用矩阵的初等变换求逆矩阵

合集下载

矩阵求逆初等变换法

矩阵求逆初等变换法

矩阵求逆初等变换法矩阵求逆是在线性代数中一个非常重要的概念,它可以用于解决大量的问题。

在实际的应用中,我们通常采用初等变换法来求逆矩阵,这样可以极大地简化计算并且提高效率。

本文主要介绍矩阵求逆初等变换法的基本概念和具体实现方法。

一、矩阵求逆的定义和概念矩阵求逆的本质是寻找一个矩阵A的逆矩阵B,使得A 与B的乘积等于单位矩阵I,即AB=BA=I,其中I为n阶单位矩阵。

矩阵A的逆矩阵可以表示为A^-1。

对于方阵,如果其行列式不为0,则可以求出其逆矩阵。

而对于非方阵,则不能直接求逆矩阵,需要通过一些方法先将其转化为方阵,再进行求逆操作。

二、矩阵求逆初等变换法初等变换是线性代数中的一种操作,它可以用来变换矩阵的形式,进而使得矩阵的某些性质更加明显。

初等变换包括以下三种:(1)交换矩阵的两行或两列(2)将矩阵的一行或一列乘以非零常数(3)将矩阵的一行或一列乘以非零常数加到另一行或另一列上去根据初等变换的性质,我们可以使用一组初等变换将任何一个方阵化为一个单位矩阵,进而得到其逆矩阵。

具体实现方法如下:(1)首先,将矩阵A增广为一个n*2n的矩阵(即在A的右边增加一个n* n的单位矩阵I);(2)通过一系列初等变换将矩阵A化为一个上三角矩阵U;(3)继续通过一系列初等变换将U化为单位矩阵I;(4)此时矩阵A的右半部分就是其逆矩阵B。

下面,我们通过一个例子来具体说明这个过程:设矩阵为A=[1, 2, 3; 0, 1, 4; 5, 6, 0](1)将A增广为一个2n* n的矩阵[A,I]=[1, 2, 3, 1, 0, 0; 0, 1, 4, 0, 1, 0; 5, 6, 0, 0, 0, 1](2)通过一系列初等变换将矩阵A化为一个上三角矩阵U[1, 2, 3, 1, 0, 0; 0, 1, 4, 0, 1, 0; 5, 6, 0, 0, 0, 1]→R2-R1→[1, 2, 3, 1, 0, 0; 0, -1, 1, -1, 1, 0; 5, 6, 0, 0, 0, 1]→R3-5R1→[1, 2, 3, 1, 0, 0; 0, -1, 1, -1, 1, 0; 0, -4, -15, -5, 0, 1]→-R2→[1, 2, 3, 1, 0, 0; 0, 1, -1, 1, -1, 0; 0, -4, -15, -5, 0, 1]→R3+4R2→[1, 2, 3, 1, 0, 0; 0, 1, -1, 1, -1, 0; 0, 0, -11, 1, -4, 1]→-R3/11→[1, 2, 3, 1, 0, 0; 0, 1, -1, 1, -1, 0; 0, 0, 1, -1/11, 4/11, -1/11]→R2+R3→[1, 2, 3, 1, 0, 0; 0, 1, 0, 0, 3/11, -1/11; 0, 0, 1, -1/11, 4/11, -1/11]→-R1-2R2+3R3→[1, 0, 0, 1/11, 2/11, -1/11; 0, 1, 0, 0, 3/11, -1/11; 0, 0, 1, -1/11, 4/11, -1/11]得到上三角矩阵U为U=[1, 2, 3, 1/11, 2/11, -1/11; 0, 1, 0, 0,3/11, -1/11; 0, 0, 1, -1/11, 4/11, -1/11](3)通过一系列初等变换将U化为单位矩阵I[1, 2, 3, 1/11, 2/11, -1/11; 0, 1, 0, 0, 3/11, -1/11; 0, 0, 1, -1/11, 4/11, -1/11]→R2-3R3→[1, 2, 3, 1/11, 2/11, -1/11; 0, 1, 0, 3/11, -1/11, 2/11; 0, 0, 1, -1/11, 4/11, -1/11]→R1-2R2-3R3→[1, 0, 0, 7/11, -2/11, -1/11; 0, 1, 0, 3/11, -1/11, 2/11; 0, 0, 1, -1/11, 4/11, -1/11]此时得到的右半部分就是矩阵A的逆矩阵B,即B=[7/11, -2/11, -1/11; 3/11, -1/11, 2/11; -1/11, 4/11, -1/11]三、总结矩阵求逆是线性代数中一个基本的操作,而初等变换法则可以很有效地简化求解的过程。

求解逆矩阵的常用三种方法

求解逆矩阵的常用三种方法

求解逆矩阵的常用三种方法逆矩阵是线性代数中一个非常重要的概念,它在解线性方程组、求解矩阵方程等问题中具有重要作用。

本文将介绍解逆矩阵的三种常用方法:伴随矩阵法、初等变换法和分块矩阵法。

方法一:伴随矩阵法伴随矩阵法是一种直接求解逆矩阵的方法。

对于一个n阶方阵A,它的伴随矩阵记为adj(A)。

首先,计算矩阵A的代数余子式构成的余子式矩阵A*,即A* = [Cij],其中Cij是A的元素a_ij的代数余子式。

然后,将A*的转置矩阵记为adj(A)。

最后,计算逆矩阵A^-1 = adj(A) /det(A),其中det(A)是矩阵A的行列式。

方法二:初等变换法初等变换法是通过一系列的初等行变换将矩阵A变为单位矩阵I,同时对单位矩阵进行相同的变换,得到的矩阵就是原矩阵A的逆矩阵。

初等变换包括以下三种操作:1.对其中一行(列)乘以非零常数;2.交换两行(列);3.其中一行(列)乘以非零常数加到另一行(列)上。

具体步骤如下:1.构造增广矩阵[A,I],其中A是待求逆矩阵,I是单位矩阵;2.对增广矩阵进行初等行变换,使左侧的矩阵部分变为单位矩阵,右侧的部分就是待求的逆矩阵;3.如果左侧的矩阵部分无法变为单位矩阵,则矩阵A没有逆矩阵。

方法三:分块矩阵法当矩阵A有一些特殊的结构时,可以使用分块矩阵法来求解逆矩阵。

例如,当A是一个分块对角矩阵时,可以按照分块的大小和位置将其分解为几个小矩阵,然后利用分块矩阵的性质求解逆矩阵。

具体步骤如下:1.将方阵A进行分块,例如,将A分为4个分块:A=[A11A12;A21A22];2.根据分块矩阵的性质,逆矩阵也是可以分块的,即A的逆矩阵为A^-1=[B11B12;B21B22];3.通过求解分块矩阵的逆矩阵,可以得到原矩阵的逆矩阵。

以上就是解逆矩阵的常用三种方法:伴随矩阵法、初等变换法和分块矩阵法。

无论是在理论研究还是在实际应用中,这些方法都具有重要的作用。

在求逆矩阵时,我们可以根据具体的情况选择合适的方法,以获得高效、准确的计算结果。

线性代数:初等变换法求逆矩阵(finalff3)

线性代数:初等变换法求逆矩阵(finalff3)
线性代数
初等变换法求逆矩阵及 解矩阵方程
初等变换法求逆矩阵
线性代数
两个已知结论 1、n阶矩阵A可逆当且仅当A能够表示成若干初等 矩阵的乘积,即存在初等矩阵P1, P2, … , Pm使得
A= P1P2…Pm .
2、在矩阵A的左边乘以一个初等矩阵相当于对A进 行一次相应的初等行变换;
在A的右边乘以一个初等矩阵相当于对A进行一 次相应的初等列变换.
例 求矩阵X,使AX=B,其中
1 2 3
2 5
A
2
2
1
,
B
3
1
.
3 4 3
4 3
解 若A可逆,则X= A−1B.
1 2 3 2 5
(A
B)
2
2
1
3
1
3 4 3 4 3
3 2
X
2
3
.
1 3
1 0 0 3 2
0 0
1 0
0 1
2 1
3 3
小结
线性代数
1、初等变换求逆矩阵
(A E) 初等行变换 (E A−1 )

A
E
初等列变换
E
A1
2、初等变换求解矩阵方程
(1) A可逆,AX=B
X= A−1B
(A B) 初等行变换 (E A−1 B )
(2) A可逆, XA=C
X= CA−1
A 初等列变换 E
C
CA1
初等行变换法求逆矩阵
线性代数
若A可逆,则A−1可逆,因而A−1可以表示成若干初 等矩阵Q1, Q2, … , Qm 的乘积,即A−1= Q1Q2…Qm .
A可逆, A1 A E

初等变换法求逆矩阵

初等变换法求逆矩阵

1 0 0 1 3 2 r2 ( 2)
0 0
2 0
0 1
3 1
6 1
5 1
r3
( 1)
r2


2) 1 A01

0 1
10 03
r3

1)
0
0
2 11
13

3 3
2
1
3532 .
2 11

52
说明:(1)将(A E)化为行最简形矩阵; (2)此方法中只能作初等行变换.
一、初等变换法求逆矩阵
例1

1 A 2
2 2
13,求 A1.
3 4 3

A
E



1 2
2 2
3 1
1 0
0 1
0 0
3 4 3 0 0 1
r2 2r1 1 2 3 1 0 0 r1 r2 0 2 5 2 1 0
r3


1)

0 0
0 1 0
0 0 1
3 2 1
23 , 3
3 2 X 2 矩阵[重点 掌握]
初等行变换
(A E)
( E A1).
2.初等变换法的解矩阵方程
初等行变换
(A B)
(E
A 1 B )
初等变换法求逆矩阵
引入:公式法求逆矩阵的缺点 一、初等变换法求逆矩 二、方法推广
引入:公式法求逆矩阵的缺点
逆矩阵的计算公式 A1 1 A A
适用范围:二阶、三阶的方阵.
缺点:当矩阵的阶数比较高时,求伴随矩阵 计算量太大,不易实施.

初等列变换求可逆矩阵

初等列变换求可逆矩阵

初等列变换求可逆矩阵1. 什么是初等列变换?初等列变换是矩阵运算中的一种操作,通过对矩阵的列进行变换,可以改变矩阵的形状和性质。

初等列变换包括三种操作:交换两列的位置、用一个非零常数乘以某一列、将某一列的倍数加到另一列上。

2. 可逆矩阵的定义在矩阵理论中,可逆矩阵也称为非奇异矩阵或满秩矩阵。

一个n阶矩阵A是可逆的,当且仅当存在一个n阶矩阵B,使得AB=BA=I,其中I是单位矩阵。

3. 初等列变换与可逆矩阵的关系初等列变换可以改变矩阵的形状和性质,包括矩阵的秩。

对于一个n阶矩阵A,如果通过一系列的初等列变换可以将A变为单位矩阵I,那么矩阵A就是可逆的。

证明:假设矩阵A经过一系列的初等列变换可以变为单位矩阵I,即存在一系列的初等矩阵P1, P2, …, Pn,使得Pn * … * P2 * P1 * A = I。

我们知道,初等矩阵的逆矩阵也是一个初等矩阵,所以可以将上式变为Pn * … * P2 * P1 * A * (Pn * … * P2 * P1)^-1 = I * (Pn * … * P2 * P1)^-1。

由于单位矩阵乘以任何矩阵等于该矩阵本身,并且任何矩阵乘以单位矩阵等于该矩阵本身,所以上式可以进一步简化为 A * (Pn * … * P2 * P1)^-1 = I。

因此,A的逆矩阵等于(Pn * … * P2 * P1)^-1,即矩阵A是可逆的。

4. 初等列变换的具体操作4.1 交换两列的位置交换矩阵A的第i列和第j列的位置,可以用一个初等矩阵Pij来表示。

初等矩阵Pij是一个单位矩阵I,将第i列和第j列交换位置后得到的矩阵。

例如,对于一个3阶矩阵A,交换第1列和第2列的位置,可以用初等矩阵P12来表示:P12 = [[0, 1, 0], [1, 0, 0], [0, 0, 1]]则有 P12 * A = B,其中B是将A的第1列和第2列交换位置后得到的矩阵。

4.2 用一个非零常数乘以某一列用一个非零常数k乘以矩阵A的第i列,可以用一个初等矩阵Pi(k)来表示。

用矩阵的初等变换求逆矩阵_百度文库.

用矩阵的初等变换求逆矩阵_百度文库.

用矩阵的初等变换求逆矩阵一、问题提出在前面我们以学习了用公式求逆矩阵,但当矩阵A的阶数较大时,求A*很繁琐,此方法不实用,因此必须找一种更简单的方法求逆矩阵,那么如何找到一种简单的方法呢?(饿了再吃)二、求逆矩阵方法的推导(“润物细无声”“化抽象为自然”)我们已学习了矩阵初等变换的性质,如1.定理2.4 对mxn矩阵A,施行一次初等行变换,相当于在A的左边乘以相应m 阶初等矩阵;对A施行一次初等列变换,相当于在A的右边乘以相应的n阶初等矩阵。

2.初等矩阵都是可逆矩阵,其逆矩阵还是初等矩阵。

3.定理2.5的推论A可逆的充要条件为A可表为若干初等矩阵之积。

即4.推论 A可逆,则A 可由初等行变换化为单位矩阵。

(1)由矩阵初等变换的这些性质可知,若A可逆,构造分块矩阵(A︱E,其中E为与A 同阶的单位矩阵,那么(2)由(1)式代入(2)式左边,上式说明分块矩阵(A︱E经过初等行变换,原来A的位置变换为单位阵E,原来E 的位置变换为我们所要求的,即三,讲解例题1. 求逆矩阵方法的应用之一例解:四,知识拓展2.求逆矩阵方法的应用之二利用矩阵的初等行变换也可以判断一个矩阵是否可逆,即分块矩阵(A︱E经过初等行变换,原来A的位置不能变换为单位阵E,那么A不可逆。

例解:而上面分块矩阵的第一块第二行全为零,它不可能变换为单位矩阵,所以A不可逆。

3.求逆矩阵方法的应用之三利用矩阵初等行变换解矩阵方程(“润物细无声”)对一般的矩阵方程求解,我们可以先求,然后求X=B。

现在我们介绍另外一种方法求矩阵方程。

其实在推导求逆矩阵方法的过程就是求解矩阵方程的过程,因为求就是求解矩阵方程的解,而对一般的矩阵方程只要将中的E换成B,然后利用初等行变换,即其中的B即为所求矩阵方程的X。

例解:。

初等列变换求可逆矩阵

初等列变换求可逆矩阵

初等列变换求可逆矩阵【原创实用版】目录1.初等列变换与可逆矩阵的关系2.初等列变换的定义和性质3.如何使用初等列变换求可逆矩阵4.举例说明初等列变换求可逆矩阵的过程5.总结正文一、初等列变换与可逆矩阵的关系初等列变换是指对矩阵进行行或列的操作,使其变为一个新的矩阵,但保持原矩阵与新矩阵的行列式相等。

可逆矩阵是指一个矩阵与其逆矩阵相乘等于单位矩阵,即满足 A * A^-1 = I(I 为单位矩阵)。

初等列变换与可逆矩阵有着密切的关系,因为通过初等列变换可以将一个可逆矩阵转化为单位矩阵,从而求出该矩阵的逆矩阵。

二、初等列变换的定义和性质初等列变换主要包括以下两种操作:1.行变换:将矩阵的行进行交换或翻转,以达到将矩阵化为上三角矩阵或简化矩阵的目的。

2.列变换:将矩阵的列进行交换或翻转,以达到将矩阵化为上三角矩阵或简化矩阵的目的。

初等列变换具有以下性质:1.初等列变换不改变矩阵的行列式值。

2.初等列变换不改变矩阵的秩。

3.初等列变换可以将可逆矩阵化为单位矩阵。

三、如何使用初等列变换求可逆矩阵假设有一个可逆矩阵 A,我们要通过初等列变换将其化为单位矩阵。

具体的操作步骤如下:1.计算矩阵 A 的行列式值,判断矩阵 A 是否可逆。

2.如果矩阵 A 可逆,则计算矩阵 A 的逆矩阵 A^-1。

3.通过初等列变换,将矩阵 A 化为单位矩阵。

具体操作为:将矩阵 A 的某一列(或行)作为变换的依据,通过交换或翻转其他列(或行)以使得矩阵 A 变为单位矩阵。

四、举例说明初等列变换求可逆矩阵的过程假设有一个可逆矩阵 A = [1 2; 3 4],我们要通过初等列变换将其化为单位矩阵。

1.计算矩阵 A 的行列式值:|A| = 1 * 4 - 2 * 3 = -22.计算矩阵 A 的逆矩阵:A^-1 = [4 -3; -2 1]3.通过初等列变换,将矩阵 A 化为单位矩阵:- 将第二列减去第一列的 2 倍:A" = [1 2; 3 -4]- 将第二行减去第一行的 2 倍:A"" = [1 -4; 3 2]- 将第三行减去第二行的 1 倍:A""" = [1 -4; 0 2]- 将第四行减去第三行的 2 倍:A"""" = [1 -4; 0 0]通过以上初等列变换,可逆矩阵 A 最终被化为单位矩阵。

求矩阵的逆矩阵的方法

求矩阵的逆矩阵的方法

求矩阵的逆矩阵的方法矩阵的逆矩阵是线性代数中的重要概念,它在解线性方程组、计算行列式和求解线性变换等问题中具有重要的应用价值。

在实际问题中,我们经常需要求解矩阵的逆矩阵,因此掌握求解逆矩阵的方法对于深入理解线性代数具有重要意义。

本文将介绍几种常用的求解矩阵逆的方法,希望能够帮助读者更好地理解和掌握这一重要概念。

方法一,代数余子式法。

对于一个n阶矩阵A,如果它的行列式|A|不等于0,则矩阵A是可逆的,即存在逆矩阵A^(-1)。

我们可以通过代数余子式的方法来求解矩阵的逆矩阵。

首先,我们需要计算矩阵A的伴随矩阵adj(A),然后利用公式A^(-1) = adj(A)/|A|来求解逆矩阵。

这种方法在理论上是可行的,但在实际计算中可能会比较复杂,尤其是对于高阶矩阵来说,计算量会非常大。

方法二,初等变换法。

初等变换法是一种比较直观和简单的方法,它通过一系列的初等行变换将原矩阵变换为单位矩阵,然后将单位矩阵通过相同的初等行变换变换为逆矩阵。

这种方法在实际计算中比较方便,并且适用于各种情况,但是需要进行大量的计算,对于高阶矩阵来说,计算量也会比较大。

方法三,矩阵分块法。

矩阵分块法是一种比较灵活和高效的方法,它将原矩阵分解为若干个子矩阵,然后通过一定的变换将原矩阵变换为单位矩阵,再将单位矩阵变换为逆矩阵。

这种方法在理论上和实际计算中都比较方便,尤其适用于特殊结构的矩阵,如对称矩阵、三对角矩阵等。

但是对于一般的矩阵来说,可能会比较繁琐。

方法四,Gauss-Jordan消元法。

Gauss-Jordan消元法是一种经典的求解逆矩阵的方法,它通过一系列的行变换将原矩阵变换为单位矩阵,然后将单位矩阵变换为逆矩阵。

这种方法在实际计算中比较高效和方便,尤其适用于计算机程序实现。

但是对于特殊结构的矩阵,可能会存在一些特殊情况需要处理。

综上所述,求解矩阵的逆矩阵有多种方法,每种方法都有其适用的场景和特点。

在实际问题中,我们可以根据具体的情况选择合适的方法来求解逆矩阵,以达到高效、准确地计算的目的。

矩阵求逆的方法

矩阵求逆的方法

前言矩阵理论在《线性代数》课程中有着重要的地位,矩阵和数相仿可以运算,特别是乘法和数一样有逆运算,其定义为:对于 n 阶方阵 A,如果存在 n 个阶段 B 使得 AB=BA=E,则 n 个阶方阵 A 为可逆的,B 为 A 的逆矩阵。

掌握好求逆矩阵的方法对线性方程组、二次型、线性变换等问题的解决有很大帮助。

关于矩阵求逆问题,不同的《线性代数》教材介绍了不同的方法。

下面对求逆矩阵方法进行全面论述,并做一步探讨。

1矩阵求逆常见的几种方法 1.1 用伴随矩阵法求逆矩定理1.1.1:n 阶矩阵)(ij a A =可逆的充要条件0≠A ,而且当)2(≥n 阶矩阵A 有逆矩阵,*-=A AA 11,其中*A 伴随矩阵。

例1 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=412112013A 是否可逆?若可逆,求1-A 解:A A ∴≠=05可逆又511=A ,421=A ,3131=A ,1012=A ,1222=A ,332-=A ,013=A ,123=A ,133=A∴*-=A AA 11 例 2 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=543022001A ,*A 是A 的伴随矩阵,求()1-*A 解:1-*=A A A ,又()kB kB 11--=, 所以()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡====---*5430220011011011111A A A AA A且有规律可循。

对于三阶以上方阵用该方法逆矩阵,不仅计算量大且易出错,一般不用此种方法。

对求出逆矩阵正确与否,一般用E AA A A ==--11来检验是否正确。

1.2 用初等变换法求逆矩阵定理 1.2.1 如果n 阶方阵A 可逆,则存在有限个初等矩阵,l P P P 21,使得l P P P A 21=。

如果A 可逆,则1-A 也可逆,由上述定理, 存在初等矩阵l Q Q Q ,,,21 使得l Q Q Q A 211=-那么A A AA E 11--== 即A Q Q Q E l 21= E Q Q Q A l 211=-于是我们得到一个求逆矩阵的方法如下:如果n 阶方阵A 可逆,作一个n n 2⨯的矩阵E A ,然后对此矩阵施以初等行换,使A 化为单位矩阵E 同时化为1-A ,即:E A 1-−−−→−A E 初等行变换例1 用初等行变换求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=521310132A 的逆矩阵解:=E A →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100132310521100010001521310132 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--201010100910310521211010100600310521⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→316161100123210103461361001316161100010310100521 故⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----=-3161611232134613611A 同理,如果n 阶矩阵A 可逆,作一个n n ⨯2的矩阵⎥⎦⎤⎢⎣⎡E A ,然后此矩阵施以初等变换,使矩阵A 化为单位阵E ,则同时E 化为1-A ,即⎥⎦⎤⎢⎣⎡−−−→−⎥⎦⎤⎢⎣⎡-1A E E A 初等列变换。

求解逆矩阵的常用三种方法

求解逆矩阵的常用三种方法

求解逆矩阵的常用三种方法
1.待定系数法
矩阵A=
1, 2
-1,-3
假设所求的逆矩阵为
a,b
c,d

从而可以得出方程组
a + 2c = 1
b + 2d = 0
-a - 3c = 0
-b - 3d = 1
解得
a=3; b=2; c= -1; d= -1
2.伴随矩阵求逆矩阵
伴随矩阵是矩阵元素所对应的代数余子式,所构成的矩阵,转置后得到的新矩阵。

我们先求出伴随矩阵A*=
1 , 1
接下来,求出矩阵A的行列式|A|
=1*(-3) - (-1)* 2
= -3 + 2
= -1
从而逆矩阵A⁻¹=A*/|A| = A*/(-1)= -A*=
3, 2
-1,-1
3.初等变换求逆矩阵
(下面我们介绍如何通过初等(行)变换来求逆矩阵)
首先,写出增广矩阵A|E,即矩阵A右侧放置一个同阶的单位矩阵,得到一个新矩阵。

-1 -3 0 1
然后进行初等行变换。

依次进行第1行加到第2行,得到
1 2 1 0
0 -1 1 1
第2行×2加到第1行,得到
1 0 3 2
0 -1 1 1
第2行×(-1),得到
1 0 3 2
0 1 -1 -1。

求矩阵逆的方法

求矩阵逆的方法

求矩阵逆的方法
方法一,伴随矩阵法。

对于一个n阶矩阵A,如果其行列式不为0,那么A就是可逆的。

我们可以通过求解伴随矩阵来得到A的逆矩阵。

首先,我们计算A的伴随矩阵Adj(A),然后用行列式的倒数乘以伴随矩阵即可得到A的逆矩阵。

方法二,初等变换法。

初等变换法是通过一系列的行变换将原矩阵变换为单位矩阵,然后将单位矩阵变换为A的逆矩阵。

这种方法在计算机求解中比较常见,可以通过高斯消元法来实现。

方法三,分块矩阵法。

对于某些特殊的矩阵,我们可以通过将其分解成若干个子矩阵,从而简化逆矩阵的求解过程。

例如,对角矩阵、上三角矩阵、下三角矩阵等都有相对简单的逆矩阵求解方法。

方法四,特征值分解法。

对于对称正定矩阵,我们可以通过其特征值和特征向量来求解其逆矩阵。

通过特征值分解和特征向量矩阵的转置,我们可以得到原矩阵的逆矩阵。

方法五,数值逼近法。

对于大型矩阵或者特殊结构的矩阵,有时候我们无法通过解析的方法求解其逆矩阵,这时可以通过数值逼近的方法来计算其逆矩阵。

例如,利用迭代法或者矩阵分解等方法来近似求解逆矩阵。

总结:
以上是几种常见的求解矩阵逆的方法,不同的方法适用于不同类型的矩阵。

在实际问题中,我们需要根据具体情况选择合适的方法来求解矩阵的逆,以便更好地解决实际问题。

希望本文能够对您有所帮助,谢谢阅读!。

求解逆矩阵的常用三种方法

求解逆矩阵的常用三种方法

求解逆矩阵的常用三种方法逆矩阵是一个矩阵的逆操作,即找到一个矩阵,与原矩阵相乘后得到单位矩阵。

逆矩阵在线性代数中具有重要的应用,比如求解线性方程组、计算矩阵的行列式等。

在实际应用中,常用的求解逆矩阵的方法包括:伴随矩阵法、初等变换法和分块矩阵法。

第一种方法是伴随矩阵法。

对于一个n阶矩阵A,如果它的行列式不为0,那么它存在逆矩阵。

首先计算矩阵A的伴随矩阵,记作Adj(A),然后用伴随矩阵除以原矩阵A的行列式,即可得到逆矩阵。

具体步骤如下:1. 计算矩阵A的行列式det(A);2. 计算矩阵A的伴随矩阵Adj(A),其中第i行第j列的元素等于原矩阵A的代数余子式Aij的行列式乘以(-1)^(i+j);3. 将伴随矩阵Adj(A)的每个元素除以原矩阵A的行列式det(A),得到逆矩阵A^(-1) = Adj(A)/det(A)。

第二种方法是初等变换法。

利用矩阵的初等行变换和初等列变换来求解逆矩阵。

具体步骤如下:1.将原矩阵A和单位矩阵I进行横向拼接,得到一个增广矩阵[A,I];2.对增广矩阵进行行变换,将矩阵A变为单位矩阵I,同时单位矩阵I经过相同的行变换得到逆矩阵A^(-1);3.若矩阵A无法通过行变换变为单位矩阵I,则矩阵A不可逆。

第三种方法是分块矩阵法。

将原矩阵A按照其中一种方式进行分块,然后通过对分块矩阵进行运算来求解逆矩阵。

常见的分块矩阵法有Schur补法和Sherman–Morrison公式法,这里以Schur补法为例进行说明。

1.将原矩阵A分解为分块矩阵,例如A=[B,D;E,F];2.利用矩阵分块的性质求解逆矩阵,A^(-1)=[B^(-1)+B^(-1)D(X-F^(-1)E)B^(-1),-B^(-1)DF^(-1);-F^(-1)EB^(-1),F^(-1)+F^(-1)EHF^(-1)],其中X=(F-EF^(-1)D)^(-1);3.若分块矩阵的逆存在,即B可逆、F可逆且B-DF^(-1)E可逆,那么原矩阵A也存在逆矩阵。

矩阵 求逆 方法

矩阵 求逆 方法

矩阵求逆方法矩阵求逆是线性代数中的一个重要概念和计算方法。

矩阵求逆的目的是找到一个与给定矩阵相乘等于单位矩阵的矩阵,也就是找到一个逆矩阵。

在介绍求逆方法之前,需要先明确一个概念——方阵。

方阵是指行数与列数相等的矩阵,一般用n×n表示,其中n为方阵的阶数。

只有方阵才具有逆矩阵。

那么,对于方阵A,如何求出它的逆矩阵呢?常见的方法有以下几种:初等行变换法、伴随矩阵法、分块法和矩阵的特征值和特征向量等。

一、初等行变换法初等行变换法是一种直观且易于理解的方法,它的基本思想是通过一系列行变换将矩阵A转化为单位矩阵I,同时对单位矩阵进行同样的行变化,最终得到逆矩阵。

具体步骤如下:1. 将矩阵A写在左边,单位矩阵I写在右边,形成一个增广矩阵[A,I]。

2. 对增广矩阵进行一系列的行变换,使得矩阵A转化为单位矩阵,同时对I进行相同的行变换。

3. 判断矩阵A是否能够转化为单位矩阵,如果不能,说明矩阵A不可逆;如果可以,将得到的单位矩阵I的部分作为逆矩阵。

二、伴随矩阵法伴随矩阵法是一种利用伴随矩阵求逆矩阵的方法。

伴随矩阵是指在原矩阵中每个元素的代数余子式的转置矩阵。

具体步骤如下:1. 计算矩阵A的伴随矩阵Adj(A)。

2. 计算矩阵A的行列式值det(A)。

3. 如果det(A)为0,则矩阵A不可逆;如果det(A)不为0,则逆矩阵A^(-1) = (1/det(A)) * Adj(A)。

三、分块法分块法是通过将原矩阵A进行分块,从而简化矩阵求逆的计算。

具体步骤如下:1. 将矩阵A拆分为几个子矩阵。

2. 根据子矩阵的性质或特点,寻找求逆的规律。

3. 根据子矩阵逆矩阵的计算结果,得到原矩阵A的逆矩阵。

四、特征值和特征向量特征值和特征向量方法是以特征值和特征向量作为基础来求逆矩阵的方法。

具体步骤如下:1. 求解矩阵A的特征值和特征向量。

2. 根据特征值和特征向量的关系,得到矩阵A的对角化形式。

3. 对角化后的矩阵可求逆,求得逆矩阵。

初等列变换求可逆矩阵

初等列变换求可逆矩阵

初等列变换求可逆矩阵
【原创实用版】
目录
1.初等列变换的概念和意义
2.初等列变换求可逆矩阵的方法
3.初等列变换与初等行变换的异同
4.总结
正文
一、初等列变换的概念和意义
初等列变换是指对于一个矩阵,通过行或列的线性组合,使得矩阵的某一列(或行)变为单位矩阵。

初等列变换是线性代数中一种重要的矩阵变换方法,它可以将一个可逆矩阵变为简化阶梯形矩阵,从而方便地求出矩阵的逆矩阵。

二、初等列变换求可逆矩阵的方法
对于一个可逆矩阵 A,我们可以通过初等列变换将其变为简化阶梯形矩阵,从而求出矩阵的逆矩阵。

具体操作步骤如下:
1.对矩阵 A 进行初等列变换,将其变为阶梯形矩阵;
2.若矩阵 A 是满秩矩阵,则可以求得矩阵 A 的逆矩阵;
3.若矩阵 A 不是满秩矩阵,则无法求得矩阵 A 的逆矩阵。

三、初等列变换与初等行变换的异同
初等列变换和初等行变换都是矩阵的线性变换,它们有以下异同点:
1.相同点:
- 都是矩阵的线性变换,不改变矩阵的行列式值;
- 都可以用来求解矩阵的逆矩阵。

2.不同点:
- 初等列变换是针对矩阵的列进行操作,而初等行变换是针对矩
阵的行进行操作;
- 初等列变换适用于对角矩阵和简化阶梯形矩阵,而初等行变换
适用于一般矩阵;
- 初等列变换求逆矩阵的方法较为简单,但对于非满秩矩阵无法
求得逆矩阵,而初等行变换可以求得任意矩阵的逆矩阵,但方法较为复杂。

四、总结
初等列变换是求解可逆矩阵逆矩阵的一种有效方法,通过初等列变换,我们可以将可逆矩阵变为简化阶梯形矩阵,从而方便地求出矩阵的逆矩阵。

初等行列变换求逆矩阵 -回复

初等行列变换求逆矩阵 -回复

初等行列变换求逆矩阵-回复初等行列变换是矩阵运算中的一种基本操作,其主要目的是通过一系列的行列变换操作将矩阵转化为某个特定的形式,以便于进行进一步的计算。

在求解逆矩阵的过程中,初等行列变换是一种非常有效且常用的方法。

一、初等行列变换的定义和操作初等行列变换是指通过对矩阵的行列进行一系列的操作,从而改变矩阵的形式,但不改变矩阵的秩。

在初等行列变换中,可以进行三种操作:对调两行(列),将某一行(列)乘以非零常数,将某一行(列)的倍数加到另一行(列)上。

二、初等行列变换的求逆矩阵应用在矩阵运算中,我们经常需要对矩阵进行求逆运算。

求逆矩阵指的是找到一个与原始矩阵相乘等于单位矩阵的矩阵,即逆矩阵。

通过初等行列变换可以简化计算逆矩阵的过程。

三、求逆矩阵的初等行列变换步骤1. 将原矩阵和单位矩阵合并为增广矩阵[A I]。

2. 对增广矩阵进行初等行列变换,将[A I]变为[I B],其中B为逆矩阵。

1) 交换两行:如果需要将第i行与第j行进行交换,则通过交换增广矩阵中的第i行与第j行来实现。

2) 将某一行乘以非零常数:如果需要将第i行乘以非零常数k,则通过将增广矩阵中的第i行的每个元素都乘以k来实现。

3) 将某一行的倍数加到另一行上:如果需要将第i行的r倍加到第j行上,则通过将增广矩阵中的第i行的每个元素分别乘以r,并与第j行对应位置的元素相加来实现。

3. 假设经过初等行列变换后的增广矩阵为[I B],则B即为原矩阵的逆矩阵。

四、求逆矩阵的数学证明求逆矩阵的过程可以理解为对增广矩阵进行一系列的初等行列变换,从而将增广矩阵转化为单位矩阵。

通过数学证明可以证明初等行列变换的有效性。

引理1:如果矩阵A 能经过一系列初等行列变换变为I,则恒有A^-1 与I 相等。

证明:设A 的增广矩阵为[A I],经过初等行列变换可以得到增广矩阵[I B],则有A·B=I。

因此,B 就是A 的逆矩阵。

引理2:一个非奇异矩阵A 能通过初等行列变换变为I,则A 的行向量组是线性无关的,也就是说,矩阵A 是满秩的。

初等变换法求逆矩阵原理

初等变换法求逆矩阵原理

初等变换法求逆矩阵原理嘿,朋友们!今天咱来唠唠初等变换法求逆矩阵这个神奇的事儿。

咱就说矩阵啊,就像是一个神秘的大盒子,里面装着好多好多数字。

而逆矩阵呢,就像是这个大盒子的一把钥匙。

那怎么找到这把钥匙呢?这就得靠初等变换法啦!你想啊,这就好比是搭积木,我们要把一堆乱乱的积木搭成我们想要的形状。

初等变换就像是我们的小手,这儿动动,那儿挪挪,慢慢地就把积木搭好了。

比如说,我们有一个矩阵,乍一看,哇,好复杂呀!但别慌,我们就开始用初等变换法。

就像是解开一团乱麻,一点点地理清楚。

我们通过行变换或者列变换,把这个矩阵慢慢地变成一个我们熟悉的样子。

这过程是不是很有趣呢?就好像是在玩一个解谜游戏。

我们不断地尝试,不断地探索,直到找到那个正确的答案。

而且哦,初等变换法可神奇了,它就像一个魔法棒,轻轻一挥,就能把复杂的问题变得简单起来。

你难道不觉得这很厉害吗?比如说,我们遇到一个很难搞的矩阵,怎么看都不知道该怎么办。

但只要我们拿起初等变换这个魔法棒,嘿,奇迹就发生了!那些数字就开始乖乖地听话,按照我们想要的方式排列起来。

这就好像是我们在走迷宫,一开始找不到路,但是只要我们沿着正确的方向走,慢慢地就能走出去啦。

初等变换法就是我们在矩阵迷宫里的指引呀!你再想想,要是没有初等变换法,我们面对那些复杂的矩阵该怎么办呢?岂不是要抓耳挠腮,不知所措啦?所以说呀,初等变换法求逆矩阵真的是太重要啦!它就像是我们在数学世界里的秘密武器,有了它,我们就能攻克一个又一个难题。

朋友们,好好去感受初等变换法的神奇吧!让我们在矩阵的世界里畅游,找到那把打开神秘大门的钥匙!这就是初等变换法求逆矩阵,是不是很有意思呢?真的值得我们好好去钻研呀!原创不易,请尊重原创,谢谢!。

逆矩阵的求法及逆矩阵的应用

逆矩阵的求法及逆矩阵的应用

逆矩阵的求法及逆矩阵的应用1. 前言在矩阵运算中,逆矩阵是一个重要的概念。

一个矩阵的逆矩阵是指,如果一个矩阵A乘上它的逆矩阵A^-1等于单位矩阵I,那么A就有逆矩阵。

逆矩阵经常用于解线性方程组、计算行列式和计算矩阵的特征值等方面。

本文将介绍逆矩阵的求法和逆矩阵的应用。

2. 求逆矩阵的方法要求一个矩阵的逆矩阵,需要满足两个条件:该矩阵是方阵且它的行列式不等于零。

下面介绍两种求逆矩阵的方法。

2.1. 初等变换法采用初等变换法求逆矩阵,需要构造一个n阶矩阵[AB],其中A 为待求矩阵,B为单位矩阵,即:[AB]=[A I_n]然后,对矩阵[AB]进行初等行变换,一直到[AB]变为[IBA']的形式,其中A'为A的逆矩阵。

由于[AB]=[A I_n],所以[IBA']=[I_n A^-1],即A的逆矩阵就构造出来了。

2.2. 公式法另一种求逆矩阵的方法是采用公式法。

设A为一个n阶矩阵,若它的行列式为D,那么它的伴随矩阵记为adj(A),则逆矩阵为A^-1=(1/D)adj(A)。

其中,adj(A)表示矩阵A的伴随矩阵,它的第i行第j列元素A_ij的代数余子式与(-1)^(i+j)的乘积。

3. 逆矩阵的应用逆矩阵在数学中有多种应用,这里只介绍几个典型的应用。

3.1. 解线性方程组逆矩阵可以用于求解线性方程组,解法如下:假设有n个未知数,n个方程,可将方程组表示为AX=B的形式,其中X为未知数向量,B为常数向量,A为系数矩阵。

如果系数矩阵A有逆矩阵,那么可以将方程组A^-1AX=A^-1B简化为X=A^-1B,即可求得未知数向量X。

3.2. 计算行列式和矩阵的特征值逆矩阵还可以用于计算行列式和矩阵的特征值。

设A为n阶方阵,它的逆矩阵为A^-1,则有:det(A)=det(A^-1)^-1λ是A的特征值,那么A的逆矩阵的特征值就是λ^-1。

3.3. 计算数据的逆矩阵逆矩阵也可以用于计算数据的逆矩阵。

初等行列变换求逆矩阵 -回复

初等行列变换求逆矩阵 -回复

初等行列变换求逆矩阵-回复初等行列变换是矩阵运算中常用的一种方法,用于简化矩阵的求逆过程。

在本文中,我们将使用初等行列变换的方法来求一个矩阵的逆。

首先,我们需要明确什么是矩阵的逆。

一个n阶矩阵A,如果存在一个n 阶矩阵B,使得AB=BA=In(其中In是n阶单位矩阵),那么矩阵B就是矩阵A的逆矩阵,记作A的逆矩阵为A^(-1)。

现在,我们假设有一个n阶方阵A,我们的目标是求出它的逆矩阵A^(-1)。

我们可以通过一系列的初等行列变换来实现这个目标。

初等行列变换分为三类:对调两行(列),用一个非零数乘某一行(列),与某一行(列)相加(减)若干倍的某一行(列)。

首先,我们将A矩阵和一个n阶单位矩阵I(I的每个元素i,j等于1当i=j 时,否则等于0)进行横向合并,形成一个2n阶的矩阵[A I]。

以下是求一个3阶方阵的逆矩阵的一个例子,我们将从头开始一步一步解释求逆的过程。

\[A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i\end{bmatrix}\]我们首先将A矩阵和一个3阶单位矩阵I进行横向合并,形成一个6阶的矩阵[A I]。

\[ \begin{bmatrix} a & b & c & 1 & 0 & 0 \\ d & e & f & 0 & 1 & 0 \\ g & h & i & 0 & 0 & 1 \end{bmatrix}\]接下来,我们进行初等行变换。

首先,我们使用第一行的第一个元素a,将第二行的第一个元素d和第三行的第一个元素g变为0。

具体操作是使用第一行乘以d/a,再用结果乘以第二行然后减去第一行。

\[\begin{bmatrix} a & b & c & 1 & 0 & 0 \\ 0 & e-\frac{db}{a} &f-\frac{cf}{a} & -\frac{cd}{a} & 1 & 0 \\ 0 & h-\frac{gb}{a} &i-\frac{hc}{a} & -\frac{gc}{a} & 0 & 1 \end{bmatrix}\]然后,我们使用第二行的第二个元素(e-\frac{db}{a}),将第一行的第二个元素b变为0。

总结求矩阵的逆矩阵方法

总结求矩阵的逆矩阵方法

华北水利水电学院总结求矩阵的逆矩阵方法课程名称:线性代数专业班级:成员组成:联系方式:浅析求矩阵的逆矩阵方法摘要:矩阵理论在《线性代数》课程中有着重要的地位,矩阵和数相仿可以运算,特别是乘法和数一样有逆运算,其定义为:对于 n 阶方阵 A,如果存在 n 个阶段 B 使得 AB=BA=E,则 n 个阶方阵 A 为可逆的,B 为 A 的逆矩阵。

下面对求逆矩阵方法进行全面论述,并做一步探讨。

关键字 矩阵 逆矩阵 可逆1矩阵求逆常见的几种方法 1.1 用伴随矩阵法求逆矩定理1.1.1:n 阶矩阵)(ij a A =可逆的充要条件0≠A ,而且当)2(≥n 阶矩阵A 有逆矩阵,*-=A AA11,其中*A 伴随矩阵。

例1 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=412112013A 是否可逆?若可逆,求1-A 解:A A ∴≠=05可逆又511=A ,421=A ,3131=A ,1012=A ,1222=A ,332-=A ,013=A ,123=A ,133=A∴*-=A AA11例 2 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=543022001A ,*A 是A 的伴随矩阵,求()1-*A解:1-*=A A A ,又()kB kB 11--=,所以()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡====---*5430220011011011111A A A AA A且有规律可循。

对于三阶以上方阵用该方法逆矩阵,不仅计算量大且易出错,一般不用此种方法。

对求出逆矩阵正确与否,一般用E AA A A ==--11来检验是否正确。

1.2 用初等变换法求逆矩阵定理 1.2.1 如果n 阶方阵A 可逆,则存在有限个初等矩阵,l P P P 21,使得l P P P A 21=。

如果A 可逆,则1-A 也可逆,由上述定理, 存在初等矩阵l Q Q Q ,,,21 使得l Q Q Q A 211=-那么A A AAE 11--==即A Q Q Q E l 21= E Q Q Q Al 211=-于是我们得到一个求逆矩阵的方法如下:如果n 阶方阵A 可逆,作一个n n 2⨯的矩阵E A ,然后对此矩阵施以初等行换,使A 化为单位矩阵E 同时化为1-A ,即:E A 1-−−−→−A E 初等行变换例1 用初等行变换求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=521310132A 的逆矩阵解:=E A →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100132310521100010001521310132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--201010100910310521211010100600310521⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→316161100123210103461361001316161100010310100521 故⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----=-3161611232134613611A 同理,如果n 阶矩阵A 可逆,作一个n n ⨯2的矩阵⎥⎦⎤⎢⎣⎡E A ,然后此矩阵施以初等变换,使矩阵A 化为单位阵E ,则同时E 化为1-A ,即⎥⎦⎤⎢⎣⎡−−−→−⎥⎦⎤⎢⎣⎡-1A E E A 初等列变换。

通过初等变换求逆矩阵的方法思政

通过初等变换求逆矩阵的方法思政

通过初等变换求逆矩阵的方法思政一、概述在矩阵理论中,矩阵的逆是一个重要的概念。

矩阵的逆是指一个矩阵与其逆矩阵相乘得到单位矩阵。

求解矩阵的逆矩阵是线性代数中的常见问题,通过初等变换求逆矩阵是一种常见且有效的方法。

本文将探讨通过初等变换求逆矩阵的方法思政。

二、矩阵的逆定义对于一个n阶方阵A,如果存在一个n阶方阵B,使得AB=BA=E(E 为n阶单位矩阵),则称B是A的逆矩阵。

矩阵的逆矩阵是一个重要的概念,它在解线性方程组、求解矩阵方程等问题中都有着重要的应用。

三、初等变换初等变换是矩阵运算中的常用方法,主要包括对换两行或两列、某一行或列乘以一个非零常数、某一行或列加上另一行或列的若干倍。

通过这些简单的操作,可以改变矩阵的行列式、行空间等性质。

四、使用初等变换求逆矩阵的方法思政1. 确定原始矩阵我们要确定需要求逆的原始矩阵A。

假设原始矩阵A为一个n阶方阵。

2. 构造增广矩阵将原始矩阵A与n阶单位矩阵I做成一个2n阶的增广矩阵[A|I]。

3. 初等变换通过初等变换,将增广矩阵[A|I]变为[I|B],其中B即为矩阵A的逆矩阵。

4. 检验逆矩阵我们需要通过简单的计算和检验,确定矩阵B确实是矩阵A的逆矩阵,即满足BB=I。

五、示例分析接下来,我们通过一个具体的示例来演示通过初等变换求逆矩阵的方法思政。

假设我们有一个3阶方阵A如下:A = [[1, 2, 3], [4, 5, 6], [7, 8, 10]]我们首先生成3阶单位矩阵I:I = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]然后构造增广矩阵[A|I]:[A|I] = [[1, 2, 3, 1, 0, 0], [4, 5, 6, 0, 1, 0], [7, 8, 10, 0, 0, 1]]接下来,我们通过初等变换将增广矩阵[A|I]变为[I|B]。

经过一系列的初等变换操作,最终得到增广矩阵[I|B]:[I|B] = [[1, 0, 0, -1, 1, 0], [0, 1, 0, 2, -2, 1], [0, 0, 1, -1, 1, -1]]可以看到,矩阵B即为原始矩阵A的逆矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2007年11月16日至18日,有幸参加了由李尚志教授主讲的国家精品课程线性代数(非数学专业)培训班,使我受益匪浅,在培训中,我见识了一种全新的教学理念。

李老师的“随风潜入夜,润物细无声”“化抽象为自然”“饿了再吃”等教学理念很值得我学习。

作为刚参加工作的年轻教师,我应该在以后的教学中,慢慢向这种教学理念靠拢,使学生在不知不觉中掌握较为抽象的知识。

下面这个教案是根据李老师的教学理念为“三本”学生写的,不知是否能达要求,请李老师指教。

用矩阵的初等变换求逆矩阵
一、问题提出
在前面我们以学习了用公式 求逆矩阵,但当矩阵A 的阶数较大时,求A*很繁琐,此方法不实用,因此必须找一种更简单的方法求逆矩阵,那么如何找到一种简单的方法呢? (饿了再吃)
二、求逆矩阵方法的推导 (“润物细无声”“化抽象为自然”)
我们已学习了矩阵初等变换的性质,如
1.定理
2.4 对mxn 矩阵A ,施行一次初等行变换,相当于在A 的左边乘以相应m 阶初等矩阵;对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵。

2.初等矩阵都是可逆矩阵,其逆矩阵还是初等矩阵。

3.定理2.5的推论 A 可逆的充要条件为A 可表为若干初等矩阵之积。


4.推论 A 可逆,则A 可由初等行变换化为单位矩阵。

(1)
由矩阵初等变换的这些性质可知,若A 可逆,构造分块矩阵(A ︱E),其中E 为与A 同阶的单位矩阵,那么
(2)
由(1)式 代入(2)式左边,
上式说明分块矩阵(A ︱E)经过初等行变换,原来A 的位置变换为单位阵E ,原来E 的位置变换为我们所要求的1A -,即
21121111111112112112s t s s t t m P P P AQ Q Q E A P
P P P EQ Q Q Q R R R ----------=⇒=∆11121m R R R A E ---=111121m R R R A ----=()()122n n n n
A E E A -⨯⨯−−−−−→ 1*1A A A -=()()()1111A A E A A A E E A ----==111121m A R R R ----=()()111121m R R R A E E A ----=
三,讲解例题
1. 求逆矩阵方法的应用之一
例 解:
四,知识拓展
2.求逆矩阵方法的应用之二
利用矩阵的初等行变换也可以判断一个矩阵是否可逆,即分块矩阵(A ︱E)经过初等行变换,原来A 的位置不能变换为单位阵E ,那么A 不可逆。

例 解:
而上面分块矩阵的第一块第二行全为零,它不可能变换为单位矩阵,所以A 不可逆。

3.求逆矩阵方法的应用之三
利用矩阵初等行变换解矩阵方程 (“润物细无声”)
1112120,113A A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭设求。

112100120010113001A E ⎛⎫ ⎪=- ⎪ ⎪⎝⎭
()2131r r r r +-112100032110001101⎛⎫ ⎪−−→ ⎪ ⎪-⎝⎭110302030312001101⎛-⎫ ⎪−−→- ⎪ ⎪-⎝⎭
132322r r r r --30211012010133001101⎛⎫- ⎪−−→- ⎪ ⎪ ⎪-⎝⎭313r 1423310012010133001101⎛⎫-- ⎪ ⎪→- ⎪ ⎪- ⎪⎝⎭12r r -11423312133101A -⎛⎫-- ⎪ ⎪⇒=- ⎪ ⎪- ⎪⎝⎭112122145,41211111A A ----⎛⎫ ⎪- ⎪= ⎪ ⎪-⎝⎭
设求。

12121000214501004121001011110001A E ⎛---⎫ ⎪- ⎪= ⎪ ⎪ ⎪-⎝⎭()12121000036921000969401001231001⎛---⎫ ⎪- ⎪→ ⎪- ⎪ ⎪-⎝⎭12121000000011030969401001231001⎛---⎫ ⎪- ⎪→ ⎪- ⎪ ⎪-⎝⎭
对一般的矩阵方程 求解,我们可以先求1A - ,然后求X =1A -B 。

现在我们介绍另外一种方法求矩阵方程。

其实在推导求逆矩阵方法的过程就是求解矩阵方程的过程,因为求1A -就是求解矩阵方
程 的解,而对一般的矩阵方程
只要将 中的E 换成B ,然后利用初等行变换,即
其中的1A -B 即为所求矩阵方程 的X 。


解:
五、小结
1.矩阵初等行变换:求逆、判断矩阵是否可逆、 解矩阵方程
2.思考:若XA=B ,如何用初等变换法求X?
贺建辉 2007-11-21
AX E =AX B =AX B =()A E ()()
122n n n n A B E A B -⨯⨯−−−−−→ AX B =123252213134343A B AX B X ⎛⎫⎛⎫
⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭设,,若,求。

123252213134343A B ⎛⎫ ⎪= ⎪ ⎪⎝⎭()1232502519026212⎛⎫ ⎪→---- ⎪ ⎪----⎝⎭102140251900113⎛--⎫ ⎪→---- ⎪ ⎪---⎝⎭100320204600113⎛⎫ ⎪→- ⎪ ⎪---⎝⎭100320102300113⎛⎫ ⎪→-- ⎪ ⎪⎝⎭132X 2313A B -⎛⎫ ⎪⇒==-- ⎪ ⎪⎝⎭。

相关文档
最新文档