高考专题练习: 空间几何体的结构特征及三视图和直观图
高三数学空间几何体的三视图与直观图试题答案及解析
高三数学空间几何体的三视图与直观图试题答案及解析1.一个多面体的三视图如图所示,则该多面体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,该多面体是由正方体截去两个正三棱锥所成的几何体,如图,正方体棱长为2,正三棱锥侧棱互相垂直,侧棱长为1,故几何体的体积为:V正方体-2V棱锥侧2×2×2−2×.故选:A.【考点】三视图求解几何体的体积.2.在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于.【答案】24【解析】由题意割去的两个小长方体的体积为.【考点】三视图,几何体的体积..3.某几何体的三视图如图(其中侧视图中的圆弧是半圆),则该几何体的表面积为()A.92+14πB.82+14πC.92+24πD.82+24π【答案】A【解析】由几何体的三视图,知该几何体的下半部分是长方体,上半部分是半径为2,高为5的圆柱的一半.长方体中EH=4,HG=4,GK=5,所以长方体的表面积为(去掉一个上底面)2(4×4+4×5)+4×5=92.半圆柱的两个底面积为π×22=4π,半圆柱的侧面积为π×2×5=10π,所以整个组合体的表面积为92+4π+10π=92+14π,选A.4.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()【答案】D【解析】由题目所给的几何体的正视图和俯视图,可知该几何体为半圆锥和三棱锥的组合体,如图所示,可知左视图为等腰三角形,且轮廓线为实线,故选D.5.一个正方体截去两个角后所得几何体的正视图、侧视图如图所示,则其俯视图为()【答案】C【解析】依题意可知该几何体的直观图如图所示,故其俯视图应为C.6.某几何体的三视图如图所示,则该几何体的体积为A.12B.18C.24D.30【答案】C【解析】由三视图可知该几何体是一个底面为直角三角形的直三棱柱的一部分,其直观图如上图所示,其中,侧面是矩形,其余两个侧面是直角梯形,由于,平面平面,所以平面,所以几何体的体积为:故选C.【考点】1、空间几何体的三视图;2、空间几何体的体积.7.一块石材表示的几何体的三视图如图2所示,将石材切削、打磨、加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4【答案】B【解析】由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径,则,故选B.【考点】三视图内切圆球三棱柱8. [2013·四川高考]一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台【答案】D【解析】由正视图和侧视图可知,该几何体不可能是圆柱,排除选项C;又由俯视图可知,该几何体不可能是棱柱或棱台,排除选项A、B.故选D.9.[2013·宁波质检]如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥平面A1B1C1,正视图是正方形,俯视图是正三角形,该三棱柱的侧视图面积为()A.2B.C.2D.4【答案】A【解析】由题意可知,该三棱柱的侧视图应为矩形,如图所示.在该矩形中,MM1=CC1=2,CM=C1M1=·AB=.所以侧视图的面积为S=2.10.某几何体的三视图如图所示,则该几何体的体积的最大值为 .【答案】【解析】该几何体是类似墙角的三棱锥,假设一条直角的棱长为x,则三条直角棱长分别为.所以体积为.当且仅当时取等号.【考点】1.三视图.2.函数最值问题.3.空间想象能力.11.(2012•广东)某几何体的三视图如图所示,它的体积为()A.12πB.45πC.57πD.81π【答案】C【解析】由三视图可知,此组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱故它的体积是5×π×32+π×32×=57π故选C12. (2014·咸宁模拟)某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为( )A.92+14πB.82+14πC.92+24πD.82+24π【答案】A【解析】由几何体的三视图知该几何体的下半部分是长方体,上半部分是半径为2,高为5的圆柱的一半.所以长方体的表面积为(去掉一个上底面)2(4×4+4×5)+4×5=92.半圆柱的两个底面积为π×22=4π,半圆柱的侧面积为π×2×5=10π,所以整个组合体的表面积为92+4π+10π=92+14π. 13.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为【答案】D【解析】条件对应的几何体是由底面棱长为r的正四棱锥沿底面对角线截出的部分与底面为半径为r的圆锥沿对称轴截出的部分构成的。
高三数学空间几何体的三视图与直观图试题答案及解析
高三数学空间几何体的三视图与直观图试题答案及解析1.已知某锥体的三视图(单位:cm)如图所示,则该锥体的体积为.【答案】2.【解析】由已知几何体的视图可知,几何体为四棱锥,其中SA垂直于平面ABCD,SA=2,四边形ABCD为直角梯形,AD=1,BC=2,AB=2,所以四棱锥的体积为【考点】三视图求几何体的体积.2.某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.B.C.D.【答案】B【解析】由三视图知,原几何体是由一个长方体与一个三棱柱组成,其体积为,故选B.【考点】根据三视图还原几何体,求原几何体的体积,容易题.3.若某多面体的三视图(单位: cm)如图所示, 则此多面体的体积是()A.cm3B.cm3C.cm3D.cm3【答案】C【解析】由三视图可得,该几何体相当于一个正方体切去一个三个侧棱长为1的三棱锥.所以该几何体的体积为.故选C.【考点】1.三视图.2.空间想象力.3.几何体的体积.4. (2014·孝感模拟)一个几何体的三视图如图所示,其中俯视图与侧视图均为半径是2的圆,则这个几何体的表面积是( )A.16πB.14πC.12πD.8π【答案】A【解析】由三视图可知,该几何体是球挖去半球.其中两个半圆的面积为π×22=4π.个球的表面积为×4π×22=12π,所以这个几何体的表面积是12π+4π=16π.5.如图,某几何体的三视图都是等腰直角三角形,则几何体的体积是()A.8B.7C.9D.6【答案】C【解析】由三视图可知,几何体是底面为等腰直角三角形,有一侧棱与底面垂直(垂足在非直角处)的三棱锥,其底面面积为×6×3=9,三棱锥的高为3,所以三棱锥的体积=×9×3=9.6.已知某几何体的三视图(如图),正视图和侧视图均为两个相等的等边三角形,府视图为正方形,则几何体的体积为()A.B.4C.9D.9【答案】C【解析】由三视图可知,几何体由两个同底之正四棱锥组成所以其体积为V=2××32×3×=9 7.一空间几何体的三视图如图所示,该几何体的体积为12π+,则正视图中x的值为( )A.5B.4C.3D.2【答案】C【解析】三视图,由正四棱锥和圆柱组成,故选C.8.如图,一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积为()A.1B.2C.3D.4【答案】B【解析】由题意,棱锥的高为,底面面积为,∴.【考点】三视图,体积.9.某几何体的三视图如题(6)所示,其侧视图是一个边长为1的等边三角形,俯视图是两个正三角形拼成的菱形,则这个几何体的体积为()A.1B.C.D.【答案】C【解析】这是由两个三棱锥拼成的几何体,其体积为.选C.【考点】三视图及几何体的体积.10.―个几何体的三视图如图所示(单位:),则该几何体的体积为.【答案】18+9【解析】由三视图可知,此几何体为两个相切的球上方放了一个长方体组成的组合体,所以其体积为:V=3×6×1+2××=18+911.一个空间几何体的三视图如图所示,该几何体的表面积为__________.【答案】152【解析】几何体为一个三棱柱,底面为一个等腰三角形,底边长为6,底边上高为4,腰长为5.棱柱的高为8.因此表面积为【考点】三视图12.某三棱锥的三视图如图所示,则这个三棱锥的体积为;表面积为.【答案】;.【解析】由三视图知几何体如下图,为一个三棱锥,且三棱锥的一个侧面与底面垂直,底面三角形的一条边长为,该边上的高为,∴几何体的体积.它的表面积为.【考点】由三视图求面积、体积.13.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是_______.【答案】【解析】由题意可得该几何体是一个三棱锥,体积.【考点】1.三视图的知识.2.立几中的线面关系.3.三棱锥的体积公式.14.一个空间几何体的三视图如图所示,其正视图、侧视图、俯视图均为等腰直角三角形,且直角边长都为1,则这个几何体的体积是【答案】【解析】由三视图,可知该几何体是三棱锥,并且侧棱,,,则该三棱锥的高是,底面三角形是直角三角形,所以这个几何体的体积==.【考点】由三视图求几何体的体积.15.一个几何体的三视图如图所示,则该机合体的体积为( )A.B.C.D.【答案】B【解析】分析可得该几何体是底面为菱形的四棱锥,则高底面面积,所以.故选B【考点】三视图四棱锥体积16.一个几何体的三视图如图所示,则该几何体的体积是【答案】【解析】通过三视图的观察可得,该几何体是一个四棱柱,底面是一个直角梯形,其上下底分别为2,3,梯形的高为2.四棱柱的高为2.所以几何体的体积为.【考点】1.三视图的知识.2.几何体的体积.3.空间想象力.17.某长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为()A.4B.4C.6D.8【答案】D【解析】割补可得其体积为2×2×2=8.18.某几何体的三视图如图所示,则该几何体的体积是________.【答案】16π-16【解析】由三视图知,该几何体是由一个底面半径为2,高为4的圆柱内挖去一个底面边长为2,高为4的正四棱柱后剩下的部分,∴V=(π×22-22)×4=16π-16.19.已知正方体ABCD-A1B1C1D1,M为棱A1B1的中点,N为棱A1D1的中点.如图是该正方体被M,N,A所确定的平面和N,D,C1所确定的平面截去两个角后所得的几何体,则这个几何体的正视图为().【答案】B【解析】对于选项A,由于只是截去了两个角,此切割不可能使得正视图成为梯形.故A不对;对于B,正视图是正方形符合题意,线段AM的影子是一个实线段,相对面上的线段DC1的投影是正方形的对角线,由于从正面看不到,故应作成虚线,故选项B正确;对于C,正视图是正方形,符合题意,有两条实线存在于正面不符合实物图的结构,故不对;对于D,正视图是正方形,符合题意,其中的两条实线符合俯视图的特征,故D不对.20.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如图所示,则该棱柱的体积为()A.B.C.D.6【答案】B【解析】由三视图知该直三棱柱高为4,底面正三角形的高为3,所以正三角形边长为6,所以V=×36×4=36.故选B.【考点】1.三视图;2.柱体体积计算.21.某由圆柱切割获得的几何体的三视图如图所示,其中俯视图是中心角为的扇形,则该几何体的体积为()A.B.C.D.【答案】D【解析】由题意知道,该几何体体积是圆柱体积的,即.【考点】1、三视图;2、几何体体积.22.右图是一个几何体的三视图,其中正视图和侧视图都是一个两底长分别为2和4,腰长为4的等腰梯形,则该几何体的侧面积是( )A.B.C.D.【答案】B【解析】由三视图可得该几何体是一个圆台,其两底直径分别为2和4,母线长为4,所以该几何体的侧面积是,选B..【考点】三视图,圆台的侧面积.23.如图是一个组合几何体的三视图,则该几何体的体积是 .A.B.C.D.【答案】A【解析】由三视图还原可知该几何体是一个组合体,下面是一个半径为4,高为8的圆柱,,上面是一个三棱柱,故所求体积为.【考点】三视图,圆柱、三棱柱的体积公式.24.已知一个几何体的三视图如图所示,则该几何体的体积为___________【答案】【解析】该几何体为圆柱中挖去半个球而得的组合体,其体积为.【考点】三视图.25.一个几何体的三视图如图所示(单位长度:),俯视图中圆与四边形相切,且该几何体的体积为,则该几何体的高为 .【答案】【解析】由如图所示的几何体的三视图知:这个几何体是一个半径为的球和一个直四棱柱的结合体,且这个直四棱柱的底面是对角线分别为和的棱形,这个直四棱柱的高为,∴这个几何体的体积:V=,解得h=.【考点】1.三视图;2.几何体的面积和体积26.一个几何体的三视图如图所示,则该几何体的直观图可以是()【答案】D【解析】通过三视图的俯视图可知,该几何体是由两个旋转体组成,故选D.【考点】1.三视图的应用.27.如图为一个几何体的三视图正视图和侧视图均为矩形,俯视图中曲线部分为半圆,尺寸如图所示,则该几何体的表面积为()A.B.C.D.【答案】D【解析】由三视图可知,这是一个由半个圆柱和一个三棱柱构成的组合体,这个组合体仍为一个柱体。
空间几何体的结构特征及三视图与直观图(普通高中)
课时跟踪检测(三十七)空间几何体的结构特征及三视图与直观图(一)普通高中适用作业A级——基础小题练熟练快1.如图,△A′B′O′是利用斜二测画法画出的△ABO的直观图,已知A′B′∥y′轴,O′B′=4,且△ABO的面积为16,过A′作A′C′⊥x′轴,则A′C′的长为()A.22 B. 2C.16 2 D.1解析:选A因为A′B′∥y′轴,所以△ABO中,AB⊥OB.又因为△ABO的面积为16,所以12AB·OB=16.因为OB=O′B′=4,所以AB=8,所以A′B′=4.因为A′C′⊥O′B′于C′,所以B′C′=A′C′,所以A′C′=4·sin 45°=22,故选A.2.一几何体的直观图如图,下列给出的四个俯视图中正确的是()解析:选B由直观图可知,该几何体由一个长方体和一个截角三棱柱组成.从上往下看,外层轮廓线是一个矩形,矩形内部是一条水平线段连接两个三角形,故选B.3.若某几何体的三视图如图所示,则这个几何体的直观图可以是()解析:选D由三视图知该几何体的上半部分是一个三棱柱,下半部分是一个四棱柱.故选D.4.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图为( )解析:选D 由正视图与俯视图知,几何体是一个三棱锥与半个圆锥的组合体,故侧视图为D.5.如图,在正四棱柱ABCD -A1B 1C 1D 1中,点P 是平面A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与侧视图的面积之比为( )A .1∶1B .2∶1C .2∶3D .3∶2解析:选A 根据题意,三棱锥P -BCD 的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高.故三棱锥P -BCD 的正视图与侧视图的面积之比为1∶1.6.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是( )A .2B.92C.32 D .3解析:选D 根据三视图判断几何体为四棱锥,其直观图如图所示,则体积V =13×1+22×2×x =3,解得x =3,故选D. 7.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体;④棱台的相对侧棱延长后必交于一点.其中真命题的序号是________.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由棱台的定义知是正确的.答案:①④8.一个圆台上、下底面的半径分别为3 cm和8 cm,若两底面圆心的连线长为12 cm,则这个圆台的母线长为________cm.解析:如图,过点A作AC⊥OB,交OB于点C.在Rt△ABC中,AC=12(cm),BC=8-3=5 (cm).∴AB=122+52=13(cm).答案:139.已知正四棱锥V-ABCD中,底面面积为16,一条侧棱的长为211,则该棱锥的高为________.解析:如图,取正方形ABCD的中心O,连接VO,AO,则VO就是正四棱锥V-ABCD的高.因为底面面积为16,所以AO=2 2.因为一条侧棱长为211.所以VO=VA2-AO 2=44-8=6.所以正四棱锥V-ABCD的高为6.答案:610.已知某几何体的三视图如图所示,正视图和侧视图都是矩形,俯视图是正方形,在该几何体上任意选择4个顶点,以这4个点为顶点的几何体的形状给出下列命题:①矩形;②有三个面为直角三角形,有一个面为等腰三角形的四面体;③两个面都是等腰直角三角形的四面体.其中正确命题的序号是________.解析:由三视图可知,该几何体是正四棱柱,作出其直观图为如图所示的四棱柱ABCD-A1B1C1D1,当选择的4个点是B1,B,C,C1时,可知①正确;当选择的4个点是B,A,B1,C时,可知②正确;易知③不正确.答案:①②B级——中档题目练通抓牢1.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是( )A .8B .7C .6D .5解析:选C 画出直观图可知,共需要6块.2.将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧视图为( )解析:选B 如图所示,由正视图和侧视图可知该几何体是由长方体ABCD -A 1B 1C 1D 1截去三棱锥B 1-A 1BC 1得到的,故其侧视图为选项B.3.已知四棱锥P -ABCD 的三视图如图所示,则四棱锥P -ABCD 的四个侧面中面积最大的是( )A .3B .2 5C .6D .8解析:选C 四棱锥如图所示,取AD 的中点N ,BC 的中点M ,连接PM ,PN ,则PN =5,PM =3,S △PAD =12×4×5=25,S △PAB =S △PDC =12×2×3=3, S △PBC =12×4×3=6. 所以四个侧面中面积最大的是6.4.已知一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为________.解析:由题意可知,该几何体是三棱锥,将其放置在长方体中形状如图所示(图中棱锥P -ABC ),利用长方体模型可知,此三棱锥的四个面全部是直角三角形.答案:45.如图,一立在水平地面上的圆锥形物体的母线长为4 m ,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥表面爬行一周后回到点P 处.若该小虫爬行的最短路程为4 3 m ,则圆锥底面圆的半径等于________ m.解析:把圆锥侧面沿过点P 的母线展开成如图所示的扇形,由题意OP =4,PP ′=43,则cos ∠POP ′=42+42-(43)22×4×4=-12,所以∠POP ′=2π3. 设底面圆的半径为r ,则2πr =2π3×4,所以r =43. 答案:436.已知正三棱锥V -ABC 的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图;(2)求出侧视图的面积.解:(1)直观图如图所示.(2)根据三视图间的关系可得BC =23,∴侧视图中VA =42-⎝⎛⎭⎫23×32×232=23, ∴S △VBC =12×23×23=6. 7.如图,在四棱锥P -ABCD 中,底面为正方形,PC 与底面ABCD 垂直,下图为该四棱锥的正视图和侧视图,它们是腰长为6 cm 的全等的等腰直角三角形.(1)根据图中所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;(2)求PA .解:(1)该四棱锥的俯视图为(内含对角线)边长为6 cm 的正方形,如图,其面积为36 cm 2.(2)由侧视图可求得PD =PC 2+CD 2=62+62=6 2. 由正视图可知AD =6,且AD ⊥PD ,所以在Rt △APD 中,PA =PD 2+AD 2= (62)2+62=6 3 cm.C 级——重难题目自主选做1.(2018·泉州模拟)某几何体的三视图如图所示,则该几何体的侧视图中的虚线部分是( )A .圆弧B .抛物线的一部分C .椭圆的一部分D .双曲线的一部分解析:选D 根据几何体的三视图可得,侧视图中的虚线部分是由平行于旋转轴的平面截圆锥所得,故侧视图中的虚线部分是双曲线的一部分,故选D.2.一只蚂蚁从正方体ABCD-AB1C1D1的顶点A出发,经正方体的表面,按最短路线爬行到顶点C1的位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图的是()A.①②B.①③C.③④D.②④解析:选D由点A经正方体的表面,按最短路线爬行到达顶点C1的位置,共有6种路线(对应6种不同的展开方式).若把平面ABB1A1和平面BCC1B1展到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过BB1的中点,此时对应的正视图为②;若把平面ABCD和平面CDD1C1展到同一个平面内,连接AC1,则AC1是最短路线,且AC1会经过CD的中点,此时对应的正视图为④.而其他几种展开方式对应的正视图在题中没有出现.故选D.。
高考一轮练习(7.1空间几何体的结构特征及三视图和直观图)
课时提升作业(四十二)一、选择题1.以下四个命题:①正棱锥的所有侧棱相等;②直棱柱的侧面都是全等的矩形;③圆柱的母线垂直于底面;④用经过旋转轴的平面截圆锥,所得的截面一定是全等的等腰三角形.其中,真命题的个数为( )(A)4 (B)3 (C)2 (D)12.下列几何体各自的三视图中,有且仅有两个视图相同的是( )(A)①②(B)①③(C)①④(D)②④3.(2013·沈阳模拟)一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )4.如图,△ABC为正三角形,AA′∥BB′∥CC′,CC′⊥平面ABC且3AA′=错误!未找到引用源。
BB′=CC′=AB,则多面体ABC-A′B′C′的主视图是( )5.(2013·宁波模拟)一个水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC=45°,AB=AD=1,DC⊥BC,则这个平面图形的面积为( )(A)错误!未找到引用源。
+错误!未找到引用源。
(B)2+错误!未找到引用源。
(C)错误!未找到引用源。
+错误!未找到引用源。
(D)错误!未找到引用源。
+错误!未找到引用源。
6.一个正方体截去两个角后所得几何体的主视图、左视图如图所示,则其俯视图为( )7.(2013·西安模拟)一只蚂蚁从正方体ABCD-A1B1C1D1的顶点A处出发,经正方体的表面,按最短路线爬行到达顶点C1位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的主视图是( )(A)①②(B)①③(C)②④(D)③④二、填空题8.等腰梯形ABCD,上底CD=1,腰AD=CB=错误!未找到引用源。
,下底AB=3,以下底所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为.9.(2013·临沂模拟)已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是错误!未找到引用源。
(浙江专用)2020版高考数学 空间几何体的结构特征及三视图与直观图(含解析)
课时跟踪检测(三十六)空间几何体的结构特征及三视图与直观图一抓基础,多练小题做到眼疾手快1.某几何体的正视图和侧视图完全相同,均如图所示,则该几何体的俯视图一定不可能是( )解析:选D 几何体的正视图和侧视图完全一样,则几何体从正面看和侧面看的长度相等,只有等边三角形不可能.2.下列说法正确的是( )A.棱柱的两个底面是全等的正多边形B.平行于棱柱侧棱的截面是矩形C.{直棱柱}⊆{正棱柱}D.{正四面体}⊆{正三棱锥}解析:选D 因为选项A中两个底面全等,但不一定是正多边形;选项B中一般的棱柱不能保证侧棱与底面垂直,即截面是平行四边形,但不一定是矩形;选项C中{正棱柱}⊆{直棱柱},故A、B、C都错;选项D中,正四面体是各条棱均相等的正三棱锥,故正确.3.(2019·杭州四校联考)如图所示的为一个几何体的三视图,则该几何体的直观图是( )解析:选A 对于A,该几何体的三视图恰好与已知图形相符,故A符合题意;对于B,该几何体的正视图中,对角线是虚线,故B不符合题意;对于C,该几何体的正视图中,对角线是从左上到右下的,故C不符合题意;对于D,该几何体的侧视图中,对角线是虚线,故D不符合题意.故选A.4.(2019·台州质检)如图,网络纸上正方形小格的边长为1,粗线画出的是某几何体的三视图,则该几何体中最长棱的长度为( )A.6 2 B.6 3C.8 D.9解析:选 D 由三视图还原几何体如图,该几何体为三棱锥,侧棱PA⊥底面ABC,底面三角形ABC为等腰三角形,且PB=62+322=36,PC=62+352=9,则该几何体中最长棱的长度为9.故选D.5.在如图所示的直观图中,四边形O′A′B′C′为菱形且边长为2 cm,则在直角坐标系xOy中,四边形ABCO的形状为________,面积为________cm2.解析:由斜二测画法的特点知该平面图形是一个长为4 cm,宽为2 cm的矩形,所以四边形ABCO的面积为8 cm2.答案:矩形8二保高考,全练题型做到高考达标1.(2018·台州模拟)一个简单几何体的正视图、俯视图如图所示,则其侧视图不可能为( )A.正方形B.圆C.等腰三角形D.直角梯形解析:选D 该几何体是一个长方体时,其中一个侧面为正方形,A可能;该几何体是一个横放的圆柱时,B可能;该几何体是横放的三棱柱时,C可能,只有D不可能.2.如图所示是水平放置三角形的直观图,点D是△ABC的BC边中点,AB,BC分别与y′轴、x′轴平行,则三条线段AB,AD,AC中( )A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AC,最短的是AD解析:选B 由条件知,原平面图形中AB⊥BC,从而AB<AD<AC.3.(2018·沈阳教学质量监测)如图,网格纸的各小格都是正方形,粗实线画出的是一个凸多面体的三视图(两个矩形,一个直角三角形),则这个几何体可能为( )A.三棱台B.三棱柱C.四棱柱D.四棱锥解析:选B 根据三视图的法则:长对正,高平齐,宽相等,可得几何体如图所示,这是一个三棱柱.4.(2018·温州第八高中质检)如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥平面A1B1C1,正视图是边长为2的正方形,该三棱柱的侧视图面积为( )A.4 B.2 3C.2 2 D. 3解析:选B 由题可得,该几何体的侧视图是一个长方形,其底边长是底面正三角形的高3,高为2,所以侧视图的面积为S=2 3.5.已知四棱锥PABCD的三视图如图所示,则四棱锥PABCD的四个侧面中面积最大的是( )A .3B .2 5C .6D .8解析:选C 四棱锥如图所示,取AD 的中点N ,BC 的中点M ,连接PM ,PN ,则PM =3,PN =5,S △PAD =12×4×5=25,S △PAB =S △PDC =12×2×3=3, S △PBC =12×4×3=6.所以四个侧面中面积最大的是6.6.(2018·台州模拟)如图所示,在正方体ABCD A 1B 1C 1D 1中,点E 为棱BB 1的中点,若用过点A ,E ,C 1的平面截去该正方体的上半部分,则剩余几何体的侧视图为( )解析:选C 取DD 1的中点F ,连接AF ,FC 1,则过点A ,E ,C 1的平面即为面AEC 1F ,所以剩余几何体的侧视图为选项C.7.(2019·义乌六校联考)图①是棱长为1的正方体ABCD A 1B 1C 1D 1截去三棱锥A 1AB 1D 1后得到的几何体,将其绕着棱DD 1所在的直线逆时针旋转45°,得到如图②所示的几何体,该几何体的正视图为( )解析:选B 由题意可知,该几何体的正视图是长方形,底面对角线DB 在正视图中的长为2,棱CC 1在正视图中为虚线,D 1A ,B 1A 在正视图中为实线,故该几何体的正视图为B.8.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体; ②底面是矩形的平行六面体是长方体; ③直四棱柱是直平行六面体; ④棱台的相对侧棱延长后必交于一点. 其中真命题的序号是________.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由棱台的定义知是正确的.答案:①④9.一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为________cm.解析:如图,过点A 作AC ⊥OB ,交OB 于点C . 在Rt △ABC 中,AC =12 cm ,BC =8-3=5 (cm). ∴AB =122+52=13(cm). 答案:1310.已知正三角形ABC 的边长为2,那么△ABC 的直观图△A ′B ′C ′的面积为________. 解析:如图,图①、图②所示的分别是实际图形和直观图. 从图②可知,A ′B ′=AB =2,O ′C ′=12OC =32,C ′D ′=O ′C ′sin 45°=32×22=64. 所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×2×64=64.答案:64三上台阶,自主选做志在冲刺名校1.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是( )A .8B .7C .6D .5解析:选C 画出直观图,共六块.2.(2018·湖南东部六校联考)某三棱锥的三视图如图所示,该三棱锥的四个面的面积中,最大的面积是( )A .4 3B .8 3C .47D .8解析:选C 设该三棱锥为P ABC ,其中PA ⊥平面ABC ,PA =4,则由三视图可知△ABC 是边长为4的等边三角形,故PB =PC =42,所以S △ABC =12×4×23=43,S △PAB =S △PAC =12×4×4=8,S △PBC =12×4×422-22=47,故四个面中面积最大的为S △PBC =47,选C.3.如图,在四棱锥PABCD中,底面为正方形,PC与底面ABCD垂直,下图为该四棱锥的正视图和侧视图,它们是腰长为6 cm 的全等的等腰直角三角形.(1)根据图中所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;(2)求PA.解:(1)该四棱锥的俯视图为(内含对角线)边长为6 cm的正方形,如图,其面积为36 cm2.(2)由侧视图可求得PD=PC2+CD2=62+62=6 2.由正视图可知AD=6,且AD⊥PD,所以在Rt△APD中,PA=PD2+AD2=622+62=6 3 cm.。
高考文数复习---空间几何体的结构特征、三视图和直观图课前考点整理
C.4,2
D.2,4
D [由三视图可知,正三棱柱的高为 2,底面正三角形的高为 2 3,故底面边长为 4,故选 D.]
18
4.如图所示,在三棱台 A′B′C′-ABC 中,沿 A′BC 截去三 棱锥 A′-ABC,则剩余的部分是( )
A.三棱锥 C.三棱柱
19
B.四棱锥 D.组合体
B [如图所示,在三棱台 A′B′C′-ABC 中,沿 A′BC 截去 三棱锥 A′-ABC,剩余部分是四棱锥 A′-BCC′B′.
.
;平行于 y
8
[常用结论] 1.特殊的四棱柱
9
2.球的截面的性质 (1)球的任何截面是圆面; (2)球心和截面(不过球心)圆心的连线垂直于截面; (3)球心到截面的距离 d 与球的半径 R 及截面的半径 r 的关系为 r= R2-d2.
10
3.按照斜二测画法得到的平面图形的直观图,其面积与原图形 面积的关系如下:
圆 半圆
6
4.三视图 (1)几何体的三视图包括 正视图
、 侧视图
、 俯视图
,分别是从
几何体的正前方、正左方和正上方观察几何体画出的轮廓线.
虚线
(2)在画三视图时,重叠的线只画一条,挡住的线要画成
.
(3)三视图的长度特征:
“长对正、高平齐、宽相等”,即正俯同长、正侧同高、俯侧
同宽.
7
5.空间几何体的直观图 空间几何体的直观图常用 斜二测
]
20
本课结束
高考文数复习---空间几何体的结构特征、三 视图和直观图课前考点整理
1.多面体的结构特征
名称Βιβλιοθήκη 棱柱图形 底面 互相 平行 且全__等__
2
棱锥 多边形
高考数学,空间几何体的结构特征、三视图和直观图题型归纳
第八章 立体几何第一节 空间几何体的结构特征、三视图和直观图❖ 基础知识1.简单的几何体 (1)多面体的结构特征名称棱柱棱锥棱台图形底面 互相平行且相等 多边形互相平行且相似 侧棱 互相平行且相等 相交于一点,但不一定相等延长线交于一点侧面形状 平行四边形三角形梯形①特殊的四棱柱 四棱柱――――→底面为平行四边形平行六面体――――→侧棱垂直于底面直平行六面体――→底面为矩形长方体――――→底面边长相等正四棱柱――――→侧棱与底面边长相等正方体 上述四棱柱有以下集合关系:{正方体}{正四棱柱}{长方体}{直平行六面体}{平行六面体}{四棱柱}.②多面体的关系:棱柱――→一个底面退化为一个点棱锥――→平行于底面的平面截得棱台(2)旋转体的结构特征 名称圆柱圆锥圆台球▲球的截面的性质(1)球的任何截面是圆面;(2)球心和截面(不过球心)圆心的连线垂直于截面;(3)球心到截面的距离d与球的半径R及截面的半径r的关系为r=R2-d2.2.直观图(1)画法:常用斜二测画法.(2)规则:①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.3.三视图几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方和正上方观察几何体画出的轮廓线.❖常用结论1.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)底面与水平面平行放置的圆锥的正视图和侧视图为全等的等腰三角形.(3)底面与水平面平行放置的圆台的正视图和侧视图为全等的等腰梯形.(4)底面与水平面平行放置的圆柱的正视图和侧视图为全等的矩形.2.斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行的线段的长度变为原来的一半,图形改变.“三不变”⎩⎪⎨⎪⎧平行性不改变,与x 轴和z 轴平行的线段的长度不改变,相对位置不改变.考点一 空间几何体的结构特征[典例] 下列结论正确的是( )A .侧面都是等腰三角形的三棱锥是正三棱锥B .六条棱长均相等的四面体是正四面体C .有两个侧面是矩形的棱柱是直棱柱D .用一个平面去截圆锥,底面与截面之间的部分叫圆台[解析] 底面是等边三角形,且各侧面三角形全等,这样的三棱锥才是正三棱锥,所以A 错;斜四棱柱也有可能两个侧面是矩形,所以C 错;截面平行于底面时,底面与截面之间的部分才叫圆台,所以D 错. [答案] B [题组训练]1.下列结论中错误的是( )A .由五个面围成的多面体只能是三棱柱B .正棱台的对角面一定是等腰梯形C .圆柱侧面上的直线段都是圆柱的母线D .各个面都是正方形的四棱柱一定是正方体解析:选A 由五个面围成的多面体也可以是四棱锥,所以A 选项错误.B 、C 、D 说法均正确.2.下列命题正确的是( )A .两个面平行,其余各面都是梯形的多面体是棱台B .两个面平行且相似,其余各面都是梯形的多面体是棱台C .直角梯形以一条直角腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆台D .用平面截圆柱得到的截面只能是圆和矩形解析:选C 如图所示,可排除A 、B 选项.只要有截面与圆柱的母线平行或垂直,截得的截面才为矩形或圆,否则为椭圆或椭圆的一部分.考点二 空间几何体的直观图[典例] 已知等腰梯形ABCD ,CD =1,AD =CB =2,AB =3,以AB 所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.[解析] 法一:如图,取AB 的中点O 为坐标原点,建立平面直角坐标系,y 轴交DC 于点E ,O ,E 在斜二测画法中的对应点为O ′,E ′,过E ′作E ′F ′⊥x ′轴,垂足为F ′,因为OE =(2)2-12=1, 所以O ′E ′=12,E ′F ′=24.所以直观图A ′B ′C ′D ′的面积为 S ′=12×(1+3)×24=22.法二:由题中数据得等腰梯形ABCD 的面积S =12×(1+3)×1=2.由S 直观图=24S 原图形的关系,得S 直观图=24×2=22. [答案]22[题组训练]1.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )解析:选A 由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y 轴上的对角线长为2 2.故选A.2.已知正三角形ABC 的边长为2,那么△ABC 的直观图△A ′B ′C ′的面积为________. 解析:如图,图①、图②分别表示△ABC 的实际图形和直观图.从图②可知,A ′B ′=AB =2,O ′C ′=12OC =32,C ′D ′=O ′C ′sin 45°=32×22=64.所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×2×64=64.答案:64考点三 空间几何体的三视图考法(一) 由几何体识别三视图[典例](2019·长沙模拟)如图是一个正方体,A,B,C为三个顶点,D是棱的中点,则三棱锥A-BCD 的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)()[解析]正视图和俯视图中棱AD和BD均看不见,故为虚线,易知选A.[答案] A考法(二)由三视图判断几何体特征[典例](1)(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217B.2 5C.3 D.2(2)(2019·武汉调研)已知某四棱锥的三视图如图所示,则该四棱锥的四个侧面中最小的面积为________.[解析] (1)先画出圆柱的直观图,根据题图的三视图可知点M ,N 的位置如图①所示.圆柱的侧面展开图及M ,N 的位置(N 为OP 的四等分点)如图②所示,连接MN ,则图中MN 即为M 到N 的最短路径.ON =14×16=4,OM =2,∴MN =OM 2+ON 2=22+42=2 5.(2)由三视图知,该几何体是在长、宽、高分别为2,1,1的长方体中,截去一个三棱柱AA 1D 1-BB 1C 1和一个三棱锥C -BC 1D 后剩下的几何体,即如图所示的四棱锥D -ABC 1D 1,其中侧面ADD 1的面积最小,其值为12.[答案] (1)B (2)12考法(三) 由三视图中的部分视图确定剩余视图[典例] (2018·唐山五校联考)如图是一个空间几何体的正视图和俯视图,则它的侧视图为( )[解析]由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A,故选A.[答案] A[题组训练]1.如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体,其中DD1=1,AB=BC=AA1=2,若此几何体的俯视图如图2所示,则可以作为其正视图的是()解析:选C 根据该几何体的直观图和俯视图知,其正视图的长应为底面正方形的对角线长,宽应为正方体的棱长,故排除B 、D ;而在三视图中看不见的棱用虚线表示,故排除A.故选C. 2.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16解析:选B 由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为(2+4)×22×2=12,[课时跟踪检测]1.对于用“斜二测画法”画平面图形的直观图,下列说法正确的是( )A .等腰三角形的直观图仍为等腰三角形B .梯形的直观图可能不是梯形C .正方形的直观图为平行四边形D .正三角形的直观图一定为等腰三角形解析:选C 根据“斜二测画法”的定义可得正方形的直观图为平行四边形.2.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( )A .球B .三棱锥C .正方体D .圆柱解析:选D 球、正方体的三视图的形状都相同,大小都相等,首先排除选项A 和C.对于三棱锥,考虑特殊情况,如三棱锥C-OAB,当三条棱OA,OB,OC两两垂直,且OA=OB=OC时,正视图方向为AO方向,其三视图的形状都相同,大小都相等,故排除选项B.选项D,不论圆柱如何放置,其三视图的形状都不可能完全相同.3.(2019·福州模拟)一水平放置的平面图形,用斜二测画法画出它的直观图如图所示,此直观图恰好是一个边长为2的正方形,则原平面图形的面积为()A.2 3 B.2 2C.4 3 D.8 2解析:选D由斜二测画法可知,原平面图形是一个平行四边形,且平行四边形的一组对边长为2,在斜二测画法画出的直观图中,∠B′O′A′=45°且O′B′=22,那么在原图形中,∠BOA=90°且OB=4 2.因此,原平面图形的面积为2×42=82,故选D.4.给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1C.2 D.3解析:选B①错误,只有这两点的连线平行于轴时才是母线;②正确;③错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.5.若某几何体的三视图如图所示,则这个几何体的直观图可以是()解析:选D由三视图知该几何体的上半部分是一个三棱柱,下半部分是一个四棱柱.故选D.6.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是()A.8 B.7C.6 D.5解析:选C画出直观图可知,共需要6块.7.(2018·南宁二中、柳州高中联考)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )解析:选C 若俯视图为选项C 中的图形,则该几何体为正方体截去一部分后的四棱锥P -ABCD ,如图所示,该四棱锥的体积V =13×(2×2)×2=83,符合题意.若俯视图为其他选项中的图形,则根据三视图易判断对应的几何体不存在,故选C.8.如图,在底面边长为1,高为2的正四棱柱ABCD -A 1B 1C 1D 1(底面ABCD 是正方形,侧棱AA 1⊥底面ABCD )中,点P 是正方形A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与俯视图的面积之和的最小值为( )A.32 B .1 C .2D.54解析:选A 由题图易知,三棱锥P -BCD 的正视图面积为12×1×2=1.当顶点P 的投影在△BCD 内部或其边上时,俯视图的面积最小,为S △BCD =12×1×1=12.所以三棱锥P -BCD 的正视图与俯视图的面积之和的最小值为1+12=32.故选A.9.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体; ②底面是矩形的平行六面体是长方体; ③直四棱柱是直平行六面体; ④棱台的相对侧棱延长后必交于一点. 其中真命题的序号是________.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由棱台的定义知是正确的.答案:①④10.一个圆台上、下底面的半径分别为3 cm和8 cm,若两底面圆心的连线长为12 cm,则这个圆台的母线长为________cm.解析:如图,过点A作AC⊥OB,交OB于点C.在Rt△ABC中,AC=12(cm),BC=8-3=5 (cm).∴AB=122+52=13(cm).答案:1311.已知某几何体的三视图如图所示,正视图和侧视图都是矩形,俯视图是正方形,在该几何体上任意选择4个顶点,以这4个点为顶点的几何体的形状给出下列命题:①矩形;②有三个面为直角三角形,有一个面为等腰三角形的四面体;③两个面都是等腰直角三角形的四面体.其中正确命题的序号是________.解析:由三视图可知,该几何体是正四棱柱,作出其直观图为如图所示的四棱柱ABCD-A1B1C1D1,当选择的4个点是B1,B,C,C1时,可知①正确;当选择的4个点是B,A,B1,C时,可知②正确;易知③不正确.答案:①②12.如图,三棱锥A-BCD中,AB⊥平面BCD,BC⊥CD,若AB=BC=CD=2,则该三棱锥的侧视图(投影线平行于BD)的面积为________.解析:因为AB⊥平面BCD,投影线平行于BD,所以三棱锥A -BCD 的侧视图是一个以△BCD 的BD 边上的高为底,棱锥的高为高的三角形, 因为BC ⊥CD ,AB =BC =CD =2, 所以△BCD 中BD 边上的高为2,故该三棱锥的侧视图的面积S =12×2×2= 2.答案: 2。
专题01 空间几何体的结构特征及三视图与直观图(解析版)
2020年高考数学立体几何突破性讲练01 空间几何体的结构特征及三视图与直观图一、考点传真:1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图;3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.二、知识点梳理:1.空间几何体的结构特征(1)多面体的结构特征(2)互相平行且相2.直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴、y ′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半. 3.三视图(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线. (2)三视图的画法①基本要求:长对正,高平齐,宽相等.②在画三视图时,重叠的线只画一条,挡住的线要画成虚线. 三、例题:例1.(2019天津)若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为 . 【答案】【解析】 由题可知,四棱锥底面正方形的对角线长为2,且垂直相交平分,由勾股定理得,正四棱锥的高为2.因为圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,则圆柱的上底面直径为底面正方形所以该圆柱的体积为2112V Sh ⎛⎫==π⨯= ⎪⎝⎭例2.(2019北京)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示。
如果网格纸上小正方形的边长为1,那么该几何体的体积为________.【答案】40【解析】由三视图还原原几何体如图所示,该几何体是把棱长为4的正方体去掉一个四棱柱,则该几何体的体积()1-444-2+424=402V V V ==⨯⨯⨯⨯⨯正方体四棱柱.例3.(2018北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A .1B .2C .3D .4【答案】C【解析】解法一 将三视图还原为直观图,几何体是底面为直角梯形,且一条侧棱和底面垂直的四棱锥,如图所示,易知,BC AD ∥,1BC =,2AD AB PA ===,AB AD ⊥,PA ⊥平面ABCD ,故PAD ∆,PAB ∆为直角三角形,∵PA ⊥平面ABCD ,BC ⊂平面ABCD ,俯视图侧(左)视图正(主)视图DCBA PPA BC ⊥,又BC AB ⊥,且PA AB A =,∴BC ⊥平面PAB ,又PB ⊂平面PAB .BC PB ⊥,∴PBC ∆为直角三角形,容易求得3PC =,CD =,PD =,故PCD ∆不是直角三角形,故选C .解法二 在正方体中作出该几何体的直观图,记为四棱锥P ABCD -,如图,由图可知在此四棱锥的侧面中,直角三角形的个数为3,故选C .例4.(2018全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【答案】A【解析】由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A .例5.(2017新课标Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为PDCBAA .10B .12C .14D .16 【答案】B【解析】由题意可知,该几何体是由一个三棱锥和一个三棱柱构成,则表面所有梯形之和为12(24)2122⨯+⨯=.选B .例6.(2017北京)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为A .B .C .D .2 【答案】B【解析】借助正方体可知粗线部分为该几何体是四棱锥,=B . 四、巩固练习:1.某空间几何体的正视图是三角形,则该几何体不可能是( ) A.圆柱 B.圆锥 C.四面体D.三棱柱【答案】 A【解析】 由三视图知识知圆锥、四面体、三棱柱(放倒看)都能使其正视图为三角形,而圆柱的正视图不可能为三角形.2.如图,长方体ABCD -A ′B ′C ′D ′被截去一部分,其中EH ∥A ′D ′.剩下的几何体是( )A.棱台B.四棱柱C.五棱柱D.六棱柱【答案】 C【解析】 由几何体的结构特征,剩下的几何体为五棱柱.3.用斜二测画法画水平放置的矩形的直观图,则直观图的面积与原矩形的面积之比为( ) A.12B.22C.23D.24【答案】 D【解析】 设原矩形的长为a ,宽为b ,则其直观图是长为a ,高为b 2sin 45°=24b 的平行四边形,所以S 直观S 矩形=24abab =24.故选D.4.给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥; ③棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确命题的个数是( ) A.0 B.1C.2D.3【答案】A【解析】①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;③错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.5.下列命题正确的是()A.两个面平行,其余各面都是梯形的多面体是棱台B.两个面平行且相似,其余各面都是梯形的多面体是棱台C.以直角梯形的一条直角腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆台D.用平面截圆柱得到的截面只能是圆和矩形【答案】 C【解析】如图所示,可排除A,B选项.只有截面与圆柱的母线平行或垂直,则截得的截面为矩形或圆,否则为椭圆或椭圆的一部分.6.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱【答案】B【解析】由题知,该几何体的三视图为一个三角形、两个四边形,经分析可知该几何体为三棱柱.7.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的俯视图可能是()【答案】 B【解析】由直观图知,俯视图应为正方形,又上半部分相邻两曲面的交线为可见线,在俯视图中应为实线,因此,选项B可以是几何体的俯视图.8.下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.夹在圆柱的两个平行截面间的几何体还是一个旋转体C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上任意一点的连线都是母线【答案】 D【解析】如图1知,A不正确.如图2,两个平行平面与底面不平行时,截得的几何体不是旋转体,则B不正确.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长,C错误.由母线的概念知,选项D正确.9.某几何体的正视图和侧视图均为如图所示的图形,则在下图的四个图中可以作为该几何体的俯视图的是()A.①③B.①④C.②④D.①②③④【答案】 A【解析】 由正视图和侧视图知,该几何体为球与正四棱柱或球与圆柱体的组合体,故①③正确.10.已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( ) A.34a 2 B.38a 2 C.68a 2 D.616a 2 【答案】 D【解析】 如图①②所示的实际图形和直观图.由斜二测画法可知,A ′B ′=AB =a ,O ′C ′=12OC =34a ,在图②中作C ′D ′⊥A ′B ′于D ′,则C ′D ′=22O ′C ′=68a .所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2.故选D. 11.如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ) A.2+ 2 B.1+22C.2+22D.1+ 2【答案】 A【解析】 恢复后的原图形为一直角梯形, 所以S =12(1+2+1)×2=2+ 2.故选A.12.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是( )A.8B.7C.6D.5【答案】 C【解析】 画出直观图,共六块.13.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③存在每个面都是直角三角形的四面体;④棱台的侧棱延长后交于一点.其中正确命题的序号是________.【答案】②③④【解析】①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;③正确,如图,正方体ABCD-A1B1C1D1中的三棱锥C1-ABC,四个面都是直角三角形;④正确,由棱台的概念可知.14.一水平放置的平面四边形OABC,用斜二测画法画出它的直观图O′A′B′C′如图所示,此直观图恰好是一个边长为1的正方形,则原平面四边形OABC面积为________.【答案】2 2【解析】因为直观图的面积是原图形面积的24倍,且直观图的面积为1,所以原图形的面积为2 2.15.如图,点O为正方体ABCD-A′B′C′D′的中心,点E为面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的各个面上的正投影可能是______(填出所有可能的序号).【答案】①②③【解析】空间四边形D′OEF在正方体的面DCC′D′及其对面ABB′A′上的正投影是①;在面BCC′B′及其对面ADD′A′上的正投影是②;在面ABCD及其对面A′B′C′D′上的正投影③. 16.某四棱柱的三视图如图所示,则该四棱柱的体积为______.【答案】3 2【解析】由题中三视图可画出长为2、宽为1、高为1的长方体,将该几何体还原到长方体中,如图所示,该几何体为四棱柱ABCD-A′B′C′D′.故该四棱柱的体积V=Sh=12×(1+2)×1×1=32.。
高考数学(理)一轮复习专题集训 空间几何体的结构特征及三视图和直观图
空间几何体的结构特征及三视图和直观图(时间:45分钟分值:100分)基础热身1.[2013·海口一模]如图K37-1ABC是()图K37-1A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形2.[2013·沈阳三模]如图K37-2,下列几何体各自的三视图中,有且仅有两个视图相同的是()图K37-2A.①②B.①③C.①④D.②④3.[2013·昆明三模]已知一个几何体的三视图如图K37-3所示,K37-3则此几何体的组成为()A.上面为棱台,下面为棱柱B.上面为圆台,下面为棱柱C.上面为圆台,下面为圆柱D.上面为棱台,下面为圆柱4.[2013·广东卷]正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数为()A.20B.15C.12D.10能力提升5.[2013·成都二模]图K37-4()图K37-4图K37-6.[2013·石家庄二模]如图K37-6,△ABC 为正三角形,AA ′∥BB ′∥CC ′,CC ′⊥平面ABC且3AA ′=32BB ′=CC ′=AB ,则多面体ABC -A ′B ′C ′的正视图是( )K37-6K37-77.[2013·南宁一模]若某几何体的三视图如图K37-8所示,则这个几何体的直观图可以是( )-8图K378.如图K37-10,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4( )-10K37-119.已知某一几何体的正视图与侧视图如图K37-12所示,则在图K37-13所示图形中,可以是该几何体的俯视图的图形有( )K37图K37-13A.①②③⑤B.②③④⑤C.①②④⑤D.①②③④10.[2013·长沙一模]用单位正方体块搭一个几何体,使它的正视图和俯视图如图K37-14所示,则它的体积的最大值为________,最小值为________.图K37-14K37-1511.有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图K37-15所示), ∠ABC=45°,AB=AD=1,DC⊥BC,则这块菜地的面积为________.12.[2013·太原二模]如图K37-16所示的几何体是从一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的,现用一个平面去截这个几何体,若这个平面垂直于圆柱底面所在平面,那么所截得的图形可能是图K37-17中的________________________________________________________________________.(把可能的图的序号都填上)图K37-1613.棱长为a的正四面体ABCD的四个顶点均在一个球面上,则此球的半径R=________.14.(10分)从一个底面半径和高均为R的圆柱中挖去一个以圆柱上底面为底,下底面中心为顶点的圆锥,得到如图K37-18所示的几何体,如果用一个与圆柱下底面距离等于l并15.(13分)圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392cm2,母线与轴的夹角为45°,求这个圆台的高、母线长和底面半径.难点突破16.(12分)在半径为25cm的球内有一个截面,它的面积是49πcm2,求球心到这个截面的距离.【基础热身】1.B[解析] 由斜二测画法知B正确.2.D[解析] 正方体的正视图、侧视图、俯视图都为正方形;圆锥的正视图、侧视图、俯视图依次为:三角形、三角形、圆;三棱台的正视图、侧视图、俯视图依次为梯形、梯形、三角形;正四棱锥的正视图、侧视图、俯视图依次三角形、三角形、正方形,三棱台的正视图和侧视图虽然都是梯形,但它们不相同,故选D.3.C[解析] 结合图形分析知上面为圆台,下面为圆柱.4.D[解析] 一个下底面5个点,每个下底面的点对于5个上底面的点,满足条件的对角线有2条,所以共有5×2=10条.【能力提升】5.C[解析] 根据斜二测画法的规则,将直观图还原,可知选C.6.D[解析] 正视图是从正前方向后投影,由条件知AA ′∥BB ′∥CC ′,CC ′⊥平面ABC ,故其正投影是三条平行的线段,且都与AB 的投影垂直,CC ′应为虚线,其长度比为AA ′∶BB ′∶CC ′=1∶2∶3,其投影保持这个长度此不变,故选D.7.B[解析] 根据选项A ,B ,C ,D 中的直观图,画出其三视图,只有B 符合. 8.B[解析] 三棱锥的正视图应为高为4,底面边长为3的直角三角形.9.D[解析] 因几何体的正视图和侧视图一样,所以易判断出其俯视图可能为①②③④,故选D.10.149[解析] 由俯视图及正视图可得下图,由图示可得体积的最大值为14,体积的最小值为9.11.2+22[解析] 在直观图中,过点A 作AE ⊥BC ,垂足为E, 则在Rt △ABE 中,AB =1,∠ABE =45°,∴BE =22.而四边形AECD 为矩形,AD =1, ∴EC =AD =1,∴BC =BE +EC =22+1.由此可还原原图形如图.在原图形中,A ′D ′=1,A ′B ′=2, B ′C ′=22+1, 且A ′D ′∥B ′C ′,A ′B ′⊥B ′C ′,∴这块菜地的面积为S =12(A ′D ′+B ′C ′)·A ′B ′ =12×⎝⎛⎭⎫1+1+22×2=2+22. 12.①③[解析] .13.64a [解析] 如图所示,设正四面体ABCD 内接于球O ,由D 点向底面ABC 作垂线,垂足为H ,连接AH ,OA ,则可求得AH =33a ,DH =a 2-⎝⎛⎭⎫33a 2=63a . 在Rt △AOH 中,⎝⎛⎭⎫33a 2+⎝⎛⎭⎫63a -R 2=R 2,解得R =64a .14.解:O 1C =R ,设圆锥截面半径O 1D =x, ∵OA =∴△OAB为等腰直角三角形.又CD∥OA,∴BC=CD=R-x,又BC=R-l,故x=l,截面面积为S=πR2-πl2=π(R2-l2).15.解:圆台的轴截面如图.设圆台的上、下底面半径分别为x1交OO1的延长线于点S. 在Rt△SOA中,∠ASO=45°,则∠SAO=45°.所以SO=AO=3x,同理SO1=A1O1=x,所以OO1=2x.又12×(6x+2x)×2x=392,解得x=7,所以圆台的高OO1=14cm,母线长l=2OO1=142cm,底面半径分别为7cm和21cm. 【难点突破】16.解:设球半径为R d,如图.∵S=πr2=49πcm2,∴r=7(cm).∴d=R2-r2=252-72=24(cm).∴球心到这个截面的距离为24cm.。
高中空间几何体的结构特征及三视图与直观图知识点及练习
侧棱:相邻侧面的公共 边 顶点:侧面与底面的公
共顶点
②举例:三棱柱(底面是 三角形)、四棱柱(底面是
四边形)……
底面(底):多边形面
有一个面是多边形,其余 各面都是有一个公共顶点 棱锥 的三角形,由这些面所围 成的多面体叫做棱锥
如图棱锥可记作: 棱锥 S-ABCD
侧面:有公共顶点的各 个三角形面 侧棱:相邻侧面的公共 边 顶点:各侧面的公共顶
3.如图甲,将一个正三棱柱 ABC DEF 截去一个三棱锥 A BCD,得到几何体 BCDEF,如图乙,则该几何体的 正视图是( )
4.如图,在正四棱柱 ABCD A1B1C1D1 中,点 P 是平面 A1B1C1D1 内一点,则三棱锥 P BCD 的正视图与侧视图 的面积之比为( )
A.1∶1
直径:半圆的直径叫做球的直径
4.简单组合体
(1)概念:由简单几何体组合而成的几何体叫做简单组合体.常见的简单组合体大多是由具有柱、锥、台、
球等几何结构特征的物体组成的.
(2)基本形式:一种是由简单几何体拼接而成,另一种是由简单几何体截去或挖去一部分而成.
知识点二 空间几何体的三视图和直观图
1.中心投影与平行投影
C.有两个平面互相平行,其余各面都是梯形的多面体是棱台
D.棱台的各侧棱延长后不一定交于一点
3.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下 4 个命题中,假命题是 ( )
A.等腰四棱锥的腰与底面所成的角都相等
B.等腰四棱锥的侧面与底面所成的二面角都相等或互补
C.等腰四棱锥的底面四边形必存在外接圆
轴:形成旋转体所绕的定直线
体对角线:连接不在同一个面上的两个顶点的线段
空间几何体的结构特征及三视图和直观图(含解析)
归纳与技巧:空间几何体的结构特征及三视图和直观图基础知识归纳一、多面体的结构特征二、旋转体的形成三、简单组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成;一种是由简单几何体截去或挖去一部分而成,有多面体与多面体、多面体与旋转体、旋转体与旋转体的组合体.四、平行投影与直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.五、三视图几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.基础题必做1.(教材习题改编)以下关于几何体的三视图的论述中,正确的是()A.球的三视图总是三个全等的圆B.正方体的三视图总是三个全等的正方形C.水平放置的正四面体的三视图都是正三角形D.水平放置的圆台的俯视图是一个圆解析:选A B中正方体的放置方向不明,不正确.C中三视图不全是正三角形.D中俯视图是两个同心圆.2.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是() A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体解析:选C当用过高线的平面截圆柱和圆锥时,截面分别为矩形和三角形,只有球满足任意截面都是圆面.3.下列三种叙述,其中正确的有()①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A.0个B.1个C.2个D.3个解析:选A①中的平面不一定平行于底面,故①错.②③可用下图反例检验,故②③不正确.4.(教材习题改编)利用斜二测画法得到的:①正方形的直观图一定是菱形;②菱形的直观图一定是菱形;③三角形的直观图一定是三角形.以上结论正确的是________.解析:①中其直观图是一般的平行四边形,②菱形的直观图不一定是菱形,③正确.答案:③5.一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图为________.解析:由三视图中的正、侧视图得到几何体的直观图如图所示,所以该几何体的俯视图为③.答案:③解题方法归纳1.正棱柱与正棱锥(1)底面是正多边形的直棱柱,叫正棱柱,注意正棱柱中“正”字包含两层含义:①侧棱垂直于底面;②底面是正多边形.(2)底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫正棱锥,注意正棱锥中“正”字包含两层含义:①顶点在底面上的射影必需是底面正多边形的中心,②底面是正多边形,特别地,各棱均相等的正三棱锥叫正四面体.2.对三视图的认识及三视图画法(1)空间几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形.(2)在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线.(3)三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体用平行投影画出的轮廓线.3.对斜二测画法的认识及直观图的画法(1)在斜二测画法中,要确定关键点及关键线段,“平行于x轴的线段平行性不变,长度不变;平行于y轴的线段平行性不变,长度减半.”(2)按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系:S直观图=24S原图形,S原图形=22S直观图.空间几何体的结构特征典题导入[例1]下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线[自主解答]A错误,如图1是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B错误,如图2,若△ABC不是直角三角形,或△ABC是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;图1图2C错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾.[答案] D解题方法归纳解决此类题目要准确理解几何体的定义,把握几何体的结构特征,并会通过反例对概念进行辨析.举反例时可利用最熟悉的空间几何体如三棱柱、四棱柱、正方体、三棱锥、三棱台等,也可利用它们的组合体去判断.以题试法1.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题是()A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上解析:选B如图,等腰四棱锥的侧棱均相等,其侧棱在底面的射影也相等,则其腰与底面所成角相等,即A正确;底面四边形必有一个外接圆,即C正确;在高线上可以找到一个点O,使得该点到四棱锥各个顶点的距离相等,这个点即为外接球的球心,即D正确;但四棱锥的侧面与底面所成角不一定相等或互补(若为正四棱锥则成立).故仅命题B为假命题.几何体的三视图典题导入[例2]某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()[自主解答]根据几何体的三视图知识求解.由于该几何体的正视图和侧视图相同,且上部分是一个矩形,矩形中间无实线和虚线,因此俯视图不可能是C.[答案] C解题方法归纳三视图的长度特征三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽,即“长对正,宽相等,高平齐”.[注意]画三视图时,要注意虚、实线的区别.以题试法2.(1) 如图是底面为正方形、一条侧棱垂直于底面的四棱锥的三视图,那么该四棱锥的直观图是下列各图中的()解析:选D由俯视图排除B、C;由正视图、侧视图可排除A.(2)如图,正三棱柱ABC-A1B1C1的各棱长均为2,其正视图如图所示,则此三棱柱侧视图的面积为()A.22B.4C. 3 D.2 3解析:选D依题意,得此三棱柱的左视图是边长分别为2,3的矩形,故其面积是2 3.几何体的直观图典题导入[例3]已知△ABC的直观图A′B′C′是边长为a的正三角形,求原△ABC的面积.[自主解答]建立如图所示的坐标系xOy′,△A′B′C′的顶点C′在y′轴上,A′B′边在x轴上,OC 为△ABC 的高.把y ′轴绕原点逆时针旋转45°得y 轴,则点C ′变为点C ,且OC =2OC ′,A ,B 点即为A ′,B ′点,长度不变. 已知A ′B ′=A ′C ′=a ,在△OA ′C ′中, 由正弦定理得OC ′sin ∠OA ′C ′=A ′C ′sin 45°,所以OC ′=sin 120°sin 45° a =62 a ,所以原三角形ABC 的高OC =6a . 所以S △ABC =12×a ×6a =62a 2.解题方法归纳用斜二测画法画几何体的直观图时,要注意原图形与直观图中的“三变、三不变”. “三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行线段的长度改变,图形改变;“三不变”⎩⎪⎨⎪⎧平行性不变,与x 轴平行的线段长度不变,相对位置不变.以题试法3.如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A .2+2 B.1+22C.2+22D .1+ 2解析:选A 恢复后的原图形为一直角梯形 S =12(1+2+1)×2=2+ 2.1.如图,在下列四个几何体中,其三视图(正视图、侧视图、俯视图)中有且仅有两个相同的是()A.②③④B.①②③C.①③④D.①②④解析:选A①的三个视图都是边长为1的正方形;②的俯视图是圆,正视图、侧视图都是边长为1的正方形;③的俯视图是一个圆及其圆心,正视图、侧视图是相同的等腰三角形;④的俯视图是边长为1的正方形,正视图、侧视图是相同的矩形.2.有下列四个命题:①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.其中真命题的个数是()A.1 B.2C.3 D.4解析:选A命题①不是真命题,因为底面是矩形,但侧棱不垂直于底面的平行六面体不是长方体;命题②不是真命题,因为底面是菱形(非正方形),底面边长与侧棱长相等的直四棱柱不是正方体;命题③也不是真命题,因为有两条侧棱都垂直于底面一边不能推出侧棱与底面垂直;命题④是真命题,由对角线相等,可知平行六面体的对角面是矩形,从而推得侧棱与底面垂直,故平行六面体是直平行六面体.3.一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是()解析:选C C选项不符合三视图中“宽相等”的要求,故选C.4.如图是一几何体的直观图、正视图和俯视图.在正视图右侧,按照画三视图的要求画出的该几何体的侧视图是()解析:选B 由直观图和正视图、俯视图可知,该几何体的侧视图应为面P AD ,且EC 投影在面P AD 上,故B 正确.5.如图△A ′B ′C ′是△ABC 的直观图,那么△ABC 是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .钝角三角形解析:选B 由斜二测画法知B 正确.6. 一个几何体的三视图如图所示,则侧视图的面积为( )A .2+ 3B .1+ 3C .2+2 3D .4+ 3解析:选D 依题意得,该几何体的侧视图的面积等于22+12×2×3=4+ 3.7. 一个几何体的正视图和侧视图都是边长为1的正方形,且体积为12,则这个几何体的俯视图可能是下列图形中的________.(填入所有可能的图形前的编号)①锐角三角形;②直角三角形;③四边形;④扇形;⑤圆.解析:如图1所示,直三棱柱ABE -A 1B 1E 1符合题设要求,此时俯视图△ABE 是锐角三角形;如图2所示,直三棱柱ABC -A 1B 1C 1符合题设要求,此时俯视图△ABC 是直角三角形;如图3所示,当直四棱柱的八个顶点分别是正方体上、下各边的中点时,所得直四棱柱ABCD -A 1B 1C 1D 1符合题设要求,此时俯视图(四边形ABCD )是正方形;若俯视图是扇形或圆,体积中会含有π,故排除④⑤.答案:①②③8. 一个几何体的三视图如图所示,则该几何体的体积为________.解析:结合三视图可知,该几何体为底面边长为2、高为2的正三棱柱除去上面的一个高为1的三棱锥后剩下的部分,其直观图如图所示,故该几何体的体积为12×2×2sin 60°×2-13×12×2×2sin 60°×1=533.答案:5339.正四棱锥的底面边长为2,侧棱长均为3,其正视图(主视图)和侧视图(左视图)是全等的等腰三角形,则正视图的周长为________.解析:由题意知,正视图就是如图所示的截面PEF ,其中E 、F 分别是AD 、BC 的中点,连接AO ,易得AO =2,而P A =3,于是解得PO =1,所以PE =2,故其正视图的周长为2+2 2.答案:2+2 210.已知:图1是截去一个角的长方体,试按图示的方向画出其三视图;图2是某几何体的三视图,试说明该几何体的构成.解:图1几何体的三视图为:图2所示的几何体是上面为正六棱柱,下面为倒立的正六棱锥的组合体.11. 正四棱锥的高为3,侧棱长为7,求棱锥的斜高(棱锥侧面三角形的高). 解:如图所示,正四棱锥S -ABCD 中,高OS =3,侧棱SA =SB =SC =SD =7,在Rt △SOA 中,OA =SA 2-OS 2=2,∴AC =4.∴AB =BC =CD =DA =2 2.作OE ⊥AB 于E ,则E 为AB 中点.连接SE ,则SE 即为斜高,在Rt △SOE 中,∵OE =12BC =2,SO =3, ∴SE =5,即棱锥的斜高为 5.12. 已知正三棱锥V -ABC 的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图;(2)求出侧视图的面积.解:(1)三棱锥的直观图如图所示.(2)根据三视图间的关系可得BC =23,∴侧视图中VA = 42-⎝⎛⎭⎫23×32×232 =12=23,∴S △VBC =12×23×23=6.1. 底面水平放置的正三棱柱的所有棱长均为2,当其正视图有最大面积时,其侧视图的面积为( )A .2 3B .3 C. 3 D .4解析:选A 当正视图的面积达最大时可知其为正三棱柱某个侧面的面积,可以按如图所示位置放置,此时侧视图的面积为2 3.2. 如图所示的几何体中,四边形ABCD 是矩形,平面ABCD ⊥平面ABE ,已知AB =2,AE =BE =3,且当规定正视方向垂直平面ABCD 时,该几何体的侧视图的面积为22.若M ,N 分别是线段DE ,CE 上的动点,则AM +MN +NB 的最小值为________.解析:依题意得,点E 到直线AB 的距离等于(3)2-⎝⎛⎭⎫222=2,因为该几何体的左侧视图的面积为12·BC ×2=22,所以BC =1,DE =EC =DC =2.所以△DEC 是正三角形,∠DEC =60°,tan ∠DEA =AD AE =33,∠DEA =∠CEB =30°.把△DAE ,△DEC 与△CEB 展在同一平面上,此时连接AB ,AE =BE =3,∠AEB =∠DEA +∠DEC +∠CEB =120°,AB 2=AE 2+BE 2-2AE ·BE cos 120°=9,即AB =3,即AM +MN +NB 的最小值为3. 答案:33.一个多面体的直观图、正视图、侧视图如图1和2所示,其中正视图、侧视图均为边长为a 的正方形.(1)请在图2指定的框内画出多面体的俯视图;(2)若多面体底面对角线AC ,BD 交于点O ,E 为线段AA 1的中点,求证:OE ∥平面A 1C 1C ;(3)求该多面体的表面积.解:(1)根据多面体的直观图、正视图、侧视图,得到俯视图如下:(2)证明:如图,连接AC ,BD ,交于O 点,连接OE .∵E 为AA 1的中点,O 为AC 的中点,∴在△AA 1C 中,OE 为△AA 1C 的中位线.∴OE ∥A 1C .∵OE ⊄平面A 1C 1C ,A 1C ⊂平面A 1C 1C ,∴OE ∥平面A 1C 1C .(3)多面体表面共包括10个面,S ABCD =a 2,SA 1B 1C 1D 1=a 22, S △ABA 1=S △B 1BC =S △C 1DC =S △ADD 1=a 22, S △AA 1D 1=S △B 1A 1B =S △C 1B 1C =S △DC 1D 1=12×2a 2×32a 4=3a 28, ∴该多面体的表面积S =a 2+a 22+4×a 22+4×3a 28=5a 2.1. 有一个棱长为1的正方体,按任意方向正投影,其投影面积的最大值是( )A .1B.322C. 2D. 3解析:选D 如图所示是棱长为1的正方体.当投影线与平面A 1BC 1垂直时,∵面ACD 1∥面A 1BC 1, ∴此时正方体的正投影为一个正六边形.设其边长为a ,则3a=2,∴a =63. ∴投影面的面积为6×34×⎝⎛⎭⎫632= 3. 此时投影面积最大,故D 正确.2.如图,△ABC 与△ACD 都是等腰直角三角形,且AD =DC=2,AC =BC .平面ACD ⊥平面ABC ,如果以平面ABC 为水平平面,正视图的观察方向与AB 垂直,则三棱锥D -ABC 的三视图的面积和为________. 解析:由题意得AC =BC =22,AB =4,△ACD 边AC 上的高为2,正视图的面积是12×4×2=22,侧视图的面积 是12×2×2=2,俯视图的面积是12×22×22=4,所以三视图的面积和为4+3 2. 答案:4+3 23. 已知正三棱柱ABC -A ′B ′C ′的正视图和侧视图如图所示,设△ABC ,△A ′B ′C ′的中心分别是O ,O ′,现将此三棱柱绕直线OO ′旋转,射线OA 旋转所成的角为x 弧度(x 可以取到任意一个实数),对应的俯视图的面积为S (x ),则函数S (x )的最大值为________;最小正周期为________.(说明:“三棱柱绕直线OO ′旋转”包括逆时针方向和顺时针方向,逆时针方向旋转时,OA 旋转所成的角为正角,顺时针方向旋转时,OA 旋转所成的角为负角.)解析:由题意可知,当三棱柱的一个侧面在水平面内时,该三棱柱的俯视图的面积最大.此时俯视图为一个矩形,其宽为3×tan 30°×2=2,长为4,故S (x )的最大值为8.当三棱柱绕OO ′旋转时,当A 点旋转到B点,B 点旋转到C 点,C 点旋转到A 点时,所得三角形与原三角形重合,故S (x )的最小正周期为2π3. 答案:82π3。
第7章-第1节-空间几何体的结构特征及其三视图和直观图
(2)由题目所给旳几何体旳正视图和俯视图,可知该几何体 为半圆锥和三棱锥旳组合体,如图所示.
进而可知侧视图为等腰三角形,且轮廓线为实线,故选D. 答案:D
(3)由正视图、侧视图可知,当体积最小时,底层有3个小正 方体,上面有2个,共5个;当体积最大时,底层有9个小正方 体,上面有2个,共11个.故这个几何体旳最大致积与最小体积 旳差是6.
一、空间几何体旳构造特征
名称
构造特征
(1)棱柱旳侧棱都平行且相等
全等
旳多边形,而且相平互 行
,上下底面是 .
多面体
(2)棱锥旳底面是任意多边形,侧面是有一种
公共顶点
旳三角形.
(3)棱台可由平行于底面
旳平面截棱锥得
到,其上下底面是相同 多边形.
名称
构造特征
(1)圆柱能够由矩形
绕其任一边旋转得到.
答案:A
(2)因为EH∥A1D1,A1D1∥B1C1,所以EH∥B1C1,又EH⊄平 面BCC1B1,所以EH∥平面BCC1B1,又EH⊂平面EFGH,平面 EFGH∩平面BCC1B1=FG,所以EH∥FG,故EH∥FG∥B1C1,所 以选项A,C正确;因为A1D1⊥平面ABB1A1,EH∥A1D1,所以 EH⊥平面ABB1A1,又EF⊂平面ABB1A1,故EH⊥EF,所以选项B 也正确.故选D.
【典例剖析】 (1)(2023·湖南高考)某几何体旳正视图和侧视图均
如图所示,则该几何体旳俯视图不可能是
(2)在一个几何体旳三视图中,正视图和俯视图如图所示, 则相应旳侧视图可觉得
(3)(2023·广州模拟)用若干个体积为1旳正方体搭成一种几何
体,其正视图、侧视图都是如图所示旳图形,则这个几何体旳
答案:C
高中数学一轮复习考点专题训练:专题38 空间几何体的结构特征及三视图与直观图(解析版)
高考数学一轮考点扫描专题38 空间几何体的结构特征及三视图与直观图一、【知识精讲】1.空间几何体的结构特征(1)多面体的结构特征(2)互相平行且相2.空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴、y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.3.三视图(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②在画三视图时,重叠的线只画一条,挡住的线要画成虚线.【注意点】1.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)水平放置的圆锥的正视图和侧视图均为全等的等腰三角形.(3)水平放置的圆台的正视图和侧视图均为全等的等腰梯形.(4)水平放置的圆柱的正视图和侧视图均为全等的矩形.2.在绘制三视图时,分界线和可见轮廓线都用实线画出,被遮挡的部分的轮廓线用虚线表示出来,即“眼见为实、不见为虚”.在三视图的判断与识别中要特别注意其中的虚线.二、【典例精练】考点一空间几何体的结构特征【例1】 (1)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是( )A.0B.1C.2D.3(2)给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③存在每个面都是直角三角形的四面体;④棱台的侧棱延长后交于一点.其中正确命题的序号是________.【答案】(1)A (2)②③④【解析】(1)①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;③错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.(2)①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;③正确,如图,正方体ABCD-A1B1C1D1中的三棱锥C1-ABC,四个面都是直角三角形;④正确,由棱台的概念可知.【解法小结】 1.关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一个反例.2.圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.3.既然棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略.考点二空间几何体的三视图角度1 由空间几何体的直观图判断三视图【例2-1】(2018·唐山五校联考)如图是一个空间几何体的正视图和俯视图,则它的侧视图为( )【答案】A【解析】由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A,故选A.角度2 由三视图判断几何体【例2-2】 (1)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱(2)(2018·全国Ⅰ卷)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在侧视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( )A.217B.2 5C.3D.2【答案】(1)B (2)B【解析】(1)由题知,该几何体的三视图为一个三角形、两个四边形,经分析可知该几何体为三棱柱.(2)由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长为16.画出该圆柱的侧面展开图,如图②所示,连接MN,则MS=2,SN=4,则从M到N的路径中,最短路径的长度为MS2+SN2=22+42=2 5.故选B.【解法小结】 1.由直观图确定三视图,一要根据三视图的含义及画法和摆放规则确认.二要熟悉常见几何体的三视图.2.由三视图还原到直观图的思路(1)根据俯视图确定几何体的底面.(2)根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.考点三空间几何体的直观图【例3】已知等腰梯形ABCD,CD=1,AD=CB=2,AB=3,以AB所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为________.【答案】2 2【解析】法一:如图,取AB的中点O为坐标原点,建立平面直角坐标系,y轴交DC于点E,O,E在斜二测画法中的对应点为O ′,E ′,过E ′作E ′F ′⊥x ′轴,垂足为F ′,因为OE =22-12=1,所以O ′E ′=12,E ′F ′=24.所以直观图A ′B ′C ′D ′的面积为S ′=12×(1+3)×24=22. 法二:由题中数据得等腰梯形ABCD 的面积S =12×(1+3)×1=2.由S 直观图=24S 原图形的关系,得S 直观图=24×2=22. 【解法小结】1.画几何体的直观图一般采用斜二测画法,其规则可以用“斜”(两坐标轴成45°或135°)和“二测”(平行于y 轴的线段长度减半,平行于x 轴和z 轴的线段长度不变)来掌握. 2.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系:S 直观图=24S 原图形. 三、【名校新题】1. (2019·临沂模拟)如图甲,将一个正三棱柱ABC -DEF 截去一个三棱锥A -BCD ,得到几何体BCDEF ,如图乙,则该几何体的正视图(主视图)是( )【答案】 C【解析】 由于三棱柱为正三棱柱,故平面ADEB ⊥平面DEF ,△DEF 是等边三角形,所以CD 在后侧面上的投影为AB 的中点与D 的连线,CD 的投影与底面不垂直.故选C.2.(2019·湖南长沙模拟)如图是一个正方体,A ,B ,C 为三个顶点,D 是棱的中点,则三棱锥A -BCD 的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)( )【答案】 A【解析】 正视图和俯视图中棱AD 和BD 均看不见,为虚线,故选A.3. (2019·惠州模拟)如图,在底面边长为1,高为2的正四棱柱ABCD -A 1B 1C 1D 1中,点P 是平面A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与侧视图的面积之和为( )A.1B.2C.3D.4【答案】B【解析】设点P 在平面A 1ADD 1的射影为P ′,在平面C 1CDD 1的射影为P ″,如图所示.∴三棱锥P -BCD 的正视图与侧视图分别为△P ′AD 与△P ″CD , 因此所求面积S =S △P ′AD +S △P ″CD =12×1×2+12×1×2=2.4.(2019·临沂模拟)某几何体的三视图如图所示,那么这个几何体是( )A.三棱锥B.四棱锥C.四棱台D.三棱台【答案】A【解析】 因为正视图和侧视图都为三角形,可知几何体为锥体,又因为俯视图为三角形,故该几何体为三棱锥.故选A.5.(2019·长沙月考)一个几何体的三视图如图所示,在该几何体的各个面中,面积最小的面的面积为( )A.8B.4C.4 3D.4 2【答案】D【解析】 由三视图可知该几何体的直观图如图所示,由三视图特征可知,PA ⊥平面ABC ,DB ⊥平面 ABC ,AB ⊥AC ,PA =AB =AC =4,DB =2,则易得S △PAC =S △ABC =8,S △CPD =12,S 梯形ABDP =12,S △BCD =12×42×2=42,故选D.6.(2019·广州市综合测试)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )【答案】 D【解析】 由题意可得该几何体可能为四棱锥,如图所示,其高为2,其底面为正方形,面积为2×2=4,因为该几何体的体积为13×4×2=83,满足条件,所以俯视图可以为一个直角三角形.7.(2019·桂林模拟)已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( ) A.34a 2B.38a 2C.68a 2D.616a 2 【答案】 D【解析】 如图①、②所示的平面图形和直观图.由②可知,A ′B ′=AB =a ,O ′C ′=12OC =34a ,在图②中作C ′D ′⊥A ′B ′于D ′,则C ′D ′=22O ′C ′=68a . ∴S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2.8. (2019·长沙模拟)如图是一个正方体,A ,B ,C 为三个顶点,D 是棱的中点,则三棱锥A BCD 的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)( )【答案】A【解析】 正视图和俯视图中棱AD 和BD 均看不见,故为虚线,易知选A. 9.(2019·福州模拟)一水平放置的平面图形,用斜二测画法画出它的直观图如图所示,此直观图恰好是一个边长为2的正方形,则原平面图形的面积为( ) A .2 3 B .2 2 C .4 3 D .8 2【答案】D【解析】由斜二测画法可知,原平面图形是一个平行四边形,且平行四边形的一组对边长为2,在斜二测画法画出的直观图中,∠B ′O ′A ′=45°且O ′B ′=22,那么在原图形中,∠BOA =90°且OB =4 2.因此,原平面图形的面积为2×42=82,故选D.10.(2019·泉州二模)某几何体的三视图如图所示,则该几何体的侧视图中的虚线部分是( )A.圆弧B.抛物线的一部分C.椭圆的一部分D.双曲线的一部分【答案】D【解析】根据几何体的三视图,可得侧视图中的虚线部分是由平行于旋转轴的平面截圆锥所得,故侧视图中的虚线部分是双曲线的一部分,故选D.11.(2019·江西南昌模拟)如图,在正四棱柱ABCD-A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥P-BCD的正视图与侧视图的面积之比为( )A.1∶1B.2∶1C.2∶3D.3∶2【答案】 A【解析】根据题意,三棱锥P-BCD的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高.故三棱锥P-BCD的正视图与侧视图的面积之比为1∶1.12.(2019·湖北模拟)在如图所示的空间直角坐标系Oxyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )A .①和②B .③和①C .④和③D .④和②【答案】 D【解析】 在空间直角坐标系中构建棱长为2的正方体,设A (0,0,2),B (2,2,0),C (1,2,1),D (2,2,2),则ABCD 即为满足条件的四面体,得出正视图和俯视图分别为④和②,故选D.13.(2019·武汉调研)已知某四棱锥的三视图如图所示,则该四棱锥的四个侧面中最小的面积为________.【答案】 12【解析】由三视图知,该几何体是在长、宽、高分别为2,1,1的长方体中,截去一个三棱柱AA 1D 1BB 1C 1和一个三棱锥C BC 1D 后剩下的几何体,即如图所示的四棱锥D ABC 1D 1,其中侧面ADD 1的面积最小,其值为12.14.(2019·北京模拟)某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为________.【答案】2 2【解析】由三视图可知该几何体的直观图如图所示,其中PA⊥面ABC,△ABC为等腰直角三角形,且PA=2,AB=BC =2,AC=2,所以PC=22>PB=6,故该三棱锥最长棱的棱长为2 2.15.(2019·陕西部分学校摸底)把边长为1的正方形ABCD沿对角线BD折起,使得平面ABD⊥平面CBD,形成的三棱锥C-ABD的正视图与俯视图如图所示,则侧视图的面积为________.【答案】1 4【解析】由三棱锥C -ABD 的正视图、俯视图得三棱锥C -ABD 的侧视图为直角边长是22的等腰直角三角形,如图所示,所以三棱锥C -ABD 的侧视图的面积为14.16.(2019·河南安阳调研)如图,一个几何体的三视图为两个等腰直角三角形和一个边长为2的正方形及其一条对角线,则该几何体的侧面积为________.【答案】 4+42 【解析】如图,几何体为四棱锥,底面为边长为2的正方形,高为2,PC ⊥底面ABCD ,所以PC ⊥AB .又AB ⊥BC ,所以AB ⊥平面PBC ,所以AB ⊥PB ,同理AD ⊥PD ,所以侧面都是直角三角形,侧面积S =S △PBC +S △PDC +S △PAD +S △PAB =12×(2×2+2×2+2×22+2×22)=4+4 2.17.(2019·合肥模拟)一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为3、宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.【解析】(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为 3. 所以V=1×1×3= 3.(2)由三视图可知,该平行六面体中,A1D⊥平面ABCD,CD⊥平面BCC1B1,所以AA1=2,侧面ABB1A1,CDD1C1均为矩形.S=2×(1×1+1×3+1×2)=6+2 3.18.(2019·河北衡水中学第二次调研)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,求最长的棱的长度.【解析】由三视图可知,多面体是一个三棱锥A-BCD,画出直观图如图所示.将其放入棱长为2的正方体模型中,可求得最长的棱AB的长度为12+22+22=3.。
专题01 空间几何体的结构特征及三视图与直观图(原卷版)
2020年高考数学立体几何突破性讲练01 空间几何体的结构特征及三视图与直观图一、考点传真:1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图;3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.二、知识点梳理:1.空间几何体的结构特征(1)多面体的结构特征(2)互相平行且相2.直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴、y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.3.三视图(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②在画三视图时,重叠的线只画一条,挡住的线要画成虚线.三、例题:例1.(2019天津)若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.例2.(2019北京)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示。
如果网格纸上小正方形的边长为1,那么该几何体的体积为________.例3.(2018北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A .1B .2C .3D .4例4.(2018全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是例5.(2017新课标Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为俯视图侧(左)视图正(主)视图A .10B .12C .14D .16例6.(2017北京)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为A .B .C .D .2 四、巩固练习:1.某空间几何体的正视图是三角形,则该几何体不可能是( ) A.圆柱 B.圆锥 C.四面体D.三棱柱2.如图,长方体ABCD -A ′B ′C ′D ′被截去一部分,其中EH ∥A ′D ′.剩下的几何体是( )A.棱台B.四棱柱C.五棱柱D.六棱柱3.用斜二测画法画水平放置的矩形的直观图,则直观图的面积与原矩形的面积之比为( ) A.12B.22C.23D.244.给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥; ③棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确命题的个数是( ) A.0B.1C.2D.35.下列命题正确的是( )A.两个面平行,其余各面都是梯形的多面体是棱台B.两个面平行且相似,其余各面都是梯形的多面体是棱台C.以直角梯形的一条直角腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆台D.用平面截圆柱得到的截面只能是圆和矩形6.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱7.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的俯视图可能是()8.下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.夹在圆柱的两个平行截面间的几何体还是一个旋转体C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上任意一点的连线都是母线9.某几何体的正视图和侧视图均为如图所示的图形,则在下图的四个图中可以作为该几何体的俯视图的是()A.①③B.①④C.②④D.①②③④10.已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( ) A.34a 2 B.38a 2 C.68a 2 D.616a 2 11.如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ) A.2+ 2B.1+22C.2+22D.1+ 212.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是( )A.8B.7C.6D.513.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱; ③存在每个面都是直角三角形的四面体; ④棱台的侧棱延长后交于一点. 其中正确命题的序号是________.14.一水平放置的平面四边形OABC ,用斜二测画法画出它的直观图O ′A ′B ′C ′如图所示,此直观图恰好是一个边长为1的正方形,则原平面四边形OABC 面积为________.15.如图,点O为正方体ABCD-A′B′C′D′的中心,点E为面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的各个面上的正投影可能是______(填出所有可能的序号).16.某四棱柱的三视图如图所示,则该四棱柱的体积为______.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.空间几何体的结构特征(1)多面体的结构特征(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽;看不到的线画虚线.3.直观图(1)画法:常用斜二测画法.(2)规则:①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在的平面垂直;②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.常用结论1.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)水平放置的圆锥的正视图和侧视图为全等的等腰三角形. (3)水平放置的圆台的正视图和侧视图为全等的等腰梯形. (4)水平放置的圆柱的正视图和侧视图为全等的矩形. 2.斜二测画法中的“三变”与“三不变” “三变”⎩⎪⎨⎪⎧坐标轴的夹角改变与y 轴平行的线段的长度变为原来的一半图形改变“三不变”⎩⎪⎨⎪⎧平行性不改变与x ,z 轴平行的线段的长度不改变相对位置不改变一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( ) (3)夹在两个平行的平面之间,其余的面都是梯形,这样的几何体一定是棱台.( )(4)正方体、球、圆锥各自的三视图中,三视图均相同.( ) (5)用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱.( ) (6)菱形的直观图仍是菱形.( )答案:(1)× (2)× (3)× (4)× (5)× (6)× 二、易错纠偏常见误区| (1)棱柱的概念不清致误;(2)不清楚三视图的三个视图间的关系,想象不出原几何体而出错; (3)斜二测画法的规则不清致误.1.如图,长方体ABCDA′B′C′D′中被截去一部分,其中EH∥A′D′.剩下的几何体是()A.棱台B.四棱柱C.五棱柱D.六棱柱解析:选C.由几何体的结构特征,剩下的几何体为五棱柱.故选C.2.若某几何体的三视图如图所示,则这个几何体的直观图可以是()解析:选B.根据选项A,B,C,D中的直观图,画出其三视图,只有B 项正确.3.有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC=45°,AB=AD=1,DC⊥BC,则这块菜地的面积为________.解析:在直观图中,过点A作AE⊥BC,垂足为点E,则在Rt△ABE中,AB=1,∠ABE=45°,所以BE=22.而四边形AECD为矩形,AD=1,所以EC=AD=1,所以BC=BE+EC=22+1.由此可还原原图形如图所示.在原图形中,A′D′=1,A′B′=2,B′C′=22+1,且A′D′∥B′C′,A′B′⊥B′C′,所以这块菜地的面积为S=12(A′D′+B′C′)·A′B′=12×⎝⎛⎭⎪⎫1+1+22×2=2+22.答案:2+2 2空间几何体的几何特征(自主练透)1.下列说法正确的是()A.各个面都是三角形的几何体是三棱锥B.夹在圆柱的两个平行截面间的几何体还是一个旋转体C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D.由图知,A不正确.两个平行平面与底面不平行时,截得的几何体不是旋转体,则B不正确.侧棱长与底面多边形的边长相等的棱锥一定不是六棱锥,故C错误.由定义知,D正确.2.给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1C.2 D.3解析:选B.①不一定,只有这两点的连线平行于旋转轴时才是母线;②正确;③错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.3.若四面体的三对相对棱分别相等,则称之为等腰四面体,若四面体的一个顶点出发的三条棱两两垂直,则称之为直角四面体,以长方体ABCD-A1B1C1D1的顶点为四面体的顶点,可以得到等腰四面体、直角四面体的个数分别为() A.2,8 B.4,12C.2,12 D.12,8解析:选A.因为矩形的对角线相等,所以长方体的六个面的对角线构成2个等腰四面体.因为长方体的每个顶点出发的三条棱都是两两垂直的,所以长方体中有8个直角四面体.4.把一个半径为20的半圆卷成圆锥的侧面,则这个圆锥的高为________.解析:设圆锥的底面半径为r,高为h,因为半圆的弧长等于圆锥的底面周长,半圆的半径等于圆锥的母线,所以2πr=20π,所以r=10,所以h=202-102=10 3.答案:103空间几何体概念辨析问题的常用方法空间几何体的三视图(多维探究)角度一已知几何体,识别三视图(1)已知棱长都为2的正三棱柱ABC-A1B1C1的直观图如图.若正三棱柱ABC-A1B1C1绕着它的一条侧棱所在直线旋转,则它的侧视图可以为()(2)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()【解析】(1)由题知,四个选项的高都是2.若侧视图为A,则中间应该有一条竖直的实线或虚线;若侧视图为C,则其中有两条侧棱重合,不应有中间竖线;若侧视图为D,则长度应为3,而不是1.故选B.(2)由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.【答案】(1)B(2)A已知几何体,识别三视图的步骤(1)弄清几何体的结构特征及具体形状、明确几何体的摆放位置;(2)根据三视图的有关定义和规则先确定正视图,再确定俯视图,最后确定侧视图;(3)被遮住的轮廓线应为虚线,若相邻两个物体的表面相交,表面的交线是它们的分界线,对于简单的组合体,要注意它们的组合方式,特别是它们的交线位置.角度二由空间几何体的三视图还原直观图(1)(2020·高考全国卷Ⅱ)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A.E B.FC.G D.H(2)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1 B.2C.3 D.4【解析】(1)由三视图知,该几何体是由两个长方体组合而成的,其直观图如图所示,由图知该端点在侧视图中对应的点为E,故选A.(2)将三视图还原为直观图,几何体是底面为直角梯形,且一条侧棱和底面垂直的四棱锥,如图所示.易知,BC∥AD,BC=1,AD=AB=P A=2,AB⊥AD,P A⊥平面ABCD,故△P AD,△P AB为直角三角形,因为P A⊥平面ABCD,BC⊂平面ABCD,所以P A⊥BC,又BC⊥AB,且P A∩AB=A,所以BC⊥平面P AB,又PB⊂平面P AB,所以BC⊥PB,所以△PBC为直角三角形,容易求得PC=3,CD=5,PD=22,故△PCD不是直角三角形,故选C.【答案】(1)A(2)C【迁移探究1】(变问法)在本例(2)条件下,求该四棱锥的所有棱中,最长棱的棱长是多少?解:由三视图可知,P A=AB=AD=2,BC=1,经计算可知,PB=PD=22,PC=3,CD=5,故最长棱为PC,且|PC|=3.【迁移探究2】(变问法)在本例(2)条件下,求该四棱锥的五个面中,最小面的面积.解:面积最小的面为面PBC,且S△PBC=12BC·PB=12×1×22=2,即最小面的面积为 2.由三视图确定几何体的步骤角度三已知几何体的某些视图,判断其他视图《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的楔体,下底面宽3丈、长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知该楔体的正视图和俯视图如图中粗实线所示,则该楔体的侧视图的周长为()A.3丈B.6丈C.8丈D.(5+13)丈【解析】由题意可知该楔体的侧视图是等腰三角形,它的底边长为3丈,相应高为2丈,所以腰长为 22+⎝ ⎛⎭⎪⎫322=52(丈),所以该楔体侧视图的周长为3+2×52=8(丈).故选C .【答案】 C由几何体的部分视图画出剩余的视图.先根据已知的一部分视图,还原、推测其直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.1.(2021·银川模拟)将一长为4,宽为2的矩形ABCD 沿AB ,DC 的中点E ,F 的连线折成如图所示的几何体,若折叠后AE =AB ,则该几何体正视图的面积为( )A .4B .2 3C .2D . 3解析:选B .依题意,该三棱柱为正三棱柱,正视图中矩形的长为BC 的长,宽为正三角形ABE 的边BE 上的高,如图,作AG ⊥BE ,又AB =BE =AE =1,所以AG =1×sin 60°=32,所以正视图的面积为4×32=23,故选B .2.(2021·江西重点中学联考(一))现有编号为①、②、③的三个三棱锥(底面水平放置),俯视图分别为图1、图2、图3,则至少存在一个侧面与此底面互相垂直的三棱锥的编号是( )A.①②B.①③C.①②③D.②③解析:选A.还原出空间几何体,编号为①的三棱锥的直观图如图(1)的三棱锥P-ABC,平面P AC⊥平面ABC,平面PBC⊥平面ABC,满足题意;编号为②的三棱锥的直观图如图(2)的三棱锥P-ABC,平面PBC⊥平面ABC,满足题意;编号为③的三棱锥的直观图如图(3)的三棱锥P-ABC,不存在侧面与底面互相垂直,所以满足题意的编号是①②.空间几何体的直观图(自主练透)1.如图所示为一个平面图形的直观图,则它的实际形状四边形ABCD为()A.平行四边形B.梯形C.菱形D.矩形解析:选D.由斜二测画法可知在原四边形ABCD中DA⊥AB,并且AD∥BC,AB∥CD,故四边形ABCD为矩形.2.已知等边三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为()A.34a2B.38a2C.68a2D.616a2解析:选D.如图①②所示的实际图形和直观图,由②可知,A′B′=AB=a,O′C′=12OC=34a,在图②中作C′D′⊥A′B′于点D′,则C′D′=22O′C′=6 8a.所以S△A′B′C′=12A′B′·C′D′=12×a×68a=616a2.故选D.3.在等腰梯形ABCD中,上底CD=1,腰AD=CB=2,下底AB=3,以下底所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为________.解析:因为OE=(2)2-12=1,所以O′E′=12,E′F′=2 4.所以直观图A′B′C′D′的面积为S′=12×(1+3)×24=22.答案:22平面图形与其直观图的关系(1)在斜二测画法中,要确定关键点及关键线段.平行于x轴的线段平行性不变,长度不变;平行于y轴的线段平行性不变,长度减半.(2)按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系:S直观图=24S原图形.核心素养系列13直观想象——构造法求解三视图问题的三个步骤三视图问题(包括求解几何体的表面积、体积等)是培养和考查空间想象能力的好题目,是高考的热点.由三视图还原几何体是解决这类问题的关键,而由三视图还原几何体只要按照以下三个步骤去做,基本都能准确还原出来.这三个步骤是:第一步,先画长(正)方体,在长(正)方体中画出俯视图;第二步,在三个视图中找直角;第三步,判断直角位置,并向上(或向下)作垂线,找到顶点,连线即可.一个几何体的三视图如图所示,图中直角三角形的直角边长均为1,则该几何体的体积为()A.16B.26C.36D.12【解析】几何体还原说明:①画出正方体,俯视图中实线可以看作正方体的上底面及底面对角线.②俯视图是正方形,有四个直角,正视图和侧视图中分别有一个直角.正视图和侧视图中的直角对应上底面左边外侧顶点(图中D点上方顶点),将该顶点下拉至D点,连接DA,DB,DC即可.该几何体即图中棱长为1的正方体中的四面体ABCD,其体积为13×12×1×1×1=16.故选A.【答案】 A如图是一个四面体的三视图,三个三角形均是腰长为2的等腰直角三角形,还原其直观图.【解】第一步,根据题意,画正方体,在正方体内画出俯视图,如图①.第二步,找直角,在俯视图、正视图和侧视图中都有直角.第三步,将俯视图的直角顶点向上拉起,与三视图中的高一致,连线即可.所求几何体为三棱锥A-BCD,如图②.[A级基础练]1.如图所示是水平放置的三角形的直观图,点D是△ABC的BC边的中点,AB,BC分别与y′轴,x′轴平行,则在原图中三条线段AB,AD,AC中()A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AC,最短的是AD解析:选B.由条件知,原平面图形中AB⊥BC,从而AB<AD<AC.2.如图所示,在三棱台A′B′C′ABC中,沿A′BC截去三棱锥A′ABC,则剩余的部分是()A.三棱锥B.四棱锥C.三棱柱D.组合体解析:选B.如图所示,在三棱台A′B′C′ABC中,沿A′BC截去三棱锥A′ABC,剩余部分是四棱锥A′BCC′B′.3.(2020·开封模拟)如图,正方体ABCD-A1B1C1D1的顶点A,B在平面α上,AB= 2.若平面A1B1C1D1与平面α所成角为30°,由如图所示的俯视方向,正方体ABCD-A1B1C1D1在平面α上的俯视图的面积为()A.2 B.1+ 3C.2 3 D.2 2解析:选B.由题意得AB在平面α内,且平面α与平面ABCD所成的角为30°,与平面B1A1AB所成的角为60°,故所得的俯视图的面积S=2×(2cos 30°+2cos 60°)=2(cos 30°+cos 60°)=1+ 3.4.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217 B.2 5C.3 D.2解析:选B.由三视图可知,该几何体为如图①所示的圆柱,该圆柱的高为2,底面周长为16.画出该圆柱的侧面展开图,如图②所示,连接MN,则MS=2,SN=4,则从M到N的路径中,最短路径的长度为MS2+SN2=22+42=2 5.故选B.5.如图所示,边长为1的正方形网格中粗线画出的是某几何体的三视图,则该几何体所有棱长组成的集合为()A.{1,5} B.{1,6}C.{1,2,5} D.{1,2,22,6}解析:选B.如图所示,该几何体是四棱柱,底面是边长为1的正方形,侧棱长为6,故选B.6.已知正四棱锥V-ABCD中,底面面积为16,一条侧棱的长为211,则该棱锥的高为________.解析:如图,取正方形ABCD的中心O,连接VO,AO,则VO就是正四棱锥V-ABCD的高.因为底面面积为16,所以AO=2 2.因为一条侧棱长为211,所以VO=VA2AO2=44-8=6.所以正四棱锥V-ABCD的高为6.答案:67.一个圆台上、下底面的半径分别为3 cm和8 cm,若两底面圆心的连线长为12 cm,则这个圆台的母线长为______cm.解析:如图,过点A作AC⊥OB,交OB于点C.在Rt△ABC中,AC=12(cm),BC=8-3=5(cm).所以AB=122+52=13(cm).答案:138.某几何体的正视图和侧视图如图(1),它的俯视图的直观图是矩形O1A1B1C1,如图(2),其中O1A1=6,O1C1=2,则该几何体的侧面积为________.解析:由题图(2)及斜二测画法可知原俯视图为如图所示的平行四边形OABC,设CB与y轴的交点为D,易知CD=2,OD=2×22=42,所以CO =CD2+OD2=6=OA,所以俯视图是以6为边长的菱形,由三视图知几何体为一个直四棱柱,其高为4,所以该几何体的侧面积为4×6×4=96.答案:969.如图1,在四棱锥P-ABCD中,底面为正方形,PC与底面ABCD垂直,图2为该四棱锥的正视图和侧视图,它们是腰长为6 cm的全等的等腰直角三角形.(1)根据所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;(2)求P A的长.解:(1)该四棱锥的俯视图为(内含对角线)边长为6 cm的正方形,如图,其面积为36 cm2.(2)由侧视图可求得PD =PC 2+CD 2=62+62=6 2 (cm).由正视图可知AD =6 cm ,且AD ⊥PD , 所以在Rt △APD 中, P A =PD 2+AD 2=(62)2+62=6 3 (cm).10.已知正三棱锥V -ABC 的正视图和俯视图如图所示.(1)画出该三棱锥的直观图和侧视图; (2)求出侧视图的面积. 解:(1)如图.(2)侧视图中VA =42-⎝ ⎛⎭⎪⎫23×32×232=12=2 3.则S △VBC =12×23×23=6.[B 级 综合练]11.已知正三棱柱ABC -A 1B 1C 1的三视图如图所示,一只蚂蚁从顶点A 出发沿该正三棱柱的表面绕行两周到达顶点A 1,则该蚂蚁走过的最短路径长为( )A .193 B.25C.2193 D.31解析:选B.将正三棱柱ABC-A1B1C1沿侧棱AA1展开两次,如图所示:在展开图中,AA1的最短距离是大矩形对角线的长度,也即为三棱柱的侧面上绕两圈所走路程的最小值.=4.由已知求得正三棱锥底面三角形的边长为2332所以矩形的长等于4×6=24,宽等于7.由勾股定理求得d=242+72=25.故选B.12.一个几何体的三视图如图所示,在该几何体的各个面中,面积最大面的面积是()A.2 B.2 2C.2 3 D.4解析:选C.如图所示,由三视图可知该几何体是四棱锥P-ABCD截去三棱锥PABD后得到的三棱锥P-BCD.其中四棱锥中,底面ABCD是正方形,P A⊥底面ABCD,且P A=AB=2,易知面积最大面为面PBD,面积为34×(22)2=2 3.故选C.13.中国有悠久的金石文化,印信是金石文化的代表之一,印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1,则该半正多面体共有________个面,其棱长为________.解析:依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体的表面由18个正方形,8个正三角形组成,因此题中的半正多面体共有26个面.注意到该半正多面体的俯视图的轮廓是一个正八边形,设题中的半正多面体的棱长为x,则22x+x+22x=1,解得x=2-1,故题中的半正多面体的棱长为2-1.答案:262-114.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为________.解析:由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为(2+4)×22×2=12.答案:12[C级提升练]15.(2021·深圳模拟)如图,在棱长为2的正方体ABCD-A1B1C1D1中,M,N 分别为棱A1D1,A1B1的中点,点P是棱CD上的动点(含端点),则平面MNP与正方形BCC1B1所在平面相交的线段中,最长的一条线段的长度为()A.2 2 B. 2C.2133D. 5解析:选C.如图,连接BD,设DP=x(0≤x≤2),平面MNP与BC的交点为Q,与BB1的交点为H,连接NH,HQ,PQ,易知PQ∥MN,则PQ∥BD,BQ=x,由△BHQ∽△B1HN,可得BH=2x x+1.所以HQ 2=BH 2+BQ 2=4x 2(x +1)2+x 2,且为定义域内的增函数, 所以当x =2时,HQ 取得最大值,为2133.16.已知正方体ABCD -A 1B 1C 1D 1的体积为1,点M 在线段BC 上(点M 异于B ,C 两点),点N 为线段CC 1的中点,若平面AMN 截正方体ABCD -A 1B 1C 1D 1所得的截面为四边形,则线段BM 的取值范围为( )A .⎝ ⎛⎦⎥⎤0,13 B .⎝ ⎛⎦⎥⎤0,12 C .⎣⎢⎡⎭⎪⎫12,1 D .⎣⎢⎡⎦⎥⎤12,23 解析:选B .由题意,正方体ABCD -A 1B 1C 1D 1的棱长为1,如图所示,当点M 为线段BC 的中点时,截面为四边形AMND 1,当0<BM ≤12时,截面为四边形,当BM >12时,截面为五边形,故选B .。