高一数学111空间几何体及棱柱棱锥的结构特征
高一数学立体几何知识点归纳
高一数学立体几何知识点归纳(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高一数学立体几何知识点归纳数学,是研究数量、结构、变化、空间以及信息等概念的一门学科。
棱柱、棱锥、棱台的结构特征课件
⑤错误,如图所示四棱锥被平面截成的两部分都是棱锥.
【答案】 (1)③④ (2)②③④ 【名师点评】 解决这类与多面体的概念有关的命题真假 判定的问题,关键在于理解并掌握棱柱、棱锥、棱台的概 念、准确把握它们的结构特征.
跟踪训练
1.给出下列几个命题:
①棱柱的侧面都是平行四边形;
②棱锥的侧面为三角形,且所有侧面都有一个公共顶点;
跟踪训练
4.如图,将装有水的长方体水槽固定底面一边后倾斜一 个小角度,则倾斜后水槽中的水形成的几何体是( ) A.棱柱 B.棱台 C.棱柱与棱锥的组合体 D.不能确定 解析:选A.长方体水槽固定底面一边后倾斜,水槽中的水 形成的几何体始终有两个互相平行的平面,而其余各面都 是四边形,并且每相邻两个四边形的公共边互相平行,这 符合棱柱的定义.
跟踪训练
3.某城市中心广场主题建筑是一三棱锥,且所有边长均 为10 m,如图所示,其中E、F分别为AD、BC的中点. (1)画出该几何体的表面展开图,并注明字母; (2)为迎接国庆,城管部门拟对该建筑实施亮化工程,现 预备从底边BC中点F处分别过AC、AB上某点向AD中点E 处架设LED灯管,所用灯管长度最短为多少?
棱柱、棱锥、棱台的结构特征
1.空间几何体 (1)空间中的物体都占据着空间的一部分,若只考虑物体 的形状和大小,而不考虑其他因素,那么由这些物体抽象 出来的__空__间__图__形___就叫做空间几何体. (2)多面体 定义:由若干个平面多边形围成的几何体叫做多面体.围 成多面体的各个多边形叫做多面体的面;相邻两个面的公 共边叫做多面体的棱;棱与棱的公共点叫做多面体的 _顶__点___.
题型三 多面体的表面展开图
例3 如图是三个几何体的侧面展开图,请问各是什 么几何体?
1.1.1 棱柱、棱锥、棱台的结构特征-高一数学教材配套教学课件(人教A版必修二)
(2)有关概念: ①底面:_两__个__互__相__平__行__的__面__; ②侧面:_其__余__各__面__; ③侧棱:_相__邻__侧__面__的__公__共__边__; ④顶点:_侧__面__与__底__面__的__公__共__顶__点__.
【对点训练】 1.棱柱的侧面 ( A.是平行四边形 C.是三角形
分类 按底面多边形的边数分:三棱锥、四棱锥、…
【对点训练】 1.下列图形所表示的几何体中,不是棱锥的为 ( )
【解析】选A.根据棱锥的结构特征,可知A不是棱锥.
2.下面描述中,不是棱锥的几何结构特征的为 ( ) A.三棱锥有四个面是三角形 B.棱锥都有两个面是互相平行的多边形 C.棱锥的侧面都是三角形 D.棱锥的侧棱交于一点
形的几何体不一定是棱台;③两个互相平行的面是正
方形,其余各面是四边形的几何体一定是棱台.其中正
确的说法的序号有 ( )
A.0个
B.1个
C.2个
D.3个
【解析】选C.①正确,因为具有这些特 征的几何体的侧棱一定不相交于一点, 故一定不是棱台;②正确,如图所示;③不正确,当 两个平行的正方形完全相等时,一定不是棱台.
顶点:侧面与上(下)底面的 _公__共__顶__点__
分类
由几棱锥截得即为几棱台:如三棱台、四棱 台、…
【对点训练】 1.下列三种叙述,正确的有 ( ) ①用一个平面去截棱锥,棱锥底面和截面之间的部分 是棱台; ②两个底面平行且相似,其余各面都是梯形的多面体 是棱台;
③有两个面互相平行,其余四个面都是等腰梯形的六
A.南
B.北
C.西
D.下
【解析】选B.正方体展开图还原为正方体,如图所示, 故标△的方位为北.
【补偿训练】如图,在三棱锥V-ABC中,VA=VB=VC=4, ∠AVB=∠AVC=∠BVC=30°,过点A作截面△AEF,求 △AEF周长的最小值.
1.1.1 棱柱、棱锥、棱台的结构特征
1.1.1 棱柱、棱锥、棱台的结构特征参考答案知识点1.空间几何体(1)空间中的物体都占据着空间的一部分,若只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.(2)多面体定义:由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点.1.判断下列命题.(正确的打“√”,错误的打“×”)(1)如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等.()(2)五棱锥只有五条棱.()解析:(1)根据四棱锥的结构特征可知,(1)错误.(2)五棱锥有十条棱,其中五条侧棱,(2)错误.答案:(1)×(2)×2.下列几何体中是棱柱的有()A.1个B.2个C.3个D.4个解析:选C.观察图形可知,①③⑤是棱柱,其他的几何体不是棱柱.3.下列命题正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱D.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台解析:选C.由棱柱的定义可知,A,B不正确,C正确,而根据棱台的定义可知,D不正确.4.由7个面围成,其中两个面是互相平行且全等的五边形,其他面都是全等的矩形的几何体是________.解析:由棱柱的定义和其分类可知该几何体是五棱柱.答案:五棱柱几何体的概念理解与应用(1)下面描述中,不是棱锥的结构特征的为()A.三棱锥有四个面是三角形B.棱锥都有两个面是互相平行的多边形C.棱锥的侧面都是三角形D.棱锥的侧棱相交于一点(2)下列说法中正确的是()A.有一个面是平行四边形,其余各面都是三角形的几何体是棱锥B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.有一个面是多边形,其余各面都是梯形的几何体叫棱台D.有一个面是多边形,其余各面都是有一个公共顶点的三角形的几何体叫棱锥[解析](1)根据棱锥的结构特征,知棱锥中不存在互相平行的多边形.(2)根据棱柱的结构特征可知,A,B不符合,所以A,B错误;C不符合棱台的结构特征,所以错误;D满足棱锥的定义,正确.[答案](1)B(2)D1.下列三个命题中,正确的有()①棱柱中互相平行的两个面叫做棱柱的底面;②各个面都是三角形的几何体是三棱锥;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;④五棱台的各侧棱的延长线可能无法交于一点.A.0个B.1个C.2个D.3个解析:选A.①错误.底面为正六边形的棱柱相对的两个侧面互相平行,但不能作为底面.②错误.如图所示的几何体各面均为三角形,但不是棱锥.③错误.因为不能保证侧棱相交于同一点.④错误.棱台的侧棱延长后一定相交于同一点.几何体的结构特征如图,长方体ABCD-A′B′C′D′中被截去一部分,其中EH∥A′D′.剩下的几何体是什么?截去的几何体是什么?你能说出它们的名称吗?[解]根据棱柱的几何特征可知:剩下的几何体为五棱柱ABFEA′-DCGHD′,截去的几何体为三棱柱EFB′-HGC′.(3)棱柱、棱锥、棱台之间的关系:棱锥是当棱柱的一个底面收缩为一个点时形成的空间图形,棱台则可以看成是用一个平行于棱锥底面的平面截棱锥所得到的图形,它们的关系如图所示:2.下面的多面体是棱台的有________个.解析:由棱台的定义和结构特征可知三个几何体都不是棱台.答案:0下图中能围成正方体的是________.(填序号)[解析]根据展开图的特点和正方体的结构特征,能围成正方体的是①②③.[答案]①②③3.如图是三个几何体的平面展开图,则原几何体应为:(1)________________;(2)________________; (3)________________.解析:由几何体的侧面展开图的特点,结合棱柱、棱锥、棱台的定义,可把侧面展开图还原为原几何体,如图所示:所以①为五棱柱;②为五棱锥;③为三棱台. 答案:(1)五棱柱 (2)五棱锥 (3)三棱台如图(1)所示,在侧棱长为23的正棱锥V -ABC (底面为正三角形,过顶点与底面垂直的直线过底面的中心)中,∠AVB =∠BVC =∠CVA =40°,过A 作截面△AEF ,求截面△AEF 周长的最小值.[解] 将三棱锥沿侧棱VA 剪开,并将其侧面展开平铺在一个平面上,如图(2)所示, 线段AA 1的长为所求△AEF 周长的最小值. 取AA 1的中点D ,则VD ⊥AA 1,∠AVD =60°,可求AD =3,则AA 1=6.A 组训练1.对有两个面互相平行,其余各面都是梯形的多面体,以下说法正确的是( ) A .棱柱 B .棱锥 C .棱台 D .一定不是棱柱、棱锥解析:选D .两个面互相平行,其余各面都是梯形的多面体,这样的多面体有可能是棱台,不可能为棱柱、棱锥. 2.(2014·聊城高一检测)下列说法正确的是( ) A .棱锥的侧面不一定是三角形 B .棱锥的各侧棱长一定相等C .棱台的各侧棱的延长线交于一点D .用一平面去截棱锥,得到两个几何体,一个是棱锥,一个是棱台 解析:选C .由棱台的结构特征可知棱台的侧棱的延长线交于一点. 3.如图,下列能推断这个几何体可能是三棱台的是( )A .A 1B 1=2,AB =3,B 1C 1=3,BC =4B .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =3 C .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =4D .AB =A 1B 1,BC =B 1C 1,CA =C 1A 1 解析:选C .因为三棱台的上、下底面相似,所以该几何体如果是三棱台,则△A 1B 1C 1∽△ABC ,所以A 1B 1AB =B 1C 1BC =A 1C 1AC.4.如图,判断下列四个长方体,哪一个是由所给平面展开图围成的几何体( )解析:选D.根据所给平面展开图及涂色的对应关系,可知D是由所给平面图形围成的.5. 下列叙述,其中正确的有()①两个底面平行且相似,其余的面都是梯形的多面体是棱台;②如图所示,截正方体所得的几何体是棱台;③棱锥被平面截成的两部分不可能都是棱锥.A.0个B.1个C.2个D.3个解析:选A.根据棱台、棱锥的定义和结构特征可知①②③都不正确.6.一个棱柱至少有________个面,面数最少的棱柱有________条棱,有________条侧棱,有________个顶点.解析:根据棱柱的定义可知,三棱柱为面数最少的棱柱,其中有5个面,9条棱,3条侧棱,6个顶点.答案:593 67. 如图,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,沿正方体表面从点A 到点M的最短路程是______c m.解析:由题意,若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13 cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别是1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.答案:138.(2014·临沂高一检测)如图,在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________.①矩形②不是矩形的平行四边形③每个面都是等边三角形的四面体解析:在正方体中任意选择4个顶点,可以是矩形,例如ABC1D1.可以是每个面都是等边三角形的四面体例如A1C1DB.答案:①③9.试用两个平面将如图所示的三棱台分成三个三棱锥.解:过A′,B,C三点作一个平面,再过A′,B,C′作一个平面,就把三棱台ABC-A′B′C′分成三部分,形成的三个三棱锥分别是A′-ABC,B-A′B′C′,A′-BCC′(答案不唯一).10. 如图所示,长方体的长、宽、高分别为5 cm、4 cm、3 cm.一只蚂蚁从A点到C1点沿着表面爬行的最短路程是多少?解:依题意,长方体ABCD-A1B1C1D1的表面可有如图所示的三种展开图.展开后,A,C1两点间的距离分别为:(3+4)2+52=74(cm),(5+3)2+42=45(cm),(5+4)2+32=310(cm),三者比较得74 cm为蚂蚁从A点沿表面爬行到C1点的最短路程.B组训练1.在正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱的对角线共有()A.20条B.15条C .12条D .10条解析:选D .正五棱柱任意不相邻的两条侧棱可确定一个平面,每个平面可得到正五棱柱的两条对角线,5个平面共可得到10条对角线,故选D .2.一个棱柱有12个顶点,所有的侧棱长的和为60 cm ,则每条侧棱长为________cm. 解析:因为棱柱有12个顶点,故该棱柱为六棱柱,每条侧棱长为60÷6=10(cm). 答案:103.已知三棱台ABC -A 1B 1C 1的上、下底面均为等边三角形,边长分别为3和6,平行于底面的截面将侧棱分为1∶2两部分,求截面的面积. 解:如图所示.延长A 1A ,B 1B ,C 1C 交于点S ,设截面为A 2B 2C 2.由题意知A 2A ∶A 1A 2=1∶2,SASA 1=AB A 1B 1=12,所以SA SA 2=34.因为AB =3,所以A 2B 2=4,所以S △A 2B 2C 2=12×32×16=4 3. 4.如图,图①是正方体木块,把它截去一块,可能得到的几何体有②,③,④,⑤的木块.(1)我们知道,正方体木块有8个顶点、12条棱、6个面,请你将图②,③,④,⑤的木块(2)F 之间的关系; (3)看图⑥中正方体的切法,请验证你所得的数量关系是否正确. 解:(1)通过观察各几何体(2)由特殊到一般,(3)该木块的顶点数为10,面数为7,棱数为15,有10+7-15=2,与(2)中归纳的数量关系式“V +F -E =2”相符.。
高中数学新人教A版必修2课件:第一章空间几何体1.1.1棱柱、棱锥、棱台的结构特征
探究一
探究二
探究三
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
探究四
探究一棱柱、棱锥、棱台的结构特征
棱柱、棱锥、棱台的定义是识别和区分多面体结构特征的关键.因此,在涉
及多面体的结构特征问题时,先看是否满足定义,再看它们是否具备各自的
第一章
空间几何体
-1-
1.1
空间几何体的结构
-2-
第1课时
棱柱、棱锥、棱台的结构特征
-3-
首 页
学习目标
1.了解空间几何体的分类及其相关
概念.
2.了解棱柱、棱锥、棱台的定义,知道这
三种几何体的结构特征,能够识别和区
分这些几何体.
J 基础知识 Z 重点难点
ICHU ZHISHI
思维脉络
HONGDIAN NANDIAN
解析:当截得棱台的棱锥的侧棱不相等时,棱台的侧棱不相等.
答案:C
3
S 随堂练习
UITANG LIANXI
4
5
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
1
2
3
S 随堂练习
UITANG LIANXI
4
5
3.如果一个棱锥的侧面都是正三角形,则该棱锥最多是
棱锥.
度最短为多少?
首 页
探究一
探究二
探究三
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
棱柱、棱锥、棱台的结构特征 课件
相 关 概 念
上底面:原棱锥的截面; 下底面:原棱锥的底面; 侧面:其余各面; 侧棱:相邻侧面的公共边; 顶点:侧面与上(下)底面的公共顶点
分 类
①依据:由几棱锥截得; ②举例:三棱台(由三棱锥截得)、四棱台 (由四棱锥截得)……
如图棱台可记 作:棱台 ABCD-A'B'C'D'
4.做一做:下列几何体中,
棱柱、棱锥、棱台的结构特征
一、空间几何体的定义、分类及相关概念 【问题思考】 1.观察下面两组物体,你能说出各组物体的共同点吗?
(1)
(2)
提示:(1)几何体的表面由若干个平面多边形组成. (2)几何体的表面可由平面图形绕其所在平面内的一条定直线旋 转而成.
2.如图,观察几何体,它有几个面?几个顶点?几条棱?有没有比它 的面、顶点、棱更少的几何体?
多面体的表面展开与折叠 【例2】 如图是三个几何体的表面展开图,请问它们是什么几何 体?
思路分析:几何体的侧面展开图的特点→紧扣概念→还原为原几 何体
解:①五棱柱;②五棱锥;③三棱台.如图所示.
反思感悟1.解答此类问题要结合多面体的结构特征发挥空间想 象能力和动手能力.
2.若给出多面体画其展开图时,常常给多面体的顶点标上字母,先 把多面体的底面画出来,再依次画出各侧面.
提示:4个面,4个顶点,6条棱.没有比它的面、顶点、棱更少的几 何体.
3.填空: 空间几何体的定义及分类 (1)定义:如果只考虑物体的形状和大小,而不考虑其他因素,那么 由这些物体抽象出来的空间图形叫做空间几何体. (2)分类:常见的空间几何体有多面体与旋转体两类.
4.填写下表: 类别 多面体
定义
答案:①③④⑤
防范措施在解答关于空间几何体概念的判断题时,要注意紧扣定 义,切忌只凭图形主观臆断.同时立体几何问题中也要注意分类讨 论思想的应用,否则就会因审题片面而出错.
高中数学 1.1 空间几何体 1.1.2 棱柱、棱锥和棱台的结构特征 1.1.3 圆柱、圆锥、圆台和
1.1.2 棱柱、棱锥和棱台的结构特征1.1.3 圆柱、圆锥、圆台和球知识梳理1.棱柱和圆柱统称为柱体.(1)棱柱的本质特征:①有两个面(所在平面)互相平行;②其余各面中每相邻两个面的公共边互相平行.(2)棱柱的性质:①棱的性质:侧棱都平行,并且长度都相等.②面的性质:侧面是平行四边形;两个底面平行,是全等多边形.平行于底面的截面与底面全等.(3)圆柱的特征:①有两个底面互相平行,且为形状、大小一样的圆;②侧面为曲面,展开为矩形.2.棱锥和圆锥统称为锥体.(1)棱锥的本质特征:①有一个面是多边形;②其余各面都是有一个公共顶点的三角形.(2)圆锥的特征:①只有一个顶点,只有一个底面为圆面;②侧面为曲面,展开为扇形.3.棱台和圆台统称为台体.(1)棱台的性质:①棱的性质:侧棱延长之后,必相交于一点.②面的性质:侧面是梯形;两个底面平行,是全等的多边形.(2)圆台的性质:①上下底面平行,为半径不等的圆形;②侧面展开图为一个扇环.4.(1)球面可以看作空间中到一个定点的距离等于定长的点的集合.(2)球的性质:球被任意一个平面所截得的截面是一个圆面.知识导学本节知识是从生活实际中引申出来的,所以,在学习这一部分之前可以先制作一些模型,观察这些模型,进行总结,得出相应的结论,然后根据结论对照图形,加深对几何体性质的理解.对于柱、锥、台体的形状特征可以利用下列口诀加以记忆:底面平行又全等,可能圆柱或棱柱;棱锥圆锥摘掉帽,一个台体就出炉.对于台体的有关问题,可以结合锥体的性质解决,而不要把台体和锥体独立起来,有时候把台体补成一个锥体可以在锥体中进行计算.而面积较小的平面可以看成与锥体的一个与底面平行的截面,根据它们之间的相似比计算其中的元素,这是常用的处理方法.四棱柱是最常见的一种棱柱,包括长方体与正方体,它们都是四棱柱的一种特殊情形.要注意特殊四棱柱的特殊性质及它们之间的联系.球是平面图形圆在空间的延伸,因此在研究球的性质时,应注意与圆的性质的类比.球又是旋转体,由于旋转体是轴对称几何体,故解题时常利用它的轴截面图形,从而化空间问题为平面问题.熟练掌握大圆的半径、截面圆半径以及球心到截面圆圆心的距离的关系是解决有关球问题的关键.疑难突破1.怎样解决与球有关的接、切问题?剖析:解决与球有关的接、切问题时,一般作一个适当的截面,将问题转化为平面问题解决,这类截面通常指球的大圆、多面体的对角面等,在这个截面中应包括几何体的主要元素,且这个截面必须能反映出各元素之间的关系.2.锥体和台体之间的联系.剖析:锥体和台体既有联系又有区别,台体可以看成锥体截掉一个小锥体后的几何体,是锥体的一部分,故可以把两种几何体的关系互相转化.锥体和台体是两种不同的几何体,它们的体积及表面积等的计算方法不同,各个面的形状也不一样,但是它们之间也是有联系的:台体是由锥体截得的,可以看成锥体的一部分,而不能理解成是把柱体的一个面的面积变小.只有通过和锥体的关系才能理解棱台侧棱的延长线相交于一点这一性质.根据锥体和台体的这一性质,在求与台体有关的问题时可以把它补成一个锥体,如用一个平行于底面的截面截掉一个小棱锥得棱台,而这个截面与底面是相似的平面图形,其面积的比等于对应高的平方比,根据这一关系可以解决很多与棱台有关的问题.。
高一数学人教A版必修棱柱棱锥棱台的结构特征公开课一等奖优质课大赛微课获奖课件
第14页
图形 用表示底面各顶点的 字母 表示棱柱,如上图中的
表示法 棱柱可记为棱柱ABCDE-A′B′C′D′E′ 按底面多边形的 边数 分为三棱柱、四棱柱、五
分类 棱柱……
第15页
[破疑点]有两个面互相平行,其余各面为平行四边形的几 何体,却不一定是棱柱,如图所示的几何体就不是棱柱.因 为棱柱要求有两个面互相平行,其余各面都是四边形,并且 每相邻的两个四边形的公共边都互相平行,而该图中有相邻 四边形的公共边是不平行的.
(2) 平 行 平 面 共 有 四 对 。 即 平 面 ABB′A′ 与 平 面 DEE′D′,平面 BCC′B′与平面 EFF′E′,平面 CDD′C′ 与 平 面 FAA′F′ , 平 面 ABCDEF 与 平 面 A′B′C′D′E′F′,但能作为棱柱底面的只有一对,即上、 下两个平行平面.
第42页
第一章
空间几何体
第1页
第一章
1.1 空间几何体的结构
第2页
第一章
1.1.1 棱柱、棱锥、棱台的结构特征
第3页
第4页
课前自主预习
第5页
温故知新 在初中,我们学习了一些平面几何知识,了解了三角形、 四边形、圆等一些平面图形的性质,也直观地认识了一些简单 的几何体,如正方体、长方体、圆柱、圆锥、球等,在此基础 上你能用六根火柴首尾相连最多拼成几个全等的等边三角 形?(提示:若你能在空间中思考这个问题,就会知道答案 4 个)
第38页
[点评] 根据棱柱的结构特征判断.判断时可首先确定底 面,看是否存在两个互相平行的面,再看侧面和侧棱.
第39页
(1)观察长方体,共有多少对平行平面?能作为棱柱底面 的有几对?
(2)观察螺杆头部模型,有多少对平行的平面?能作为棱 柱底面的有几对?面,有三对平面可作为棱柱的底 面 . 它 们分 别 为 平面 ABCD 与 平面 A′B′C′D′ 、 平 面 ADD′A′ 与 平 面 BCC′B′ 、 平 面 ABB′A′ 与 平 面 DCC′D′.
高中数学《棱柱、棱锥、棱台的结构特征 》课件
17
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
解析 棱柱是由一个平面多边形沿某一方向平移而形 成的几何体,因而侧面是平行四边形,故①对.
棱锥是由棱柱的一个底面收缩为一个点而得到的几何 体,因而其侧面均是三角形,且所有侧面都有一个公共点, 故②对.
棱台是棱锥被平行于底面的平面所截后,截面与底面之 间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相 交于一点(即原棱锥的顶点),故③错④对.⑤显然正确.
所以(1)为五棱柱,(2)为五棱锥,(3)为三棱台.
29
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
拓展提升 空间几何体的展开图
(1)解答空间几何体的展开图问题要结合多面体的结构 特征发挥空间想象能力和动手能力.
(2)若给出多面体画其展开图,常常给多面体的顶点标 上字母,先把多面体的底面画出来,然后依次画出各侧面.
数学 ·必修2
第一章 空间几何体
1.1 空间几何体的结构 1.1.1 棱柱、棱锥、棱台的结构特征
1
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
课前自主预习
2
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
知识点一 空间几何体的定义、分类及相关概念 1.空间几何体的定义
(3)若是给出表面展开图,则按上述过程逆推.
30
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
【跟踪训练 3】 根据如下图所给的平面图形,画出立 体图.
高一数学人教A版必修二课件:1.1.1.1 棱柱、棱锥、棱台的结构特征
解:所截两部分分别是四棱柱和三棱柱.几何体ABCD-
一二三
知识精要 思考探究 典题例解 迁移应用
三、简单几何体的表面展开与折叠问题 1.绘制展开图
(1)绘制多面体的表面展开图要结合多面体的几何特征,发 挥空间想象能力或者是亲手制作多面体模型.
(2)在解题过程中,常常给多面体的顶点标上字母,先把多面 体的底面画出来,然后依次画出各侧面,便可得到其表面展开
图
示
底面:两个互相平行的面
及
侧面:底面以外的其余各面
相
侧棱:相邻侧面的公共边
关
顶点:侧面与底面的公共顶
概
点
念
记 法
棱柱 ABCDEF-A'B'C'D'E'F'
分 类
按底面多边形的边数分为三棱柱、四棱柱…
目标导航 预习导引
12
(2)棱锥的结构特征:
定 有一个面是多边形,其余各面都是有一个公共顶
义 点的三角形,由这些面所围成的多面体叫做棱锥
紧扣概念解题 在解答关于空间几何体概念的判断题时,要注意紧扣定义 判断,这就要求熟悉各种空间几何体的概念的内涵和外延,切 忌只凭图形主观臆断,如本例若意识不到棱台各侧棱延长后
交于一点则会致错.
多个梯形相连.
一二三
知识精要 思考探究 典题例解 迁移应用
【例3】 (1)请画出如图所示的几何体的表面展开图.
(2)根据下面所给的平面图形,画出立体图形.
一二三
知识精要 思考探究 典题例解 迁移应用
思路分析:由题意首先弄清几何体的侧面各是什么形状,然 后再通过空间想象或动手实践进行展开或折叠. 解:(1)展开图如图所示
A1B1C1平行于平面ABC,
1.1.1 棱柱、棱锥、棱台的结构特征
2.下列结论正确的是 ( B )
A.有两个面平行,其余各面都是四边形的几何体是棱柱 B.一个棱柱至少有五个面,六个顶点、九条棱 C.一个棱锥至少有四个面、四个顶点、四条棱 D.棱锥截去一个小棱锥后剩余部分是棱台 【解析】由棱柱的定义知,A不正确;棱数最少的三棱锥 有四个面、四个顶点、六条棱,C不正确;对于棱锥,用不 平行于底面的平面截去一个小棱锥后,剩余部分不是棱 台,D不正确;B正确.
TIP2:越夸张越搞笑,越有助于刺激我们的大脑,帮助我们记忆,所以不妨在 编 故事时,让自己脑洞大开,尝试夸张怪诞些~
故事记忆法小妙招
费曼学习法
费曼学习法-简介 理查德·菲利普斯·费曼
(Richard Phillips Feynman)
费曼学习法出自著名物理学家费曼,他曾获的 1965年诺贝尔 物理学奖,费曼不仅是一名杰出的 物理学家,并且是一位伟 大的教育家,他能用很 简单的语言解释很复杂的概念,让其 他人能够快 速理解,实际上,他在学习新东西的时候,也会 不断的研究思考,直到研究的概念能被自己直观 轻松的理解,
【提升总结】
特殊的棱柱:
种类较多,
侧棱不垂直于底面的棱柱叫做斜棱柱; 可要记清.
侧棱垂直于底面的棱柱叫做直棱柱;
底面是正多边形的直棱柱叫做正棱柱;
底面是平行四边形的四棱柱叫做平行六面体;
侧棱垂直于底面的平行六面体叫做直平行六面体;
底面是矩形的直平行六面体叫做长方体;
棱长都相等的长方体叫做正方体.
探究点3 棱锥的结构特征 棱锥:一般地,有一个面是多边形,其余各面都是有 一个公共顶点的三角形,由这些面所围成的多面体叫 做棱锥.如图:
3. 下列命题中,正确的是 ( D ) A.有两个侧面是矩形的棱柱是直棱柱 B.侧面都是等腰三角形的棱锥是正棱锥 C.侧面都是矩形的四棱柱是长方体 D.底面为正多边形,且有相邻两个侧面与底面垂 直的棱柱是正棱柱
第1课时 棱柱、棱锥、棱台的结构特征
第一章空间几何体1.1 空间几何体的结构第1课时棱柱\棱锥\棱台的结构特征课标导航1、知道空间几何体的概念及其含义、了解空间几何体的分类及相关概念。
2、了解棱柱、棱锥、棱台的定义。
3、掌握棱柱、棱锥、棱台的结构特征及其关系。
知识梳理1、空间几何体(1)概念:如果只考虑物体的_________和_________,而不考虑其他因素,那么由这些物体抽象出来的空间图形叫做空间几何体。
(2)特殊几何体:①多面体:一般地,由若干个_________围成的几何体叫做多面体。
围成多面体的各个多边形叫做多面体的_________;相邻两个面的_________叫做多面体的棱;棱与棱的_________叫做多面体的顶点。
②旋转体:由一个平面图形绕它所在平面内的一条定直线旋转所形成的_________叫做旋转体,这条定直线叫做旋转体的_________。
2、几种常见的多面体思考探究1、多面体最少有几个面,几个顶点,几条棱?2、有一个面是多边形,其余各面都是三角形的几何体一定是棱锥吗?3、“两个面互相平行,其余各面都是平行四边形,由这些面围成的几何体是否一定是棱柱?”自主测评1、具有下列哪个条件的多面体是棱台()A.两底面是相似多边形的多面体B.侧面是梯形的多面体C.两底面平行的多面体D.两底面平行,侧棱延长后交于一点的多面体2、有一个多面体,共有四个面围成,每一个面都是三角形,则这个几何体为()A.四棱柱B.四棱锥C.三棱柱D.三棱锥3、下列说法正确的是()A.棱柱的底面一定是平行四边形B.棱锥的底面一定是三角形C.棱锥被平面分成的两部分不可能是棱锥D.棱柱被平面分成的两部分可能都是棱柱4、六棱台有_________个侧面,_________个顶点,_________条侧棱。
典例探究突破类型一:棱柱、棱锥、棱台的概念例1:试判断下列说法是否正确:(1)棱柱中互相平行的两个面叫做棱柱的底面;(2)棱柱的侧面是平行四边形,而底面不是平行四边形;(3)用一个平面去截棱锥,底面与截面间的部分叫棱台。
1.1.1 棱柱、棱锥、棱台的结构特征
4.下面属于多面体的是
(将正确答案的序号填在横线上).
①建筑用的方砖;②埃及的金字塔;③茶杯;④球. 【解析】①②属于多面体;③④属于旋转体. 答案:①②
【知识探究】 知识点1 棱柱及其结构特征
观察图形,回答下列问题:
问题1:棱柱有哪些结构特征? 问题2:正方体、长方体是棱柱吗?
【总结提升】 1.棱柱的结构特征 (1)侧棱互相平行且相等;侧面都是平行四边形. (2)两个底面与平行于底面的截面是全等的多边形,如图①所示. (3)过不相邻的两条侧棱的截面是平行四边形,如图②所示.
公共顶点 顶点:侧面与底面的_________
分类
按底面多边形的边数分:三棱柱、四棱柱、„
(2)棱锥的结构特征 多边形 其余各面都是有一个_________ 公共顶点 的 有一个面是_______, 三角形,由这些面围成的多面体 底面:多边形面
定义
图示
及 相关 概念 分类
公共顶点 的各个三角形面 侧面:有_________ 侧面 的公共边 侧棱:相邻_____
2.棱台的结构特征 (1)侧棱延长后交于一点;侧面是梯形. (2)两个底面与平行于底面的截面是相似多边形,如图③所示. (3)过不相邻的两条侧棱的截面是梯形,如图④所示.
【题型探究】 类型一 棱柱的结构特征 ( )
【典例】1.下列说法正确的是
A.有两个面平行,其余各面都是四边形的几何体叫棱柱 B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱 C.各侧面都是正方形的四棱柱一定是正方体 D.九棱柱有9条侧棱,9个侧面,侧面为平行四边形
第一章 空间几何体
1.1 空间几何体的结构 第1课时 棱柱、棱锥、棱台的结构特征
【知识提炼】 1.空间几何体
高中数学课件 棱柱、棱锥、棱台的结构特征
2.“练一练”尝试知识的应用点(请把正确的答案写在横线
上).
(1)如图中的几何体叫做
,PA,PB叫它的
,平
面PBC,平面PCD叫它的
,平面ABCD叫它的
.
(2)棱柱的顶点最少有
个,侧棱最少有
最少有
条.
(3)下列几何体中,是棱柱的是
(填序号).
条,棱
【解析】(1)观察该几何体为四棱锥,根据棱锥的结构特征可知 PA,PB叫它的侧棱,平面PBC,平面PCD叫它的侧面,平面 ABCD叫它的底面. 答案:四棱锥 侧棱 侧面 底面 (2)最简单的棱柱是三棱柱,有6个顶点,3条侧棱,9条棱. 答案:6 3 9 (3)根据棱柱的定义知,这4个几何体都是棱柱. 答案:①②③④
总结解决概念辨析题的关注点. 1.下面描述中,不是棱锥的结构特征的为( ) A.三棱锥有四个面是三角形 B.棱锥都是有两个面是互相平行的多边形 C.棱锥的侧面都是三角形 D.棱锥的侧棱相交于一点
2.下列说法中正确的是( ) A.有两个面平行,其余各面都是四边形的几何体叫棱柱 B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱 C.有一个面是多边形,其余各面都是梯形的几何体叫棱台 D.有一个面是多边形,其余各面都是有一个公共顶点的三角形 的几何体叫棱锥
【解题指南】1.将几何体折叠后,根据三条线段的位置关系可 判断正确选项. 2.将该几何体的展开图折起,折成立体图形,每个面上标上对应 的字母,然后根据题目要求判断求解. 3.将三棱柱沿一条侧棱剪开,展到一个平面上,转化为平面内两 点间的距离.
【解析】1.选B.由图可知,折叠后三条线段在相邻的三个平面 内,并且互相平行,故排除A,C.又由原平面图知,只有两个平面 是空白的,排除D,故选B.
高一数学必修第一单元空间几何体结构要点讲解
高一数学必修第一单元空间几何体结构要点讲解知识点一:棱柱的结构特征1、定义:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.在棱柱中,两个相互平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱.侧面与底的公共顶点叫做棱柱的顶点.棱柱中不在同一平面上的两个顶点的连线叫做棱柱的对角线.过不相邻的两条侧棱所形成的面叫做棱柱的对角面.2、棱柱的分类:底面是三角形、四边形、五边形、的棱柱分别叫做三棱柱、四棱柱、五棱柱3、棱柱的表示方法:知识点二:棱锥的结构特征1、定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.这个多边形面叫做棱锥的底面.有公共顶点的各个三角形叫做棱锥的侧面.各侧面的公共顶点叫做棱锥的顶点.相邻侧面的公共边叫做棱锥的侧棱;2、棱锥的分类:按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥知识点三:圆柱的结构特征1、定义:以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体叫做圆柱.旋转轴叫做圆柱的轴.垂直于轴的边旋转而成的曲面叫做圆柱的底面.平行于轴的边旋转而成的曲面叫做圆柱的侧面.无论旋转到什么位置不垂直于轴的边都叫做圆柱的母线.2、圆柱的表示方法:用表示它的轴的字母表示,知识点四:圆锥的结构特征1、定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥.旋转轴叫做圆锥的轴.垂直于轴的边旋转而成的曲面叫做圆锥的底面.不垂直于轴的边旋转而成的曲面叫做圆锥的侧面.无论旋转到什么位置不垂直于轴的边都叫做圆锥的母线.2、圆锥的表示方法:用表示它的轴的字母表示知识点五:棱台和圆台的结构特征1、定义:用一个平行于棱锥(圆锥)底面的平面去截棱锥(圆锥),底面和截面之间的部分叫做棱台(圆台);原棱锥(圆锥)的底面和截面分别叫做棱台(圆台)的下底面和上底面;原棱锥(圆锥)的侧面被截去后剩余的曲面叫做棱台(圆台)的侧面;原棱锥的侧棱被平面截去后剩余的部分叫做棱台的侧棱;原圆锥的母线被平面截去后剩余的部分叫做圆台的母线;棱台的侧面与底面的公共顶点叫做棱台的顶点;圆台可以看做由直角梯形绕直角边旋转而成,因此旋转的轴叫做圆台的轴.2、棱台的表示方法:用各顶点表示3、圆台的表示方法:用表示轴的字母表示注:圆台可以看做由圆锥截得,学习规律,也可以看做是由直角梯形绕其直角边旋转而成.知识点六:球的结构特征1、定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称球.半圆的半径叫做球的半径.半圆的圆心叫做球心.半圆的直径叫做球的直径.2、球的表示方法:用表示球心的字母表示知识点七:特殊的棱柱、棱锥、棱台特殊的棱柱:侧棱不垂直于底面的棱柱称为斜棱柱;垂直于底面的棱柱称为直棱柱;底面是正多边形的直棱柱是正棱柱;底面是矩形的直棱柱叫做长方体;棱长都相等的长方体叫做正方体;特殊的棱锥:如果棱锥的底面是正多边形,且各侧面是全等的等腰三角形,那么这样的棱锥称为正棱锥;侧棱长等于底面边长的正三棱锥又称为正四面体;特殊的棱台:由正棱锥截得的棱台叫做正棱台知识点八:简单组合体的结构特征1、组合体的基本形式:①由简单几何体拼接而成的简单组合体;②由简单几何体截去或挖去一部分而成的几何体;2、常见的组合体有三种:①多面体与多面体的组合;②多面体与旋转体的组合;③旋转体与旋转体的组合.知识点九:中心投影与平行投影1、投影、投影线和投影面:由于光的照射,在不透明物体后面的屏幕上会留下这个物体的影子,这种现象叫做投影,其中光线叫做投影线,屏幕叫做投影面.2、中心投影:把光由一点向外散射形成的投影叫做中心投影.3、中心投影的性质:①中心投影的投影线交于一点;②点光源距离物体越近,投影形成的影子越大.4、平行投影:把一束平行光线照射下形成的投影叫做平行投影,投影线正对着投影面时叫做正投影,否则叫做斜投影.5、平行投影的性质:平行投影的投影线相互平行.知识点十:常见几何体的三视图:1、圆柱的正视图和侧视图是全等的矩形,俯视图为圆;2、圆锥的正视图和侧视图是三角形,俯视图为圆和圆心;3、圆台的正视图和侧视图都是等腰梯形,俯视图为两个同心圆;4、球的三视图都是圆.注:观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
1.1.1 棱柱、棱锥、棱台的结构特征
思考3:如果将这些几何体进行适当分类,你认为
可以分成那几种类型?
发现:图(2)(5)(7)(9)(13)(14) (15)(16)有何共同特点?这些几何体可以统 一叫什么名称?
多面体
发现:图(1)(3)(4)(6)(8)(10) (11)(12)有何共同特点?这些几何体可以 统一叫什么名称? 旋转体
用平行的两底面多边形的字母表示棱 柱,如:棱柱ABCDE- A1B1C1D1E1 。 字母对应
二、棱锥的结构特征
观察下列几何体,有什么相同点?有 什么共同名称?
定义:有一个面是多边形,其余各面都是有一个 公共顶点的三角形,由这些面围成的多面体叫做 棱锥.
类比:参照棱柱的说法,棱锥的底面、侧面、 侧棱、顶点分别是什么含义?
1.1 空间几何体的结构
zxxkw
知识探究(一):空间几何体的类型
思考1:在我们周围存在着各种各样的物体,它们 都占据着空间的一部分.如果我们只考虑这些物体 的形状和大小,而不考虑其他因素,那么由这些 抽象出来的空间图形就叫做空间几何体.
你能列举那些空间几何体的实例?
思考2:观察下列图片,你知道这图片在几何中分 别叫什么名称吗?
思考4:一般地,怎样定义多面体?围成多面体的 各个多边形,相邻两个多边形的公共边,以及这 些公共边的公共顶点分别叫什么名称?
如顶点A, D.
顶点
如:平面BCC'B',平面BC′
面
定义:由若干 个平面多边形 围成的几何体 叫做多面体 .
棱
如棱AB, 棱AA.
思考5:一般地,怎样定义旋转体?
轴
定义:由一个平面图形绕它所在平面内 的一条定直线旋转所形成的封闭几何体 叫做旋转体 ,把这条定直线叫轴.
高一数学知识点归纳大全必修二
高一数学知识点归纳大全必修二一、空间几何体1. 棱柱、棱锥、棱台的结构特征:棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。
棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形。
棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
2. 圆柱、圆锥、圆台、球的结构特征:圆柱:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体。
圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体。
圆台:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。
球:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体。
3. 空间几何体的三视图和直观图:三视图:正视图、侧视图、俯视图。
直观图:斜二测画法。
4. 空间几何体的表面积与体积:棱柱、棱锥、棱台的表面积和体积公式。
圆柱、圆锥、圆台、球的表面积和体积公式。
二、点、直线、平面之间的位置关系1. 平面的基本性质:公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
公理2:过不在一条直线上的三点,有且只有一个平面。
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
2. 空间中直线与直线之间的位置关系:平行、相交、异面。
平行公理、等角定理。
3. 空间中直线与平面之间的位置关系:直线在平面内、直线与平面平行、直线与平面相交。
4. 平面与平面之间的位置关系:平行、相交。
三、直线与方程1. 直线的倾斜角与斜率:倾斜角的定义和范围。
斜率的定义和计算公式。
2. 直线的方程:点斜式、斜截式、两点式、截距式、一般式。
3. 两直线的位置关系:平行、垂直的判定条件。
4. 距离公式:两点间的距离公式。
点到直线的距离公式。
两平行直线间的距离公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
完整版课件ppt
30
思考4:一个棱锥至少有几个面?一个N 棱锥有分别有多少个底面和侧面?有多 少条侧棱?有多少个顶点?
思考2:观察下列图片,你知道这图片在 几何中分别叫什么名称吗?
完整版课件ppt
8
观察下面的图片, 这些图片中的物体具有什么几 何结构特征?你能对它们进行分类吗?分类依据是 什么?
完整版课件ppt
9
观察下面的图片, 这些图片中的物体具有什么几 何结构特征?你能对它们进行分类吗?分类依据是 什么?
完整版课件ppt
金字塔
完整版课件ppt
2
许多著名的建筑都有着非常个性化的结构特点,金字
塔是什么形状呢?这种几何完整体版课件有ppt什么样的特点?
3
这是水立方的照片,实际上就是立体图形的直观图,
你知道怎么画立体图形的直完整观版课件图ppt和三视图吗?
4
完整版课件ppt
5
问题提出
t
p
1 2
5730
1.在平面几何中,我们认识了三角形, 正方形,矩形,菱形,梯形,圆,扇形 等平面图形.那么对空间中各种各样的几 何体,我们如何认识它们的结构特征?
大千世界,异彩纷呈,我们生 活的世界到处都是美丽的精致!无 论是美丽的地球、物质的晶体结构, 还是人类所建造的精美绝伦的建筑, 都呈现出美妙的形状,具有不同的 几何结构。正是由于我们对这些几 何体的认识与运用,加上对美好生 活的追求,才创造出了更多的形状
美观、科学实用的物质财富。
完整版课件ppt
1
在我们的生活中,存在着各种各样 的物体,它们为我们展示了不同的形状 以及独特的几何结构特征,让我们进入 这美妙的图形王国之中吧?
完整版课件ppt
25
知识探究(三): 棱锥的结构特征
思考1:我们把下面的多面体取名为棱 锥,你能说一说棱锥的结构有那些特征 吗?据此你能给棱锥下一个定义吗?
完整版课件ppt
26
有一个面是多边形,其余各面 都是有一个公共顶点的三角形,由
这些面围成的多面体叫做棱锥.
完整版课件ppt
27
思考2:参照棱柱的说法,棱锥的底面、 侧面、侧棱、顶点分别是什么含义?
顶点侧面侧棱完整版课件ppt底面
17
思考3:下列多面体都是棱柱吗?如何
在名称上区分这些棱柱?如何用符号表
示? D1 C1
E1
A1
B1
C1 B1
C B
D E
A
C B D1
D
A1
A1
C1
B1
C
B A
完整版课件ppt
A
D1 A1
C1 B1
D A
C
B
18
棱柱的表示法
1 .用平行的两底面多边形的字母表示棱 柱,如:棱柱ABCDE- A1B1C1D1E1
完整版课件ppt
13
思考7:一般地,怎样定义旋转体?
轴
由一个平面图形绕它所在平面
内的一条定直线旋转所形成的封
旋转体 闭几何体叫做 完整版课件ppt
14
知识探究(二):棱柱的结构特征
思考1:我们把下面的多面体取名为棱 柱,你能说一说棱柱的结构有那些特征 吗?据此你能给棱柱下一个定义吗?
完整版课件ppt
顶点
侧面
底面
侧棱
多边形面叫做棱锥的底面,有公共顶点的各三角
形面叫做棱锥的侧面,相邻侧面的公共边叫做棱
锥的侧棱,各侧面的公共顶点叫做棱锥的顶点.
完整版课件ppt
28
思考3:下列多面体都是棱锥吗?如何在 名称上区分这些棱锥?如何用符号表示?
S
S A
A
D
C
C B
B S
完整版课件ppt
D C
E
F
B
A
29
棱锥用表示顶点和底面各顶点 的字母表示,如上图中的棱锥可 分别表示为三棱锥S—ABC;四棱 锥S—ABCD;六棱锥S—ABCDE。
(10)(11)(12)有何共同特点?这
些几何体可以统一叫什么名称?
组成它们的面不全是平面图形,统一叫旋转体。
完整版课件ppt
12
思考6:一般地,怎样定义多面体?围
成多面体的各个多边形,相邻两个多边
形的公共边,以及这些公共边的公共顶
点分别叫什么名称?
面
顶点
由若干个平面
棱
多边形围成的 几何体叫做
多面体 .
2 .用表示一条对角线端点的两个字母表 示,如:棱柱AC1
D1 A1
C1
B1 A
1
C1 A1 B1 B1
E1 D1 C1
D
C
A
BA
C A
BB
E
D C
完整版课件ppt
19
棱柱的分类
1、按侧棱与底面是否垂直可分为:
1) 侧棱不垂直于底的棱柱叫做斜棱柱。
完整版课件ppt
20
2)侧棱垂直于底的棱柱叫做直棱柱
2.对空间中不同形状、大小的几何体 我们如何理解它们的联系和区别?
完整版课件ppt
6
完整版课件ppt
7
知识探究(一):空间几何体的类型
思考1:在我们周围存在着各种各样的物 体,它们都占据着空间的一部分.如果我 们只考虑这些物体的形状和大小,而不 考虑其他因素,那么由这些抽象出来的 空间图形就叫做空间几何体.你能列举那 些空间几何体的实例?
15
有两个面互相平行,其余各面都是四边 形,每相邻两个四边形的公共边都互相
平行,由这些面围成的多面体叫做棱柱.
完整版课件ppt
16
思考2:为了研究方便,我们把棱柱中两个互 相平行的面叫做棱柱的底面,其余各面叫做 棱柱的侧面,相邻侧面的公共边叫做棱柱的 侧棱,侧面与底面的公共顶点叫做棱柱的顶 点.你能指出上面棱柱的底面、侧面、侧棱、 顶点吗?
3)底面是正多边形的直棱柱叫做正棱柱
完整版课件ppt
21
2、按底面的边数分为:
棱柱的底面可以是三角形、四边形、 五边形、……
把这样的棱柱分别叫做三棱柱、四棱 柱、五棱柱、……
三棱柱
四棱柱
五棱柱
完整版课件ppt
22
斜棱柱
棱
柱
直棱柱 正棱柱
完整版课件ppt
23
思考4:棱柱上、下两个底面的形状大小 如何?各侧面的形状如何?
两底面是全等的多边形,各
侧面都是平行四边形
完整版课件ppt
24
思考5:有两个面互相平行,其余各面都 是平行四边形的多面体一定是棱柱吗?
至少要有三个侧面;
棱柱分别有2个底 面、N个侧面、N 个侧棱、2N个顶
点。
思考6:一个棱柱至少有几个侧面?一个
N棱柱分别有多少个底面和侧面?有多少
条侧棱?有多少个顶点?
10
完整版课件ppt
11
思考3:如果将这些几何体进行适当分类,
你认为可以分成那几种类型?
思考4:图(2)(5)(7)(9)(13)
(14)(15)(16)有何共同特点?这
些几何体可以统一叫什么名称?
组成几何体的每个面都是平面图形,并且
都是平面多边形,统一叫多面体。
思考5:图(1)(3)(4)(6)(8)