一般n次曲线切线方程的推导

合集下载

运用导数探究曲线的切线问题

运用导数探究曲线的切线问题

运用导数探究曲线的切线问题山东 黄丽生导数与曲线的切线有缘,因为()0/x f的几何意义是曲线y=f (x)在点(x 0 ,f (x 0))处的切线斜率,其物理意义通常指物体运动时的瞬时速度。

曲线的切线反映了曲线的变化情况,体现了微积分中重要的思想方法——以直代曲。

因此,利用导数求解曲线的问题,几乎是新课程高考每年必考的内容。

在这类问题中,导数所肩负的任务是求切线的斜率,这类问题的核心部分是考查函数的思想方法和解析几何的基本思想方法,真正体现出函数、导数既是研究的对象又是研究的工具。

举例说明。

例1已知函数)0()(>+=t xtx x f 和点)0 , 1(P ,过点P 作曲线)(x f y =的两条切线PM 、PN ,切点分别为M 、N .(1)设)(t g MN =,试求函数)(t g 的表达式;(2)是否存在t ,使得M 、N 与)1 , 0(A 三点共线.若存在,求出t 的值;若不存在,请说明理由.分析:由题意点P 在曲线外,故求切线PM 、PN 的方程,须设出M 、N 两点的横坐标,目的是借助导数求直线的斜率;第二问属探索性问题,往往是先假设存在,看是否能求得符合条件的t 或导出矛盾。

解:(1)设M 、N 两点的横坐标分别为1x 、2x , 21)(x tx f -=', ∴切线PM 的方程为:))(1()(12111x x x tx t x y --=+-,又 切线PM 过点)0,1(P , ∴有)1)(1()(012111x x t x t x --=+-,即02121=-+t tx x , 同理,由切线PN 也过点)0,1(P ,得02222=-+t tx x .由(1)、(2),可得21,x x 是方程022=-+t tx x 的两根,⎩⎨⎧-=⋅-=+∴. ,22121t x x t x x ( * )22211221)()(x t x x t x x x MN --++-=])1(1[)(221221x x t x x -+-= ])1(1][4)[(22121221x x t x x x x -+-+=, 把( * )式代入,得t t MN 20202+=,因此,函数)(t g 的表达式为)0( 2020)(2>+=t t t t g .(2)当点M 、N 与A 共线时,NA MA k k =,∴01111--+x x t x =01222--+x x t x ,即21121x x t x -+=22222x x t x -+,化简,得0])()[(211212=-+-x x x x t x x ,21x x ≠ ,1212)(x x x x t =+∴. 把(*)式代入,解得21=t . ∴存在t ,使得点M 、N 与A 三点共线,且 21=t . 点评:本题以函数为载体,综合考查了函数与导数的有关问题。

空间曲线的切线与法平面曲面的切平面与法线

空间曲线的切线与法平面曲面的切平面与法线

对应于 t t0 t.
x
(1)
z • M
•M
o
y
割线 M的M方程为
z
• M
x x0 y y0 z z0 x y z
x
考察割线趋近于极限位置——切线的过程
上式分母同除以
t ,
x x0 y y0 z z0 ,
x
y
z
t
t
t
•M
o
y
当M M ,即t 0时 ,
曲线在M处的切线方程
曲面的切平面与法线
(求法向量的方向余弦时注意符号)
思考题
如果平面3x y 3z 16 0与椭球面 3 x2 y2 z 2 16相切,求 .
思考题解答
设切点 ( x0 , y0 , z0 ),
依题意知切向量为
n {6 x0 , 2 y0 , 2z0 },
{3, ,3}
6x0 2 y0 2z0
3 3

y0 x0 , z0 3 x0 ,
切点满足曲面和平面方程
3 3
x0 x02
2 2
x0 x02
9 x0 9 x02
16 16
0 ,
0
2.
练习题
一、填空题:
1、曲线 x t , y 1 t , z t 2 再对应于t 1 的点
1 t
t
处切线方程为________________;
处的切平面及法线方程.
解 f ( x, y) x2 y2 1,
n ( 2,1, 4 )
{2x,
2 y, 1}(2,1,4)
{4,
2,1},
切平面方程为
4( x 2) 2( y 1) (z 4) 0,

导数切线斜率公式

导数切线斜率公式

导数切线斜率公式
导数切线斜率公式:两点表示切线的斜率k=(y1-y2)/(x1-x2)。

导数的几何意义是该函数曲线在这一点上的切线斜率。

扩展资料
切线的斜率怎么求:
方法1:用导数求。

第一先求原函数的导函数,第二把切点的横标代入导函数中得到的值就是原函数的图像在该点出切线的斜率。

方法2:有两点表示切线的`斜率k=(y1-y2)/(x1-x2)。

方法3:设出切线方程y=kx+b与函数的曲线方程联立消y,得到关于x的一元二次方程,由Δ=0,解k。

导数切线方程公式:
先算出来导数f'(x),导数的实质就是曲线的斜率,比如函数上存在一点(a.b),且该点的导数f'(a)=c。

那么说明在(a.b)点的切线斜率k=c,假设这条切线方程为y=mx+n,那么m=k=c,且ac+n=b,所以y=cx+b-ac。

公式:求出的导数值作为斜率k,再用原来的点(x0,y0),切线方程就是(y-b)=k(x-a)。

2023高考数学一轮复习专题03 曲线的公切线方程(解析版)

2023高考数学一轮复习专题03 曲线的公切线方程(解析版)

专题03曲线的公切线方程【方法总结】解决此类问题通常有两种方法(1)利用其中一曲线在某点处的切线与另一曲线相切,列出关系式求解;(2)设公切线l 在y =f (x )上的切点P 1(x 1,f (x 1)),在y =g (x )上的切点P 2(x 2,g (x 2)),则f ′(x 1)=g ′(x 2)=f (x 1)-g (x 2)x 1-x 2.注意:求两条曲线的公切线,如果同时考虑两条曲线与直线相切,头绪会比较乱,为了使思路更清晰,一般是把两条曲线分开考虑,先分析其中一条曲线与直线相切,再分析另一条曲线与直线相切,直线与抛物线相切可用判别式法.【例题选讲】[例1](1)(2020·全国Ⅲ)若直线l 与曲线y =x 和圆x 2+y 2=15都相切,则l 的方程为()A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12答案D解析易知直线l 的斜率存在,设直线l 的方程y =kx +b ,则|b |k 2+1=55①.设直线l 与曲线y =x 的切点坐标为kx 0+b③,由②③可得b =12x 0,将b ,所以k =b =12,故直线l 的方程y =12x +12.(2)已知f (x )=e x (e 为自然对数的底数直线l 的方程为.答案y =e x 或y =x +1解析设l ,∴f ′(x 1)=1e x,∴切点为(x 1,1e x)y =1e x·x -11e xx +1e x,①,同理设l 与g (x )=ln x +2的切点为(x 2,y 2),∴y 2=ln x 2+2,g ′(x )=1x ,∴g ′(x 2)=1x 2,切点为(x 2,ln x 2+2),切线斜率k =1x 2,∴切线方程为y -(ln x 2+2)=1x 2(x -x 2)①与②相同,∴111122121e e , e e ln 1,x x x x x x x x -⎧=⇒=⎪⎨⎪-+=+⎩③④把③代入④有-11e x x +1e x =-x 1+1,即(1-x 1)(1e x-1)=0,解得x 1=1或x 1=0,当x 1=1时,切线方程为y =e x ;当x 1=0时,切线方程为y =x +1,综上,直线l 的方程为y =e x 或y =x +1.(3)曲线C 1:y =ln x +x 与曲线C 2:y =x 2有________条公切线.答案1解析由y =ln x +x 得y ′=1x+1,设点(x 1,ln x 1+x 1)是曲线C 1上任一点,∴曲线C 1在点(x 1,ln x 1+x 1)处的切线方程为y -(ln x 1ln x 1-1.同理可得曲线C 2在点(x 2,x 22)题意知两切线重合,1=2x 2,x 1-1=-x 22,消去x 22x +4ln x -3(x >0),则f ′(x )=-2x 3-2x 2+4x =4x 2-2x -2x 3=当x ∈(1,+∞)时,f ′(x )>0,∴f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴f (x )min =f (1)=0,∴f (x )只有一个零点.即方程①只有一个解,故曲线C 1与C 2只有1条公切线.(4)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =.答案8解析方法一因为y =x +ln x ,所以y ′=1+1x,y ′|x =1=2.所以曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1.因为y =2x -1与曲线y =ax 2+(a +2)x +1相切,所以a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由=2x -1,=ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8.方法二同方法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1).因为y ′=2ax +(a +2),所以0|x x y ==2ax 0+(a +2).由ax0+(a +2)=2,20+(a +2)x 0+1=2x 0-1,0=-12,=8.(5)(2016·课标全国Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =e x 的切线,则b =________.答案0或1解析设直线y =kx +b 与曲线y =ln x +2的切点为(x 1,y 1),与曲线y =e x 的切点为(x 2,y 2),y =ln x +2的导数为y ′=1x ,y =e x 的导数为y ′=e x ,可得k =e x 2=1x 1.又由k =y 2-y 1x 2-x 1=e x 2-ln x 1-2x 2-x 1,消去x 2,可得(1+ln x 1)·(x 1-1)=0,则x 1=1e 或x 1=1,则直线y =kx +b 与曲线y =ln x +2(1,2),与曲线y =e x 的切点为(1,e)或(0,1),所以k =e -11-1e=e 或k =1-20-1=1,则切线方程为y =e x 或y =x +1,可得b =0或1.a4ln x0有解,令φ(x)=1x2+2x+1+4ln x(x>0),φ′(x)=-2x3-2x2+4x=4x-2x-2x3=2(2x+1)(x-1)x3,当x∈(0,1)时,φ′(x)<0,当x∈(1,+∞)时,φ′(x)>0,∴φ(x)在(0,1)上单调递减,在(1,+∞)上单调递增,∴φ(x)min=φ(1)=4,又x→+∞时,φ(x)→+∞,故φ(x)的值域为[4,+∞),所以4a≥4,即a≥1,故实数a的取值范围是[1,+∞).【对点训练】1.若直线l与曲线y=e x及y=-14x2都相切,则直线l的方程为________.1.答案y=x+1解析设直线l与曲线y=e x的切点为(x0,0x e),直线l与曲线y=-14x2的切点为1y=e x在点(x0,0x e)处的切线的斜率为y′|x=x0=0x e,y=-x24在点1y′|x=x1x=x1=-x12,则直线l的方程可表示为y=0x e x-x0e0x e+0x e或y=-12x1x+14x21=-x12,x0+=x214,所以0x e=1-x0,解得x0=0,所以直线l的方程为y=x+1.2.已知函数f(x)=x2的图象在x=1处的切线与函数g(x)=e xa的图象相切,则实数a等于()A.e B.e e2C.e2D.e e 2.答案B解析由f(x)=x2,得f′(x)=2x,则f′(1)=2,又f(1)=1,所以函数f(x)=x2的图象在x=1处的切线方程为y-1=2(x-1),即y=2x-1.设y=2x-1与函数g(x)=e xa的图象相切于点(x 0,y 0),由g ′(x )=e x a ,可得00000e 2,e 21,x x g x a g x x a ⎧()==⎪⎪⎨⎪()===-⎪⎩′解得x 0=32,a =321e 2=e e 2.3.已知函数f (x )=x +1,g (x )=a ln x ,若在x =14处函数f (x )与g (x )的图象的切线平行,则实数a 的值为()A .14B .12C .1D .43.答案A解析由题意可知f ′(x )=12x -12,g ′(x )=a x ,由f ′(14)=g ′(14),得12×(14)-12=a14,可得a =14,经检验,a =14满足题意.4.若f (x )=ln x 与g (x )=x 2+ax 两个函数的图象有一条与直线y =x 平行的公共切线,则a 等于()A .1B .2C .3D .3或-14.答案D解析设在函数f (x )=ln x 处的切点为(x ,y ),根据导数的几何意义得到k =1x=1,解得x =1,故切点为(1,0),可求出切线方程为y =x -1,此切线和g (x )=x 2+ax 也相切,故x 2+ax =x -1,化简得到x 2+(a -1)x +1=0,只需要满足Δ=(a -1)2-4=0,解得a =-1或a =3.5.若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.5.答案1-ln 2解析y =ln x +2的切线为y =1x 1·x +ln x 1+1(设切点横坐标为x 1).y =ln(x+1)的切线为y =1x 2+1x +ln(x 2+1)-x 2x 2+1(设切点横坐标为x 2).=1x 2+1,1+1=ln(x 2+1)-x 2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln2.6.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,与f (x )图象的切点为(1,f (1)),则m =________.6.答案-2解析∵f ′(x )=1x,∴直线l 的斜率k =f ′(1)=1.又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,∴m =-2.7.已知定义在区间(0,+∞)上的函数f (x )=-2x 2+m ,g (x )=-3ln x -x ,若以上两函数的图象有公共点,且在公共点处切线相同,则m 的值为()A .2B .5C .1D .07.答案C解析根据题意,设两曲线y =f (x )与y =g (x )的公共点为(a ,b ),其中a >0,由f (x )=-2x 2+m ,可得f ′(x )=-4x ,则切线的斜率为k =f ′(a )=-4a ,由g (x )=-3ln x -x ,可得g ′(x )=-3x -1,则切线的斜率为k =g ′(a )=-3a -1,因为两函数的图象有公共点,且在公共点处切线相同,所以-4a =-3a -1,解得a =1或a =-34(舍去),又g (1)=-1,即公共点的坐标为(1,-1),将点(1,-1)代入f (x )=-2x 2+m ,可得m =1.8.若直线y =kx +b 是曲线y =e xe2的切线,也是曲线y =e x -1的切线,则k +b 等于()A .-ln 22B .1-ln 22C .ln 2-12D .ln 228.答案D解析设直线y =kx +b 与曲线y =e x e 2相切于点P (x 1,y 1),y ′=e x e2=e x -2,k 1=12e x -;直线y =kx +b 与曲线y =e x -1相切于点Q (x 2,y 2),y ′=e x ,k 2=2e x ,∴l 1:y =1112221e e e x x x x x ---+-,l 2:y =2222e e 1e x x x x x +--,12112222212e e e e e e 1x xx x x x x x ⎧=⎪⎨=⎪⎩---,∴---,∴x 2=-ln 2,∴k +b =2222e e 1e x x x x +--=12+12-1-(-ln 2)×12=ln 22.9.设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)在点P 处的切线垂直,则P 的坐标为________.9.答案(1,1)解析y ′=e x ,曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1.设P (m ,n ),y =1x(x>0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2(m >0),因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).10.已知曲线f (x )=x 3+ax +14在x =0处的切线与曲线g (x )=-ln x 相切,则a 的值为.10.答案-e34-解析由f (x )=x 3+ax +14,得f ′(x )=3x 2+a .∵f ′(0)=a ,f (0)=14,∴曲线y =f (x )在x =0处的切线方程为y -14=ax .设直线y -14=ax 与曲线g (x )=-ln x 相切于点(x 0,-ln x 0),又∵g ′(x )=-1x ,ln x 0-14=ax 0,①=-1x 0,②将②代入①得ln x 0=34,∴x 0=e 34,∴a =-1e34=-e 34-.11.已知曲线y =e x 在点(x 1,1e x )处的切线与曲线y =ln x 在点(x 2,ln x 2)处的切线相同,则(x 1+1)(x 2-1)=()A .-1B .-2C .1D .211.答案B 解析已知曲线y =e x 在点(x 1,1e x )处的切线方程为y -1e x =1e x (x -x 1),即y =1111e e e x x xx x -+,曲线y =ln x 在点(x 2,ln x 2)处的切线方程为y -ln x 2=1x 2(x -x 2),即y =1x 2x -1+ln x 2,由=1x 2,-1x 1=-1+ln x 2,得x 2=11e x ,111e e x x x -=-1+ln x 2=-1+1ln 1e x =-1-x 1,则1e x =x 1+1x 1-1.又x 2=11e x ,所以x 2=x 1-1x 1+1,所以x 2-1=x 1-1x 1+1-1=-2x 1+1,所以(x 1+1)(x 2-1)=-2.12.曲线C 1:y =x 2与曲线C 2:y =a e x (a >0)存在公切线,则a 的取值范围是________.12.答案,4e 2解析设公切线在y =x 2上的切点为(x 1,x 21),在y =a e x(a >0)上的切点为(x 2,2e x a ).函数y =x 2,y =a e x (a >0)的导数分别为y ′=2x ,y ′=a e x ,则公切线的斜率为2x 1=222112e e x x x a a x x =--,整理得a =2241e x x ()-.由a >0可知,x 2>1,令f (x )=4x -1e x,x ∈(1,+∞),则f ′(x )=4e x2-x e x 2=8-4xe x,f ′(x )>0⇒1<x <2;f ′(x )<0⇒x >2,∴f (x )在区间(1,2)上单调递增,在区间(2,+∞)上单调递减,f (x )max =f (2)=4e 2;当x →+∞时,f (x )→0,即0<f (x )≤4e2,∴a ,4e 2.13.若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值.13.解析易知点O (0,0)在曲线y =x 3-3x 2+2x 上.(1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x =2x ,=x 2+a ,得x 2-2x +a =0,依题意Δ=4-4a =0,得a =1.(2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,且k =y ′|x =x 0=3x 20-6x 0+2,①,又k =y 0x 0=x 20-3x 0+2,②,联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x =-14x ,=x 2+a ,得x 2+14x +a =0,依题意,Δ=116-4a =0,得a =164.综上,a =1或a =164.14.已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1)求a 的值;(2)是否存在k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由.14.解析(1)由已知得f ′(x )=3ax 2+6x -6a ,∵f ′(-1)=0,∴3a -6-6a =0,∴a =-2.(2)存在.由已知得,直线m 恒过定点(0,9),若直线m 是曲线y =g (x )的切线,则设切点为(x 0,3x 20+6x 0+12).∵g ′(x 0)=6x 0+6,∴切线方程为y -(3x 20+6x 0+12)=(6x 0+6)(x -x 0),将(0,9)代入切线方程,解得x 0=±1.当x 0=-1时,切线方程为y =9;当x 0=1时,切线方程为y =12x +9.由(1)知f (x )=-2x 3+3x 2+12x -11,①由f ′(x )=0得-6x 2+6x +12=0,解得x =-1或x =2.在x =-1处,y =f (x )的切线方程为y =-18;在x =2处,y =f (x )的切线方程为y =9,∴y=f(x)与y=g(x)的公切线是y=9.②由f′(x)=12得-6x2+6x+12=12,解得x=0或x=1.在x=0处,y=f(x)的切线方程为y=12x-11;在x=1处,y=f(x)的切线方程为y=12x -10;∴y=f(x)与y=g(x)的公切线不是y=12x+9.综上所述,y=f(x)与y=g(x)的公切线是y=9,此时k=0.。

导数中八大切线问题题型总结(学生版)--高中数学

导数中八大切线问题题型总结(学生版)--高中数学

导数中八大切线问题题型总结【考点预测】1.在点的切线方程切线方程y-f(x0)=f (x0)(x-x0)的计算:函数y=f(x)在点A(x0,f(x0))处的切线方程为y-f(x0)=f(x0)(x-x0),抓住关键y0=f(x0) k=f (x0) .2.过点的切线方程设切点为P(x0,y0),则斜率k=f (x0),过切点的切线方程为:y-y0=f (x0)(x-x0),又因为切线方程过点A(m,n),所以n-y0=f (x0)(m-x0)然后解出x0的值.(x0有几个值,就有几条切线)注意:在做此类题目时要分清题目提供的点在曲线上还是在曲线外.【题型目录】题型一:导数与切线斜率的关系题型二:在点P处切线(此类题目点P即为切点)题型三:过点P的切线(此类题目点P不一定为切点,需要设切点为x0,y0)题型四:已知切线求参数问题题型五:切线的条数问题(判断切线条数以及由切线条数求范围)题型六:公切线问题题型七:切线平行、垂直、重合问题题型八:与切线相关的最值问题【典例例题】题型一:导数与切线斜率的关系【例1】(2022·全国·高三专题练习(文))函数y=f(x)的图像如图所示,下列不等关系正确的是( )A.0<f (2)<f (3)<f(3)-f(2)B.0<f (2)<f(3)-f(2)<f (3)C.0<f (3)<f(3)-f(2)<f (2)D.0<f(3)-f(2)<f (2)<f (3)【例2】函数y=f x 的图象如图所示,f′x 是函数f x 的导函数,则下列大小关系正确的是( )A.2f′4 <f4 -f2 <2f′2B.2f′2 <f4 -f2 <2f′4C.2f′4 <2f′2 <f4 -f2D.f4 -f2 <2f′4 <2f′2【题型专练】1.(2021·福建·泉州鲤城北大培文学校高三期中)(多选题)已知函数f x 的图象如图所示,f x 是f x 的导函数,则下列数值的排序正确的是()A.f 3 <f 2B.f 3 <f 3 -f 2C.f 2 <f 3 -f 2D.f 3 -f 2 <02.(2022·黑龙江齐齐哈尔·高二期末)函数y =f x 的图象如图所示,f x 是函数f x 的导函数,则下列数值排序正确的是( )A.2f 3 <f 5 -f 3 <2f 5B.2f 3 <2f 5 <f 5 -f 3C.f 5 -f 3 <2f 3 <2f 5D.2f 3 <2f 5 <f 5 -f 3题型二:在点P 处切线(此类题目点P 即为切点)【例1】【2019年新课标3卷理科】已知曲线y =ae x +x ln x 在点1,ae 处的切线方程为y =2x +b ,则A.a =e ,b =-1B.a =e ,b =1C.a =e -1,b =1D.a =e -1,b =-1【例2】(2022·全国·高三专题练习(文))已知函数f (x )是定义在R 上的奇函数,且f (x )=-2x 3+3ax 2-f (1)x ,则函数f (x )的图象在点(-2,f (-2))处的切线的斜率为( )A.-21B.-27C.-24D.-25【例3】(2022·河南省浚县第一中学模拟预测(理))曲线y =x ln (2x +5)在x =-2处的切线方程为( )A.4x -y +8=0B.4x +y +8=0C.3x -y +6=0D.3x +y +6=0【例4】过函数f (x )=12e 2x-x 图像上一个动点作函数的切线,则切线领斜角范围为( )A.0,3π4B.0,π2∪3π4,π C.3π4,π D.π2,3π4【例5】(2022·安徽·巢湖市第一中学模拟预测(文))曲线y =2x +ax +2在点1,b 处的切线方程为kx -y +6=0,则k 的值为( )A.-1B.-23C.12D.1【例6】(2022·江西·丰城九中高二期末(理))已知函数f x =f 2 3x 2−x ,x >0g x ,x <0图像关于原点对称,则f (x )在x=-1处的切线方程为( )A.3x-y+2=0B.3x-y-2=0C.3x+y+4=0D.3x+y-4=0【题型专练】1.【2018年新课标1卷理科】设函数f x =x3+a-1x2+ax.若f x 为奇函数,则曲线y=f x 在点0,0处的切线方程为( )A.y=-2xB.y=-xC.y=2xD.y=x2.【2021年甲卷理科】曲线y=2x-1x+2在点-1,-3处的切线方程为__________.3.【2019年新课标1卷理科】曲线y=3(x2+x)e x在点(0,0)处的切线方程为___________.4.【2018年新课标2卷理科】曲线y=2ln(x+1)在点(0,0)处的切线方程为__________.5.【2018年新课标3卷理科】曲线y=ax+1e x在点0,1处的切线的斜率为-2,则a=________.题型三:过点P的切线(此类题目点P不一定为切点,需要设切点为x0,y0)【例1】【2022年新高考2卷】曲线y=ln|x|过坐标原点的两条切线的方程为____________,_____ _______.【例2】(2022·四川·广安二中二模(文))函数f x =x2e x过点0,0的切线方程为( )A.y=0B.ex+y=0C.y=0或x+ey=0D.y=0或ex+y=0【例3】(2022·四川省成都市郫都区第一中学高三阶段练习(文))若过点12,0的直线与函数f(x)=xe x的图象相切,则所有可能的切点横坐标之和为( )A.e+1B.-12C.1D.12【例4】(2022·广东·佛山市南海区九江中学高二阶段练习)直线y=12x-b与曲线y=-12x+ln x相切,则b的值为( )A.2B.-2C.-1D.1【题型专练】1.(2022·陕西安康·高三期末(文))曲线y=2x ln x+3过点-12,0的切线方程是( )A.2x+y+1=0B.2x-y+1=0C.2x+4y+1=0D.2x-4y+1=02.(2022·广东茂名·二模)过坐标原点作曲线y=ln x的切线,则切点的纵坐标为( )A.eB.1C.1eD.1e3.过点(0,-1)作曲线f(x)=x ln x的切线,则切线方程为()A.x+y+1=0B.x-y-1=0C.x+2y+2=0D.2x-y-1=04.已知f (x )=x 2,则过点P (-1,0)且与曲线y =f (x )相切的直线方程为( )A.y =0B.4x +y +4=0C.y =0或4x +y +4=0D.y =0或4x -y +4=0题型四:已知切线求参数问题【例1】(2022·湖南·模拟预测)已知P 是曲线C :y =ln x +x 2+3-a x 上的一动点,曲线C 在P 点处的切线的倾斜角为θ,若π3≤θ<π2,则实数a 的取值范围是( )A.23,0B.22,0C.-∞,23D.-∞,22【例2】(2022·广东·石门高级中学高二阶段练习)若直线y =kx +1-ln2是曲线y =ln x +2的切线,则k =________.【例3】(2022·陕西·千阳县中学高三阶段练习(文))已知曲线y =ae x +x ln x 在点1,ae 处的切线方程为y =2x +b ,则b =_____【例4】(2022·江苏苏州·模拟预测)已知奇函数f x =x 2-2x ax +b a ≠0 在点a ,f a 处的切线方程为y =f a ,则b =( )A.-1或1B.-233或233C.-2或2D.-433或433【题型专练】1.(2022·云南·丽江市教育科学研究所高二期末)已知曲线f (x )=(x +a )e x 在点(-1,f (-1))处的切线与直线2x +y -1=0垂直,则实数a 的值为_________.2.(2022·云南昆明·模拟预测(文))若函数f x =a x +ln x 的图象在x =4处的切线方程为y =x +b ,则( )A.a =3,b =2+ln4B.a =3,b =-2+ln4C.a =32,b =-1+ln4D.a =32,b =1+ln43.(2022·河南·方城第一高级中学模拟预测(理))已知直线l 的斜率为2,l 与曲线C 1:y =x 1+ln x 和圆C 2:x 2+y 2-6x +n =0均相切,则n =( )A.-4B.-1C.1D.4题型五:切线的条数问题(判断切线条数以及由切线条数求范围)【例1】(2022·河南洛阳·三模(文))若过点P 1,0 作曲线y =x 3的切线,则这样的切线共有( )A.0条B.1条C.2条D.3条【例2】(2022·全国·高三专题练习)若过点(a ,b )可以作曲线y =ln x 的两条切线,则( )A.a <ln bB.b <ln aC.ln b <aD.ln a <b【例3】【2021年新高考1卷】若过点a ,b 可以作曲线y =e x 的两条切线,则( )A.e b <aB.e a <bC.0<a <e bD.0<b <e a【例4】(2022·河南洛阳·三模(理))若过点P 1,t 可作出曲线y =x 3的三条切线,则实数t 的取值范围是( )A.-∞,1B.0,+∞C.0,1D.0,1【例5】(2022·河北·高三阶段练习)若过点P (1,m )可以作三条直线与曲线C :y =xe x相切,则m 的取值范围为( )A.-∞,3e 2B.0,1eC.(-∞,0)D.1e ,3e 2【例6】(2022·黑龙江·哈尔滨市第六中学校高二期末)过直线y =x -1上一点P 可以作曲线f x =x -ln x 的两条切线,则点P 横坐标t 的取值范围为( )A.0<t <1B.1<t <eC.0<t <eD.1e<t <1【题型专练】1.(2022·内蒙古呼和浩特·二模(理))若过点P -1,m 可以作三条直线与曲线C :y =xe x 相切,则m 的取值范围是( )A.-3e 2,+∞ B.-1e,0 C.-1e ,-1e2 D.-3e2,-1e 2.(2022·广东深圳·二模)已知a >0,若过点(a ,b )可以作曲线y =x 3的三条切线,则( )A.b <0B.0<b <a 3C.b >a 3D.b b -a 3 =03.(2022·安徽·安庆市第二中学高二期末)若过点a ,b a >0 可以作曲线y =xe x 的三条切线,则()A.0<a <be bB.-ae a <b <0C.0<ae 2<b +4D.-a +4 <be 2<04.(2022·山东枣庄·高二期末)已知函数f x =x +1 e x ,过点M (1,t )可作3条与曲线y =f x 相切的直线,则实数t 的取值范围是( )A.-4e 2,0B.-4e 2,2eC.-6e 3,2e D.-6e 3,05.(2022·山东潍坊·三模)过点P 1,m m ∈R 有n 条直线与函数f x =xe x 的图像相切,当n 取最大值时,m 的取值范围为( )A.-5e 2<m <e B.-5e 2<m <0 C.-1e<m <0 D.m <e题型六:公切线问题【例1】(2023届贵州省遵义市新高考协作体)高三上学期入学质量监测数学(理)试题)若直线y =kx +b 是曲线y =e x +1的切线,也是y =e x +2的切线,则k =( )A.ln2B.-ln2C.2D.-2【例2】(2022·全国·高三专题练习)若函数f x =ln x 与函数g (x )=x 2+x +a (x <0)有公切线,则实数a 的取值范围是( )A.ln12e,+∞ B.-1,+∞C.1,+∞D.ln2,+∞【例3】(2022·河北石家庄·高二期末)若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值可能是( )A.1.2B.4C.5.6D.2e【例4】(2022·全国·高三专题练习)已知曲线C 1:f x =e x +a 和曲线C 2:g x =ln (x +b )+a 2a ,b ∈R ,若存在斜率为1的直线与C 1,C 2同时相切,则b 的取值范围是( )A.-94,+∞B.0,+∞C.-∞,1D.-∞,94【例5】(2022·江苏·南京外国语学校模拟预测)若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值范围为( )A.0,2eB.0,eC.2e ,+∞D.e ,2e【例6】(2022·重庆市育才中学高三阶段练习)若直线l :y =kx +b (k >1)为曲线f x =e x -1与曲线g x =e ln x的公切线,则l 的纵截距b =( )A.0B.1C.eD.-e【例7】(2022·河南·南阳中学高三阶段练习(理))若直线y =k 1x +1 -1与曲线y =e x 相切,直线y =k 2x +1 -1与曲线y =ln x 相切,则k 1k 2的值为( )A.12B.1C.eD.e 2【题型专练】1.已知函数f x =x ln x ,g x =ax 2-x .若经过点A 1,0 存在一条直线l 与曲线y =f x 和y =g x 都相切,则a =( )A.-1B.1C.2D.32.【2020年新课标3卷理科】若直线l 与曲线y =x 和x 2+y 2=15都相切,则l 的方程为( )A.y =2x +1B.y =2x +12C.y =12x +1D.y =12x +123.(2022·河北省唐县第一中学高三阶段练习)已知函数f x =a ln x ,g x =be x ,若直线y =kx k >0 与函数f x ,g x 的图象都相切,则a +1b 的最小值为( )A.2B.2eC.e 2D.e4.(2022·全国·高三专题练习)若两曲线y =ln x -1与y =ax 2存在公切线,则正实数a 的取值范围是( )A.0,2eB.12e -3,+∞C.0,12e -3 D.2e ,+∞5.(2022·全国·高三专题练习)若仅存在一条直线与函数f (x )=a ln x (a >0)和g (x )=x 2的图象均相切,则实数a =( )A.eB.eC.2eD.2e6.若曲线y =ln x 与曲线:y =x 2−k 有公切线,则实数k 的最大值为( )A.78+12ln2 B.78-12ln2 C.12+12ln2 D.12+12ln2题型七:切线平行、垂直、重合问题【例1】(2023·全国·高三专题练习)函数f (x )=ln x +ax 存在与直线2x -y =0平行的切线,则实数a 的取值范围是( )A.(-∞,2] B.-∞,2-1e ∪2-1e ,2C.2,+∞D.0,+∞【例2】(2022·安徽·合肥一中模拟预测(文))对于三次函数f (x ),若曲线y =f (x )在点(0,0)处的切线与曲线y=xf (x )在点(1,2)处点的切线重合,则f ′(2)=( )A.-34B.-14C.-4D.14【例3】(2022·全国·高三专题练习)若直线x =a 与两曲线y =e x ,y =ln x 分别交于A ,B 两点,且曲线y =e x 在点A 处的切线为m ,曲线y =ln x 在点B 处的切线为n ,则下列结论:①∃a ∈0,+∞ ,使得m ⎳n ;②当m ⎳n 时,AB 取得最小值;③AB 的最小值为2;④AB 最小值小于52.其中正确的个数是( )A.1 B.2C.3D.4【题型专练】1.(2022·山西太原·二模(理))已知函数f x =a sin x +b cos x +cx 图象上存在两条互相垂直的切线,且a 2+b 2=1,则a +b +c 的最大值为( )A.23B.22C.3D.22.(2022·全国·高三专题练习)已知函数f (x )=x 2+2x 的图象在点A (x 1,f (x 1))与点B (x 2,f (x 2))(x 1<x 2<0)处的切线互相垂直,则x 2-x 1的最小值为( )A.12B.1C.32D.23.(2022·全国·高三专题练习)已知函数f (x )=x 2+x +2a (x <0)-1x(x >0)的图象上存在不同的两点A ,B ,使得曲线y =f (x )在这两点处的切线重合,则实数a 的取值范围是( )A.-∞,-18B.-1,18C.(1,+∞)D.(-∞,1)∪18,+∞题型八:与切线相关的最值问题【例1】(2022·全国·高三专题练习)若点P 是曲线y =32x 2-2ln x 上任意一点,则点P 到直线y =x -3的距离的最小值为( )A.724B.332C.2D.5【例2】(2022·山东省淄博第一中学高三开学考试)动直线l 分别与直线y =2x -1,曲线y =32x 2-ln x 相交于A ,B 两点,则AB 的最小值为( )A.510B.55C.1D.5【例3】(2022·河南·许昌高中高三开学考试(理))已知函数y =e 2x +1的图象与函数y =ln x +1 +12的图象关于某一条直线l 对称,若P ,Q 分别为它们图象上的两个动点,则这两点之间距离的最小值为( )A.2ln22B.2ln24C.24+ln22D.24+ln2【例4】(2022·山东聊城·二模)实数x 1,x 2,y 1,y 2满足:x 21-ln x 1-y 1=0,x 2-y 2-4=0,则x 1-x 2 2+y 1-y 22的最小值为( )A.0B.22C.42D.8【题型专练】1.(2022·山西·高二期末)已知点P 是曲线y =x 2-3ln x 上一点,若点P 到直线2x +2y +3=0的距离最小,则点P 的坐标为___________.2.(2022·江苏·高三专题练习)已知a ,b 为正实数,直线y =x -a 与曲线y =ln (x +b )相切,则a 22-b的取值范围是()A.(0,+∞)B.(0,1)C.0,12D.[1,+∞)3.(2022·全国·高三专题练习)曲线y =e 2x 上的点到直线2x -y -4=0的最短距离是( )A.5B.3C.2D.14.(2022·河北衡水·高三阶段练习)已知函数f(x)=ln x x-2x2在x=1处的切线为l,第一象限内的点P(a,b)在切线l上,则1a+1+1b+1的最小值为( )A.2+324 B.3+424 C.4+235 D.3+245.(2022·河南·灵宝市第一高级中学模拟预测(文))已知直线y=kx+b是曲线y=x+1的切线,则k2+b2 -2b的最小值为( )A.-12B.0C.54D.3。

导数中的公切线问题--2024年新高考数学一轮复习题型归纳与方法总结 解析版

导数中的公切线问题--2024年新高考数学一轮复习题型归纳与方法总结 解析版

导数中的公切线问题知识点梳理一、公切线问题一般思路两个曲线的公切线问题,主要考查利用导数的几何意义进行解决,关键是抓住切线的斜率进行转化和过渡.主要应用在求公切线方程,切线有关的参数,以及与函数的其他性质联系到一起.处理与切线有关的参数,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.考法1:求公切线方程已知其中一曲线上的切点,利用导数几何意义求切线斜率,进而求出另一曲线上的切点;不知切点坐标,则应假设两切点坐标,通过建立切点坐标间的关系式,解方程.具体做法为:设公切线在y =f (x )上的切点P 1(x 1,f (x 1)),在y =g (x )上的切点P 2(x 2,g (x 2)),则f ′(x 1)=g ′(x 2)=f x 1 -g x 2x 1-x 2.考法2:由公切线求参数的值或范围问题由公切线求参数的值或范围问题,其关键是列出函数的导数等于切线斜率的方程.题型精讲精练1若直线y =kx +b 是曲线y =e x 的切线,也是曲线y =ln x +2 的切线,则k =______.【解析】设y =kx +b 与y =e x 和y =ln x +2 ,分别切于点x 1,e x 1,x 2,ln x 2+2 ,由导数的几何意义可得:k =e x 1=1x 2+2,即x 2+2=1ex 1,①则切线方程为y -e x 1=e x 1x -x 1 ,即y =e x 1x -e x 1x 1+e x 1,或y -ln x 2+2 =1x 2+2x -x 2 ,即y -ln x 2+2 =1x 2+2x -x 2 ,②将①代入②得y =e x 1x +2e x 1-1-x 1,又直线y =kx +b 是曲线y =e x 的切线,也是曲线y =ln x +2 的切线,则-e x 1x 1+e x 1=2e x 1-1-x 1,即e x 1-1 x 1+1 =0,则x 1=-1或x 1=0,即k =e 0=1或k =e -1=1e ,故答案为1或1e.2已知直线y =kx +b 与函数y =e x 的图像相切于点P x 1,y 1 ,与函数y =ln x 的图像相切于点Q x 2,y 2 ,若x 2>1,且x 2∈n ,n +1 ,n ∈Z ,则n =______.【解析】依题意,可得e x 1=k =1x 2y 1=e x 1=kx 1+by 2=ln x 2=kx 2+b,整理得x 2ln x 2-ln x 2-x 2-1=0令f x =x ln x -ln x -x -1x >1 ,则f x =ln x -1x在1,+∞ 单调递增且f 1 ⋅f 2 <0,∴存在唯一实数m ∈1,2 ,使f m =0f x min =f m <f 1 <0,f 2 =ln2-3<0,f 3 =2ln3-4<0,f 4 =3ln4-5<0,f 5 =4ln5-6>0,∴x 2∈4,5 ,故n =4.【题型训练】1.求公切线方程一、单选题1(2023·全国·高三专题练习)曲线y =1x与曲线y =-x 2的公切线方程为()A.y =-4x +4B.y =4x -4C.y =-2x +4D.y =2x -4【答案】A【分析】画出图象,从而确定正确选项.【详解】画出y =1x,y =-x 2以及四个选项中直线的图象如下图所示,由图可知A 选项符合.故选:A2(2023·全国·高三专题练习)对于三次函数f (x ),若曲线y =f (x )在点(0,0)处的切线与曲线y =xf (x )在点(1,2)处点的切线重合,则f ′(2)=()A.-34B.-14C.-4D.14【答案】B【分析】由f(0)=0得d=0,然后求得f (x),由f (0)=2-01-0求得c=2,设g(x)=xf(x),由g(1)=2得f(1)=2及a+b=0,再由g (1)=2得3a+2b+2=0,解得a,b后可得f (2).【详解】设f(x)=ax3+bx2+cx+d(a≠0),∵f(0)=d=0,∴f(x)=ax3+bx2+cx,∴f′(x)=3ax2+2bx+c∴f′(0)=c=2-01-0=2,设g(x)=xf(x),则g(1)=f(1)=a+b+2=2,即a+b=0⋯⋯①又∵g′(x)=f(x)+xf′(x),∴g′(1)=f(1)+f′(1)=2,∴f′(1)=0,即3a+2b+2=0⋯⋯②由①②可得a=-2,b=2,c=2,∴f′(2)=-14.故选:B.3(2023·全国·高三专题练习)已知函数f x =x ln x,g x =ax2-x.若经过点A1,0存在一条直线l与曲线y=f x 和y=g x 都相切,则a=()A.-1B.1C.2D.3【答案】B【分析】先求得f(x)在A(1,0)处的切线方程,然后与g x =ax2-x联立,由Δ=0求解【详解】解析:∵f x =x ln x,∴f x =1+ln x,∴f 1 =1+ln1=1,∴k=1,∴曲线y=f x 在A1,0处的切线方程为y=x-1,由y=x-1y=ax2-x得ax2-2x+1=0,由Δ=4-4a=0,解得a=1.故选:B4(2023·全国·高三专题练习)已知函数f(x)=x2-4x+4,g(x)=x-1,则f(x)和g(x)的公切线的条数为A.三条B.二条C.一条D.0条【答案】A【分析】分别设出两条曲线的切点坐标,根据斜率相等得到方程8n3-8n2+1=0,构造函数f x =8x3-8x2+1,f x =8x3x-2,研究方程的根的个数,即可得到切线的条数.【详解】设公切线与f x 和g x 分别相切于点m,f m,n,f n,f x =2x-4,g x =-x -2,gn =fm =g n -f m n -m ,解得m =-n -22+2,代入化简得8n 3-8n 2+1=0,构造函数f x =8x 3-8x 2+1,f x =8x 3x -2 ,原函数在-∞,0 ↗,0,23 ↘,23,+∞ ↗,极大值f 0 >0,极小值,f 23<0故函数和x 轴有交3个点,方程8n 3-8n 2+1=0有三解,故切线有3条.故选A .【点睛】这个题目考查了利用导数求函数在某一点处的切线方程;步骤一般为:一,对函数求导,代入已知点得到在这一点处的斜率;二,求出这个点的横纵坐标;三,利用点斜式写出直线方程.考查了函数零点个数问题,即转化为函数图像和x 轴的交点问题.5(2023·全国·高三专题练习)已知函数f x =x 2-2m ,g x =3ln x -x ,若y =f x 与y =g x在公共点处的切线相同,则m =()A.-3B.1C.2D.5【答案】B【分析】设曲线y =f x 与y =g x 的公共点为x 0,y 0 ,根据题意可得出关于x 0、m 的方程组,进而可求得实数m 的值.【详解】设函数f x =x 2-2m ,g x =3ln x -x 的公共点设为x 0,y 0 ,则f x 0 =g x 0 f x 0 =g x 0 ,即x 20-2m =3ln x 0-x 02x 0=3x 0-1x 0>0,解得x 0=m =1,故选:B .【点睛】本题考查利用两函数的公切线求参数,要结合公共点以及导数值相等列方程组求解,考查计算能力,属于中等题.6(2023·全国·高三专题练习)函数f (x )=ln x 在点P (x 0,f (x 0))处的切线与函数g (x )=e x 的图象也相切,则满足条件的切点的个数有A.0个B.1个C.2个D.3个【答案】C【分析】先求直线l 为函数的图象上一点A (x 0,f (x 0))处的切线方程,再设直线l 与曲线y =g (x )相切于点(x 1,e x 1),进而可得ln x 0=x 0+1x 0-1,根据函数图象的交点即可得出结论.【详解】解:∵f (x )=ln x ,∴f ′(x )=1x ,∴x =x 0,f ′(x 0)=1x 0,∴切线l的方程为y-ln x0=1x0(x-x0),即y=1x0x+ln x0-1,①设直线l与曲线y=g(x)相切于点(x1,e x1),∵g (x)=e x,∴e x1=1x0,∴x1=-ln x0.∴直线l也为y-1x0=1x0(x+ln x0)即y=1x0x+ln x0x0+1x0,②由①②得ln x0=x0+1 x0-1,如图所示,在同一直角坐标系中画出y=ln x,y=x+1x-1的图象,即可得方程有两解,故切点有2个.故选:C二、填空题7(2023·吉林长春·长春吉大附中实验学校校考模拟预测)与曲线y=e x和y=-x24都相切的直线方程为.【答案】y=x+1【分析】分别设出直线与两曲线相切的切点,然后表示出直线的方程,再根据切线是同一条直线建立方程求解.【详解】设直线与曲线y=e x相切于点x1,e x1,因为y =e x,所以该直线的方程为y-e x1=e x1x-x 1,即y=e x1x+e x11-x1,设直线与曲线y=-x24相切于点x2,-x224,因为y =-x2,所以该直线的方程为y+x224=-x22x-x2,即y=-x22x+x224,所以e x1=-x22e x11-x1=x224,解得x1=0,x2=-2,所以该直线的方程为y=x+1,故答案为:y=x+1.8(2023·全国·高三专题练习)已知f x =e x-1(e为自然对数的底数),g x =ln x+1,请写出f x 与g x 的一条公切线的方程.【答案】y=ex-1或y=x【分析】假设切点分别为m,e m-1,n,ln n+1,根据导数几何意义可求得公切线方程,由此可构造方程求得m,代入公切线方程即可得到结果.【详解】设公切线与f x 相切于点m,e m-1,与g x 相切于点n,ln n+1,∵f x =e x,g x =1x,∴公切线斜率k=e m=1n;∴公切线方程为:y-e m+1=e m x-m或y-ln n-1=1nx-n,整理可得:y=e m x-m-1e m-1或y=1nx+ln n,∴e m=1nm-1e m+1=-ln n,即m=-ln nm-1e m +1=-ln n,∴m-1e m+1-m=m-1e m-1=0,解得:m=1或m=0,∴公切线方程为:y=ex-1或y=x.故答案为:y=ex-1或y=x.9(2023春·安徽·高三合肥市第六中学校联考开学考试)已知直线l与曲线y=e x、y=2+ln x都相切,则直线l的方程为.【答案】y=x+1或y=ex【分析】分别求出两曲线的切线方程是y=e x1x+e x11-x1和y=1x2x+1+ln x2,解方程e x1=1x2,e x11-x1=1+ln x2,即得解.【详解】解:由y=e x得y =e x,设切点为x1,e x1,所以切线的斜率为e x1,则直线l的方程为:y=e x1x+e x11-x1;由y =2+ln x 得y =1x ,设切点为x 2,2+ln x 2 ,所以切线的斜率为1x 2,则直线l 的方程为:y =1x 2x +1+ln x 2.所以e x 1=1x 2,e x 11-x 1 =1+ln x 2,消去x 1得1x 2-11+ln x 2 =0,故x 2=1或x 2=1e,所以直线l 的方程为:y =x +1或y =ex .故答案为:y =x +1或y =ex 10(2023春·浙江金华·高三浙江金华第一中学校考阶段练习)已知直线y =kx +b 是曲线y =ln 1+x 与y =2+ln x 的公切线,则k +b =.【答案】3-ln2【分析】分别设两条曲线上的切点,写出切线方程,建立方程组,解出切点,计算k +b .【详解】设曲线y =ln 1+x 上切点A x 1,ln 1+x 1 ,y =11+x,切线斜率k =11+x 1,切线方程y -ln 1+x 1 =11+x 1x -x 1 ,即y =11+x 1x -x 11+x 1+ln 1+x 1同理,设曲线y =2+ln x 上切点B x 2,2+ln x 2 ,y =1x,切线斜率k =1x 2,切线方程y -2+ln x 2 =1x 2x -x 2 ,即y =1x 2x +1+ln x 2,所以11+x 1=1x 2-x11+x 1+ln (1+x 1)=1+ln x 2,解得x 1=-12x 2=12,所以k =2,b =1-ln2,k +b =3-ln2.故答案为:3-ln2.2.公切线中的参数问题一、单选题1(2023·陕西渭南·统考一模)已知直线y =ax +b (a ∈R ,b >0)是曲线f x =e x 与曲线g x =ln x +2的公切线,则a +b 等于()A.e +2B.3C.e +1D.2【答案】D【分析】由f x 求得切线方程,结合该切线也是g x 的切线列方程,求得切点坐标以及斜率,进而求得直线y =ax +b ,从而求得正确答案.【详解】设t ,e t 是f x 图象上的一点,f x =e x ,所以f x 在点t ,e t 处的切线方程为y -e t =e t x -t ,y =e t x +1-t e t ①,令g x =1x=e t ,解得x =e -t ,g e -t=ln e -t+2=2-t ,所以2-t -e te -t-t=e t ,1-t =1-t e t ,所以t =0或t =1(此时①为y =ex ,b =0,不符合题意,舍去),所以t =0,此时①可化为y -1=1×x -0 ,y =x +1,所以a +b =1+1=2.故选:D2(2023·陕西榆林·校考模拟预测)若直线l 与曲线y =e x 相切,切点为M x 1,y 1 ,与曲线y =x +32也相切,切点为N x 2,y 2 ,则2x 1-x 2的值为()A.-2B.-1C.0D.1【答案】B【分析】根据导数求出切线的斜率,得到切线方程,根据两切线方程即可得解.【详解】因为直线l 与曲线y =e x 相切,切点为M x 1,y 1 ,可知直线l 的方程为y =e x 1x -x 1 +e x 1=e x 1x +1-x 1 e x 1,又直线l 与曲线y =x +3 2也相切,切点为N x 2,y 2 ,可知直线l 的方程为y =2x 2+3 x -x 2 +x 2+3 2=2x 2+3 x -x 22+9,所以e x 1=2x 2+3 1-x 1 e x 1=-x 22+9,两式相除,可得21-x 1 =3-x 2,所以2x 1-x 2=-1.故选:B3(2023春·河南·高三校联考阶段练习)已知曲线y =x 在点x 0,x 0 0<x 0<14处的切线也与曲线y =e x 相切,则x 0所在的区间是()A.0,14e 4B.14e 4,14e 2C.14e 2,14eD.14e ,14【答案】C【分析】设切线l与曲线y=e x的切点为m,e m,通过导数分别写出切线方程,由两条切线重合得出方程,再通过此方程有解得出结果.【详解】设该切线为l,对y=x求导得y =12x,所以l的方程为y-x0=12x0x-x0,即y=12x0x+x02.设l与曲线y=e x相切的切点为m,e m,则l的方程又可以写为y-e m=e m x-m,即y=e m x+1-me m.所以e m=12x0,x02=1-me m.消去m,可得x0=1+ln2x0,0<x0<1 4,令t=2x0∈0,1,则ln t-t24+1=0.设h t =ln t-t24+1,当0<t<1时,h t =1t-t2>0,所以h t 在0,1上单调递增,又h1e=-14e2<0,h1e=12-14e>0,所以t0=2x0∈1e,1e,所以x0∈14e2,14e.故选:C.4(2023·全国·高三专题练习)若函数f x =2a ln x+1与g x =x2+1的图像存在公共切线,则实数a的最大值为()A.eB.2eC.e22D.e2【答案】A【分析】分别设公切线与g x =x2+1和f(x)=2a ln x+1的切点x1,x21+1,x2,2a ln x2+1,根据导数的几何意义列式,再化简可得a=2x22-2x22ln x2,再求导分析h(x)=2x2-2x2⋅ln x(x >0)的最大值即可【详解】g x =2x,f x =2a x,设公切线与g x =x2+1的图像切于点x1,x21+1,与曲线f(x)=2a ln x+1切于点x2,2a ln x2+1,所以2x1=2ax2=2a ln x2+1-x21+1x2-x1=2a ln x2-x21x2-x1,故a=x1x2,所以2x1=2x1x2ln x2-x21x2-x1,所以x1=2x2-2x2⋅ln x2,因为a=x1x2,故a=2x22-2x22ln x2,设h(x)=2x2-2x2⋅ln x(x>0),则h (x)=2x(1-2ln x),令h (x)=0⇒x=e当h (x)>0时,x∈(0,e),当h (x)<0时,x∈(e,+∞),所以h x 在(0,e)上递增,在(e,+∞)上递减,所以h(x)max=h(e)=e,所以实数a的最大值为e,故选:A.5(2023·湖南郴州·统考模拟预测)定义:若直线l与函数y=f x ,y=g x 的图象都相切,则称直线l为函数y=f x 和y=g x 的公切线.若函数f x =a ln x a>0和g x =x2有且仅有一条公切线,则实数a的值为()A.eB.eC.2eD.2e【答案】C【分析】设直线与g x =x2的切点为x1,x21,然后根据导数的几何意义可推得切线方程为y=2x1x-x21,y=ax2x+a ln x2-1.两条切线重合,即可得出a=4x22-4x22ln x2有唯一实根.构造h x =4x2-4x2ln x x>0,根据导函数得出函数的性质,作出函数的图象,结合图象,即可得出答案.【详解】设直线与g x =x2的切点为x1,x21,因为g x =2x,根据导数的几何意义可知该直线的斜率为2x1,即该直线的方程为y-x21=2x1x-x1,即y=2x1x-x21.设直线与f x =a ln x的切点为(x2,a ln x2),因为f x =ax,根据导数的几何意义可知该直线的斜率为ax2,即该直线的方程为y-a ln x2=ax2x-x2,即y=ax2x+a ln x2-1.因为函数f x =a ln x a>0和g x =x2有且只有一条公切线,所以有2x1=ax2a ln x2-1=-x21 ,即a=4x22-4x22ln x2有唯一实根.令h x =4x2-4x2ln x x>0,则h x =8x-8x ln x-4x=4x1-2ln x.解h x =0,可得x= e.当4x1-2ln x>0时,0<x<e,所以h x 在0,e上单调递增;当4x1-2ln x<0时,x>e,所以h x 在e,+∞上单调递减.所以h x 在x=e处取得最大值h e=4e-4e×12=2e.当x→0时,h x →0,h e =4e2-4e2ln e=0,函数h x 图象如图所示,因为a>0,a=4x2-4x2ln x有唯一实根,所以只有a=2e.故选:C6(2023春·广东汕头·高三汕头市潮阳实验学校校考阶段练习)已知函数f x =2+ln x,g x = a x,若总存在两条不同的直线与函数y=f x ,y=g x 图象均相切,则实数a的取值范围为()A.0,1B.0,2C.1,2D.1,e【答案】B【分析】设函数y=f x ,y=g x 的切点坐标分别为x1,2+ln x1,x2,a x2,根据导数几何意义可得a2=4ln x1+4x1,x1>0,即该方程有两个不同的实根,则设h x =4ln x+4x,x>0,求导确定其单调性与取值情况,即可得实数a的取值范围.【详解】解:设函数f x =2+ln x上的切点坐标为x1,2+ln x1,且x1>0,函数g x =a x 上的切点坐标为x2,a x2,且x2≥0,又f x =1x,g x =a2x,则公切线的斜率k=1x1=a2x2,则a>0,所以x2=a24x21,则公切线方程为y-2+ln x1=1x1x-x1,即y=1x1x+ln x1+1,代入x 2,a x 2 得:a x 2=1x 1x 2+ln x 1+1,则a 22x 1=1x 1⋅a 24x 21+ln x 1+1,整理得a 2=4ln x 1+4x 1,若总存在两条不同的直线与函数y =f x ,y =g x 图象均相切,则方程a 2=4ln x 1+4x 1有两个不同的实根,设h x =4ln x +4x,x >0,则h x =4x⋅x -4ln x +4x2=-4ln xx,令h x =0得x =1,当x ∈0,1 时,h x >0,h x 单调递增,x ∈1,+∞ 时,h x <0,h x 单调递减,又h x =0可得x =1e,则x →0时,h x →-∞;x →+∞时,h x →0,则函数h x 的大致图象如下:所以a >00<a 2<4,解得0<a <2,故实数a 的取值范围为0,2 .故选:B .【点睛】本题考查了函数的公切线、函数方程与导数的综合应用,难度较大.解决本题的关键是,根据公切线的几何意义,设切点坐标分别为x 1,2+ln x 1 ,且x 1>0,x 2,a x 2 ,且x 2≥0,可得k =1x 1=a 2x 2,即有x 2=a 24x 21,得公切线方程为y =1x 1x +ln x 1+1,代入切点x 2,a x 2 将双变量方程a x 2=1x 1x 2+ln x 1+1转化为单变量方程a 22x 1=1x 1⋅a 24x 21+ln x 1+1,根据含参方程进行“参变分离”得a 2=4ln x 1+4x 1,转化为一曲一直问题,即可得实数a 的取值范围.7(2023·全国·高三专题练习)若曲线y =ln x +1与曲线y =x 2+x +3a 有公切线,则实数a 的取值范围()A.2ln2-36,3-ln22B.1-4ln212,3-ln22C.2ln2-36,+∞ D.1-4ln212,+∞【答案】D【分析】分别求出两曲线的切线方程,则两切线方程相同,据此求出a 关于切点x 的解析式,根据解析式的值域确定a 的范围.【详解】设x 1,y 1 是曲线y =ln x +1的切点,设x 2,y 2 是曲线y =x 2+x +3a 的切点,对于曲线y =ln x +1,其导数为y =1x ,对于曲线y =x 2+x +3a ,其导数为y =2x +1,所以切线方程分别为:y -ln x 1+1 =1x 1x -x 1 ,y -x 22+x 2+3a =2x 2+1 x -x 2 ,两切线重合,对照斜率和纵截距可得:1x 1=2x 2+1ln x 1=-x 22+3a,解得3a =ln x 1+x 22=ln 12x 2+1+x 22=-ln 2x 2+1+x 22x 2>-12 ,令h x =-ln 2x +1 +x 2x >-12,hx =-22x +1+2x =4x 2+2x -22x +1=2x +1 2x -1 2x +1=0,得:x =12,当x ∈-12,12时,h x <0,h x 是减函数,当x ∈12,+∞时,h x >0,h x 是增函数,∴h min x =h 12 =14-ln2且当x 趋于-12时,,h x 趋于+∞;当x 趋于+∞时,h x 趋于+∞;∴3a ≥14-ln2,∴a ≥1-4ln212;故选:D .8(2023·河北·统考模拟预测)若曲线f (x )=3x 2-2与曲线g (x )=-2-m ln x (m ≠0)存在公切线,则实数m 的最小值为()A.-6eB.-3eC.2eD.6e【答案】A【分析】求出函数的导函数,设公切线与f x 切于点x 1,3x 21-2 ,与曲线g x 切于点x 2,-2-m ln x 2 ,x 2>0 ,即可得到m =-6x 1x 2,则x 1=0或x 1=2x 2-x 2ln x 2,从而得到m =12x 22ln x 2-12x 22,在令h x =12x 2ln x -12x 2,x >0 ,利用导数求出函数的最小值,即可得解;【详解】因为f (x )=3x 2-2,g (x )=-2-m ln x (m ≠0),所以f (x )=6x ,g (x )=-mx,设公切线与f x 切于点x 1,3x 21-2 ,与曲线g x 切于点x 2,-2-m ln x 2 ,x 2>0 ,所以6x 1=-m x 2=-2-m ln x 2-3x 21-2 x 2-x 1=-m ln x 2-3x 21x 2-x 1,所以m =-6x 1x 2,所以6x 1=6x 1x 2ln x 2-3x 21x 2-x 1,所以x 1=0或x 1=2x 2-x 2ln x 2,因为m ≠0,所以x 1≠0,所以x 1=2x 2-x 2ln x 2,所以m =-62x 2-x 2ln x 2 x 2=12x 22ln x 2-12x 22,令h x =12x 2ln x -12x 2,x >0 ,则h x =12x 2ln x -1 ,所以当0<x <e 时h x <0,当x >e 时h x >0,所以h x 在0,e 上单调递减,在e ,+∞ 上单调递增,所以h x min =h e =-6e ,所以实数m 的最小值为-6e.故选:A【点睛】思路点睛:涉及公切线问题一般先设切点,在根据斜率相等得到方程,即可找到参数之间的关系,最后构造函数,利用导数求出函数的最值.二、多选题9(2023·湖北·统考模拟预测)若存在直线与曲线f x =x 3-x ,g x =x 2-a 2+a 都相切,则a 的值可以是()A.0B.-24C.log 27D.e π+πe【答案】ABC【分析】设该直线与f x 相切于点x 1,x 31-x 1 ,求出切线方程为y =3x 21-1 x -2x 31,设该直线与g x 相切于点x 2,x 22-a 2+a ,求出切线方程为y =2x 2x -x 22-a 2+a ,联立方程组,得到-a 2+a =94x 41-2x 31-32x 21+14,令h x =94x 4-2x 3-32x 2+14,讨论h x 的单调性,从而得到最值,则可得到-a 2+a ≥-1,解出a 的取值范围,四个选项的值分别比较与区间端点比较大小即可判断是否在区间内.【详解】设该直线与f x 相切于点x 1,x 31-x 1 ,因为f x =3x 2-1,所以f x 1 =3x 21-1,所以该切线方程为y -x 31-x 1 =3x 21-1 x -x 1 ,即y =3x 21-1 x -2x 31.设该直线与g x 相切于点x 2,x 22-a 2+a ,因为g x =2x ,所以g x 2 =2x 2,所以该切线方程为y -x 22-a 2+a =2x 2x -x 2 ,即y =2x 2x -x 22-a 2+a ,所以3x 21-1=2x 2-2x 31=-x 22-a 2+a ,所以-a 2+a =x 22-2x 31=3x 21-122-2x 31=94x 41-2x 31-32x 21+14,令h x =94x 4-2x 3-32x 2+14,∴h x =9x 3-6x 2-3x ,所以当x ∈-∞,-13 ∪0,1 时,hx <0;当x ∈-13,0 ∪1,+∞ 时,h x >0;∴h x 在-∞,-13和0,1 上单调递减;在-13,0 和1,+∞ 上单调递增;又h -13 =527,h 1 =-1,所以h x ∈-1,+∞ ,所以-a 2+a ≥-1,解得1-52≤a ≤1+52,所以a 的取值范围为1-52,1+52,所以A 正确;对于B ,-24-1-52=25-2+2 4>0,所以1-52<-24<0,所以B 正确;对于C ,因为0<log 27<log 222=32<1+52,所以C 正确;对于D ,因为e π+πe>2e π⋅πe=2>1+52,所以D 不正确.故选:ABC10(2023·全国·高三专题练习)函数f x =ln x +1,g x =e x -1,下列说法正确的是( ).(参考数据:e 2≈7.39,e 3≈20.09,ln2≈0.69,ln3≈1.10)A.存在实数m ,使得直线y =x +m 与y =f x 相切也与y =g x 相切B.存在实数k ,使得直线y =kx -1与y =f x 相切也与y =g x 相切C.函数g x -f x 在区间23,+∞ 上不单调D.函数g x -f x 在区间23,+∞上有极大值,无极小值【答案】AB【分析】对AB ,设直线与y =f x 、y =g x 分别切于点P x 1,y 1 ,Q x 2,y 2 ,利用点在线上及斜率列方程组,解得切点即可判断;对CD ,令h x =g x -f x ,由二阶导数法研究函数单调性及极值.【详解】对AB ,设直线l 与y =f x 、y =g x 分别切于点P x 1,y 1 ,Q x 2,y 2 ,f x =1x,gx =ex,则有y1=f x1=ln x1+1y2=g x2=e x2-1y1-y2x1-x2=1x1=e x2⇒ln x1+1-e x2-1x1-x2=e x2⇒-x2+1-e x2-11e x2-x2=e x2⇒e x2-1x2-1=0,解得x2=0或x2=1.当x2=0,则y2=0,x1=1,y1=1,公切线为y=x,此时存在实数m=0满足题意;当x2=1,则y2=e-1,x1=1e,y1=0,公切线为y=e x-1e=ex-1,此时存在实数k=1满足题意,AB对;对CD,令h x =g x -f x =e x-ln x-2,x∈0,+∞,则m x =h x =e x-1 x,由m x =e x+1x2>0得h x 在0,+∞单调递增,由h23=e23-32=e2-278e232+32e23+94>0得,x∈23,+∞时,h x >0,h x 单调递增,CD错.故选:AB.三、填空题11(2023·全国·高三专题练习)若曲线y=ax2与y=ln x有一条斜率为2的公切线,则a= .【答案】1ln2e【分析】根据导数的几何意义以及切线方程的求解方法求解.【详解】设公切线在曲线y=ax2与y=ln x上的切点分别为A(x1,y1),B(x2,y2),由y=ln x可得y =1x,所以1x2=2,解得x2=12,所以y2=ln x2=-ln2,则B12,-ln2 ,所以切线方程为y+ln2=2x-1 2,又由y=ax2,可得y =2ax,所以2ax1=2,即ax1=1,所以y1=ax21=x1,又因为切点A(x1,y1),也即A(x1,x1)在切线y+ln2=2x-1 2上,所以x1+ln2=2x1-1 2,解得x1=ln2+1,所以a =1x 1=1ln2+1=1ln2e .故答案为:1ln2e.12(2023·河北唐山·统考三模)已知曲线y =ln x 与y =ax 2a >0 有公共切线,则实数a 的取值范围为.【答案】12e,+∞【分析】设公切线与曲线的切点为x 1,ln x 1 ,x 2,ax 22 ,利用导数的几何意义分别求y =ln x 和y =ax 2上的切线方程,由所得切线方程的相关系数相等列方程求参数关系,进而构造函数并利用导数研究单调性求参数范围.【详解】设公切线与曲线y =ln x 和y =ax 2的切点分别为x 1,ln x 1 ,x 2,ax 22 ,其中x 1>0,对于y =ln x 有y =1x ,则y =ln x 上的切线方程为y -ln x 1=1x 1x -x 1 ,即y =xx 1+ln x 1-1 ,对于y =ax 2有y =2ax ,则y =ax 2上的切线方程为y -ax 22=2ax 2x -x 2 ,即y =2ax 2x -ax 22,所以1x 1=2ax 2ln x 1-1=-ax 22,有-14ax21=ln x 1-1,即14a=x 21-x 21ln x 1x 1>0 ,令g x =x 2-x 2ln x ,g x =x -2x ln x =x 1-2ln x ,令gx =0,得x =e 12,当x ∈0,e12时,g x >0,g x 单调递增,当x ∈e 12,+∞ 时,g x <0,g x 单调递减,所以g x max =g e12=12e ,故0<14a ≤12e ,即a ≥12e.∴正实数a 的取值范围是12e,+∞.故答案为:12e,+∞.13(2023·浙江金华·统考模拟预测)若存在直线l 既是曲线y =x 2的切线,也是曲线y =a ln x 的切线,则实数a 的最大值为.【答案】2e【分析】设切线与两曲线的切点分别为(n ,n 2),(m ,a ln m ),根据导数的几何意义分别求出切线方程,可得a4m2=1-ln m,由题意可知a4=m2(1-ln m)有解,故令g(x)=x2(1-ln x),(x>0),利用导数求得其最值,即可求得答案.【详解】由题意知两曲线y=x2与y=a ln x,(x>0)存在公切线,a=0时,两曲线y=x2与y=0,(x>0),不合题意;则y=x2的导数y =2x,y=a ln x的导数为y =a x,设公切线与y=x2相切的切点为(n,n2),与曲线y=a ln x相切的切点为(m,a ln m),则切线方程为y-n2=2n(x-n),即y=2nx-n2,切线方程也可写为y-a ln m=am(x-m),即y=amx-a+a ln m,故2n=am-n2=-a+a ln m,即a24m2=a-a ln m,即a4m2=1-ln m,即a4=m2(1-ln m)有解,令g(x)=x2(1-ln x),(x>0),则g (x)=2x(1-ln x)+x2-1 x=x(1-2ln x),令g (x)=0可得x=e,当0<x<e时,g (x)>0,当x>e时,g (x)<0,故g(x)在(0,e)是增函数,在(e,+∞)是减函数,故g(x)的最大值为g(e)=e 2,故a4≤e2,所以a≤2e,即实数a的最大值为2e,故答案为:2e。

利用导数求曲线的切线和公切线知识讲解

利用导数求曲线的切线和公切线知识讲解

利用导数求曲线的切线和公切线一. 求切线方程【例1】.已知曲线f(x)=x 3-2X12+1.(1) 求在点P( 1,0 )处的切线l i的方程;⑵ 求过点Q( 2,1 )与已知曲线f(x)相切的直线丨2的方程.提醒:注意是在某个点处还是过某个点!二. 有关切线的条数【解答】解:(I)由 f (x) =2x3- 3x 得f'( x) =6x2- 3,令f,( x) =0 得, x= - ■-或x= ■-,2 2•- f (-2) =- 10, f (-二)=",f ( = ) =- ", f (1) =- 1,••• f (x)在区间[-2, 1]上的最大值为二.(n)设过点P (1, t)的直线与曲线y=f (x)相切于点(X0, y°),则y o=2・” -3x。

,且切线斜率为k=6 :匚-3,•••切线方程为y-y o= (6:,二-3)(x -x o),••• t - y°= (6 :,二-3)( 1 - x o),即卩4- 6 . F +t+3=0,设g (x) =4x? - 6x?+t+3 , 则“过点P (1, t)存在3条直线与曲线y=f (x)相切”,等价于“ g (x)有3 个不同的零点”.T g'(x) =12x2- 12x=12x (x- 1),•g (0) =t+3是g (x)的极大值,g (1) =t+1是g (x)的极小值.•g (0)> 0 且g (1)v 0,即-3v t v- 1,•当过点过点P (1, t)存在3条直线与曲线y=f (x)相切时,t的取值范围是(-3,- 1).(rn)过点A (- 1, 2)存在3条直线与曲线y=f (x)相切;过点B (2, 10)存在2条直线与曲线y=f (x)相切;过点C (0, 2)存在1条直线与曲线y=f (x)相切.【作业1】.(2017?莆田一模)已知函数 f (x) =2x3- 3x+1, g (x) =kx+1 - Inx .(fM y<1(1)设函数hW二’、,当k v 0时,讨论h (x)零点的个数;g lx)』x^l(2)若过点P (a,- 4)恰有三条直线与曲线y=f (x)相切,求a的取值范围.三. 切线与切线之间的关系【例4】.(2018?绵阳模拟)已知a, b, c€ R,且满足b2+c2=1,如果存在两条互相垂直的直线与函数f (x) =ax+bcosx+csinx的图象都相切,则a+/HW:c 的取值范围是.解:f '(x) = a + b cos x—c sin x = a +c' cos(x + ^?) = a +cos(x + p)令H + e = 则码 + 0 =环巧+e = g. f\x) ~+dtj题意’存在x r x2E R使得厂(xj厂(兀)= T* 0p(a+cos^X fl + cos^)=_l»即关于。

切线与切平面PPT课件

切线与切平面PPT课件

2.空间曲线方程为
F ( x, G( x,
y, z) y, z)
0 ,
0
切线方程为
x x0 y y0 z z0 ,
Fy Fz
Fz Fx
Fx Fy
Gy Gz 0 Gz Gx 0 Gx Gy 0
法平面方程为
Fy Gy
Fz Gz
(x
0
x0 )
Fz Gz
0.
Fx Gx
(y
0
y0 )
Fx Gx
x x0 y y0 z z0 . f x ( x0 , y0 ) f y ( x0 , y0 ) 1
第11页/共24页
全微分的几何意义 因为曲面在M处的切平面方程为
z z0 f x ( x0 , y0 )( x x0 ) f y ( x0 , y0 )( y y0 )
切平面 上点的 竖坐标 的增量
四、求椭球面 x 2 2 y 2 z 2 1上平行于平面 x y 2z 0的切平面方程.
五、试证曲面 x y z a(a 0)上任何点处的
切平面在各坐标轴上的截距之和等于a .
第22页/共24页
练习题答案
x 一、1、
1 2
y
2
z
1 ,2x
8y
16z
1
0;
1 4 8
2、x
•M
x
y
z x o
Hale Waihona Puke y考察割线趋近于极限位置——切线的过程
上式分母同除以 t,
x x0 y y0 z z0 , x y z
t
t
t
第1页/共24页
当M M ,即t 0时 , 曲线在M处的切线方程
x x0 y y0 z z0 .

平面曲线的切线与法线

平面曲线的切线与法线

由此得到 L 在点 P0 处的切线与法线分别为:
( 2 3 3 2 )( x 3 ) (1 3 )( y 3 2 ) 0, (1 3 )( x 3 )(23 3 2 )( y 3 2 ) 0.
若在上面的 MATLAB 指令窗里继续输入如下指 令, 便可画出上述切线与法线的图象 (如图).
一、平面曲线的切线与法线
曲线 L :F( x, y) 0; 条件:P0( x0 , y0 ) 为 L 上一点, 在 P0 近旁, F 满足 隐函数定理条件, 可确定可微的隐函数:
y y(x) ( 或 x x( y) ) ;
L 在 P0 处的切线: y y0 Fx (P0 ) Fy (P0 ) ( x x0 )
论( 这里 a 3 2 ), F 在点 P0 近旁满足隐函数定理
前页 后页 返回
的条件. 容易算出 ( Fx (P0 ), Fy (P0) ) (15, 12 ),
于是所求的切线与法线分别为 15( x 2) 12( y 1) 0, 即 5x 4 y 6 0; 12( x 2) 15( y 1) 0, 即 4x 5 y 13 0 .
若 P0( x0, y0 ) ( x(t0 ), y(t0 )) 是其上一点, 则曲线
在点 P0 处的切线为
y y0
y(t0 ) x(t0 )
(
x

x0
),

x x0 y y0 . x(t0 ) y(t0 )
下面讨论空间曲线.
前页 后页 返回
(A) 用参数方程表示的空间曲线:
例2 用数学软件画出曲线 L : x2 y sin x y 0

方法技巧专题-导数与切线方程问题

方法技巧专题-导数与切线方程问题

的图象上 总存在一点,使得在该点
21.曲线 y ln x ax 在 x 2 处的切线与直线 ax y 1 0 平行,则实数 a _______.
22.若函数 f (x) a1nx, (a R) 与函数 g(x) x ,在公共点处有共同的切线,则 实数 a 的值为______.
23.已知函数 f ( x) ax2 1的图像在点 A(1, f (1)) 处的切线与直线 x 8 y 0 垂直,若数列{ f 1(n)}的前 n 项和为 Sn ,
1.例题
【例 1】曲线 f x e4x x 2 在点 0, f 0 处的切线方程是( )
A. 3x y 1 0 B. 3x y 1 0 C. 3x y 1 0 D. 3x y 1 0
【例 2】函数 f (x) 2x ln x 的图象在 x 1 处的切线方程为( )
A. x y 1 0 B. x y 1 0 C. 2x y 1 0 D. 2x y 1 0
A. 30
B. 45
C. 60
D.135
4.已知定义在 R 上的奇函数 f(x),当 x 0 时, (f x) x3 2x m ,则曲线 y (f x)在点 P(2,f(2))处的切线斜率
为( )
A.10
B.-10
C.4
D.与 m 的取值有关
5.过抛物线 x2 2 py p 0 上两点 A, B 分别作抛物线的切线,若两切线垂直且交于点 P 1, 2 ,则直线 AB 的方程
A.0
B.1
C.2
2. 曲线 f x ln x x2 x 1在点 1,1 处的切线方程是(
D.3 )
A. 2x y 1 0 B. 2x y 1 0 C. 2x y 1 0 D. 2x y 1 0

求曲线(圆、椭圆、抛物线和一般曲线)的切线方程专题讲义-云南民族大学附属中学高三数学复习

求曲线(圆、椭圆、抛物线和一般曲线)的切线方程专题讲义-云南民族大学附属中学高三数学复习

求曲线(圆、椭圆、抛物线和一般曲线)的切线方程专题一 考纲解析:曲线的切线方程是近几年高考的重点和难点,一般出现在选择、填空和大题等位置。

常出现的题型包括圆的切线方程,椭圆、双曲线、抛物线以及一般曲线的切线方程。

处理方法有用直线与曲线联立∆判别式为零确定相切情况和利用导数几何意义求曲线的切线方程。

二、题型解析题型一 圆的切线方程方法指导:圆切线问题处理步骤首先看点),(000y x P 是在圆上还是圆外:若过圆上一点且与圆相切的切线方程只要一条;若过圆外一点且与圆相切需结合图形分析,过圆外一点且与圆相切要考虑切线斜率是否存在?如果斜率存在一般设切线方程:)(00x x k y y -=-切通过点到切线距离等于圆半径求出切线斜率,最后可通过图形检验切线斜率的正负性。

典例一 过点M (0,5)、N (3,-4)的圆圆心C 在直线:-2x+3y+3=0.求过点H (-2,4)且与圆C 相切的切线方程【解】:根据圆知识点圆内两条相交弦的交点即为圆心,3354-=--=MN k ,M,N 的中点为 (21,23),直线MN 的中垂线为:)23(3121-=-x y ,设圆心坐标为(a,b) 联立方程⎪⎩⎪⎨⎧-=-=++-)23(31210332a b b a 解得圆心坐标(3,1),故圆C 方程:25)1()3(22=-+-y x 如上图所示,H 点在圆外部,其中一条切线方程显然为:x=-2另外一条存在斜率,设为:)2(4+=-x k y ,圆心C(3,1)到直线的距离51|35|2=++=k k d ,解出,158则方程为:8x-15y+16=0,综述切线方程为:x=-2或8x-15y+16=0. 变式训练:(1)(2010年课标全国)圆心在原点且与直线x+y+2=0相切的圆的方程为【解】设圆的方程为:222r y x =+,根据题意,得22|2|=-=r ,所以圆的方程为:222=+y x(2) (2020.浙江)已知直线1)4(1)0(2222=+-=+>+=y x y x k b kx y 和圆与圆均相切,则k= ,b= .【解】: 如下图所示:满足k>0的直线方程即与122=+y x 圆相切且又与1)4(22=+-y x 圆相切的直线为直线AB ,则设直线AB方程为:)2(-=x k y ,圆心O (0,0)到直线AB的距离11|2|2=+-=k k d ,解得332,33-==b k 进而得到。

(完整版)函数图像的切线问题

(完整版)函数图像的切线问题

函数图像的切线问题要点梳理归纳1.求曲线y =f(x)的切线方程的三种类型及其方法(1)已知切点P(x 0,f(x 0)),求y =f(x)在点P 处的切线方程:切线方程为 y -f(x 0)=f′(x 0)(x -x 0). (2)已知切线的斜率为k ,求y =f(x)的切线方程:设切点为P(x 0,y 0),通过方程k =f′(x 0)解得x 0,再由点斜式写出方程. (3)已知切线上一点(非切点)A(s,t),求y =f(x)的切线方程:设切点为P(x 0,y 0),利用导数将切线方程表示为y -f(x 0)=f′(x 0)(x -x 0),再将A(s,t)代入求出x 0.2.两个函数图像的公切线函数y=f(x)与函数y=g(x) 存在公切线,若切点为同一点P(x 0,y 0),则有 ⎩⎪⎨⎪⎧f ′(x 0)=g ′(x 0),f (x 0)=g (x 0).若切点分别为(x 1,f(x 1)),(x 2,g(x 2)),则有212121)()()()(x x x g x f x g x f --='='.题型分类解析题型一 已知切线经过的点求切线方程例1.求过点(2,2)P 与已知曲线3:3S y x x =-相切的切线方程. 解:点P 不在曲线S 上.设切点的坐标()00,x y ,则30003y x x =-,函数的导数为2'33y x =-,切线的斜率为020'33x x k y x ===-,2000(33)()y y x x x ∴-=--切线方程为,Q 点(2,2)P 在切线上,20002(33)(2)y x x ∴-=--,又30003y x x =-,二者联立可得001,1x x ==或相应的斜率为0k =或9k =-±∴切线方程为2y =或(9(2)2y x =-±-+.例 2. 设函数()()2f x g x x =+,曲线()y g x =在点()()1,1g 处的切线方程为21y x =+,则曲线()y f x =在点()()1,1f 处的切线方程为________解析:由切线过()()1,1g 可得:()13g =,所以()()21114f g =+=,另一方面,()'12g =,且()()''2f x g x x =+,所以()()''1124f g =+=,从而切线方程为:()4414y x y x -=-⇒=例3. 已知直线1y kx =+与曲线3y x ax b =++切于点(1,3),则b 的值为_________ 解析:代入(1,3)可得:2k =,()'23f x x a =+,所以有()()'113132f a b f a =++=⎧⎪⎨=+=⎪⎩,解得13a b =-⎧⎨=⎩题型二 已知切线方程(或斜率),求切点坐标(或方程、参数)例4.已知函数()ln 2f x x x =+,则:(1)在曲线()f x 上是否存在一点,在该点处的切线与直线420x y --=平行 (2)在曲线()f x 上是否存在一点,在该点处的切线与直线30x y --=垂直 解:设切点坐标为()00,x y ()'0012fx x ∴=+ 由切线与420x y --=平行可得: ()'00011242f x x x =+=⇒= 011ln 122y f ⎛⎫∴==+ ⎪⎝⎭∴切线方程为:11ln 244ln 212y x y x ⎛⎫-+=-⇒=-- ⎪⎝⎭(2)设切点坐标()00,x y ()'0012fx x ∴=+,直线30x y --=的斜率为1 ()'00011213f x x x ∴=+=-⇒=- 而()00,x ∈+∞ 013x ∴=-不在定义域中,舍去∴不存在一点,使得该点处的切线与直线30x y --=垂直例5.函数()2ln f x a x bx =-上一点()()2,2P f 处的切线方程为32ln22y x =-++,求,a b 的值思路:本题中求,a b 的值,考虑寻找两个等量条件进行求解,P 在直线32ln22y x =-++上,322ln222ln24y ∴=-⋅++=-,即()2=2ln24f -,得到,a b 的一个等量关系,在从切线斜率中得到2x =的导数值,进而得到,a b 的另一个等量关系,从而求出,a b 解:P Q 在32ln22y x =-++上,()2322ln222ln24f ∴=-⋅++=-()2ln242ln24f a b ∴=-=-又因为P 处的切线斜率为3- ()'2afx bx x=- ()'2432a f b ∴=-=-, ln 242ln 2421432a b a a b b -=-⎧=⎧⎪∴⇒⎨⎨=-=-⎩⎪⎩例6.设函数()()32910f x x ax x a =---<,若曲线()y f x =的斜率最小的切线与直线126x y +=平行,求a 的值思路:切线斜率最小值即为导函数的最小值,已知直线的斜率为12-,进而可得导函数的最小值为12-,便可求出a 的值解:()2'2222221111329393939333f x x ax x a a a x a a ⎛⎫⎛⎫=--=-+--=--- ⎪ ⎪⎝⎭⎝⎭()'2min 11933f x f a a ⎛⎫∴==-- ⎪⎝⎭Q 直线126x y +=的斜率为12-,依题意可得:2191233a a --=-⇒=± 0a <Q 3a ∴=- 题型三 公切线问题例7.若存在过点(1,0)的直线与曲线3y x =和21594y ax x =+-都相切,则a 等于( ) A.1-或2564-B. 1-或214C. 74-或2564-D. 74-或7 思路:本题两条曲线上的切点均不知道,且曲线21594y ax x =+-含有参数,所以考虑先从常系数的曲线3y x =入手求出切线方程,再考虑在利用切线与曲线21594y ax x =+-求出a 的值.设过()1,0的直线与曲线3y x =切于点()300,x x ,切线方程为()320003y x x x x -=-,即230032y x x x =-,因为()1,0在切线上,所以解得:00x =或032x =,即切点坐标为()0,0或327,28⎛⎫⎪⎝⎭.当切点()0,0时,由0y =与21594y ax x =+-相切可得()21525490464a a ⎛⎫∆=--=⇒=- ⎪⎝⎭,同理,切点为327,28⎛⎫ ⎪⎝⎭解得1a =-答案:A小炼有话说:(1)涉及到多个函数公切线的问题时,这条切线是链接多个函数的桥梁.所以可以考虑先从常系数的函数入手,将切线求出来,再考虑切线与其他函数的关系 (2)在利用切线与21594y ax x =+-求a 的过程中,由于曲线21594y ax x =+-为抛物线,所以并没有利用导数的手段处理,而是使用解析几何的方法,切线即联立方程后的0∆=来求解,减少了运算量.通过例7,例8可以体会到导数与解析几何之间的联系:一方面,求有关导数的问题时可以用到解析的思想,而有些在解析中涉及到切线问题时,若曲线可写成函数的形式,那么也可以用导数来进行处理,(尤其是抛物线)例8.若曲线21x y C =:与曲线xae y C =:2存在公切线,则a 的最值情况为( ) A .最大值为28e B .最大值为24e C .最小值为28e D .最小值为24e 解析:设公切线与曲线1C 切于点()211,x x ,与曲线2C 切于点()22,x x ae ,由''2xy xy ae ⎧=⎪⎨=⎪⎩可得:22211212x x ae x x ae x x -==-,所以有221111221122222x x x x x x x x x ae ⎧-=⇒=-⎪-⎨⎪=⎩,所以2244x ae x =-,即()2241x x a e -=,设()()41xx f x e -=,则()()'42xx fx e -=.可知()f x 在()1,2单调递增,在()2,+∞单调递减,所以()max 242a f e==例10.曲线xy e =在点()22,e 处的切线与坐标轴所围三角形的面积为( )A.2eB. 22e C. 24eD.22e思路:()'x f x e = 由图像可得三角形的面积可用切线的横纵截距计算,进而先利用求出切线方程 ()'22f e ∴=所以切线方程为:()222y e e x -=-即220e x y e --=,与两坐标轴的交点坐标为()()21,00,e - 221122e S e ∴=⨯⨯=例11.一点P 在曲线323y x x =-+上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( ). A.0,2π⎡⎤⎢⎥⎣⎦ B.30,,24πππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭U C.3,4ππ⎡⎫⎪⎢⎣⎭ D.3,24ππ⎛⎤⎥⎝⎦思路:倾斜角的正切值即为切线的斜率,进而与导数联系起来.'231y x =-,对于曲线上任意一点P ,斜率的范围即为导函数的值域:[)'2=311,y x -∈-+∞,所以倾斜角的范围是30,,24πππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭U .答案:B 例12.已知函数()323f x x x =-,若过点()1,P t 存在3条直线与曲线()y f x =相切,求t 的取值范围思路:由于并不知道3条切线中是否存在以P 为切点的切线,所以考虑先设切点()00,x y ,切线斜率为k ,则满足()3000'2002363y x x k f x x ⎧=-⎪⎨==-⎪⎩,所以切线方程为()00y y k x x -=-,即()()()3200002363y x x x x x --=--,代入()1,P t 化简可得:3200463t x x =-+-,所以若存在3条切线,则等价于方程3200463t x x =-+-有三个解,即y t =与()32463g x x x =-+-有三个不同交点,数形结合即可解决解:设切点坐标()00,x y ,切线斜率为k ,则有:()3000'2002363y x x k f x x ⎧=-⎪⎨==-⎪⎩∴ 切线方程为:()()()3200002363y x x x x x --=-- 因为切线过()1,P t ,所以将()1,P t 代入直线方程可得:()()()32000023631t x x x x --=-- ()()()23000063123t x x x x ⇒=--+-233320000000636323463x x x x x x x =--++-=-+-所以问题等价于方程3200463t x x =-+-,令()32463g x x x =-+-即直线y t =与()32463g x x x =-+-有三个不同交点()()'21212121g x x x x x =-+=--令()'0g x >解得01x << 所以()g x 在()(),0,1,-∞+∞单调递减,在()0,1单调递增()()()()11,03g x g g x g ==-==-极大值极小值所以若有三个交点,则()3,1t ∈--所以当()3,1t ∈--时,过点()1,P t 存在3条直线与曲线()y f x =相切例13. 已知曲线C:x 2=y ,P 为曲线C 上横坐标为1的点,过P 作斜率为k(k ≠0)的直线交C 于另一点Q ,交x 轴于M ,过点Q 且与PQ 垂直的直线与C 交于另一点N ,问是否存在实数k ,使得直线MN 与曲线C 相切?若存在,求出K 的值,若不存在,说明理由.思路:本题描述的过程较多,可以一步步的拆解分析.点()1,1P ,则可求出:1PQ y kx k =-+,从而与抛物线方程联立可解得()()21,1Q k k --,以及M 点坐标,从而可写出QN 的方程,再与抛物线联立得到N 点坐标.如果从,M N 坐标入手得到MN 方程,再根据相切()0∆=求k ,方法可以但计算量较大.此时可以着眼于N 为切点,考虑抛物线2x y =本身也可视为函数2y x =,从而可以N 为入手点先求出切线,再利用切线过M 代入M 点坐标求k ,计算量会相对小些. 解:由P 在抛物线上,且P 的横坐标为1可解得()1,1P∴设():11PQ y k x -=-化简可得:1y kx k =-+ 1,0k M k -⎛⎫∴ ⎪⎝⎭21y x y kx k ⎧=∴⎨=-+⎩ 消去y :210x kx k -+-= 121,1x x k ∴==- ()()21,1Q k k ∴--设直线()()21:11QN y k x k k --=---⎡⎤⎣⎦即()()2111y k x k k =----⎡⎤⎣⎦ ∴ 联立方程:()()22111y x y k x k k ⎧=⎪⎨=----⎡⎤⎪⎣⎦⎩()211110x x k k k k ⎛⎫∴+---+= ⎪⎝⎭ ()11111Q N N x x k k x k k k ⎛⎫⎛⎫∴⋅=---+⇒=--+ ⎪ ⎪⎝⎭⎝⎭2111,1N k k k k ⎛⎫⎛⎫⎛⎫∴--+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由2y x =可得:'2y x =∴切线MN 的斜率'1|21N MN x x k y k k =⎛⎫==--+ ⎪⎝⎭2111:1211MN y k k x k k k k ⎡⎤⎛⎫⎛⎫⎛⎫∴--+=--++-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦代入1,0k M k -⎛⎫⎪⎝⎭得: 2111112111k k k k k k k ⎡⎤⎛⎫⎛⎫⎛⎫--+=--+-+-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦211210k k k k k∴-+=⇒+-=,12k -±∴=小炼有话说:(1)如果曲线的方程可以视为一个函数(比如开口向上或向下的抛物线,椭圆双曲线的一部分),则处理切线问题时可以考虑使用导数的方法,在计算量上有时要比联立方程计算0∆=简便(2)本题在求N 点坐标时,并没有对方程进行因式分解,而是利用韦达定理,已知Q 的横坐标求出N 的横坐标.这种利用韦达定理求点坐标的方法在解析几何中常解决已知一交点求另一交点的问题.例14.设函数f(x)=x 3+2ax 2+bx +a ,g(x)=x 2-3x +2,其中x ∈R ,a 、b 为常数,已知曲线y =f(x)与y =g(x)在点(2,0)处有相同的切线l.(1)求a 、b 的值,并写出切线l 的方程;(2)若方程f(x)+g(x)=mx 有三个互不相同的实根0、x 1、x 2,其中x 1<x 2,且对任意的x ∈[x 1,x 2],f(x)+g(x)<m(x -1)恒成立,求实数m 的取值范围.【解答】 (1)f′(x)=3x 2+4ax +b ,g′(x)=2x -3. 由于曲线y =f(x)与y =g(x)在点(2,0)处有相同的切线, 故有f(2)=g(2)=0,f′(2)=g′(2)=1.由此得⎩⎪⎨⎪⎧8+8a +2b +a =0,12+8a +b =1,解得⎩⎪⎨⎪⎧a =-2,b =5.所以a =-2,b =5,切线l 的方程为x -y -2=0. (2)由(1)得f(x)=x 3-4x 2+5x -2, 所以f(x)+g(x)=x 3-3x 2+2x.依题意,方程x(x 2-3x +2-m)=0有三个互不相同的实根0、x 1、x 2, 故x 1、x 2是方程x 2-3x +2-m =0的两相异的实根. 所以Δ=9-4(2-m)>0,即m>-14.又对任意的x ∈[x 1,x 2],f(x)+g(x)<m(x -1)恒成立. 特别地,取x =x 1时,f(x 1)+g(x 1)-mx 1<-m 成立,得m<0. 由韦达定理,可得x 1+x 2=3>0,x 1x 2=2-m>0,故0<x 1<x 2. 对任意的x ∈[x 1,x 2],有x -x 2≤0,x -x 1≥0,x>0,则f(x)+g(x)-mx =x(x -x 1)(x -x 2)≤0,又f(x 1)+g(x 1)-mx 1=0,所以函数f(x)+g(x)-mx 在x ∈[x 1,x 2]的最大值为0. 于是当-14<m<0时,对任意的x ∈[x 1,x 2],f(x)+g(x)<m(x -1)恒成立. 综上,m 的取值范围是⎝ ⎛⎭⎪⎫-14,0. 例15.如图3-1,有一正方形钢板AB CD 缺损一角(图中的阴影部分),边缘线OC 是以直线AD 为对称轴,以线段AD 的中点O 为顶点的抛物线的一部分.工人师傅要将缺损一角切割下来,使剩余的部分成为一个直角梯形.若正方形的边长为2米,问如何画切割线EF ,可使剩余的直角梯形的面积最大?并求其最大值.解法一:以O 为原点,直线AD 为y 轴,建立如图所示的直角坐标系,依题意,可设抛物线弧OC 的方程为y =ax 2(0≤x ≤2),∵点C 的坐标为(2,1),∴22a =1,a =14, 故边缘线OC 的方程为y =14x 2(0≤x ≤2), 要使梯形ABEF 的面积最大,则EF 所在的直线必与抛物线弧OC 相切,设切点坐标为P ⎝ ⎛⎭⎪⎫t ,14t 2(0<t <2), ∵y ′=12x ,∴直线EF 的方程可表示为y -14t 2=t 2(x -t ), 即y =12tx -14t 2.由此可求得E ⎝ ⎛⎭⎪⎫2,t -14t 2,F ⎝⎛⎭⎪⎫0,-14t 2.∴|AF |=⎪⎪⎪⎪⎪⎪-14t 2--1=1-14t 2, |BE |=⎪⎪⎪⎪⎪⎪t -14t 2--1=-14t 2+t +1. 设梯形ABEF 的面积为S (t ),则S (t )=-12(t -1)2+52≤52,∴当t =1时,S (t )=52, 故S (t )的最大值为2.5,此时|AF |=0.75,|BE |=1.75.答:当AF =0.75 m ,BE =1.75 m 时,可使剩余的直角梯形的面积最大,其最大值为2.5 m 2.解法二:以A 为原点,直线AD 为y 轴,建立如图所示的直角坐标系,依题意可设抛物线的方程为y =ax 2+1(0≤x ≤2).∵点C 的坐标为(2,2),∴22a +1=2,a =14, 故边缘线OC 的方程为y =14x 2+1(0≤x ≤2). 要使梯形ABEF 的面积最大,则EF 所在的直线必与抛物线弧OC 相切,设切点坐标为P ⎝ ⎛⎭⎪⎫t ,14t 2+1(0<t <2), ∵y ′=12x ,∴直线EF 的方程可表示为y -14t 2-1=12t (x -t ), 即y =12tx -14t 2+1,由此可求得E ⎝ ⎛⎭⎪⎫2,t -14t 2+1,F ⎝ ⎛⎭⎪⎫0,-14t 2+1. ∴|AF |=1-14t 2,|BE |=-14t 2+t +1, 设梯形ABEF 的面积为S (t ),则S (t )=12|AB |·(|AF |+|BE |) =1-14t 2+⎝ ⎛⎭⎪⎫-14t 2+t +1=-12t 2+t +2 =-12(t -1)2+52≤52. ∴当t =1时,S (t )=52, 故S (t )的最大值为2.5.此时|AF |=0.75,|BE |=1.75.答:当AF =0.75 m ,BE =1.75 m 时,可使剩余的直角梯形的面积最大,其最大值为2.5 m 2.【点评】 与切线有关的多边形的最值问题,首先应该面积建立关于动点P 的函数,再选择相关的方法求解所得函数的最值,复杂函数可以用求导进行研究.。

空间曲线的切线与法平面

空间曲线的切线与法平面


Fx 2x, Fy 2 y, Fz 2z
Fx (1,2,3) 2, Fy (1,2,3) 4, Fz (1,2,3) 6
所以在点 (1, 2,3) 处 球面的切平面方程为
2(x 1) 4( y 2) 6(z 3) 0
法线方程
x 1 y 2 z 3 246
F(x, y, z) 0
则该曲面在 M0 点的切平面方程为
(Fx )M0 ( X x0 ) (Fy )M0 (Y y0 ) (Fz )M0 (Z z0 ) 0
过 M0 点的法线方程为 X x0 Y y0 Z z0 (Fx )M0 (Fy )M0 (Fz )M0
X x0 Y y0 Z z0 D(F,G) D(F,G) D(F,G)
D(y, z)
D(z, x)
D(x, y)
M0
M0
M0
和法平面方程
D(F , G)
D(F , G)
D(F , G)
D( y, z) ( X x0 ) D(z, x) (Y y0 ) D(x, y) (Z z0 ) 0
t 1
t 1
t 1
从而切线方程为
x 1 y 1 z 1 123
法平面方程为 x 1 2( y 1) 3(z 1) 0
上一页
下一页
主页
例 求两柱面
Z
x2 y2 R2, x2 z2 R2
的交线在点:
T
R , R , R 2 2 2
M0 O
㈡ 如果曲线的方程表示为 y y(x), z z(x)
可以把它写成如下的以 x 为参数的参数方程

过圆外一点做切线的切线方程推理

过圆外一点做切线的切线方程推理

过圆外一点做切线的切线方程推理1. 引言:1.1 概述在几何学中,切线是一个重要的概念。

在研究圆形时,如何确定一个点到圆外一点的切线方程一直是一个基础性问题。

本文将对过圆外一点做切线的切线方程进行推理,并探讨其几何性质。

通过研究和推导,我们可以得到一般情况下切线方程的表达式,进而应用于解决各种相关问题。

1.2 文章结构本文分为以下几个部分来论述过圆外一点做切线的切线方程推理。

首先,在第二部分“轨迹分析”中,我们将进行圆外一点到圆的距离公式推导,并分析条件以确定该点是否可作为切点。

接着,我们将探讨过圆外一点做切线的几何性质。

在第三部分“切线方程推理”中,我们将根据前面所得到的轨迹分析结果,推导出两种不同情况下的切线方程。

通过详细的计算和论证过程,我们将给出每种情况下对应的具体表达式,并总结整个推理过程。

在第四部分“应用举例”中,我们将通过实例来展示如何应用所得到的切线方程解决具体问题。

两个实例将被提供,分别是求特定问题的切线方程和进一步应用举例。

同时,还将对结果进行验证和讨论。

最后,在第五部分“结论与展望”中,我们将总结研究成果和发现,并对进一步研究方向提出展望。

1.3 目的本文的主要目的是推导过圆外一点做切线的切线方程,并探讨其几何性质。

通过对相关轨迹和条件进行分析,我们希望能够得到切线方程的一般表达式,并能够应用于解决具体问题。

此外,本文也旨在为读者提供一个清晰、详细且易于理解的介绍过圆外一点做切线问题的文章。

2. 轨迹分析2.1 圆外一点到圆的距离公式推导:在开始讨论切线方程之前,我们首先需要了解圆外一点到圆的距离公式推导过程。

假设有一个圆,圆心坐标为(Ox, Oy),半径为r,以及一个位于P(x, y)的点在圆外。

利用勾股定理,我们可以得出点P到圆心O的欧几里得距离d的公式:```d = √((x - Ox)^2 + (y - Oy)^2)```2.2 圆外一点做切线的条件分析:接下来,我们将讨论一个点如何成为圆的切点。

用导数求切线方程的四种类型

用导数求切线方程的四种类型

用导数求切线方程的四种类型浙江 曾安雄求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可.例1 曲线3231y x x =-+在点(11)-,处的切线方程为( )A.34y x =- B.32y x =-+ C.43y x =-+D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决. 例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( )A.230x y -+= B.230x y --= C.210x y -+=D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x xy x ='==|.01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D.评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,故选D.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.例3求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x xy x ='=-|. ∴切线方程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--.解得01x =,或012x =-.故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫- ⎪⎝⎭,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解.例4 求过点(20),且与曲线1y x=相切的直线方程.解:设00()P x y ,为切点,则切线的斜率为0201x xy x ='=-|.∴切线方程为00201()y y x x x -=--,即020011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得02011(2)x x x -=--. 解得000111x y x ===,,即20x y +-=.评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.解:曲线方程为33y x x =-,点(016)A ,不在曲线上.设切点为00()M x y ,, 则点M 的坐标满足30003y x x =-.因200()3(1)f x x '=-,故切线的方程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--.化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线方程为9160x y -+=.评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.在初中数学中,曲线的切线没有一般的定义。

求曲线的切线方程和法平面方程

求曲线的切线方程和法平面方程

求曲线的切线方程和法平面方程一、概念解析1. 曲线的切线:曲线上某一点处的切线是过该点且与曲线相切的直线。

2. 法平面:法平面是垂直于曲面上某一点处的法向量所构成的平面。

二、求解方法1. 求曲线的切线方程:(1)参数方程法:设曲线的参数方程为x=f(t),y=g(t),z=h(t),则该曲线在点P(x0,y0,z0)处的切向量为T=(dx/dt,dy/dt,dz/dt)|t=t0。

因此,该点处的切线方程为:(x-x0)/(dx/dt)=(y-y0)/(dy/dt)=(z-z0)/(dz/dt)(2)隐函数法:设曲线的隐函数方程为F(x,y,z)=0,则在点P(x0,y0,z0)处,该曲线所在平面上任意一条经过P点且垂直于该平面的直线都是该点处的切线。

因此,将F(x,y,z)在P(x0,y0,z0)处进行泰勒展开,得到:F(x,y,z)=F(x0,y0,z0)+(∂F/∂x)(x-x0)+(∂F/∂y)(y-y0)+(∂F/∂z)(z-z0)+o(||(x,y,z)-(x_0,y_0,z_0)||)因为F(x0,y0,z0)=0,所以该式可以化简为:(∂F/∂x)(x-x0)+(∂F/∂y)(y-y0)+(∂F/∂z)(z-z0)=0这是该曲线所在平面的法向量方程。

将该式中的(x,y,z)代入曲线的隐函数方程中,得到:F(x_0+(dx/dt)t,y_0+(dy/dt)t,z_0+(dz/dt)t)=0对该式求导,得到:(∂F/∂x)(dx/dt)+ (∂F/∂y)(dy/dt)+ (∂F/∂z)(dz/dt)= 0这是曲线在点P处的切向量方程。

因此,点P处的切线方程为:( x-x_ 0)/( dx/ dt )=( y-y_ 0)/( dy/ dt )=( z-z_ 0)/( dz/ dt )2. 求法平面方程:(1)参数方程法:设曲面的参数方程为x=f(u,v),y=g(u,v),z=h(u,v),则该曲面在点P(x0,y0,z0)处的法向量为N=( ∂f/ ∂u × ∂f / ∂v, ∂g / ∂u × ∂g / ∂v, ∂h / ∂u × ∂h / ∂v )|u=u_ 0,v=v_ 0。

用导数求切线方程的四种类型[精选.]

用导数求切线方程的四种类型[精选.]

用导数求切线方程的四种类型浙江 曾安雄求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可.例1 曲线3231y x x =-+在点(11)-,处的切线方程为( )A.34y x =- B.32y x =-+ C.43y x =-+D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决. 例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( )A.230x y -+= B.230x y --= C.210x y -+=D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x xy x ='==|.01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D.评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,故选D.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.例3求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x xy x ='=-|. ∴切线方程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--.解得01x =,或012x =-.故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫- ⎪⎝⎭,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解.例4 求过点(20),且与曲线1y x=相切的直线方程.解:设00()P x y ,为切点,则切线的斜率为0201x xy x ='=-|.∴切线方程为00201()y y x x x -=--,即020011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得02011(2)x x x -=--. 解得000111x y x ===,,即20x y +-=.评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.解:曲线方程为33y x x =-,点(016)A ,不在曲线上.设切点为00()M x y ,, 则点M 的坐标满足30003y x x =-.因200()3(1)f x x '=-,故切线的方程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--.化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线方程为9160x y -+=.评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.在初中数学中,曲线的切线没有一般的定义。

曲线的切线方程(原卷版)

曲线的切线方程(原卷版)

曲线的切线方程考点一 求切线的方程 【方法总结】求曲线切线方程的步骤(1)求曲线在点P (x 0,y 0)处的切线方程的步骤第一步,求出函数y =f (x )在点x =x 0处的导数值f ′(x 0),即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率;第二步,由点斜式方程求得切线方程为y -f (x 0)=f ′(x 0)·(x -x 0). (2)求曲线过点P (x 0,y 0)的切线方程的步骤 第一步,设出切点坐标P ′(x 1,f (x 1));第二步,写出过P ′(x 1,f (x 1))的切线方程为y -f (x 1)=f ′(x 1)(x -x 1); 第三步,将点P 的坐标(x 0,y 0)代入切线方程,求出x 1;第四步,将x 1的值代入方程y -f (x 1)=f ′(x 1)(x -x 1)可得过点P (x 0,y 0)的切线方程. 注意:在求曲线的切线方程时,注意两个“说法”:求曲线在点P 处的切线方程和求曲线过点P 的切线方程,在点P 处的切线,一定是以点P 为切点,过点P 的切线,不论点P 在不在曲线上,点P 不一定是切点.【例题选讲】[例1](1) (2021·全国甲)曲线y =2x -1x +2在点(-1,-3)处的切线方程为________.答案 5x -y +2=0 解析 y ′=⎝⎛⎭⎪⎫2x -1x +2′=2(x +2)-(2x -1)(x +2)2=5(x +2)2,所以y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.(2) (2020·全国Ⅰ)函数f (x )=x 4-2x 3的图象在点(1,f (1))处的切线方程为( ) A .y =-2x -1 B .y =-2x +1 C .y =2x -3 D .y =2x +1 答案 B 解析 f (1)=1-2=-1,切点坐标为(1,-1),f ′(x )=4x 3-6x 2,所以切线的斜率为k =f ′(1)=4×13-6×12=-2,切线方程为y +1=-2(x -1),即y =-2x +1.(3) (2018·全国Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x 答案 D 解析 法一 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-x )=-f (x ),所以(-x )3+(a -1)(-x )2+a (-x )=-[x 3+(a -1)x 2+ax ],所以2(a -1)x 2=0.因为x ∈R ,所以a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D .法二 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-1)+f (1)=0,所以-1+a -1-a +(1+a -1+a )=0,解得a =1,此时f (x )=x 3+x (经检验,f (x )为奇函数),所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D .法三 易知f (x )=x 3+(a -1)x 2+ax =x [x 2+(a -1)x +a ],因为f (x )为奇函数,所以函数g (x )=x 2+(a -1)x +a 为偶函数,所以a -1=0,解得a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D .(4) (2020·全国Ⅰ)曲线y =ln x +x +1的一条切线的斜率为2,则该切线的方程为________.答案 2x -y =0 解析 设切点坐标为(x 0,y 0),因为y =ln x +x +1,所以y ′=1x +1,所以切线的斜率为1x 0+1=2,解得x 0=1.所以y 0=ln 1+1+1=2,即切点坐标为(1,2),所以切线方程为y -2=2(x -1),即2x -y =0.(5)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为 .答案 x -y -1=0 解析 ∵点(0,-1)不在曲线f (x )=x ln x 上,∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x .∴由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0.(6) (2021·新高考Ⅰ)若过点(a ,b )可以作曲线y =e x 的两条切线,则( ) A .e b <a B .e a <b C .0<a <e b D .0<b <e a 答案 D 解析 根据y =e x 图象特征,y =e x 是下凸函数,又过点(a ,b )可以作曲线y =e x 的两条切线,则点(a ,b )在曲线y =e x 的下方且在x 轴的上方,得0<b <e a .故选D .(7)已知曲线f (x )=x 3-x +3在点P 处的切线与直线x +2y -1=0垂直,则P 点的坐标为( )A .(1,3)B .(-1,3)C .(1,3)或(-1,3)D .(1,-3) 答案 C 解析 设切点P (x 0,y 0),f ′(x )=3x 2-1,又直线x +2y -1=0的斜率为-12,∴f ′(x 0)=3x 20-1=2,∴x 20=1,∴x 0=±1,又切点P (x 0,y 0)在y =f (x )上,∴y 0=x 30-x 0+3,∴当x 0=1时,y 0=3;当x 0=-1时,y 0=3.∴切点P 为(1,3)或(-1,3).(8) (2019·江苏)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是________.答案 (e ,1) 解析 设A (m ,n ),则曲线y =ln x 在点A 处的切线方程为y -n =1m (x -m ).又切线过点(-e ,-1),所以有n +1=1m(m +e).再由n =ln m ,解得m =e ,n =1.故点A 的坐标为(e ,1).(9)设函数f (x )=x 3+(a -1)·x 2+ax ,若f (x )为奇函数,且函数y =f (x )在点P (x 0,f (x 0))处的切线与直线x +y =0垂直,则切点P (x 0,f (x 0))的坐标为 .答案 (0,0) 解析 ∵f (x )=x 3+(a -1)x 2+ax ,∴f ′(x )=3x 2+2(a -1)x +a .又f (x )为奇函数,∴f (-x )=-f (x )恒成立,即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立,∴a =1,f ′(x )=3x 2+1,3x 20+1=1,x 0=0,f (x 0)=0,∴切点P (x 0,f (x 0))的坐标为(0,0).(10)函数y =x -1x +1在点(0,-1)处的切线与两坐标轴围成的封闭图形的面积为( )A .18B .14C .12 D .1答案 B 解析 ∵y =x -1x +1,∴y ′=(x +1)-(x -1)(x +1)2=2x +12,∴k =y ′|x =0=2,∴切线方程为y +1=2(x -0),即y =2x -1,令x =0,得y =-1;令y =0,得x =12,故所求的面积为12×1×12=14.(11)曲线y =x 2-ln x 上的点到直线x -y -2=0的最短距离是 . 答案2 解析 设曲线在点P (x 0,y 0)(x 0>0)处的切线与直线x -y -2=0平行,则0|x x y '==12x x x x 0=⎛⎫- ⎪⎝⎭=2x 0-1x 0=1.∴x 0=1,y 0=1,则P (1,1),则曲线y =x 2-ln x 上的点到直线x -y -2=0的最短距离d =|1-1-2|12+(-1)2=2.【对点训练】1.设点P 是曲线y =x 3-3x +23上的任意一点,则曲线在点P 处切线的倾斜角α的取值范围为( )A .⎣⎡⎦⎤0,π2∪⎣⎡⎭⎫5π6,πB .⎣⎡⎭⎫2π3,πC .⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,πD .⎝⎛⎦⎤π2,5π6 2.函数f (x )=e x +1x在x =1处的切线方程为 .3.(2019·全国Ⅰ)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________. 4.曲线f (x )=1-2ln xx在点P (1,f (1))处的切线l 的方程为( )A .x +y -2=0B .2x +y -3=0C .3x +y +2=0D .3x +y -4=0 5.(2019·全国Ⅱ)曲线y =2sin x +cos x 在点(π,-1)处的切线方程为( ) A .x -y -π-1=0 B .2x -y -2π-1=0 C .2x +y -2π+1=0 D .x +y -π+1=06.(2019·天津)曲线y =cos x -x2在点(0,1)处的切线方程为________.7.已知f (x )=x ⎝⎛⎭⎫e x +ae x 为奇函数(其中e 是自然对数的底数),则曲线y =f (x )在x =0处的切线方程为 .8.已知曲线y =13x 3上一点P ⎝⎛⎭⎫2,83,则过点P 的切线方程为________. 9.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为 .10.设函数f (x )=f ′⎝⎛⎭⎫12x 2-2x +f (1)ln x ,曲线f (x )在(1,f (1))处的切线方程是( )A .5x -y -4=0B .3x -y -2=0C .x -y =0D .x =1 11.我国魏晋时期的科学家刘徽创立了“割圆术”,实施“以直代曲”的近似计算,用正n 边形进行“内外夹逼”的办法求出了圆周率π的精度较高的近似值,这是我国最优秀的传统科学文化之一.借用“以直代曲”的近似计算方法,在切点附近,可以用函数图象的切线近似代替在切点附近的曲线来近似计算.设f (x )=ln(1+x ),则曲线y =f (x )在点(0,0)处的切线方程为________,用此结论计算ln2 022-ln2 021≈________.12.曲线f (x )=x +ln x 在点(1,1)处的切线与坐标轴围成的三角形的面积为( )A .2B .32C .12D .1413.已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.14.设函数f (x )=ax -bx,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.15.(2021·全国乙)已知函数f (x )=x 3-x 2+ax +1.(1)讨论f (x )的单调性;(2)求曲线y =f (x )过坐标原点的切线与曲线y =f (x )的公共点的坐标.考点二 求参数的值(范围) 【方法总结】处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.注意:曲线上横坐标的取值范围;谨记切点既在切线上又在曲线上. 【例题选讲】[例1](1)已知曲线f (x )=ax 3+ln x 在(1,f (1))处的切线的斜率为2,则实数a 的值是________.答案 13 解析 f ′(x )=3ax 2+1x ,则f ′(1)=3a +1=2,解得a =13.(2)若函数f (x )=ln x +2x 2-ax 的图象上存在与直线2x -y =0平行的切线,则实数a 的取值范围是 .答案 [2,+∞) 解析 直线2x -y =0的斜率k =2,又曲线f (x )上存在与直线2x -y =0平行的切线,∴f ′(x )=1x +4x -a =2在(0,+∞)内有解,则a =4x +1x -2,x >0.又4x +1x ≥24x ·1x =4,当且仅当x =12时取“=”.∴a ≥4-2=2.∴a 的取值范围是[2,+∞). (3)设函数f (x )=a ln x +bx 3的图象在点(1,-1)处的切线经过点(0,1),则a +b 的值为 .答案 0 解析 依题意得f ′(x )=ax +3bx 2,于是有⎩⎪⎨⎪⎧f (1)=-1,f ′(1)=1+10-1,即⎩⎪⎨⎪⎧b =-1,a +3b =-2,解得⎩⎪⎨⎪⎧a =1,b =-1,所以a +b =0. (4)(2019·全国Ⅰ)已知曲线y =a e x +x ln x 在点(1,a e)处的切线方程为y =2x +b ,则( ) A .a =e ,b =-1 B .a =e ,b =1 C .a =e -1,b =1 D .a =e -1,b =-1答案 D 解析 因为y ′=a e x +ln x +1,所以y ′|x =1=a e +1,所以曲线在点(1,a e)处的切线方程为y -a e =(a e +1)(x -1),即y =(a e +1)x -1,所以⎩⎪⎨⎪⎧a e +1=2,b =-1,解得⎩⎪⎨⎪⎧a =e -1,b =-1.(5)设曲线y =x +1x -2在点(1,-2)处的切线与直线ax +by +c =0垂直,则ab =( )A .13B .-13 C .3 D .-3答案 B 解析 由题可得y ′=-3(x -2)2,所以曲线在点(1,-2)处的切线的斜率为-3.因为切线与直线ax +by +c =0垂直,所以-3·⎝⎛⎭⎫-a b =-1,解得a b =-13,故选B . (6)已知直线y =kx -2与曲线y =x ln x 相切,则实数k 的值为________.答案 1+ln 2 解析 设切点为(m ,m ln m ),y ′=1+ln x ,y ′|x =m =1+ln m ,∴y -m ln m=(1+ln m )(x -m ),即y =(1+ln m )x -m ,又y =kx -2,∴⎩⎪⎨⎪⎧1+ln m =k ,m =2,即k =1+ln 2.(7)已知函数f (x )=x +a2x ,若曲线y =f (x )存在两条过(1,0)点的切线,则a 的取值范围是 .答案 (-∞,-2)∪(0,+∞) 解析 f ′(x )=1-a 2x 2,设切点坐标为⎝⎛⎭⎫x 0,x 0+a 2x 0,∴切线的斜率k =f ′(x 0)=1-a2x 20,∴切线方程为y -⎝⎛⎭⎫x 0+a 2x 0=⎝⎛⎭⎫1-a 2x 20(x -x 0),又切线过点(1,0),即-⎝⎛⎭⎫x 0+a 2x 0=⎝⎛⎭⎫1-a2x 20(1-x 0),整理得2x 20+2ax 0-a =0,∵曲线存在两条切线,故该方程有两个解,∴Δ=4a 2-8(-a )>0,解得a >0或a <-2.(8)关于x 的方程2|x +a |=e x 有3个不同的实数解,则实数a 的取值范围为________. 答案 (1-ln2,+∞) 解析 由题意,临界情况为y =2(x +a )与y =e x 相切的情况,y ′=e x =2,则x =ln2,所以切点坐标为(ln2,2),则此时a =1-ln2,所以只要y =2|x +a |图象向左移动,都会产生3个交点,所以a >1-ln2,即a ∈(1-ln2,+∞).【对点训练】1.若曲线y =x ln x 在x =1与x =t 处的切线互相垂直,则正数t 的值为________. 2.设曲线y =e ax -ln(x +1)在x =0处的切线方程为2x -y +1=0,则a =( ) A .0 B .1 C .2 D .3 3.若曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( ) A .(1,3) B .(-1,3) C .(1,3)或(-1,3) D .(1,-3) 4.函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是 . 5.已知函数f (x )=x cos x +a sin x 在x =0处的切线与直线3x -y +1=0平行,则实数a 的值为 .6.已知函数f (x )=x 3+ax +b 的图象在点(1,f (1))处的切线方程为2x -y -5=0,则a =________;b =________.7.若函数f (x )=ax -3x 的图象在点(1,f (1))处的切线过点(2,4),则a =________.8.若曲线y =e x 在x =0处的切线也是曲线y =ln x +b 的切线,则b =( ) A .-1 B .1 C .2 D .e 9.曲线y =(ax +1)e x 在点(0,1)处的切线与x 轴交于点⎝⎛⎭⎫-12,0,则a = ; 10.过点M (-1,0)引曲线C :y =2x 3+ax +a 的两条切线,这两条切线与y 轴分别交于A 、B 两点,若|MA |=|MB |,则a = .11.已知曲线C :f (x )=x 3-3x ,直线l :y =ax -3a ,则a =6是直线l 与曲线C 相切的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程; (2)切线l 的倾斜角α的取值范围.13.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围.14.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C .(1)求在曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.。

高考数学复习考点题型专题讲解5 导数切线方程

高考数学复习考点题型专题讲解5 导数切线方程
【详解】
y = 2a ln x 的导数为 y′ = 2a ,由于直线 y = 2x + b 是曲线 y = 2a ln x 的切线,设切点为 (m, n) ,
x 则 2a = 2 ,
m
∴ m = a ,又 2m + b = 2a ln m ,∴ b = 2a ln a − 2a ( a > 0 ), b′ = 2 (ln a +1) − 2 = 2 ln a ,
7 / 39
【答案】0
【分析】由题意 f (e) = 2e, f ' (e) = 3 ,列方程组可求 a, b ,即求 a +b.
( 【详解】∵在点 e, f (e)) 处的切线方程为 y = 3x − e ,∴ f (e) = 2e ,代入 f ( x) = ax ln x − bx 得
a − b = 2 ①.
当 k ≠ 0 ,切点为 (2kπ , 4kπ +1)(k ∈ Z ) ,不满足题意,
综上可得,切点为 (0,1) .故答案为: (0,1) .
【题型三】求切线基础:无切点求参
【典例分析】
已知曲线 y = x3在点(a,b)处的切线与直线 x + 3y +1 = 0 垂直,则a 的取值是()
A.-1
【详解】因为
f
′(
x)
=
2(
x
+ 1) (
cos x −
x +1)2
2 sin
x
,所以
k
=
f
′(0)
=
2

则所求切线的方程为 y = 2x .故答案为: 2x − y = 0 .
【变式演练】
1.曲线 f (x) = (x +1)ex + x 在点(0,1) 处的切线方程为______. 【答案】3x − y +1 = 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一般n 次曲线切线方程的推导
光信1001 黄飞洪 关键词:一般n 次曲线,某点的切线方程,
提要:在求曲线上某点的切线时,通常会使用先求导得到斜率后再求切线,此法在二次曲线中尚可使用,但如果是n 次曲线就不大现实了,因此如果能找到该类曲线切线的某些规律,在求高次曲线的切线方程时会节省很多时间
首先,我们先来分析几个比较特殊的例子:
○1圆A :x 2+y 2=r 2在(x 0,y 0)处的切线方程为x 0x+ y 0y= r 2
○2椭圆B :A 2a)x +(+B b y 2
)(+=1在(x 0,y 0)处的切线方程为1))(())((00=+++++B
b y b y A a x a x ○3双曲线C :A 2a)x +(-B b y 2
)(+在(x 0,y 0
)处的切线方程为1))(())((00=++-++B
b y b y A a x a x ○4抛物线C :y 2
=2px 在(x 0,y 0)处的切线方程为y 0y=p(x+x 0) 以上都是几个比较典型的二次曲线在某点切线的方程,总结起来就是在原曲线方程框架的基础上将x 2(或y 2)型变为x 0x (或y 0y )型,x(或y)型转变为2
0x x +(或20y y +)型,但在一般的二次曲线中包含了xy 的项,那么,这种一般型曲线的切线是否仍存在某种规律呢? 设f(x,y)=Ax 2+Bxy+Cy 2+Dx+Ey+F=0,求在(x 0,y 0)处的切线方程
方程两边求导得2Ax+By+Bxy ’+2Cyy ’+D+Ey ’=0
y’= -E
Cy Bx D By Ax ++++220 ∴在(x 0,y 0)处的切线方程为y-y 0= -
E Cy Bx D By Ax ++++220(x-x 0)
整理可得Ax 0x+B 200y y x x ++Cy 0.y+D 2
0x x ++E 20y y ++F=0 由分析可发现,一般曲线与特殊曲线的切线在框架上是类似的,只是将xy 项转变为2
00x y y x +若将y 换为x ,得到的仍为x 2→x 的变化。

因而二次曲线求某点的切线时,可看作在原 框架上作变化为a 20a a +→,ab 2
00a b b a +→(a,b 为变量) 同样的方法,对于三次曲线
F(x,y)=Ax 3+Bx 2y+Cxy 2+Dy 3+Ex 2+Fxy+Gy 2+Hx+Iy+J
在(x 0,y 0)处的切线方程为
Ax 2
0x+B 320020x y x y x ++C 3200.20y y x x y ++Dy 20y+E 32200x x x ++F 30000x y y x y x +++G 32200y y y ++H 320x x ++I 3
20y y ++J=0 推到这里规律也比较明显了:
对于一个n 次曲线,每一项不含系数部分可看作x 1x 2…x n 型(x 1,x 2,…,x n 为变量或1),再将曲线转化为切线的过程中,可看作在原框架的基础上
x 1x 2…x n n
x x x n i n i ∑=→
11......0 其中当x i =1时,其对应x 0i =1 用过这样一条规律,就可以比较快速的求高次曲线在某一点的切线方程,从而省去了中间较为繁琐的求导过程。

相关文档
最新文档