单调函数,则k 的取值范围是( )
A .(-∞,40]
B .[40,64]
C .(-∞,40]∪[64,+∞)
D .[64,+∞)
8.解析:只需f (x )=4x 2-kx -8的对称轴x =k 8的相应值k 8
在区间[5,8]外面,即k 8≤5或k 8
≥8, ∴k ≤40或k ≥64.
答案:C
9.已知f (x )在(0,+∞)上是减函数,判断f (a 2-a +1)与f ⎝ ⎛⎭
⎪⎫34的大小关系.
9.解析:∵a 2-a +1=⎝ ⎛⎭
⎪⎫a -122+34≥34,且f (x )在(0,+∞)上是减函数,∴f (a 2-a +1)≤f ⎝ ⎛⎭
⎪⎫34. 10.设函数f (x )=x +1x
,试讨论f (x )在(0,+∞)上的单调性.
10.分析:根据函数单调性定义,作差f (x 1)-f (x 2)后通过x 在不同区间取值对差的符号影响进行讨论.
解析:设0<x 1<x 2,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫x 1+1x 1-⎝ ⎛⎭
⎪⎫x 2+1x 2=(x 1-x 2)(x 1x 2-1)x 1x 2
. ∵x 1-x 2<0,x 1x 2>0,
∴f (x 1)-f (x 2)的符号由x 1x 2-1确定.
设f (x )在(0,a ]上单调,则对任意x 1,x 2∈(0,a ]恒有x 1x 2-1<0,而在x 1,x 2∈[a ,+∞)时,恒有x 1x 2-1>0,∴a 2-1=0,a =1.
∴当x 1,x 2∈(0,1]时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),∴f (x )在(0,1]上是减函数.
当x 1,x 2∈(1,+∞)时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴f (x )在[1,+∞)上是增函数.
1.判断函数单调性的方法.方法一:画图观察;方法二:根据实际意义确定;方法三:利用定义证明.
2.利用定义证明函数f (x )在给定的区间D 上的单调性的一般步骤:
(1)任取x 1,x 2∈D ,且x 1<x 2;
(2)作差f (x 1)-f (x 2);
(3)变形(通常是因式分解和配方);
(4)定号(即判断差f (x 1)-f (x 2)的正负);
(5)下结论(即指出函数f (x )在给定的区间D 上的单调性).。

相关文档
最新文档